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A B S T R A C T

In this paper, we investigate the capital asset pricing model (CAPM) derived from a three-period
general equilibrium model incorporating time-inconsistent preferences. We define and consider
two types of agents, i.e. they can be either sophisticated or naive. Sophisticated agents take into
account their potentially changing future preferences when making a decision. Naive agents, on
the other hand, do not anticipate this issue and their related self-control problems when they
plan the consumption path.

We demonstrate that the derivation of the CAPM equation can be achieved even if the
agents in the financial economy have time-inconsistent preferences.

. Introduction

The capital asset pricing model, commonly referred to as CAPM in the literature, accurately estimates the relationship between
he risk and the expected return of an asset. The CAPM model estimates the expected returns of risky assets in equilibrium.

Models based on neoclassical economic theory tend to assume that the agents in an economy are rational. However, the observed
atterns often contradict these assumptions not only in our daily lives and the field of psychology but also in experimental and
ehavioral economics. Many of the decisions we make are deemed irrational by neoclassical economics, yet the agents in most
odels have remained rational, as they are said to describe the average decision-maker. However, it is now widely accepted that

he so-called irrational behaviors are not just outlier instances but widely acknowledged social phenomena driven by cognitive biases,
ake, for example, Kahneman (2011). These empirical pieces of evidence suggest that the sole use of rational agents in economic
odels has become insufficient to describe real-world dynamics. These studies suggest that decision-makers do not necessarily follow

onstant discounting (Frederick et al., 2002).
To be able to capture some of these anomalies in intertemporal decision-making, one needs at least three time-periods. This is

eeded to provide agents with a point in time when they can change their minds. The three-period economic model allows us to
odel time-inconsistent behaviors.

As a foundation of our model, we use the well-known results described in the books by Magill and Quinzii (1996a) and LeRoy
nd Werner (2001), which we frequently use as building blocks in this study. Regarding the three-period model with rational agents,
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we also often reach for the results of Habis (2024). Here, we introduce two new variants of decision-makers: naive and sophisticated
agents.2 Both of these types can be modeled with hyperbolic discount factors, which allows us to describe real-world decisions more
losely.

In Section 2 we give an outline of the model with rational agents. We derive the model with sophisticated and naive agents in
ection 3, thereby asserting that it is possible and advantageous to insert irrational elements into financial-economic models.

. The three-period CAPM with rational agents

In this section, we show how the 𝛽-pricing formula that relates the return of a risky asset to the return of the market portfolio
can also be derived in a three-period finance general equilibrium model. We apply the Consumption Capital Asset Pricing Model
(CCAPM), where the CAPM is centered on consumption. The CCAPM was first introduced by Rubinstein (1976), Lucas (1978),
and Breeden (1979). The three-period structure described here is based on that of Habis (2024).

Let 𝑡 ∈ {0, 1, 2} = 𝑇 denote the time periods. In periods 𝑡 = 1, 2 one event out of a finite set occurs. At every state 𝑠 ∈  we
denote the date-event at period 𝑡 by 𝑠𝑡 ∈ 𝑡, where the cardinality of 𝑡 is 𝑆𝑡 and  =

⋃

𝑡 𝑡 for all 𝑡 ∈ 𝑇 . For 𝑡 = 0 we define 𝑠0 = 0,
which is the current state with no uncertainty. Let 𝑠+𝑡 be the set of successors of 𝑠𝑡 for all 𝑡 = 0, 1 and 𝑠−𝑡 the set of predecessors of
𝑠𝑡 for all 𝑡 = 1, 2. Note, that 𝑠−1 then becomes simply state 0. In each period there is a single, non-durable consumption good.

There is a finite number of agents ℎ ∈ 𝐻 participating in the economy. Each agent ℎ has initial endowments (𝑒ℎ𝑠𝑡 )𝑠𝑡∈{0}∪1∪2 ∈
R(𝑆1+𝑆2+1). Agents have preferences over consumption bundles 𝑐ℎ𝑠𝑡 ∈ R

(𝑆1+𝑆2+1) where 𝑠𝑡 ∈ .
We define the utility function of the rational agents (ℎ) as follows:

𝑢ℎ(𝑐ℎ) = 𝑣ℎ0 (𝑐
ℎ
0 ) + 𝛿1

∑

𝑠1∈𝑆1

𝜌𝑠1𝑣
ℎ
𝑠1
(𝑐ℎ𝑠1 ) + 𝛿1𝛿2

∑

𝑠1∈𝑆1

𝜌𝑠1
∑

𝑠2∈𝑆+
1

𝜌𝑠2𝑣
ℎ
𝑠2
(𝑐ℎ𝑠2 ). (1)

where 𝜌𝑠1 denotes the probability of occurrence of event 𝑠1 and 𝜌𝑠2 denotes the probability of occurrence of event 𝑠2 given event 𝑠1
has occurred, 𝛿𝑡 is a one-period discount factor and 𝑣ℎ𝑠𝑡 is a Bernoulli function.

We apply the following assumptions throughout the paper.

Assumption 2.1. We assume that 𝜌𝑠𝑡 > 0 for all 𝑠𝑡 ∈ 𝑡 and ∑

𝑠1∈1 𝜌𝑠1 = 1, ∑𝑠2∈2 𝜌𝑠2 = 1, 𝛿1, 𝛿2 > 0, the probabilities and
discount factors are identical across agents, and that the Bernoulli utility function is strictly increasing. Furthermore 𝑐ℎ ∈ 𝑋ℎ where
𝑋ℎ ⊂ R1+𝑆1+𝑆2 and 𝑋ℎ is the vector of consumption bundles for agent ℎ.

The constraint of 𝜌𝑠𝑡 > 0 means that the agents only take into account the future outcomes for which the objective probability
of occurrence is positive, i.e. unlikely events do not affect their utility. A further simplifying assumption is that all agents apply the
same discount factors and have no satiation point.

There are 𝐽𝑠𝑡 short-lived assets at each 𝑠𝑡 ∈ {0} ∪ 1. The set of assets at event 𝑠𝑡 is 𝑠𝑡 . Each asset 𝑗 pays (random) dividends
𝑑𝑠𝑡+1 ,𝑗 at date-events 𝑠𝑡+1 ∈ 𝑠+𝑡 and then it expires. We denote the vector of dividends by 𝑑𝑠𝑡 = (𝑑𝑠𝑡 ,1,… , 𝑑𝑠𝑡 ,𝐽𝑠−𝑡

) where 𝑠𝑡 ∈ 1 ∪ 2,

and the pay-off matrices by 𝐴𝑠𝑡 = (𝑑1,… , 𝑑𝐽𝑠𝑡 ) ∈ R
|𝑠+𝑡 |×𝐽𝑠𝑡 where 𝑠𝑡 ∈ {0} ∪ 1.

The price of asset 𝑗 at date-events 𝑠𝑡 ∈ {0}∪1 is 𝑞𝑠𝑡 ,𝑗 ∈ R. We denote the vector of asset prices by 𝑞𝑠𝑡 = (𝑞𝑠𝑡 ,1,… , 𝑞𝑠𝑡 ,𝐽𝑠𝑡 ), and the
collection of prices over date-events by 𝑞 = (𝑞𝑠𝑡 )𝑠𝑡∈{0}∪1 . We assume that assets are in zero net supply. At date-event 𝑠𝑡 ∈ {0} ∪ 1
agent ℎ chooses a portfolio-holding 𝜃ℎ𝑠𝑡 = (𝜃ℎ𝑠𝑡 ,1, 𝜃

ℎ
𝑠𝑡 ,2

,… , 𝜃ℎ𝑠𝑡 ,𝐽𝑠𝑡
) ∈ R𝐽𝑠𝑡 .

Definition 2.2. The finance economy  = ((𝑢ℎ, 𝑒ℎ)ℎ=1,…,𝐻 ; (𝐴𝑠𝑡 )𝑠𝑡∈{0}∪1 ) is defined by the agents’ utility functions and endowments,
and the pay-off matrices.

Definition 2.3. A competitive equilibrium for an economy  is a collection of portfolio-holdings 𝜃∗ = (𝜃1∗, 𝜃2∗,… , 𝜃𝐻∗) ∈ R𝐻×𝐽×(𝑆1+1),
consumption 𝑐∗ = (𝑐1∗, 𝑐2∗,… , 𝑐𝐻∗) ∈ R𝐻×(𝑆1+𝑆2+1) and asset prices 𝑞∗ ∈ R𝐽×(𝑆1+1) that satisfy the following conditions:

(a) For ℎ = 1,… ,𝐻 ,

(𝑐ℎ∗, 𝜃ℎ∗) ∈ arg max
𝑐ℎ∈𝑋ℎ ,𝜃ℎ∈R𝐽×(𝑆1+1)

𝑢ℎ(𝑐ℎ) (2)

s. t. 𝑐ℎ0 + 𝑞0𝜃
ℎ
0 = 𝑒ℎ0 ,

𝑐ℎ𝑠1 + 𝑞𝑠1𝜃
ℎ
𝑠1

= 𝑒ℎ𝑠1 + 𝑑𝑠1𝜃
ℎ
0 , for 𝑠1 ∈ 1,

𝑐ℎ𝑠2 = 𝑒ℎ𝑠2 + 𝑑𝑠2𝜃
ℎ
𝑠−2
, for 𝑠2 ∈ 2,

2 Note, that in each case we consider homogeneous types of agents.
2
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(b)
𝐻
∑

ℎ=1
𝜃ℎ∗ = 0, (3)

(c)
𝐻
∑

ℎ=1
𝑐ℎ∗ =

𝐻
∑

ℎ=1
𝑒ℎ. (4)

Note that the market clearing (b) for the financial contracts imply that the consumption 𝑐∗ is feasible; i.e. condition (c) is always
satisfied when conditions (a) and (b) are. The feasibility of 𝑐∗ means that in a finance economy (a single commodity model) when
the financial markets clear, the demand for the commodity induced by the portfolio-holdings equals its supply in each state; thus
the commodity market clears in each state (Magill and Quinzii, 1996b).

If Assumption 2.1 is met (i.e. agents have strictly increasing utility functions) equilibrium prices exclude arbitrage opportunities
in the following sense.

Definition 2.4. Asset prices 𝑞 of short-lived assets are arbitrage-free if there is no 𝜃ℎ = (𝜃ℎ𝑠𝑡 )𝑠𝑡∈{0}∪1 such that

𝑞0𝜃
ℎ
0 ≤ 0, (5)

∀𝑠𝑡 ∈ 1 ∪ 2 ∶ 𝑞𝑠𝑡𝜃
ℎ
𝑠𝑡

≤ 𝐴𝑠−𝑡
𝜃ℎ𝑠−𝑡 , (6)

with at least one strict inequality.

Definition 2.5. Markets are complete if for every income stream 𝑦 ∈ R𝑆1+𝑆2 there exists a portfolio plan (𝜃ℎ𝑠𝑡 )𝑠𝑡∈{0}∪1 such that

∀𝑠1 ∈ 1 ∶ 𝑑𝑠1𝜃
ℎ
0 − 𝑞𝑠1𝜃

ℎ
𝑠1

= 𝑦𝑠1 ;

∀𝑠2 ∈ 2 ∶ 𝑑𝑠2𝜃
ℎ
𝑠−2

= 𝑦𝑠2 .

That is, for each date-event 𝑠𝑡 ∈ {0}∪1 and arbitrary payoffs in immediate successors of 𝑠𝑡, there exists a portfolio that generates
those payoffs. Such a portfolio exists if and only if 𝐴𝑠𝑡 has rank |𝑠+𝑡 |, which is stated in the following proposition:

Proposition 2.6. Markets are complete if and only if for every 𝑠𝑡 ∈ {0} ∪ 1 the following condition is met

𝑟𝑎𝑛𝑘(𝐴𝑠𝑡 ) = |𝑠+𝑡 |. (7)

Proof. The proof is given in Habis and Herings (2011). □

Proposition 2.7. If there are no arbitrage opportunities in the financial markets and the markets are complete, then there exists a unique,
strictly positive state price vector (𝜋𝑠𝑡 )𝑠𝑡∈{0}∪1 ∈ R𝑆1+1 such that

𝑞𝑠𝑡 = 𝜋⊤
𝑠𝑡
⋅ 𝐴𝑠𝑡 . (8)

Proof. The proof is given in Magill and Quinzii (1996b). □

The following additional assumptions will be made throughout this section:

Assumption 2.8. We assume that

1. asset 1 is risk free, so 𝑑𝑠𝑡 ,1 = 1 ∀𝑠𝑡 ∈ 1 ∪ 2, and its return is 𝑅𝑓 = 1∕𝑞𝑠𝑡 ,1,
2. and {𝑐ℎ ∈ 𝑋ℎ

|𝑢ℎ(𝑐ℎ) ≥ 𝑢ℎ(𝑒ℎ)} ⊂ int(𝑋ℎ), which prevents the solution of the agent’s maximization problem from occurring
at the boundary of the consumption set.

We use 𝐸𝑠𝑡 (𝑐𝑠+𝑡 ) to denote the expectation of 𝑐𝑠+𝑡 conditional on date-event 𝑠𝑡, so 𝐸𝑠𝑡 (𝑐𝑠+𝑡 ) =
∑

𝑠𝑡+1∈𝑠+𝑡
𝜌𝑠𝑡 𝑐𝑠𝑡 .

Agent ℎ maximizes this utility subject to her constraints on endowments, income, and costs. Since markets are complete, it is
known that there exists a unique and strictly positive state price vector 𝜋𝑠𝑡 . The asset price vector 𝑞𝑠𝑡 = 𝜋𝑇

𝑠𝑡
⋅ 𝐴𝑠𝑡 then follows from

the agents’ optimization problem:

ℎ = 𝑢ℎ(𝑐ℎ) − 𝜆ℎ0 (𝑐
ℎ
0 − 𝑒ℎ0 + 𝑞0𝜃

ℎ
0 ) − 𝜆ℎ𝑠1 (𝑐

ℎ
𝑠1
+ 𝑞𝑠1𝜃

ℎ
𝑠1
− 𝑒ℎ𝑠1 − 𝑑𝑠1𝜃

ℎ
0 ) − 𝜆ℎ𝑠2 (𝑐

ℎ
𝑠2
− 𝑒ℎ𝑠2 − 𝑑𝑠2𝜃

ℎ
𝑠−2
), (9)

where 𝜆ℎ𝑠𝑡 denote the Lagrange multipliers. Solving this problem for 𝑞𝑠𝑡 we get:

𝑞𝑠𝑡 = 𝐴𝑠𝑡

𝛿𝑡+1
∑

𝑠𝑡+∈𝑆+
𝑡
𝜌𝑠+𝑡 𝜕𝑣

ℎ
𝑠+𝑡
(𝑐ℎ
𝑠+𝑡
)∕𝜕𝑐ℎ

𝑠+𝑡
ℎ ℎ ℎ . (10)
3

𝜕𝑣𝑠𝑡 (𝑐𝑠𝑡 )∕𝜕𝑐𝑠𝑡
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It becomes apparent that what we get is the marginal rate of substitution (MRS) between the consumption levels of the different
periods. Eq. (10) means that for each 𝑠𝑡 ∈ {0} ∪ 1 date-event, an agent ℎ invests in 𝑗 assets, such that the marginal cost of each
dditional 𝑞𝑠𝑡 ,𝑗 unit equals its marginal utility, which is the present value of the future dividends of agent ℎ.

Applying the definition of the expected value yields3

𝑞𝑠𝑡 =
𝛿𝑡+1𝐸𝑠𝑡 [𝜕𝑐𝑠+𝑡

𝑣ℎ
𝑠+𝑡
(𝑐ℎ∗)𝐴𝑠𝑡 ]

𝜕𝑐𝑠𝑡 𝑣
ℎ
𝑠𝑡
(𝑐ℎ∗)

= 𝐸(MRSℎ𝑠𝑡𝐴𝑠𝑡 ), for all 𝑠𝑡 ∈ {0} ∪ 1. (11)

Eq. (11) asserts that each agent ℎ invests in each asset 𝑗 at each date-event 𝑠𝑡 ∈ {0} ∪1 in such a way that the marginal cost of
n additional unit of the security 𝑞𝑠𝑡 ,𝑗 is equal to its marginal benefit, the present value for agent ℎ of its future stream of dividends.
lthough the 𝑀𝑅𝑆ℎ

𝑠𝑡
of each agent can be different as a result of the shape of the utility function (e.g. based on their attitude

owards risk), they cannot disagree on asset prices in equilibrium. If an individual 𝑀𝑅𝑆ℎ
𝑠𝑡

is projected onto the marketed subspace
𝐴𝑠𝑡 ⟩ one obtains a unique pricing vector, given that 𝑞𝑠𝑡 = 𝜋⊤

𝑠𝑡
⋅ 𝐴𝑠𝑡 which is the one defined in (11). Note, that if asset markets are

complete, then 𝑐∗ is Pareto-optimal in the competitive equilibrium (Habis, 2024).
For asset prices 𝑞𝑠𝑡 , we define the one-period return 𝑟𝑠+𝑡 , 𝜃𝑠𝑡

for a portfolio 𝜃𝑠𝑡 , with 𝑞𝑠𝑡𝜃𝑠𝑡 ≠ 0, by

𝑟𝑠+𝑡 ,𝜃𝑠𝑡 =
𝐴𝑠𝑡𝜃

ℎ
𝑠𝑡

𝑞𝑠𝑡𝜃
ℎ
𝑠𝑡

. (12)

his reflects the general definition of returns: we divide the pay-offs of the securities in the portfolio by their price.
Following the steps of Habis (2024), we can arrive at the CAPM-pricing formula:

𝐸𝑠𝑡 [𝑟𝑠+𝑡 ,𝜃] − 𝑅𝑓
𝑠𝑡
= 𝛽𝜃𝑠𝑡 (𝐸𝑠𝑡 [𝑟

𝑀
𝑠+𝑡
] − 𝑅𝑓

𝑠𝑡
); (13)

which is, in fact, the formula of the security market line:

𝐸𝑠𝑡 [𝑟𝑠+𝑡 ,𝜃] = 𝑅𝑓
𝑠𝑡
+ 𝛽𝜃𝑠𝑡 (𝐸𝑠𝑡 [𝑟

𝑀
𝑠+𝑡
] − 𝑅𝑓

𝑠𝑡
). (14)

As it is also stated in LeRoy and Werner (2001), the assumption that the equilibrium consumption choice is in the span of the
market return and the risk-free return is trivial in a representative-agent economy. This is because the optimal consumption of each
agent in the economy is equal to the per capita pay-off of the market portfolio.

3. The three-period CAPM with irrational agents

In this section, we will extend the model of the previous section: we will derive the security market line formula from a three-
period finance economy but replace the rational agent with a type of irrational agent. By irrational agent, we refer to agents with
time-inconsistent preferences which we define the following way.

Definition 3.1. The preferences of an agent are time-inconsistent if there are two different 𝑡𝐴 and 𝑡𝐵 time periods and two different
1 and 𝑥2 baskets of goods for which both of the following hold:

𝑥1 ≿𝑡𝐴 𝑥2
𝑥1 ≾𝑡𝐵 𝑥2

.e.: the agent changes her mind from one period to another. This is a non-standard preference type, and thus it is a form of
rrationality.

We will introduce two kinds of irrational agents that are time-inconsistent: the naive and the sophisticated. In Pollak (1968),
aive and sophisticated agents had already been characterized, but optimal consumption trajectories were not described. Rohde
2006) defined the equilibria of the two consumption trajectories following Pollak’s results. Since, however, neither of them defined
he two types of agents, we introduce the description of naive agents in Definition 3.2 and sophisticated agents in Definition 3.3
sing the points discussed above and O’Donoghue and Rabin (1999).

efinition 3.2. The naive agent is a decision-maker who cannot foresee their potentially changing future preferences and their
elated self-control problems. As a result, in each period, they make decisions based solely on their current preferences. Then, they
ight change this decision in future periods due to changed period-dependent preferences.

efinition 3.3. The sophisticated agent is a decision-maker who can foresee their potentially changing future preferences and they
ake their decisions being conscious of this knowledge. This way, they make decisions that they stick to in future periods as well.

3 For the sake of clearer notation, we will substitute the traditional notation ( 𝜕𝑓 (𝑥)
𝜕𝑥

) of the partial derivative of any function 𝑓 (𝑥) with respect to 𝑥 variable
y simply writing 𝜕 𝑓 (𝑥).
4
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In this Section, we will derive the CAPM with irrational agents, first in an economy with naive agents and then with sophisticated
gents.

To introduce these irrational behaviors into the model, we need to modify the utility function by applying the hyperbolic discount
actor instead of the exponential. The hyperbolic discount factor, based on Harvey (1986) and Loewenstein and Prelec (1992),
efined for our use case, is

𝑓 (𝜏) = 1
1 + 𝛾𝜏

(15)

where 𝜏 denotes the relative time and 𝛾 is a parameter controlling the intensity of the discounting.
As we will shortly show, the representation of the above-described irrational behavior requires at least three time periods, so we

can model how the agents change their preferences over time. Appendix A.1 illustrates the decision-making processes of each type
in a simple setup.

3.1. The naive agent

Similarly to the rational case, the utility functions of the naive agents 𝑣𝑛𝑠𝑡 (𝑐
𝑛
𝑠𝑡
) need to be in the same quadratic form.

ssumption 3.4. Let each naive agent have the 𝑣𝑛𝑠𝑡 (𝑐
𝑛
𝑠𝑡
) = 𝜉𝑡𝑐𝑛𝑠𝑡−

1
2𝛼𝑡(𝑐

𝑛
𝑠𝑡
)2 quadratic Bernoulli utility function 𝑣𝑛𝑠𝑡 (𝑐

𝑛
𝑠𝑡
) = 𝜉𝑡𝑐𝑛𝑠𝑡−

1
2𝛼𝑡(𝑐

𝑛
𝑠𝑡
)2,

𝑠𝑡 ∈ {0} ∪ 1 ∪ 2.

Observe, that the naive agents behave similarly to the rational ones in period 𝑡 = 0, they optimize their consumption by
aximizing their utility function;

𝑢𝑛(𝑐𝑛) = 𝑣𝑛0(𝑐
𝑛
0 ) +

1
1 + 𝛾

∑

𝑠1∈𝑆1

𝜌𝑠1𝑣
𝑛
𝑠1
(𝑐𝑛𝑠1 ) +

1
1 + 2𝛾

∑

𝑠1∈𝑆1

𝜌𝑠1
∑

𝑠2∈𝑆+
1

𝜌𝑠2𝑣
𝑛
𝑠2
(𝑐𝑛𝑠2 ). (16)

However, we need to address each period one by one, because as time passes, the naive agent can potentially change the original
decision of period 0.

Similarly to the rational case, we apply the Lagrangian of the utility function

𝑛 = 𝑢𝑛(𝑐𝑛) − 𝜆𝑛0(𝑐
𝑛
0 − 𝑒𝑛0 + 𝑞0𝜃

𝑛
0 ) − 𝜆𝑛𝑠1 (𝑐

𝑛
𝑠1
+ 𝑞𝑠1𝜃

𝑛
𝑠1
− 𝑒𝑛𝑠1 − 𝑑𝑠1𝜃

𝑛
0 ) − 𝜆𝑛𝑠2 (𝑐

𝑛
𝑠2
− 𝑒𝑛𝑠2 − 𝑑𝑠2𝜃

𝑛
𝑠−2
), (17)

nd we take its partial derivatives with respect to the consumption and the portfolio holdings at the different date-events. For details,
ee Appendix A.2.

We solve them again for 𝑞𝑠𝑡 :

𝑞0 = 𝑑𝑠1
𝜆𝑛𝑠1
𝜆𝑛0

, s.t.𝜆𝑛0 ≠ 0. (18)

From here, we use the respective version of Eq. (10) to obtain Eq. (11) for the naive agent, also in 𝑡 = 0:

𝑞0 =
1

1+𝛾𝐸0[𝜕𝑐𝑠1 𝑣
𝑛
𝑠1
(𝑐𝑛∗)𝑑0]

𝜕𝑐0𝑣
𝑛
0(𝑐

𝑛∗)
. (19)

With the help of the previously defined one-period return 𝑟𝑠1 ,𝜃0 , and the usual formula of covariance, we arrive at the equation of
the consumption capital asset pricing model. The one-period return of the risk-free security is

𝑅𝑓
0 =

𝜕𝑐0𝑣
ℎ
0 (𝑐

𝑛∗)
1

1+𝛾𝐸0[𝜕𝑐𝑠1 𝑣
ℎ
𝑠1
(𝑐𝑛∗)]

,

hich is the same as the one seen in the case of the rational agent, replacing the discount factor with the hyperbolic for the respective
eriod. Thus, the capital asset pricing equation at 𝑡 = 0 is

𝐸0[𝑟𝑠1 ,𝜃0 ] = 𝑅𝑓
0 − 1

1 + 𝛾
𝑅𝑓
0

𝑐𝑜𝑣0(𝜕𝑐𝑠1 𝑣
𝑛
𝑠1
(𝑐𝑛∗), 𝑟𝑠1 ,𝜃0 )

𝜕𝑐0𝑣
𝑛
0(𝑐

𝑛∗)
. (20)

From Assumption 3.4, we substitute the respective derivative of 𝑣0(𝑐0)𝑛 = 𝜉0𝑐𝑛0 −
1
2𝛼0(𝑐

𝑛
0 )

2 in Eq. (20) and achieve

𝐸0[𝑟𝑠1 ,𝜃0 ] = 𝑅𝑓
0 − 1

1 + 𝛾
𝑅𝑓
0

𝑐𝑜𝑣0(𝜉1 − 𝛼1𝑐𝑛𝑠1 , 𝑟𝑠1 ,𝜃0 )

𝜉0 − 𝛼0𝑐𝑛0
, (21)

hich means that the expected return of an arbitrary asset 𝑗 is

𝐸0[𝑟𝑠1 ,𝑗 ] = 𝑅𝑓
0 +

1
1+𝛾 𝛼1𝑅

𝑓
0
𝑛 𝑐𝑜𝑣0(𝑐

𝑛
𝑠 , 𝑟𝑠1 ,𝑗 ). (22)
5
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As we have witnessed before, this holds for the market return 𝑟𝑀
𝑠+𝑡

as well, and thus

𝐸0[𝑟𝑀𝑠1 ] = 𝑅𝑓
0 +

1
1+𝛾 𝛼1𝑅

𝑓
0

𝜉0 − 𝛼0𝑐𝑛0
𝑐𝑜𝑣0(𝑐𝑛𝑠1 , 𝑟

𝑀
𝑠1
) (23)

also holds. Rearranging the equations similarly as in Section 2 and with the definition of 𝛽𝜃0

𝛽𝜃0 =
𝑐𝑜𝑣0(𝑟𝑀𝑠1 , 𝑟𝑠1 ,𝜃)

𝑣𝑎𝑟(𝑟𝑀𝑠1 )
(24)

in period 0, the CAPM formula can also be expressed in the case of the naive agent as well for all 𝜃𝑛0 ∈ R𝐽0

𝐸0[𝑟𝑠1 ,𝜃] − 𝑅𝑓
0 = 𝛽𝜃0 (𝐸0[𝑟𝑀𝑠1 ] − 𝑅𝑓

0 ). (25)

In period 0, we observed that all conditions are given to write up the security market line formula of the CAPM even if the agent
is naive instead of rational

𝐸0[𝑟𝑠1 ,𝜃] = 𝑅𝑓
0 + 𝛽𝜃0 (𝐸0[𝑟𝑀𝑠1 ] − 𝑅𝑓

0 ). (26)

We arrived at a formula that on the surface appears to be the same as the SML of the rational agent. Nonetheless, there is a
significant difference; in the expected return of the market portfolio 𝐸0[𝑟𝑀𝑠1 ] (see Eq. (23)) the discount factors are different; thus we
will obtain somewhat different results. With this observation, we now continue to derive the SML with the assumption of a naive
agent in period 𝑡 = 1. We denote the date-event by �̄�1 that occurred in period 1 of all the possible outcomes. The utility function
now excludes the part that describes the utility of period 0

𝑢𝑛(𝑐𝑛) = 𝑣𝑛�̄�1 (𝑐
𝑛
�̄�1
) + 1

1 + 1 ⋅ 𝛾
∑

𝑠2∈�̄�+
1

𝜌𝑠2𝑣
𝑛
𝑠2
(𝑐𝑛𝑠2 ). (27)

As soon as the naive agents reach this date-event, they reconsider their period 0 choice, so we will go through the same equations,
now with the new utility function and the most recent budget constraints. So the Lagrange function with one less constraint is

𝑛 = 𝑢𝑛(𝑐𝑛) − 𝜆𝑛�̄�1 (𝑐
𝑛
�̄�1
+ 𝑞�̄�1𝜃

𝑛
�̄�1
− 𝑒𝑛�̄�1 − 𝑑�̄�1𝜃

𝑛
0 ) − 𝜆𝑛𝑠2 (𝑐

𝑛
𝑠2
− 𝑒𝑛𝑠2 − 𝑑𝑠2𝜃

𝑛
𝑠−2
), (28)

and we solve its partial derivatives (detailed in Appendix A.2) for 𝑞�̄�1

𝑞�̄�1 =
1

1+𝛾𝐸�̄�1 [𝜕𝑐2𝑣
𝑛
2(𝑐

𝑛∗)𝑑�̄�1 ]

𝜕𝑐�̄�1 𝑣
𝑛
�̄�1
(𝑐𝑛∗)

. (29)

Following the previously practised steps, we use the expected return of the risk-free asset

𝑅𝑓
�̄�1

=
𝜕𝑐�̄�1 𝑣

ℎ
�̄�1
(𝑐𝑛∗)

1
1+𝛾𝐸�̄�1 [𝜕𝑠2𝑣

ℎ
𝑠2
(𝑐𝑛∗)]

nd the definition of covariance, we reach the consumption-based capital asset pricing equation

𝐸�̄�1 [𝑟𝑠2 ,𝜃�̄�1 ] = 𝑅𝑓
�̄�1
− 1

1 + 𝛾
𝑅𝑓
�̄�1

𝑐𝑜𝑣�̄�1 (𝜕𝑐𝑠2 𝑣
𝑛
𝑠2
(𝑐𝑛∗), 𝑟𝑠2 ,𝜃�̄�1 )

𝜕𝑐�̄�1 𝑣
𝑛
�̄�1
(𝑐𝑛∗)

. (30)

e substitute the Bernoulli function 𝑣𝑛�̄�1 (𝑐
𝑛
�̄�1
) = 𝜉1𝑐𝑛�̄�1 −

1
2𝛼1(𝑐

𝑛
�̄�1
)2 from Assumption 3.4 into Eq. (30) and get

𝐸�̄�1 [𝑟𝑠2 ,𝜃�̄�1 ] = 𝑅𝑓
�̄�1
− 1

1 + 𝛾
𝑅𝑓
�̄�1

𝑐𝑜𝑣�̄�1 (𝜉2 − 𝛼2𝑐𝑛𝑠2 , 𝑟𝑠2 ,𝜃�̄�1 )

𝜉1 − 𝛼1𝑐𝑛�̄�1
. (31)

For any asset 𝑗 the expected value of the returns 𝑟𝑠2 ,𝑗 and 𝑟𝑀𝑠2

𝐸�̄�1 [𝑟𝑠2 ,𝑗 ] = 𝑅𝑓
�̄�1
+

1
1+𝛾 𝛼2𝑅

𝑓
�̄�1

𝜉1 − 𝛼1𝑐𝑛�̄�1
𝑐𝑜𝑣�̄�1 (𝑐

𝑛
𝑠2
, 𝑟𝑠2 ,𝑗 ), (32)

𝐸�̄�1 [𝑟
𝑀
𝑠2
] = 𝑅𝑓

�̄�1
+

1
1+𝛾 𝛼2𝑅

𝑓
�̄�1

𝜉1 − 𝛼1𝑐𝑛�̄�1
𝑐𝑜𝑣�̄�1 (𝑐

𝑛
𝑠2
, 𝑟𝑀𝑠2 ). (33)

With the demonstrated deduction, assuming 𝛽𝜃�̄�1 =
𝑐𝑜𝑣�̄�1 (𝑟

𝑀
𝑠2
,𝑟𝑠2 ,𝜃 )

𝑣𝑎𝑟(𝑟𝑀𝑠2 )
, the SML of the CAPM in date-event �̄�1 is again attained

𝐸�̄�1 [𝑟𝑠2 ,𝜃] = 𝑅𝑓
�̄�1
+ 𝛽𝜃�̄�1 (𝐸�̄�1 [𝑟

𝑀
𝑠2
] − 𝑅𝑓

�̄�1
). (34)

This is a valuable development. We have proven that the capital asset pricing formula holds both in the case of a three-period time
frame and with a time-inconsistent, in this case, naive agent type. We have not conducted empirical experiments, but this result
inspires such testing and investigation.
6
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In period 𝑡 = 2, the date-event that occurred is denoted by �̄�2 and the naive makes a new decision. The utility function has the
imple formula of

𝑢𝑛(𝑐𝑛) = 𝑣𝑛�̄�2 (𝑐
𝑛
�̄�2
) (35)

since there is no more uncertainty in the model. Throughout the process of making a new consumption decision, the agent uses the
rest of its endowment and dividend income fully for consumption; therefore, the optimal value of 𝑐𝑛�̄�2 is trivially

𝑐𝑛�̄�2 = 𝑒𝑛�̄�2 + 𝑑�̄�2𝜃
𝑛
�̄�−2
. (36)

In this subsection on the naive agent, we derived all three periods with sufficient results. We can see that the methodologies
employed in the case of the rational decision maker are working just as smoothly after replacing them with naive decision makers.
Now, we will see how these methods work if the agent is sophisticated instead.

3.2. The sophisticated agent

We assume that the rational agent is now replaced solely by sophisticated agents in the model setting. Just as we did before, we
continue with a version of Assumption 3.4 so that the utility function of the sophisticated agent is also that of the rational.

Assumption 3.5. Let the Bernoulli utility function of each sophisticated agent be defined by the 𝑣𝜁𝑠𝑡 (𝑐
𝜁
𝑠𝑡 ) = 𝜉𝑡𝑐

𝜁
𝑠𝑡 −

1
2𝛼𝑡(𝑐

𝜁
𝑠𝑡 )

2 quadratic
tility function ∀𝑠𝑡 ∈ {0} ∪ 1 ∪ 2.

The behavioral issue of the sophisticated agents stems from the same procrastination problem as the naive agents have.
mportantly, however, the sophisticated agents are aware of their behavioral problems, and knowing them, they make their
ntertemporal decisions by thinking ‘‘backwards’’. They are not starting to make their decisions for period 0. Instead, they start
ith period 𝑡 = 2 and then proceed by period 1, and finally with period 0. In the first optimization (in period 2), therefore, the

ophisticated agent comes to the same decision as the naive. Next, they use the obtained results by substituting them into the utility
unction of the previous time period (which is period 1). It is worth noting that since a given date-event already occurred, we work
ith fixed values, but the equation still holds for any 𝑠2 ∈ 2 which means that

𝑐𝜁𝑠2 = 𝑒𝜁𝑠2 + 𝑑𝑠2𝜃
𝜁
𝑠−2

∶= 𝑐𝜁𝑠2 .

Adopting this, the utility function in 𝑡 = 1 is

𝑢𝜁 (𝑐𝜁 ) = 𝑣𝜁�̄�1 (𝑐
𝜁
�̄�1
) + 1

1 + 𝛾
∑

𝑠2∈�̄�+
1

𝜌𝑠2𝑣
𝜁
𝑠2
(𝑒𝜁𝑠2 + 𝑑𝑠2𝜃

𝜁
𝑠−2
), (37)

where we can see the fixed substituted expression in the second period. Consistently, the sophisticated also uses the Lagrangian
utility maximization

𝜁 = 𝑢𝜁 (𝑐𝜁 ) − 𝜆𝜁�̄�1 (𝑐
𝜁
�̄�1
+ 𝑞�̄�1𝜃

𝜁
�̄�1
− 𝑒𝜁�̄�1 − 𝑑�̄�1𝜃

𝜁
0 ), (38)

which now has slightly differing partial derivatives detailed in Appendix A.3. However, this does not change the previous process,
and so we solve the partial derivative with respect to 𝜃𝜁�̄�1 for 𝑞�̄�1

𝑞�̄�1 =

1
1+𝛾

∑

𝑠2∈�̄�+
1
𝜌𝑠2𝑑𝑠2𝜕𝑣

𝜁
𝑠2 (𝑒

𝜁
𝑠2 + 𝑑𝑠2𝜃

𝜁
𝑠−2
)∕𝜕𝜃�̄�1

𝜆𝜁�̄�1
, s.t.𝜆𝜁�̄�1 ≠ 0.

sing the partial derivative with respect to consumption 𝑐𝜁�̄�1 we can show that 𝜆𝜁�̄�1 =
𝜕𝑣𝜁�̄�1

(𝑐𝜁�̄�1
)

𝜕𝑐𝜁�̄�1
. With this expression

𝑞�̄�1 =

1
1+𝛾

∑

𝑠2∈�̄�+
1
𝜌𝑠2𝑑𝑠2𝜕𝑣

𝜁
𝑠2 (𝑒

𝜁
𝑠2 + 𝑑𝑠2𝜃

𝜁
𝑠−2
)∕𝜕𝜃�̄�1

𝜕𝑣𝜁�̄�1 (𝑐
𝜁
�̄�1
)∕𝜕𝑐𝜁�̄�1

,

the known formula of expected value, and with some changes in the notation of the derivatives we get a similar equation to Eq. (11)
of the rational or Eq. (29) of the naive agent, as follows

𝑞�̄�1 =

1
1+𝛾𝐸�̄�1 [𝜕𝜃�̄�1 𝑣

𝜁
𝑠2 (𝑒

𝜁
𝑠2 + 𝑑𝑠2𝜃

𝜁
𝑠−2
)𝑑𝑠2 ]

𝜕𝑐𝜁�̄�1
𝑣𝜁�̄�1 (𝑐

𝜁
�̄�1
)

. (39)

We continue with the steps introduced in Section 2 and with the equations derived in Appendix A.4 we arrive at the expression

𝐸�̄�1 [𝑟𝑠2 ,𝜃�̄�1 ] =
𝜕𝑐𝜁�̄�1

𝑣𝜁�̄�1 (𝑐
𝜁
�̄�1
)

1 𝐸 [𝜕 𝑣𝜁 (𝑐𝜁 )]
−

𝑐𝑜𝑣�̄�1 [𝜕𝜃�̄�1 𝑣
𝜁
𝑠2 (𝑐

𝜁
𝑠2 ), 𝑟𝑠2 ,𝜃�̄�1 ]

𝐸 [𝜕 𝑣𝜁 (𝑐𝜁 )]
(40)
7
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where, in service of future transparency, we apply the above-defined notion of 𝑐𝜁𝑠2 for the fixed consumption of period 2.
Notice that, due to the alterations in the partial derivatives, we now have a different expression for 𝑞�̄�1 . Hence, this change will

necessarily show up in the formula of the one-period risk-free asset’s return

𝑅𝑓
�̄�1

=
𝜕𝑐𝜁�̄�1

𝑣𝜁�̄�1 (𝑐
𝜁
�̄�1
)

1
1+𝛾𝐸�̄�1 [𝜕𝜃�̄�1 𝑣

𝜁
𝑠2 (𝑐

𝜁
𝑠2 )]

.

e observe that, in the denominator, the partial derivative with respect to consumption is now replaced by the partial derivative
ith respect to portfolio holding 𝜃�̄�1 . Nevertheless, this remains equivalent to the

1
∑

𝑠𝑡∈{0}∪1∪2 𝑞𝑠𝑡
efinition of the risk-free return, because it agrees with the reciprocal of Eq. (39) in the sense that the 𝑑𝑠2 payoff of the risk-free

asset is 1. Accordingly, implementing a similar system as in the case of the naive agent, we can formulate the consumption-based
capital asset pricing equation

𝐸�̄�1 [𝑟𝑠2 ,𝜃�̄�1 ] = 𝑅𝑓
�̄�1
− 1

1 + 𝛾
𝑅𝑓
�̄�1

𝑐𝑜𝑣�̄�1 [𝜕𝜃�̄�1 𝑣
𝜁
𝑠2 (𝑐

𝜁
𝑠2 ), 𝑟𝑠2 ,𝜃�̄�1 ]

𝜕𝑐𝜁�̄�1
𝑣𝜁�̄�1 (𝑐

𝜁
�̄�1
)

. (41)

e apply Assumption 3.5 and substitute the Bernoulli utility function in

𝐸�̄�1 [𝑟𝑠2 ,𝜃�̄�1 ] = 𝑅𝑓
�̄�1
− 1

1 + 𝛾
𝑅𝑓
�̄�1

𝑐𝑜𝑣�̄�1 (𝜉2 − 𝛼2𝑐
𝜁
𝑠2 , 𝑟𝑠2 ,𝜃�̄�1 )

𝜉1 − 𝛼1𝑐
𝜁
�̄�1

.

The expected return of any 𝑗 asset is then

𝐸�̄�1 [𝑟𝑠2 ,𝑗 ] = 𝑅𝑓
�̄�1
+

1
1+𝛾 𝛼2𝑅

𝑓
�̄�1

𝜉1 − 𝛼1𝑐
𝜁
�̄�1

𝑐𝑜𝑣�̄�1 (𝑐
𝜁
𝑠2
, 𝑟𝑠2 ,𝑗 ), (42)

which we know to be holding for the expected return of the market portfolio as well

𝐸�̄�1 [𝑟
𝑀
𝑠2
] = 𝑅𝑓

�̄�1
+

1
1+𝛾 𝛼2𝑅

𝑓
�̄�1

𝜉1 − 𝛼1𝑐
𝜁
�̄�1

𝑐𝑜𝑣�̄�1 (𝑐
𝜁
𝑠2
, 𝑟𝑀𝑠2 ). (43)

With the techniques explained previously, and taking 𝛽 as defined in the case of the first-period problem of the naive agent, the
security market line of the sophisticated agent in date-event �̄�1 is

𝐸�̄�1 [𝑟𝑠2 ,𝜃] = 𝑅𝑓
�̄�1
+ 𝛽𝜃�̄�1 (𝐸�̄�1 [𝑟

𝑀
𝑠2
] − 𝑅𝑓

�̄�1
). (44)

Just as in the case of the naive agent, we retrieved the SML formula of the CAPM from the period 1 utility maximization problem
of the sophisticated agent, thereby arriving at a novel result again.

In the next step, the sophisticated agents use the results of the above maximization exercises to search for the optimal solution.
This step is just as important, if not more than the previous one since this will help us prove that the pricing formula can be applied
in a three-period setup with both naive and sophisticated agents.

Let the period be at 𝑡 = 0 now where the utility function looks similar to that of the naive agent in period 0 but we insert the
fixed consumption 𝑐𝜁𝑠2 -t from period 2, and the result of the period 1 maximization problem

𝑐𝜁�̄�1 = 𝑒�̄�1 + 𝑑�̄�1𝜃
𝜁
�̄�−1

−

1
1+𝛾𝐸�̄�1 [𝜕𝜃�̄�1 𝑣

𝜁
𝑠2 (𝑒

𝜁
𝑠2 + 𝑑𝑠2𝜃

𝜁
𝑠−2
)𝑑𝑠2 ]

𝜕𝑐𝜁�̄�1
𝑣𝜁�̄�1 (𝑐

𝜁
�̄�1
)

𝜃𝜁�̄�1 (45)

hich is rewritten for the occurred �̄�1 date-event, but is true for any date-event 𝑠1 ∈ 1, thus we will discard the bar notation. The
ophisticated agent now substitutes these consumption expressions from the first and second periods, together with 𝑐0 defined by
he budget constraints

𝑢𝜁 (𝑐𝜁 ) = 𝑣𝜁0(𝑒
𝜁
0 − 𝑞0𝜃

𝜁
0 ) +

1
1 + 𝛾

∑

𝑠1∈𝑆1

𝜌𝑠1𝑣
𝜁
𝑠1
(𝑒𝑠1 + 𝑑�̄�1𝜃

𝜁
𝑠−1

−

1
1+𝛾𝐸𝑠1 [𝜕𝜃𝑠1 𝑣

𝜁
𝑠2 (𝑒

𝜁
𝑠2 + 𝑑𝑠2𝜃

𝜁
𝑠−2
)𝑑𝑠2 ]

𝜕𝑐𝜁𝑠1
𝑣𝜁𝑠1 (𝑐

𝜁
𝑠1 )

𝜃𝜁𝑠1 ) +

1
1 + 2𝛾

∑

𝑠1∈𝑆1

𝜌𝑠1
∑

𝑠2∈𝑆+
1

𝜌𝑠2𝑣
𝜁
𝑠2
(𝑒𝜁𝑠2 + 𝑑𝑠2𝜃

𝜁
𝑠−2
).

Essentially, sophisticated agents can only make such a decision in 𝑡 = 0 that they will adhere to in 𝑡 = 1 which indicates that the
price calculated in period 1 (i.e.: 𝑞�̄�1 ) has to be the equilibrium price as well. This observation leads us to the conclusion that we
o not need to calculate the partial derivative with respect to 𝜃 because it will not affect the consumption choice.
8
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We continue to search for maximum utility, without the discussed constraints, which means that we only have to take the partial
erivative of the Lagrange function with respect to the portfolio holding 𝜃0 in Appendix A.3.

Following the procedure previously employed, we solve this derivative for 𝑞0 and substitute 𝑐𝜁𝑠1

𝑞0 =
1

1+𝛾
∑

𝑠1∈𝑆1
𝜌𝑠1𝑑𝑠1𝜕𝑣

𝜁
𝑠1 (𝑐

𝜁
𝑠1 )∕𝜕𝜃

𝜁
0

𝜕𝑣𝜁0(𝑐
𝜁
0 )∕𝜕𝑐

𝜁
0

,

which is together with the expected value, and the known notion of partial derivatives can be expressed in the following form

𝑞0 =

1
1+𝛾𝐸0[𝜕𝜃𝜁0

𝑣𝜁𝑠1 (𝑐
𝜁
𝑠1 )𝑑𝑠1 ]

𝜕𝑐𝜁0
𝑣𝜁0(𝑐

𝜁
0 )

(46)

hich is the respective variant of the period 1 Eq. (39). Considering that, except for the indexing, the two equations are the same,
e skip some steps and use the covariance formula which provides us with the

𝑅𝑓
0 =

𝜕𝑐𝜁0
𝑣𝜁0(𝑐

𝜁
0 )

1
1+𝛾𝐸0[𝜕𝜃0𝑣

𝜁
𝑠1 (𝑐

𝜁
𝑠1 )]

formula. Referring to the same step in the first-period problem, we can write the pricing formula of the consumption-capital asset
pricing model as

𝐸0[𝑟𝑠1 ,𝜃0 ] = 𝑅𝑓
0 − 1

1 + 𝛾
𝑅𝑓
0

𝑐𝑜𝑣0[𝜕𝜃0𝑣
𝜁
𝑠1 (𝑐

𝜁
𝑠1 ), 𝑟𝑠1 ,𝜃0 ]

𝜕𝑐𝜁0
𝑣𝜁0(𝑐

𝜁
0 )

. (47)

We use Assumption 3.5 and substitute the derivatives of 𝑣𝜁0(𝑐
𝜁
0 ) and 𝑣𝜁𝑠1 (𝑐

𝜁
𝑠1 ) in Eq. (47)

𝐸0[𝑟𝑠1 ,𝜃0 ] = 𝑅𝑓
0 − 1

1 + 𝛾
𝑅𝑓
0

𝑐𝑜𝑣0(𝜉1 − 𝛼1𝑐
𝜁
𝑠1 , 𝑟𝑠1 ,𝜃0 )

𝜉0 − 𝛼0𝑐
𝜁
0

nd this holds for any asset 𝑗 and the market portfolio as well

𝐸0[𝑟𝑠1 ,𝑗 ] = 𝑅𝑓
0 +

1
1+𝛾 𝛼1𝑅

𝑓
0

𝜉0 − 𝛼0𝑐
𝜁
0

𝑐𝑜𝑣0(𝑐𝜁𝑠1 , 𝑟𝑠1 ,𝑗 ),

𝐸0[𝑟𝑀𝑠1 ] = 𝑅𝑓
0 +

1
1+𝛾 𝛼1𝑅

𝑓
0

𝜉0 − 𝛼0𝑐
𝜁
0

𝑐𝑜𝑣0(𝑐𝜁𝑠1 , 𝑟
𝑀
𝑠1
).

imilarly to the previous period, with the known beta definition, once again all conditions are given to construct the security market
line

𝐸0[𝑟𝑠1 ,𝜃] = 𝑅𝑓
0 + 𝛽𝜃0 (𝐸0[𝑟𝑀𝑠1 ] − 𝑅𝑓

0 ). (48)

With this expression, we have reached the end of our proof of deriving the 𝛽 pricing formula in a three-period finance general
equilibrium model with both rational and irrational agents. We also proved that we can arrive at an optimum in each utility
maximization problem. It is a powerful result in itself that the capital asset pricing model can be extended to three periods but
it is even more interesting that this is possible even if the agents of the economy have time-inconsistent preferences, i.e. they are
either naive or sophisticated instead of the classically asserted rational ones. It is worthwhile to note, that the derivation of the
CAPM model with time-inconsistent types does not require any more assumptions other than the ones needed for the classical,
rational case.

Our findings could open the floor for many interesting lines of extensions of the CAPM and general equilibrium literature. The
introduction of multiple periods makes it possible to incorporate long-lived assets into the model. It would be interesting to see
if one still finds Pareto-efficient outcomes in that extension. Another possible field of future research could be the analysis of an
economy with heterogeneous agents. There one would face the exciting question of how to define the market portfolio.
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Appendix. Appendices

A.1. Example

The following example is intended to show the behavior of the sophisticated, the naive, and the rational consumer within the
ramework of an intertemporal model. Consider 4 periods: 𝑡 ∈ 𝑇 = {0, 1, 2, 3} where 0 denotes Wednesday, where only a decision

process takes place, 1 denotes Thursday, and the numbering of the following days is understood accordingly. There are three actors
in the economy, the sophisticated (𝑠), the naive (𝑛) and the rational (𝑟), that is, ℎ ∈ 𝐻 = {𝑠, 𝑛, 𝑟}, who must complete a task by
Saturday. The costs can be linked to the completion of the task, so a given period cost arises only if work is carried out in that
period. This is given by the following vector for each day: 𝑐𝑡(𝑐1, 𝑐2, 𝑐3) = {72.5, 100, 145}. Let 𝜏 denote the time elapsed from the time
of the decision to 𝑡. The (hyperbolic) discount factor takes the following form for sophisticated and naive actors:

𝑓 (𝜏) = 1
1 + 𝛼𝜏

, where 𝛼 = 0, 5 ∀𝜏. (49)

Thus, the utility function becomes:

𝑈ℎ(𝑥ℎ0 , 𝑥
ℎ
1 , 𝑥

ℎ
2 , 𝑥

ℎ
3 ) = 𝑥ℎ0 + ( 1

1 + 1𝛼
) ⋅ 𝑥ℎ1 + ( 1

1 + 2𝛼
) ⋅ 𝑥ℎ2 + ( 1

1 + 3𝛼
) ⋅ 𝑥ℎ3 (50)

n the case of the rational consumer, we define a constant discount factor:

𝛿𝑡 = (
√

0.5)𝑡 ∀𝑡 ∈ 𝑇 . (51)

The utility function in the rational case:

𝑈ℎ(𝑥ℎ0 , 𝑥
ℎ
1 , 𝑥

ℎ
2 , 𝑥

ℎ
3 ) = 𝑥ℎ0 +

√

0.5 ⋅ 𝑥ℎ1 + 0, 5 ⋅ 𝑥ℎ2 +
√

0.5
3
⋅ 𝑥ℎ3 (52)

Next, we examine the optimization of each type at all periods.

Naive
The agent first finds the minimum cost using the hyperbolic discount factor and then makes a decision:

𝑡 = 0

𝑚𝑖𝑛(( 1
1 + 1𝛼

) ⋅ 𝑐1, (
1

1 + 2𝛼
) ⋅ 𝑐2, (

1
1 + 3𝛼

) ⋅ 𝑐3) = 𝑚𝑖𝑛(48 1
3
, 50, 58) = 481

3
(53)

Based on cost minimization, she prepares the task in period 1.

𝑡 = 1

𝑚𝑖𝑛(𝑐1, (
1

1 + 1𝛼
) ⋅ 𝑐2, (

1
1 + 2𝛼

) ⋅ 𝑐3) = 𝑚𝑖𝑛(72.5, 66 2
3
, 72.5) = 662

3
(54)

After reaching the initial deadline, the agent decides to reconsider and delays the task for an additional period.

𝑡 = 2

𝑚𝑖𝑛(𝑐2, (
1

1 + 1𝛼
) ⋅ 𝑐3) = 𝑚𝑖𝑛(100, 145

1 + 0.5
) = 𝑚𝑖𝑛(100, 96 2

3
) = 962

3
(55)

We experience the same as in the previous period, the naive repeatedly postpones his task by one period, so he prepares it after one
period, on Saturday he has no other choice, since in 𝑡 = 3 there will be only one cost (𝑐3 = 145), and reaches the deadline. (For this
reason, there is no need to perform a separate optimization for 𝑡 = 3). It is important to note here that we can clearly see that the
naive actor is not time-consistent. She has repeatedly reached the appointed time for completing the task, where she re-optimizes,
succumbs to his behavioral problem, and postpones the work (in our case by a period), although she would not be satisfied with
these decisions in the preceding periods.

Sophisticated
The case of the sophisticated agent is partly similar to that of the naive one since they both deal with the same behavioral

problem and work with the same discount factor and utility function. However, the sophisticated actor is aware of his problem and
decides accordingly for the future. That is why you need to think backwards, to avoid very high costs to the best of your ability.

Again, the actor starts with minimizing the cost, but now she makes a decision only after examining all periods and moves
backwards in time.

𝑡 = 3

𝑚𝑖𝑛(𝑐3) = 𝑐3 = 145 (56)

𝑡 = 2

𝑚𝑖𝑛(𝑐 , ( 1 ) ⋅ 𝑐 ) = 𝑚𝑖𝑛(100, 145 ) = 𝑚𝑖𝑛(100, 96 2 ) = 962 (57)
10
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𝑡 = 1

𝑚𝑖𝑛(𝑐1, (
1

1 + 1𝛼
) ⋅ 𝑐2, (

1
1 + 2𝛼

) ⋅ 𝑐3) = 𝑚𝑖𝑛(72, 662
3
, 72.5) = 662

3
(58)

= 0

𝑚𝑖𝑛(( 1
1 + 1𝛼

) ⋅ 𝑐1, (
1

1 + 2𝛼
) ⋅ 𝑐2, (

1
1 + 3𝛼

) ⋅ 𝑐3) = 𝑚𝑖𝑛(48 1
3
, 50, 58) = 481

3
(59)

Let us look at each case. There is no choice in 𝑡 = 3, you have to do the task with the cost of 145. In 𝑡 = 2, you would decide to
ostpone it by one period to the ‘‘cheaper’’ period 3. (which costs 96 3

2 here). We experience the same thing in 𝑡 = 1, a shift by one
period would be expected to the 2. period (here, however, the minimum cost is still 663). Finally, in 𝑡 = 0, you would decide that
it would be optimal to complete the task after a period, in 𝑡 = 1 (then the cost would be 48 1

3 ).
The sophisticated agent foresees these and – based on this – performs the task at the first possible time immediately in period 1,

ecause she sees that if he did it for the period 2, she would already slide into 3., which is very costly. So overall, the decision is to
o it at 𝑡 = 1, to prevent future procrastination and increasing costs.

ational
Here again, the agent moves forward from 𝑡 = 0, minimizes costs, and makes a decision.

= 0

𝑚𝑖𝑛(𝛿 ⋅ 𝑐1, 𝛿2 ⋅ 𝑐2, 𝛿3 ⋅ 𝑐3) = 𝑚𝑖𝑛(51.27, 50, 51.27) = 50 (60)

ince the cost in period 2 is the smallest, the rational agent will complete the task at that time.

= 1

min(𝑐1, 𝛿 ⋅ 𝑐2, 𝛿2 ⋅ 𝑐3) = min(72.5,
√

0.5 ⋅ 100, 0.5 ⋅ 145) = min(72.5, 70.71, 72.5) = 70.71 (61)

The rational agent still considers period 2 to be optimal for the job.

𝑡 = 2

𝑚𝑖𝑛(𝑐2, 𝛿 ⋅ 𝑐3) = 𝑚𝑖𝑛(100,
√

0.5 ⋅ 145) = 𝑚𝑖𝑛(100, 102.53) = 100 (62)

eriod 2 is still optimal.
So, the rational consumer with a constant discount factor, as this example shows, is time-consistent. So whatever time-period

ou make your decision, it does not change (unless you have no choice but in 𝑡 = 3), it is always considered optimal.

.2. Partial derivatives: The naive agent

eriod zero
The period 0 partial derivatives of the naive agent’s Lagrange function:

𝜕𝑛

𝜕𝑐𝑛0
=

𝜕𝑣𝑛0(𝑐
𝑛
0 )

𝜕𝑐𝑛0
− 𝜆𝑛0 = 0,

𝜕𝑛

𝜕𝑐𝑛𝑠1
=

1
1+𝛾

∑

𝑠1∈𝑆1
𝜌𝑠1𝜕𝑣

𝑛
𝑠1
(𝑐𝑛𝑠1 )

𝜕𝑐𝑛𝑠1
− 𝜆𝑛𝑠1 = 0,

𝜕𝑛

𝜕𝑐𝑛𝑠2
=

1
1+2𝛾

∑

𝑠1∈𝑆1
𝜌𝑠1

∑

𝑠2∈𝑆+
1
𝜌𝑠2𝜕𝑣

𝑛
𝑠2
(𝑐𝑛𝑠2 )

𝜕𝑐𝑛𝑠2
− 𝜆𝑛𝑠2 = 0,

𝜕𝑛

𝜕𝜃𝑛0
= −𝜆𝑛0𝑞0 + 𝑑𝑠1𝜆

𝑛
𝑠1

= 0,

𝜕𝑛

𝜕𝜃𝑛𝑠1
= −𝜆𝑛𝑠1𝑞𝑠1 + 𝑑𝑠2𝜆

𝑛
𝑠2

= 0.

Period one
The period 1 partial derivatives of the Lagrange function of the naive agent:

𝜕𝑛

𝜕𝑐𝑛�̄�1
=

𝜕𝑣𝑛�̄�1 (𝑐
𝑛
�̄�1
)

𝜕𝑐𝑛�̄�1
− 𝜆𝑛�̄�1 = 0,

𝜕𝑛

𝜕𝑐𝑛𝑠2
=

1
1+1⋅𝛾

∑

𝑠2∈�̄�+
1
𝜌𝑠2𝜕𝑣

𝑛
𝑠2
(𝑐𝑛𝑠2 )

𝜕𝑐𝑛𝑠2
− 𝜆𝑛𝑠2 = 0,

𝜕𝑛

𝑛 = −𝜆𝑛�̄�1𝑞�̄�1 + 𝑑𝑠2𝜆
𝑛
𝑠2

= 0.
11
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A.3. Partial derivatives: The sophisticated agent

Period one
The period 1 partial derivatives of the sophisticated agent’s Lagrange function, now with some alterations:

𝜕𝜁

𝜕𝑐𝜁�̄�1
=

𝜕𝑣𝜁�̄�1 (𝑐
𝜁
�̄�1
)

𝜕𝑐𝜁�̄�1
− 𝜆𝜁�̄�1 = 0,

𝜕𝜁

𝜕𝜃𝜁�̄�1
=

1
1+𝛾

∑

𝑠2∈�̄�+
1
𝜌𝑠2𝜕𝑣

𝜁
𝑠2 (𝑒

𝜁
𝑠2 + 𝑑𝑠2𝜃

𝜁
𝑠−2
)𝑑𝑠2

𝜕𝜃�̄�1
− 𝜆𝜁�̄�1𝑞�̄�1 = 0.

eriod zero
The period 0 partial derivatives of the sophisticated agent’s Lagrange function:

𝜕𝑢𝜁 (𝑐𝜁 )
𝜕𝜃𝜁0

= −
𝜕𝑣0(𝑒

𝜁
0 − 𝑞0𝜃

𝜁
0 )

𝜕𝜃𝜁0
𝑞0 +

1
1+𝛾

∑

𝑠1∈𝑆1
𝜌𝑠1𝜕𝑣

𝜁
𝑠1 (𝑒𝑠1 + 𝑑�̄�1𝜃

𝜁
𝑠−1

−
1

1+𝛾 𝐸𝑠1 [𝜕𝜃𝑠1
𝑣𝜁𝑠2 (𝑒

𝜁
𝑠2
+𝑑𝑠2 𝜃

𝜁
𝑠−2

)𝑑𝑠2 ]

𝜕
𝑐𝜁𝑠1

𝑣𝜁𝑠1 (𝑐
𝜁
𝑠1
)

𝜃𝜁𝑠1 )

𝜕𝜃𝜁0
𝑑𝑠1 = 0.

A.4. In-depth: Deriving the equations of the sophisticated agent

These equations show that not only do the indices and notation change but there is a change in the partial derivatives. Formally,
however, these equations are similar as we have seen in the case of rational and naive agents, thus the inclusion as an appendix.

We divide Eq. (39) by 𝑞�̄�1 , moreover we use the formula of the one-period return

1 =

1
1+𝛾𝐸�̄�1 [𝜕𝜃�̄�1 𝑣

𝜁
𝑠2 (𝑒

𝜁
𝑠2 + 𝑑𝑠2𝜃

𝜁
𝑠−2
)𝑟𝑠2 ,𝜃�̄�1 ]

𝜕𝑐𝜁�̄�1
𝑣𝜁�̄�1 (𝑐

𝜁
�̄�1
)

,

hen following the introduced definitions and the covariance formula, we can write the equation

1 =

1
1+𝛾𝐸�̄�1 [𝜕𝜃�̄�1 𝑣

𝜁
𝑠2 (𝑒

𝜁
𝑠2 + 𝑑𝑠2𝜃

𝜁
𝑠−2
)]𝐸�̄�1 [𝑟𝑠2 ,𝜃�̄�1 ]

𝜕𝑐𝜁�̄�1
𝑣𝜁�̄�1 (𝑐

𝜁
�̄�1
)

+

1
1+𝛾 𝑐𝑜𝑣�̄�1 [𝜕𝜃�̄�1 𝑣

𝜁
𝑠2 (𝑒

𝜁
𝑠2 + 𝑑𝑠2𝜃

𝜁
𝑠−2
), 𝑟𝑠2 ,𝜃�̄�1 ]

𝜕𝑐𝜁�̄�1
𝑣𝜁�̄�1 (𝑐

𝜁
�̄�1
)

hich can be rearranged as

𝐸�̄�1 [𝑟𝑠2 ,𝜃�̄�1 ] =
𝜕𝑐𝜁�̄�1

𝑣𝜁�̄�1 (𝑐
𝜁
�̄�1
)

1
1+𝛾𝐸�̄�1 [𝜕𝜃�̄�1 𝑣

𝜁
𝑠2 (𝑒

𝜁
𝑠2 + 𝑑𝑠2𝜃

𝜁
𝑠−2
)]

−
𝑐𝑜𝑣�̄�1 [𝜕𝜃�̄�1 𝑣

𝜁
𝑠2 (𝑒

𝜁
𝑠2 + 𝑑𝑠2𝜃

𝜁
𝑠−2
), 𝑟𝑠2 ,𝜃�̄�1 ]

𝐸�̄�1 [𝜕𝜃�̄�1 𝑣
𝜁
𝑠2 (𝑒

𝜁
𝑠2 + 𝑑𝑠2𝜃

𝜁
𝑠−2
)]

.
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