
CORVINUS UNIVERSITY OF BUDAPEST

Marianna E. Nagy
and Anita Varga

A long-step interior point
framework and a related
function class for linear
optimization

http://unipub.lib.uni-corvinus.hu/10192

C O R V I N U S
ECONOMICS
W O R K I N G
P A P E R S

01/2024

http://unipub.lib.uni-corvinus.hu/6581

A LONG-STEP INTERIOR POINT FRAMEWORK AND A RELATED FUNCTION
CLASS FOR LINEAR OPTIMIZATION

MARIANNA E.-NAGY∗ AND ANITA VARGA†

Abstract. In this paper, we introduce a general long-step algorithmic framework for solving linear programming problems
based on the algebraically equivalent transformation technique proposed by Darvay. The main characteristics of the proposed
general interior point algorithm are based on the long-step method of Ai and Zhang, which was one of the first long-step
algorithms with the best known theoretical complexity. We investigate a set of sufficient conditions on the transformation
function applied in the algebraically equivalent transformation technique, under which the convergence and best known iteration
complexity of the examined general algorithmic framework can be proved. As a result, we propose the first function class in
connection with the algebraically equivalent transformation technique that can be used to introduce new long-step interior
point methods. Furthermore, we propose construction rules that can be used to determine new elements of this function class.
Additionally, we generalize Darvay’s algebraically equivalent transformation technique to piecewise continuously differentiable
transformation functions. We implemented the general algorithmic framework in MATLAB and tested its performance for six
different transformation functions on a set of linear programming problem instances from the Netlib library.

Keywords. Linear programming, Interior point methods, Algebraically equivalent transformation technique

JEL classification number. C61

1. Introduction. The literature on interior point algorithms (IPAs) is extensive and diverse. Several
variants have already been defined for different problem classes. Classical methods have one thing in common:
they follow a one-dimensional smooth curve, the so-called central path. When determining the search
direction, we can follow different strategies. In this aspect, the two well-known families of algorithms are
kernel function-based IPAs and self-regular function-based IPAs. In addition to these, Darvay introduced
the concept of the algebraically equivalent transformation (AET) technique. This approach keeps the central
path the same, but new search directions may be achieved by modifying the function used in the procedure.
However, the literature currently lacks a comprehensive study of this approach. Our initial aim is to examine
this technique, but in this paper, we consider an even more general case: we investigate the Newton system
(determining the search direction) with a general right-hand side. We analyze this technique for LPs to
keep our focus on investigating different search directions and not be distracted by the complexity of the
problem to be solved. Meanwhile, we examine a long-step algorithm since it works more efficiently in practice
than short-step algorithms, despite the better theoretical complexity of short-step variants. One of the first
long-step IPAs with the best known iteration complexity was proposed by Ai and Zhang [2] in 2005 for
monotone linear complementarity problems (LCPs). Based on their method and ideas, numerous authors
introduced long-step IPAs with the best known theoretical complexity for different problem classes, e.g.,
for linear optimization [16, 32, 39], semidefinite optimization [21, 31, 34], horizontal linear complementarity
problems (HLCPs) [36], and also for symmetric cone Cartesian P∗(κ)-HLCPs [4, 5].
The main idea of the algebraically equivalent transformation (AET) technique of Darvay [7, 8] is to apply
a continuously differentiable and invertible function to the centering equation of the central path problem
to make it possible to find new search directions for interior point algorithms. For different transformation
functions, different algorithms can be introduced.
In his first articles, Darvay [7, 8] applied the function φ(t) =

√
t and introduced a short-step IPA for linear

programming (LP) problems. Since then, his method has become widely known and has been generalized
using different functions for several problem classes.
The function φ(t) =

√
t is the most frequently applied in articles investigating the AET technique. For

example, in 2018, Darvay and Rigó [16] proposed a long-step IPA for linear optimization with the best
known theoretical complexity. Furthermore, in 2021, Illés et al. [24] introduced a predictor-corrector IPA for
P∗(κ)-LCPs. Using this function, Asadi and Mansouri [3] investigated a short-step IPA for P∗(κ)-HLCPs.
The function φ(t) = t−

√
t is also frequently studied in the literature and has been proposed by Darvay et

al. [13] in 2016. In the last few years, it has been applied in several papers by Darvay and his coauthors.

∗Corvinus Centre for Operations Research, Corvinus University of Budapest, Fővám tér 8., H-1093 Budapest, Hungary
(marianna.eisenberg-nagy@uni-corvinus.hu)

†Corvinus Centre for Operations Research, Corvinus University of Budapest, Fővám tér 8., H-1093 Budapest, Hungary
(anita.varga@uni-corvinus.hu)

1

mailto:marianna.eisenberg-nagy@uni-corvinus.hu
mailto:anita.varga@uni-corvinus.hu

They proposed a corrector predictor IPA for linear optimization [9] and another corrector predictor IPA for
sufficient LCPs [11]. They also presented a short-step IPA for sufficient LCPs [10]. In addition to these
functions, φ(t) =

√
t

2(1+
√
t)

has been proposed by Kheirfam and Haghighi [27], to solve P∗(κ)-LCPs.
In 2018 Darvay and Takács [17] introduced a new type of AET technique for linear programming problems
based on a different rearrangement of the centering equation. Using this new type of AET technique, recently,
Darvay et al. [12] proposed a predictor-corrector IPA to solve sufficient LCPs.
Other methods have also been investigated in the literature to find new search directions for IPAs. For
this purpose, Peng et al. [33] considered barrier functions defined by self-regular kernel functions. With this
approach, they could reduce the gap between the complexity bounds of short-step and long-step IPAs. The
class of eligible kernel functions was proposed by Bai et al. [6]. These results were extended to P∗(κ)-LCPs
by Lesaja and Roos [30]. The class of positive-asymptotic kernel functions was introduced by Darvay and
Takács in [14]. The relation of this methodology to the AET technique has been discussed in detail in the
Ph.D. dissertation of Rigó [37, Section 2.5].
This paper proposes a new class of long-step IPAs for linear optimization by introducing a general Ai-
Zhang-type long-step algorithmic framework based on the AET technique. The focus of our investigation
is to determine a class of functions with which applying the AET technique, the resulting long-step IPA is
convergent and has the best-known iteration complexity. As it turns out, the function derived from the scaled
version of the transformed Newton-system plays a crucial role in our analysis, instead of the transformation
function φ itself.
In the literature, two similar attempts have been made regarding the AET technique. Haddou et al. [23]
investigated a general short-step IPA for monotone LCPs, and in the meantime, Illés et al. [25] analyzed a
short-step IPA for P∗(κ)-LCPs. The latter was recently generalized by Darvar et al.[15] for the Cartesian
product of symmetric cones. The main difference between the results of [25, 15], and this paper lies in
the different choices of algorithm type. Furthermore, they fix the values of the neighborhood and update
parameters in the analysis. Considering the analysis of Haddou et al. [23], there are several important
differences between their and our approaches. As has already been pointed out, their general algorithm is a
weighted path-following method; therefore, they consider a different formulation of the central path problem,
then apply a Darvay-type transformation without reorganizing the centering equation (similarly to [7]). In
our analysis, the function p(t) derived from the scaled system plays a key role. However, if we used the AET
method described in [23], this function could not be properly defined, since it would change in each iteration.
To the best of our knowledge, ours is the first such result for long-step algorithms.
Even though in the analysis we use the properties of the function p(t) derived from the scaled system, to
complete our discussion, we formulate a set of necessary conditions on φ(t) as well. We also give some
construction rules that can be used to construct new transformation functions that belong to our class.
Furthermore, we generalize the AET technique to the case of piecewise continuously differentiable trans-
formation functions. We also point out during the analysis that the continuity, monotonicity, and convexity
assumptions often made in papers related to the AET technique (and even for kernel or self-regular-based
IPAs) can be relaxed, and the resulting functions can work well not just in theory, but in practice as well.

The paper is organized as follows. In Section 2, we recall the theoretical results used in our investigation. In
Section 3, we define a new wide neighborhood, introduce a general large-update interior point algorithmic
framework, and examine its correctness. In the last subsection, we prove that the complexity of the proposed
methods is O(

√
nL). Section 4 discusses some specific functions and related parameters. Section 5 deals

with the sufficient conditions on the function φ(t) and then considers the case of piecewise continuously
differentiable transformation functions. We collect construction rules for the proposed function class in
Section 5.2. In Section 6, we present our numerical results. Section 7 summarizes our conclusions.

1.1. Notations. Throughout this paper, the following notations are used: scalars and indices are
denoted by lowercase Latin letters, while uppercase Latin letters denote matrices. Sets are denoted by capital
calligraphic letters. Rn

+ is the set of n-dimensional vectors with strictly positive coordinates, and Rn
⊕ denotes

the set of n-dimensional vectors with nonnegative coordinates. We use componentwise operations on vectors.
Namely, let f : R → R be a given function and x ∈ Rn be a given vector. Then f(x) = [f(x1), . . . , f(xn)]

T .
Specifically, let a,b ∈ Rn be two vectors and α ∈ R. Then aα = [aα1 , a

α
2 , . . . , a

α
n]

T , ab is the Hadamard
product of a and b, and a/b = [a1/b1, a2/b2 . . . , an/bn]

T . The vector a+ denotes the positive part of a,
i.e., a+ = max{a,0} ∈ Rn, and similarly, a− is the negative part of a, i.e., a− = min{a,0} ∈ Rn. The

2

Euclidean norm of vector a is denoted by ∥a∥, while ∥a∥1 =
∑n

i=1 |ai| is the L1 (Manhattan) norm of a.
Furthermore, ∥a∥∞ = maxni=1 |ai| is the infinity norm of a. The diagonal matrix with the elements of vector
a in its diagonal is diag(a). We use the vector e for the vector of all ones. Finally, the set of all indices is
I = {1, . . . , n}.

2. The theoretical basis of the general algorithm. Let us consider the primal-dual LP problem
pair in standard form:

(2.1)
min cTx

Ax = b

x ≥ 0


max bTy

ATy + s = c

s ≥ 0


where A ∈ Rm×n has full row rank, b ∈ Rm and c ∈ Rn are given vectors.
The optimality criteria of (2.1) can be formulated in the following way:

(2.2)

Ax = b, x ≥ 0

ATy + s = c, s ≥ 0

xs = 0.


When proposing IPAs, instead of the last constraint of (2.2) (the complementarity condition), we consider a
perturbed version

(2.3)

Ax = b, x ≥ 0

ATy + s = c, s ≥ 0

xs = νe,


where ν is a given positive parameter. This system is the central path problem that belongs to the primal-dual
LP pair (2.1).
Let F = {(x,y, s) : Ax = b, ATy + s = c, x ≥ 0, s ≥ 0} denote the set of primal-dual feasible solutions
and F+ = {(x,y, s) ∈ F : x > 0, s > 0} the set of strictly feasible solutions. It is well-known that if F+

is not empty, then for each ν > 0 system (2.3) has a unique solution which is called the ν-center [38]. As ν
tends to 0, the solutions of this system converge to an optimal solution of the LP problem.
The algebraically equivalent transformation technique has been proposed by Darvay [8] to find new search
directions in interior point algorithms. His main idea was to transform the central path problem (2.3) to the
following equivalent form:

(2.4)

Ax = b, x ≥ 0

ATy + s = c, s ≥ 0

φ
(xs
ν

)
= φ (e) ,


where φ : (ξ2,∞) → R is a continuously differentiable function with φ′(u) > 0 for all u ∈ (ξ2,∞), ξ ∈ [0, 1).
After applying Newton’s method to system (2.4), we get the following system for the search directions:

(2.5)

A∆x = 0

AT∆y +∆s = 0

s∆x+ x∆s = ν
φ(e)− φ

(
xs
ν

)
φ′
(
xs
ν

) =: aφ.


As can be seen from the previous formula, the right-hand side of the Newton-system depends on the chosen
transformation function; therefore, we can determine different search directions for different functions φ.
To facilitate the analysis of interior point algorithms, we usually consider a scaled version of (2.5). Let

v =

√
xs

ν
, dx =

v∆x

x
, ds =

v∆s

s
, and Ā = A diag

(v
s

)
.

3

With these notations, the scaled Newton-system can be written as:

(2.6)

Ādx = 0

ĀT∆y + ds = 0

dx + ds =
φ(e)− φ(v2)

vφ′(v2)
=: pφ.


We need to ensure that pφ is well-defined to get a correct algorithm. Therefore, we assume that vi > ξ
is satisfied for all i ∈ I for all iterates of the procedure. It means that in addition to (x,y, s) ∈ F+ the
condition v > ξe must be satisfied as well. Therefore, it is reasonable to define Fφ

+:

Fφ
+ = {(x,y, s) ∈ F+ : v > ξe} .

We will see that with a suitable value for the neighborhood parameter β (see the definition later), the
condition v > ξe is always satisfied throughout the algorithm.
Let p be the function for which p(vi) = (pφ)i holds for all vi ∈ (ξ,∞), i.e.,

(2.7) p : (ξ,∞) → R, p(t) =
φ(1)− φ(t2)

tφ′(t2)
.

The function p describes the coordinatewise transformation applied on the vector v to get the right-hand
side of the scaled system (2.6).

The general algorithmic framework proposed in this paper is based on the approach of Ai and Zhang [2]. One
of their important ideas was to decompose the Newton-directions into two parts and use different step-lengths
with the two components.
If we apply this approach to (2.5), we get the following two systems:

(2.8)

A∆x− = 0

AT∆y− +∆s− = 0

s∆x− + x∆s− = a−φ


A∆x+ = 0

AT∆y+ +∆s+ = 0

s∆x+ + x∆s+ = a+φ .


We would like to point out that ∆x+ does not denote the positive part of the vector ∆x (the sign + is in the
bottom right corner instead of the upper right), but it is the solution of the system with a+φ on its right-hand
side. The notation is similar for the other solution vectors.
If α1 and α2 are the chosen step-lengths, then the new point (x(α),y(α), s(α)) is calculated as x(α) =
x+ α1∆x− + α2∆x+, y(α) = y + α1∆y− + α2∆y+ and s(α) = s+ α1∆s− + α2∆s+.
We can formulate the scaled version of (2.8) by introducing the following notations:

dx+ =
v∆x+

x
, ds+ =

v∆s+
s

, dx− =
v∆x−

x
, ds− =

v∆s−
s

.

This way, we can define the scaled systems as follows:

(2.9)

Ādx− = 0

ĀT∆y− + ds− = 0

dx− + ds− = p−
φ


Ādx+ = 0

ĀT∆y+ + ds+ = 0

dx+ + ds+ = p+
φ .


In our analysis, we fix the value of ν as τµ, where µ = (xT s)/n and 0 < τ < 1 is a given parameter, i.e.,
from a point (x,y, s) ∈ Fφ

+ we take a step towards the τµ-center (which is the solution of the central path
problem (2.3) for ν = τµ).
Let I+ = {i ∈ I : τµ − xisi > 0} = {i ∈ I : vi < 1}, and I− = I \ I+. If a point (x,y, s) is on the central
path, then xisi = τµ holds for all indices. Therefore, these two index sets can be considered as a partition
of I, based on whether the centering equation is under- or over-fulfilled.
Traditionally, in papers proposing Ai-Zhang-type methods, the index sets I+ and I− are defined in a slightly
different way, namely, the indices for which vi = 1 are included in the set I+, instead of I−. The reason
behind this small change will be explained in the following section.

4

3. The general algorithmic framework and its analysis. The function p plays a central role in
our paper. In this section, we give a set of conditions on p under which the convergence and the best known
complexity of the general Ai-Zhang-type long-step algorithm investigated can be proved. Then in Section 5,
we will transform them into conditions on the transformation function φ, but at this point of the analysis,
we do not use the connection between φ and p. Therefore, from now on, we omit the subscript from the
notation of the vector pφ and use p instead.
We defined p(t) in (2.7) over the interval (ξ,∞). However, by applying the following useful upper bound on
the coordinates of the vector v, we can restrict our analysis to a much narrower interval. This upper bound
is generally applied and plays an important role in analyzing Ai-Zhang-type methods since Ai-Zhang-type
neighborhoods do not restrict the value of vi (when i is in I−), unlike other types of neighborhoods.

Remark 1. We can give an upper bound on vi by using

(3.1)
∑
i∈I

v2i =
∑
i∈I

xisi
τµ

=
1

τµ
xT s =

n

τ
.

Since vi ≥ 0 for all indices, vi ≤ t∗ :=
√

n
τ for all i ∈ I.

According to Remark 1, we have an upper bound on the value of the coordinates of v; therefore, it is enough
to define p(t) and give the necessary lower and upper bounds over the interval (ξ, t∗] instead of (ξ,∞).

Throughout the paper, we assume that p(t) : (ξ, t∗] → R satisfies the following properties:

(P1) The inequality p(t) ≥ 1− t2 holds over (ξ, 1).
(P2) There exists a positive constant c for which p(t) ≥ −c(t− 1/t) holds for all t ∈ [1, t∗].
(P3) There exists a positive constant r for which p(t) ≤ −r(t− 1/t) is satisfied for all t ∈ [1, t∗].
(P4) There exist two constants ϱ ∈ [1, 2) and η ∈ (ξ, 1) such that p(t) ≤ ϱ(1− t2) for all t ∈ (η, 1).

Due to the Ai-Zhang-type decomposition and the special neighborhood definition, the domain of the function
p is divided into two intervals with respect to the proposed properties; (ξ, 1) and [1, t∗]. From (P2) and (P3)
it follows that p(1) = 0. These two properties give lower and upper bounds for the function p(t) over the
interval [1, t∗]. The properties (P1) and (P4) refer to the behavior of the function p(t) over the interval
(ξ, 1). As will turn out from our analysis, in some sense, the constraints over the interval [1, t∗] play a more
important role in proving the desired properties of the general IPA.
The constraint (P4) is not directly necessary for our proof to work; however, it guarantees the existence of
a suitable update and neighborhood parameters (to be discussed later in this section). Therefore, (P4) is
included here mainly for the sake of completeness.
An important equivalence comes from (P1) and (P3), that is,

(3.2) p(t) > 0 if and only if t ∈ (ξ, 1),

in other words
pi > 0 if and only if i ∈ I+.

Note that we do not assume the continuity of p(t); however, all functions previously considered in the
literature related to the AET technique are continuous.
Furthermore, in our case, it is not required that p(t) should be monotonically decreasing, but for almost all
cases in the literature, this property is also satisfied. The only exception is the function φ(u) = u2 − u+

√
u

introduced by Illés et al. in [25], however, it is still monotonically decreasing over [1,∞), which is the more
relevant interval from the point of view of our analysis. This function satisfies conditions (P1)-(P4) with
parameters c = 1 and r = 1/2.
In the analysis, we will use a neighborhood that depends only on the positive part of the vector p:

W(τ, β) =
{
(x,y, s) ∈ Fφ

+ : ∥p+∥ ≤ β
}
,

where similarly to τ , 0 < β < 1 is a given parameter.
In their paper, Ai and Zhang used the function φ(u) = u, and to define the wide neighborhood W̃, they
applied the constraint ∥vp+∥ ≤ β:

W̃(τ, β) =

{
(x,y, s) ∈ Fφ

+ : ∥vp+∥ =

∥∥∥∥ 1

τµ
a+
∥∥∥∥ ≤ β

}
.

5

As can be seen from the definition, W̃ can be defined not just in the case of the identity function but for
any suitable transformation function φ, i.e., W̃ is a generalization of the original neighborhood of Ai and
Zhang. The neighborhood W(τ, β) can be considered as a slight modification of W̃(τ, β) (by using the norm
of p+ instead of vp+, and adding the technical condition mentioned above). Since vi < 1 for all i ∈ I+,
∥vp+∥ ≤ ∥p+∥ holds, our new wide neighborhood is a subset of the one introduced by Ai and Zhang, i.e.,
W(τ, β) ⊆ W̃(τ, β). Therefore, due to the slightly different neighborhood definitions, our approach gives a
different algorithm in the particular case when φ(u) = u.
To show that W(τ, β) is a wide neighborhood, we use a line of thought similar to Ai and Zhang in [2]. The
wide neighborhood N−

∞ was introduced by Kojima et al. [28]. It is defined as follows:

N−
∞(1− τ) = {(x,y, s) ∈ F+ : xs ≥ τµe} = {(x,y, s) ∈ F+ : v ≥ e}.

A point (x,y, s) ∈ F+ is in the neighborhood N−
∞(1 − τ) if and only if I− = I. This fact also motivates

the slightly different definition we gave for I+ and I−, since we compare the new neighborhood W(τ, β) to
N−

∞(1− τ) to prove that the new neighborhood is wide.

Lemma 3.1. Let 0 < β, τ < 1. The relationship between neighborhoods W and N−
∞ is the following:

1. Assume that (P3) holds, then N−
∞(1− τ) ⊆ W(τ, β).

2. Suppose that (P1) holds and let γ = (1− β)τ . Then W(τ, β) ⊆ N−
∞(1− γ) is true.

Proof. 1. If (x,y, s) ∈ N−
∞(1− τ), then xs ≥ τµe, i.e. v ≥ e. From the assumption, it follows that I+ = ∅,

therefore ∥p+∥ = 0. Furthermore, from v ≥ e, we also have v ≥ ξe, since ξ ∈ [0, 1).
2. Let (x,y, s) ∈ W(τ, β), and assume on the contrary that there exists an index i ∈ I such that xisi < γµ
holds. Then, for this index, v2i = xisi

τµ < γ
τ < 1. Since p(t) ≥ 1− t2 on the interval (ξ, 1), we can write

p(vi) ≥ 1− v2i > 1− γ

τ
= 1− (1− β) = β.

But pi ≤ ∥p+∥ ≤ β holds for all index i ∈ I by the definition of W(τ, β), which is a contradiction. Therefore,
xisi ≥ γµ is satisfied for all indices i ∈ I.

Throughout this paper, we fix the value of the parameter γ as (1 − β)τ , since in this way the proofs and
estimations are easier to understand. However, it would be possible to carry out the analysis with a general
parameter γ and tailor its value to each function p(t) before performing the numerical tests. In this way, the
set of suitable parameters would possibly be larger. However, the complexity of the IPA would remain the
same, i.e., this could help with the numerical tests, but would not modify the theoretical results significantly.
For example, in [20], for the function p(t) = 2(t − t2)/(2t − 1) (a corresponding transformation function is
φ(u) = u −

√
u), we proposed an Ai-Zhang-type IPA for LP problems with γ = 1/4(1 +

√
1− 2β)2τ which

is suitable for this special function and gives slightly better bounds.
In the Remark 1, we gave an upper bound on the value of vi. Using the neighborhood definition, a lower
bound on vi can also be given.

Corollary 3.1. Assume that (P1) is satisfied and let (x,y, s) ∈ W(τ, β). Then

xisi
τµ

= v2i ≥ γ

τ
= 1− β ∀ i ∈ I.

Before we start discussing the analysis, we give the pseudocode of the general algorithmic framework. The
function p(t) is part of the input; therefore, for each different function p we get a different long-step IPA.

6

Algorithm 3.1 Outline of the general algorithm
Input: A ∈ Rm×n, b ∈ Rm, c ∈ Rn, a function p(t) : (ξ,∞) → R

an update parameter 0 < τ < 1, a neighborhood parameter 0 < β < 1,
an accuracy parameter ε > 0,
a starting point (x0,y0, s0) ∈ W(τ, β) with µ0 =

xT
0 s0
n

x := x0, y := y0, s := s0 and µ := µ0

while xT s > ε do
Determine ∆x+,∆s+,∆y+ and ∆x−,∆s−,∆y− according to (2.8)
(α1, α2) := argmin{µ(α) : (x(α),y(α), s(α)) ∈ W(τ, β)},
where x(α) = x+ α1∆x− + α2∆x+, y(α) = y + α1∆y− + α2∆y+ and s(α) = s+ α1∆s− + α2∆s+
x := x(α)
y := y(α)
s := s(α)

µ := xT s
n

end while

As can be seen from the pseudocode (and the definition of W(τ, β)), the parameters β and τ play an
important role in our analysis. Therefore, in addition to the properties (P1)-(P4) given for the function p(t),
we also introduce conditions for the constants β and τ :

(C1) 0 < β < 2(1− ξ2)/3 and 0 < τ < 1,
(C2)

√
βτ <

r

c
(1− τ),

(C3) 1−
√
1− β +

1

2(1−
√
βτ)

≤ 1− t2

p(t)
for all t ∈

[√
1− 3

2β, 1
)
,

where c and r are the positive numbers defined in the conditions (P2) and (P3).
Although (C3) depends on the function p(t), this constraint gives bounds on the value of the parameters
β and τ . We included (P4) in the list of assumptions on p(t) to ensure that there exist β and τ satisfying
(C3). Indeed, from (P4) it follows that (1 − t2)/p(t) ≥ 1/ϱ > 1/2 is satisfied over (η, 1). According to
(C3), we should choose the value of β so that η <

√
1− 3/2β is satisfied, which gives an upper bound on

β, namely β < 2/3(1 − η2). The left-hand side of (C3) is strictly increasing in both β and τ , and its value
can be arbitrarily close to 1/2 if we choose suitably small values for the parameters, i.e., it can be less than
1/ϱ. Furthermore, (C1) and (C2) give only upper bounds on the parameters, so these conditions allow us to
choose arbitrarily small values for β and τ . Therefore, when (P4) is satisfied, there exist suitable parameters
β and τ .
The other direction is also true, i.e., if there exist β and τ that satisfy (C3), then (P4) is satisfied with

ϱ = 1/
(
1−

√
1− β + 1

2(1−
√
βτ)

)
and any

√
1− 3

2β < η < 1. Consequently, (P4) is a necessary and sufficient
condition for the existence of suitable parameter values.

3.1. Convergence analysis. From now on, we assume that (x,y, s) ∈ W(β, τ) and examine the new
iterate. For this, let us introduce the following notations:

dx(α) = α1dx− + α2dx+, ds(α) = α1ds− + α2ds+,

h(α) = τµv2 + α1τµvp
− + α2τµvp

+,

where α1, α2 ∈ [0, 1] are given step-lengths, their values will be specified later. With these notations,
x(α)s(α) = (x+ α1∆x− + α2∆x+)(s+ α1∆s− + α2∆s+) can be written as

x(α)s(α) = h(α) + τµdx(α)ds(α).

The search directions are orthogonal, as usually is the case for LP problems, since

dx(α)Tds(α) = α2
1dx

T
−ds− + α1α2(dx

T
−ds+ + dxT

+ds−) + α2
2dx

T
+ds+,

where dx+ and dx− are in the kernel of matrix Ā, while ds+ and ds− are in the rowspace of matrix Ā (see
system (2.9)), therefore all four scalar products are 0 in the previous expression.
The next lemmas give positive lower bounds on the coordinates of h(α).

7

Lemma 3.2. Assume that (P2) and (P3) hold, and let α1 ≤ 1
c , then hi(α) ≥ τµ for all i ∈ I−.

Proof. In the case of i ∈ I−, vi ≥ 1, pi ≤ 0 according to (3.2) (based on (P3)) and hi(α) = τµvi(vi + α1pi).
Using (P2) and the assumption on α1, we get

hi(α)− τµ = τµ(v2i − 1 + α1vipi) ≥ τµ(v2i − 1)(1− cα1) ≥ 0,

thus, for all i ∈ I−, hi(α) ≥ τµ holds.

Lemma 3.3. Assume that (P1)-(P3) hold, and let α1 ≤ 1
c , then h(α) ≥ γµe = (1− β)τµe > 0.

Proof. When i ∈ I+, based on Corollary 3.1, we get hi(α) ≥ τµv2i = xisi ≥ γµ. While in the case of i ∈ I−,
from Lemma 3.2 it follows that hi(α) ≥ τµ ≥ γµ.

The next technical lemma will be used to show that the iterates remain in the neighborhood W(τ, β).

Lemma 3.4. Assume that (P2) holds and let α1 ≤ 1
c

√
βτ
n and α2 ≤ 1, then

∥ [dx(α)ds(α)]− ∥1 = ∥ [dx(α)ds(α)]+ ∥1 ≤ 1

2
β.

Proof. Following the proof of Lemma 3.5 by Ai and Zhang [2], using the orthogonality of dx(α) and ds(α),
we have

∥[dx(α)ds(α)]−∥1 = ∥[dx(α)ds(α)]+∥1 ≤ 1

4
∥dx(α) + ds(α)∥2

=
1

4
∥α1(dx− + ds−) + α2(dx+ + ds+)∥2 =

1

4

(
α2
1∥p−∥2 + α2

2∥p+∥2
)
.

By the definition of W(τ, β), we have ∥p+∥ ≤ β. We need an upper bound on the term ∥p−∥2:

∥p−∥2 =
∑
i∈I−

p2i =
∑
i∈I−

p2(vi) ≤ c2
∑
i∈I−

(
vi −

1

vi

)2

≤ c2
∑
i∈I−

v2i ≤ c2
∑
i∈I

v2i ≤ c2
n

τ
,

where we used (P2), and in the last inequality, we applied (3.1). Using this estimation and substituting the
values of α1 and α2, we get

1

4

(
α2
1∥p−∥2 + α2

2∥p+∥2
)
≤ 1

4

1

c2
βτ

n
c2

n

τ
+

1

4
β2 ≤ 1

2
β,

which proves the statement.

Let µ(α) = x(α)T s(α)
n be the duality gap after taking the Newton-step. The following lemmas examine the

effect of an iteration on the duality gap. First, we give a lower bound on µ(α).

Lemma 3.5. If (P2) holds, then
µ(α) ≥ (1− α1c)µ.

Proof. Let us consider the definition of µ(α):

µ(α) = µ+
α1τµ

n
vTp− +

α2τµ

n
vTp+ ≥ µ+

α1τµ

n
vTp− = µ+

α1τµ

n

∑
i∈I−

vip(vi)

≥ µ+
α1τµ

n

∑
i∈I−

(
−c
(
v2i − 1

))
≥ µ− c

α1τµ

n

∑
i∈I

v2i = µ− c
α1τµ

n

n

τ
= µ(1− α1c).

For the first estimation, we used vTp+ ≥ 0, and for the second inequality, we applied (P2). The last
inequality follows from the nonnegativity of the parameter c.

The following proposition plays an important role in calculating an upper bound on µ(α).

Proposition 3.1. If (P3) holds, then vTp− ≤ rn
(
1− 1

τ

)
.

8

Proof. Using (P3) and the nonnegativity of 1− v2i for i ∈ I+, we get

vTp− =
∑
i∈I−

vipi ≤
∑
i∈I−

r(1− v2i) ≤
∑
i∈I

r(1− v2i) = rn

(
1− 1

τ

)
.

The next proposition will be used to prove that the reduction in the duality gap is positive.

Proposition 3.2. Suppose that (P2) and (P3) are satisfied and let α1 ≤ 1
c , then

α1

[
(1− τ)r − c

√
βτ
]
< 1.

Proof. Let us consider

(1− τ)r − c
√

βτ < (1− τ)r < r ≤ c ≤ 1

α1
,

which proves the statement.

As usual for Ai-Zhang-type methods, from now on, we fix the value α2 = 1 in the analysis, i.e., we take
a full Newton-step in the positive direction (∆x+,∆y+,∆s+). Furthermore, we will fix the step-length

α1 = 1
c

√
βτ
n , and in this case, the assumption α1 ≤ 1

c in the previous lemmas is automatically satisfied. The
next part of the analysis shows that a certain ratio needs to be maintained between the two step-lengths to
be able to prove the convergence of the method.
Now, we examine the decrease in the duality gap after an iteration.

Lemma 3.6. Let α1 = 1
c

√
βτ
n and α2 = 1. Suppose that (P2) and (P3) hold. Then

µ(α) ≤
(
1−

[
(1− τ)r − c

√
βτ
]
α1

)
µ.

Furthermore, if (C2) is also satisfied, then the duality gap decreases, i.e., µ(α) < µ holds.

Proof. By the definition of µ(α),

µ(α) = µ+
α1τµ

n
vTp− +

α2τµ

n
vTp+.

To estimate the term vTp+, we use the fact that vp+ ≥ 0 and vi < 1 for all i ∈ I+, so vTp+ = ∥vp+∥1 ≤
∥p+∥1. From the Cauchy-Schwartz inequality, it follows that ∥u∥1 ≤

√
n∥u∥. Therefore,

vTp+ ≤
√
nβ,

since ∥p+∥ ≤ β by the definition of W(τ, β).
Using the previous estimation and Proposition 3.1, we get

µ(α) ≤ µ+
α1τµ

n
rn

τ − 1

τ
+

α2τµ

n

√
nβ = µ+ α1(τ − 1)rµ+ c

√
βτα1µ = µ

(
1−

[
(1− τ)r − c

√
βτ
]
α1

)
.

Here, the multiplier of µ is positive by Proposition 3.2, and it is less than one due to (C2), therefore, µ(α) < µ,
i.e., the duality gap decreases.

The next lemma also has an important role in proving that the new iterates remain in the wide neighborhood
W(τ, β).

Lemma 3.7. Assume that the properties (P1)-(P3) and (C2) hold, and let α1 = 1
c

√
βτ
n . Then

∥ [τµ(α)e− h(α)]
+ ∥ ≤ βτµ(α)

(
1− α2

√
γ

τ

)
.

Proof. According to Lemma 3.2, we have hi(α) ≥ τµ for all i ∈ I−. From this, it follows that τµ(α)−hi(α) ≤
0 for all i ∈ I−.

9

In the case of i ∈ I+ by Lemma 3.6, (P1) and Corollary 3.1, we have

τµ(α)− hi(α) = τµ(α)− τµv2i − α2τµvipi ≤ τµ(α)− µ(α)

µ

(
τµv2i + α2τµvipi

)
= τµ(α)

(
1− v2i − α2vipi

)
≤ τµ(α)

(
1− α2

√
γ

τ

)
pi.

Therefore, using this upper bound and the definition of W(τ, β), we get

∥ [τµ(α)e− h(α)]
+ ∥ ≤ τµ(α)

(
1− α2

√
γ

τ

)
∥p+∥ ≤ βτµ(α)

(
1− α2

√
γ

τ

)
.

The following lemma gives a lower bound on the expression x(α)s(α).

Lemma 3.8. Assume that (P1)-(P3) hold, and let α1 = 1
c

√
βτ
n and α2 = 1. Then

x(α)s(α) ≥
(
1− 3

2
βτ

)
µe.

Proof. From Lemma 3.3 and Lemma 3.4, it follows that

x(α)s(α) = h(α) + τµdx(α)ds(α) ≥ γµe− τµ∥ [dx(α)ds(α)]− ∥e

≥ γµe− τµ
1

2
βe = µ

(
γ − βτ

2

)
e = µ

(
1− 3

2
βτ

)
e.

Corollary 3.2. Assume that (P1)-(P3) hold, and let α1 = 1
c

√
βτ
n and α2 = 1. If β < 2

3 , then x(α)s(α) > 0

holds.

The next proposition is an analogue of Proposition 3.2 of Ai and Zhang [2] for LP problems. In their paper,
they formulate this statement for monotone LCPs, but the proof remains the same in this special case.

Proposition 3.3 (Ai and Zhang [2, Proposition 3.2]). Assume that (x,y, s) ∈ F+ and let (∆x,∆y,∆s) be
the solution of the system

A∆x = 0

AT∆y +∆s = 0

s∆x+ x∆s = z.

If z+ xs > 0 and (x+ t0∆x)(s+ t0∆s) > 0 hold for some t0 ∈ (0, 1], then x+ t∆x > 0 and s+ t∆s > 0 for
all t ∈ (0, t0].

Based on this proposition, we can show that the new iterates x(α) and s(α) are strictly positive, i.e., feasible.

Lemma 3.9. Suppose that (P1)-(P3) hold, and let α1 = 1
c

√
βτ
n and α2 = 1, furthermore β < 2

3 . Then
x(α) > 0 and s(α) > 0 holds.

Proof. Proposition 3.3 can be applied with z = α1τµvp
− + α2τµvp

+ since according Lemma 3.3, z+ xs =
h(α) > 0 and by Corollary 3.2, t0 = 1 is a proper choice.

Using Lemma 3.8, we can examine what are the necessary conditions for maintaining the technical condition
v > ξe after an iteration. For most functions from the literature, ξ = 0 holds, therefore in most cases, the
following lemma does not give additional requirements on the parameters.

Lemma 3.10. Suppose that (P1)-(P3), (C1) and (C2) hold, let α1 = 1
c

√
βτ
n and α2 = 1, then v(α) > ξe.

Proof. Since µ ≥ µ(α) according to Lemma 3.6, from Lemma 3.8 we get

x(α)s(α) ≥
(
γ − βτ

2

)
µe ≥

(
γ − βτ

2

)
µ(α)e.

10

Combining it with the assumption on β, it follows that

(3.3) v(α) =

√
x(α)s(α)

τµ(α)
≥
√

γ

τ
− β

2
e =

√
1− 3

2
βe > ξe.

Now we have all the necessary results for proving that ∥p(α)+∥ ≤ β holds, where p(α) is the new right-hand
side of the Newton-system after taking an α = [α1;α2]-long step. Together with Lemma 3.10, this means
that the new iterates after the Newton-step remain in the neighborhood W(τ, β).

Lemma 3.11. Suppose that (P1)-(P3) and (C1)-(C3) hold. Let α1 = 1
c

√
βτ
n , and α2 = 1. Then

∥p(α)+∥ ≤ β

holds.

Proof. We need to examine only the indices where p(α) is positive, namely v(α) is less than one. In this
case

pi(α) =
p(vi(α))

1− v2i (α)

(
1− v2i (α)

)
≤ 1

1−
√
1− β + 1

2(1−
√
βτ)

(
1− v2i (α)

)
,

by (C3) and using the lower bound (3.3).
Therefore,

∥p(α)+∥ ≤ 1

1−
√
1− β + 1

2(1−
√
βτ)

∥∥∥[e− v2(α)
]+∥∥∥ .

To estimate the second term, we use Lemma 3.4, Lemma 3.7 and Lemma 3.5:∥∥∥[e− v2(α)
]+∥∥∥ =

1

τµ(α)

∥∥∥[τµ(α)e− x(α)s(α)]
+
∥∥∥ ≤ 1

τµ(α)

(∥∥∥[τµ(α)e− h(α)]
+
∥∥∥+ τµ

∥∥∥[dx(α)ds(α)]−∥∥∥)
≤ 1

τµ(α)

(
βτµ(α)

(
1−

√
1− β

)
+ τµ

β

2

)
≤ β

µ(α)

(
µ(α)

(
1−

√
1− β

)
+

1

2

µ(α)

1−
√
βτ

)
= β

(
1−

√
1− β +

1

2

1

1−
√
βτ

)
.

Combining the two estimations completes the proof.

3.2. The complexity of the algorithms. At the end of the analysis, we prove that the general
algorithmic framework has the best known iteration complexity when it is applied with a function from the
proposed class (i.e., p(t) satisfies (P1)-(P4)), and the parameters fulfill the conditions (C1)-(C3). As it has
already been discussed in Section 3, the condition (P4) was not mentioned in the analysis since, for the
results that were proved earlier, this condition is not necessary. However, for our final theorem, we have
to include this constraint to ensure that there exists a parameter pair (β, τ) that satisfies our conditions
(C1)-(C3).

Theorem 3.12. Suppose that the parameters β, τ ∈ (0, 1) and a function p(t) are given and they satisfy
all conditions (P1)-(P4) and (C1)-(C3) with constants c > 0 and r > 0. Assume that a starting point

(x0,y0, s0) ∈ W(τ, β) is given. Let α1 = 1
c

√
βτ
n and α2 = 1. Then the algorithm provides an ε-optimal

solution in

O

(√
n log

xT
0 s0
ε

)
iterations.

Proof. According to Lemma 3.6, the following inequality holds for the duality gap in the kth iteration:

xT
k sk
n

= µk ≤ µk−1

(
1−

[
(1− τ)r −

√
βτc

]
α1

)
≤ µ0

(
1−

[
(1− τ)r −

√
βτc

]
α1

)k
.

11

From this, it follows that

xT
k sk ≤

(
1−

[
(1− τ)r −

√
βτc

]
α1

)k
µ0n.

Therefore xT
k sk ≤ ε holds if (

1−
[
(1− τ)r −

√
βτc

]
α1

)k
µ0n ≤ ε

is satisfied.
Taking the natural logarithm of both sides, we obtain

k log
(
1−

[
(1− τ)r −

√
βτc

]
α1

)
+ log(µ0n) ≤ log ε.

Using the inequality − log(1− ϑ) ≥ ϑ, we can require the fulfillment of the stronger inequality

−kα1

[
(1− τ)r −

√
βτc

]
+ log(µ0n) ≤ log ε.

This inequality is satisfied when

k ≥ c

√
n

βτ

1

(1− τ)r −
√
βτc

log

(
xT
0 s0
ε

)
,

and this proves our statement.

4. Constants and properties for special functions. In this section, we give some examples of
functions that belong to the proposed class.
The first five rows of Table 1 show known functions from the literature on the AET method. The other rows
show new functions that have been introduced in this context in this paper for the first time, up to the best
of our knowledge. The rows 7-9 and 12 describe classes of functions, based on the values of the parameters
k and m.
In the last four columns, we propose some values for the parameters c, r, β, and τ that satisfy the conditions
(P1)-(P4) and (C1)-(C3). During the analysis, we fixed the value of γ as γ = (1− β)τ , but even in this case
there are different possible values for β and τ that satisfy the conditions.
The fourth function (introduced by Kheirfam and Haghighi [27]) does not belong to the function class
defined in this paper since there is no positive constant c that satisfies the property (P2). This means that
the function p(t) = 1 − t2 decreases too quickly over the interval [1, t∗]. Therefore for this function, the
convergence of the general long-step algorithm cannot be proved with our approach.
The fifth transformation function was introduced by Illés et al. [25], and it has an inflection point at t = 1/4.
As it can be seen from Table 1, the ninth function is a generalization of the third one. In general, for
this function p(t) we cannot give a closed formula for the corresponding φ since the integral of 1

p(t) is a
hypergeometric function. This function also shows that we can get a wider function class by building our
analysis on the scaled system, since for a function φ(t), the corresponding p(t) can always be determined
using (2.7).
All previous papers related to the AET technique consider continuous functions p(t). However, the prop-
erties required for our analysis do not include the continuity of the function p(t). Therefore, we can define
noncontinuous functions p(t) with finitely many jump discontinuities. One such example can be seen in the
tenth row of Table 1. According to Lemma 5.1, there are infinitely many functions φ that give this function
p(t), the table shows only an example. This function φ is not differentiable in 1√

τ
, but the convergence

and best known iteration complexity still follows from our analysis. Since this function φ is still invertible,
we can apply the AET technique by taking the right-hand derivative in formula (2.5) in the point 1√

τ
. In

general, invertible functions with finitely many jump discontinuities can be handled similarly.
In the eleventh and twelfth rows we defined functions p(t) which are not strictly decreasing over [1, t∗].

12

φ(t) p(t) Conditions ξ c r β τ

1. t 1
t − t - 0 1 1 1

8
1
8

2.
√
t 2(1− t) - 0 2 1 1

4
1
4

3. t−
√
t 2(t−t2)

2t−1 - 1
2 1 8

9
1
8

1
8

4.
√
t

2(1+
√
t)

1− t2 - 0 ∄ 1 1
8

1
8

5. t2 − t+
√
t 2(1−t4+t2−t)

4t3−2t+1 - 0 1 1
2

1
8

1
8

6. t arctan t
(π/4−t2 arctan t2)
t
(
arctan t2+ t2

1+t4

) - 0 1 1
2

1
8

1
8

7. tk ln t −2t ln t
2k ln t+1 k ≥ 1 e−

1
2k 1 1

2k
1
8k

1
8k

8. tk 1−t2k

kt2k−1 k ≥ 1 0 1 1
k

1
8k

1
8k

9. No closed formula mtk

mtk−1
(1− t) m ≥ 2, k ≥ 1 m− 1

k 1 1
2

1
8

(
1− 1

k
√
m

)
1
8

(
1− 1

k
√
m

)
10.

{
t if t ≤ 1√

τ
,

√
t+

√
8− 4

√
8 if t > 1√

τ

{
1
t − t if t ≤ 1√

τ
,

2 (1− t) if t > 1√
τ

- 0 2 1 1
8

1
8

11. No closed formula − cos t ln
(
1
2 t
)
− t+ cos 1 ln

(
1
2

)
+ 1 - 0 2 1

2
1
8

1
8

12. No closed formula k(cos t− cos 1)− t+ 1 k ∈ [1, 2] 0 2 1
2

1
8

1
8

Table 1
Constants and properties for special functions

Figure 1. Functions 10 and 11 and suitable lower and upper bounds

5. Properties of the function φ. As can be seen in Section 3.1, our analysis only uses the properties
of the function p(t), and this function does not need to be written in the form (2.7) for some function φ. If
we would like to decide for a function φ whether our analysis gives a convergent algorithm with complexity
O(

√
nL), it is enough to calculate the corresponding function p using (2.7), and then check whether the

properties given in this paper are satisfied.
However, in this section, we still would like to show some important observations regarding the function φ as
well. If we obtain p by using the AET technique, the functions p and φ are connected through (2.7), which
can be viewed as a differential equation for φ when the value of p is given, and our goal is to determine which
functions result in the same right-hand side vector in the Newton-system when using the AET method. To
ensure that the expression in (2.7) is well-defined, we assume that φ′(t) ̸= 0 for all t ∈ (ξ2,∞).
The next lemma shows that if we multiply a function φ with a nonzero number or add a constant to it

13

(i.e., shift the function vertically), then the corresponding function p remains the same. This is a simple
consequence of the definition of p.

Lemma 5.1. Let φ1 : (ξ2,∞) → R, ξ ∈ [0, 1) be a continuously differentiable function with φ′
1(u) ̸= 0 for

all u ∈ (ξ2,∞), and determine the corresponding function p1 using the formula (2.7). Consider the function
φ2(u) = ζφ1(u) + σ, where ζ, σ ∈ R are given constants, ζ ̸= 0. Then for the corresponding function p2
(calculated using (2.7) with φ2)

p1(t) = p2(t) ∀ t ∈ (ξ,∞)

holds.

The previous lemma means that the same function p belongs to infinitely many functions φ.
Another important property here is that the sign of ζ is not restricted; the same right-hand side vector can
belong to both increasing and decreasing functions. Therefore, the assumption that φ should be strictly
increasing (which is mentioned in many papers using the AET method) is not necessary; it is enough to
assume that this function is invertible and its derivative does not vanish over the domain. The first paper by
Darvay that introduces the AET method [8] also requires only the invertibility and continuous differentiability
of the function and does not mention its increasing (or decreasing) property.
According to Lemma 5.1, we can assume without loss of generality that φ(u) is strictly increasing (so φ′(u) >
0 over its domain) and φ(1) = 0. These assumptions make it easier to formulate the necessary conditions
for φ(u). If we keep the original assumption of Darvay that φ(u) should be continuously differentiable, then
the properties (P1)-(P4) can be reformulated for the transformation function φ(u) as follows:

(P’1) The inequality φ(u)
φ′(u) ≤ −

√
u(1− u) holds for all u ∈ (ξ2, 1).

(P’2) There exists a positive constant c for which φ(u)
φ′(u) ≤ c(u− 1) for all u ∈ [1, (t∗)

2
].

(P’3) There exists a positive constant r for which φ(u)
φ′(u) ≥ r(u− 1) for all u ∈ [1, (t∗)

2
].

(P’4) There exist two constants ϱ and η such that ϱ ∈ [1, 2) and η ∈ (ξ, 1) and φ(u)
φ′(u) ≥ −ϱ

√
u(1 − u) for

all u ∈ (η2, 1).
It can be observed that the conditions listed above do not refer to φ itself but to ln |φ|, since the function
φ(u)
φ′(u) is the reciprocal of the derivative of ln |φ(u)|

5.1. A modified AET technique with piecewise continuously differentiable transformation
functions. For p(t), we have already discussed that when all conditions are met, the function can have
finitely many jump discontinuities, and the analysis still gives the desired results. The corresponding function
φ(t) can be determined by using one-sided derivatives at the discontinuities.
Having jump discontinuities in the function φ(t) is also possible, and the monotonicity of φ can also change,
provided that it remains invertible and all conditions necessary for our analysis are met; see, for example,
Figure 2. However, the next corollary shows that it is enough to consider the case when φ(t) is continuous
and strictly increasing (or decreasing) over its whole domain.

Figure 2. A suitable function φ where the monotonicity changes.It gives the same function p as the identity function.

Corollary 5.1. Let φ1 : (ξ2,∞) → R, ξ2 ∈ [0, 1) be a function with finitely many jump discontinuities
or monotonicity changes and determine the corresponding function p(t) using formula (2.7). Then we can

14

define a continuous function φ2 : (ξ2,∞) → R, ξ2 ∈ [0, 1) that strictly increases or decreases over (ξ2,∞),
for which the corresponding function p(t) is the same.

Proof. If φ1 is increasing or decreasing, but has jump discontinuities, then by using proper vertical shifts at
the breaking points we can define a continuous function φ2 and according to Lemma 5.1, these transforma-
tions do not modify the value of p(t).
If the function φ1 changes its monotonicity, then we can construct a strictly increasing function φ2, by
modifying over the intervals where φ1 is decreasing, and multiply the value of φ1 by −1. (A strictly
decreasing function can be constructed similarly, by taking the intervals where φ1 is increasing.) These
changes do not modify p(t), according to Lemma 5.1. After these, it is possible that φ2 still has jump
discontinuities, but these can be handled as in the previous case.

Therefore, in this subsection, we assume that φ is continuous, strictly increasing, and φ(1) = 0. However,
we discard the differentiability assumption on φ and assume that there are finitely many points t1, t2, . . . ,
tk where φ is not differentiable. If φ is calculated from a function p that satisfies our conditions (P1)-(P4),
and has finitely many jump discontinuities in t1, t2, . . . , tk, then φ is continuously differentiable over the
intervals (ξ2, t21) and (t2i , t

2
i+1), i ∈ {1, . . . , k − 1} and the one-sided derivatives exist in t21, t

2
2, . . . , t

2
k. Thus,

we suppose that φ is a piecewise continuously differentiable (PC1) function.
We need a further assumption that the one-sided derivatives at the breaking points are not zero.
Let us define the function

dφ(u) =

{
φ′(u), if ∃ i ∈ {1, . . . , k − 1} s.t. u ∈ (t2i , t

2
i+1),

limz→u+ φ′(z) if u ∈ {t21, t22, . . . , t2k}.

In the definition of dφ(u), when φ(u) is not differentiable, we replace φ′(u) with the right-hand side derivative.
However, we could use any of the one-sided derivatives in the definition instead, and the subsequent results
would remain the same.
The properties of φ(u) in the piecewise differentiable case can be formulated as:

(P”1) The inequality φ(u)
dφ(u) ≤ −

√
u(1− u) holds for all u ∈ (ξ2, 1).

(P”2) There exists a positive constant c for which φ(u)
dφ(u) ≤ c(u− 1) for all u ∈ [1, (t∗)

2
].

(P”3) There exists a positive constant r for which φ(u)
dφ(u) ≥ r(u− 1) for all u ∈ [1, (t∗)

2
].

(P”4) There exist two constants ϱ and η such that ϱ ∈ [1, 2) and η ∈ (ξ, 1) and φ(u)
dφ(u) ≥ −ϱ

√
u(1− u) for

all u ∈ (η2, 1).

In the original AET technique of Darvay, the continuous differentiability of the transformation function is
assumed so that Newton’s method can be applied to determine the search directions. If we discard this
assumption, we need to generalize the AET technique to the PC1 case.
Instead of Newton’s method, we can apply the extended Newton method proposed by Kojima and Shindo
[29] in 1986. First, we need to show that the nonlinear mapping corresponding to the system (2.4) in the
case of a PC1 function φ is a piecewise continuously differentiable mapping from Rn+m+n to Rn+m+n.

Definition 5.2 (Kojima and Shindo [29]). Let F : Rn → Rn be a continuous mapping and {Ui : i ∈ Λ} be
a countable family of closed subsets of Rn such that the following conditions are satisfied:

• cl(int Ui) = Ui for every i ∈ Λ.
• (int Ui) ∩ (int Uj) = ∅ for all i, j ∈ Λ and i ̸= j.
•
⋃

i∈Λ Ui = Rn.
• {Ui : i ∈ Λ} has a locally finite property. (For any x ∈ Rn there exists an open neighborhood V of
x such that {i : V ∩ Ui ̸= ∅} is finite.)

• For each i ∈ Λ the restriction F |Ui
of the mapping to each Ui is a continuously differentiable mapping.

Then F is a PC1 mapping on the subdivision {Ui : i ∈ Λ} of Rn.

Let Γ denote the set of all n-tuples of {0, 1, . . . , k− 1, k}. Then |Γ| = (k+1)n. For each r ∈ Γ we can define
a set Ur in the following way:

Ur =

{
(x,y, s) ∈ Rn+m+n : xs ∈

(
n×

j=1

[
trj , trj+1

])
, y ∈ Rm

}
,

15

where we applied the notations t0 = ξ2 and tk+1 = ∞. If we consider all (k + 1)n such sets (Ur for all
r ∈ Γ), then the nonlinear mapping corresponding to system (2.4) is a PC1 mapping on the subdivision
{Ur : r ∈ Γ} of Rn+m+n.
Therefore, the extended Newton-method can be applied to (2.4), provided that φ is a piecewise continuously
differentiable function. This way, for the Newton-directions, we get

(5.1)

A∆x = 0

AT∆y +∆s = 0
s∆x+ x∆s = aφ = ν

φ(e)− φ
(
xs
ν

)
dφ
(
xs
ν

)


In the definition of dφ, we considered the right-hand side derivatives in the breaking points but mentioned
that we could use any of the one-sided derivatives. The case is the same for the modified Newton-system
(5.1). Therefore, using the one-sided derivatives, the AET technique can be applied even in the case when
the transformation function is not continuously differentiable but piecewise continuously differentiable.

5.2. Construction rules. In this subsection, we give some lemmas on how new functions φ can be
constructed using those for which the desired properties have already been proved. According to our numer-
ical results, when we run the IPA with the theoretical step-length, all coordinates of the vector v are greater
than 1 during the whole computation, and in addition, the conditions referring to the interval [1, (t∗)2] are
much easier to check. Therefore, it is reasonable to concentrate on the validity of these construction rules
over [1, (t∗)2]. In this case, we need to check whether (P’2) and (P’3) are satisfied for the proposed new
functions. Furthermore, the differentiability of φ is not necessary for our method to work, therefore, we
can define φ with a different assignment rule over (ξ, 1), for which the other conditions (P’1) and (P’4) are
satisfied, and from (P’4) it follows that suitable values exist for β and τ that satisfy (C1) -(C3).
To simplify our discussion regarding construction rules, we consider the case when φ is continuously differ-
entiable over the interval [1, (t∗)2], but the results could be extended to the PC1 case as well.
The following lemma shows that when two functions satisfy the given conditions over [1, (t∗)2], their product
is also suitable.

Lemma 5.3. Assume that the functions φ1(u) : [1, (t∗)2] → R and φ2(u) : [1, (t∗)2] → R are continuous and
strictly increasing (or both strictly decreasing) over their domain and satisfy the conditions (P’2) and (P’3)
with positive constants c1, c2, r1 and r2, respectively; furthermore, φ1(1) = 0 and φ2(1) = 0. Then their
product φ(u) = φ1(u)φ2(u) also satisfies the conditions with positive constants c = c1c2

c1+c2
and r = r1r2

r1+r2
.

Proof. Since φ1 and φ2 are continuous and strictly increasing or decreasing functions, their product is also
continuous and strictly monotonic. Due to the monotonicity assumptions, φ1 and φ2 attain 0 only at u = 1,
and the same holds for φ(t).
For u = 1, the statement is true since both sides of the inequalities are equal to 0.
Suppose that u > 1, then using monotonicity and continuity assumptions on φ1 and φ2, (P’2) and (P’3) can
be rewritten as

(5.2)
φ′(u)

φ(u)
≥ 1

c(u− 1)
and

φ′(u)

φ(u)
≤ 1

r(u− 1)
,

respectively.
Since φ′(u) = φ′

1(u)φ2(u) + φ1(u)φ
′
2(u),

φ′(u)

φ(u)
=

φ′
1(u)

φ1(u)
+

φ′
2(u)

φ2(u)
.

Using the constraints on φ1 and φ2, it can be shown by a simple calculation that φ(u) satisfies (P’2) with
c = c1c2

c1+c2
, and (P’3) with r = r1r2

r1+r2
.

Corollary 5.2. Assume that the function φ(u) : [1, (t∗)2] → R is continuous and strictly monotonic and
satisfies the conditions (P’2) and (P’3) with c and r, and φ(1) = 0. Then the function ukφ(u) (k ≥ 1) also
satisfies the conditions.

Proof. Since we assumed that φ(u) satisfies the above-mentioned conditions, and we know that the function
uk (k ≥ 1) also (see Table 1), the statement follows from Lemma 5.3.

16

Lemma 5.4. Assume that the functions φ1(u) : [1, (t∗)2] → R and φ2(u) [1, (t∗)2] → R are continuous
and strictly monotonic and both satisfy the conditions (P’2) and (P’3) with positive constants c1, c2, r1
and r2, respectively; furthermore, φ1(1) = 0 and φ2(1) = 0. Assume that φ1(u) ≥ 0 and φ2(u) ≥ 0 for
all u ∈ (1, (t∗)2). Then their sum φ(u) = φ1(u) + φ2(u) also satisfies the conditions over [1, (t∗)2], with
c = max{c1, c2} and r = min{r1, r2}.
Proof. For u = 1, the statement holds since both sides of the inequalities are 0 according to our assumptions.
Assume that u > 1 and consider the reformulated inequalities (5.2).
Since φ′(u)

φ(u) =
φ′

1(u)+φ′
2(u)

φ1(u)+φ2(u)
, using (P’2) (in the form φ1(u) ≤ c1(u− 1) and φ2(u) ≤ c2(u− 1)), we get

φ′(u)

φ(u)
≥ min

{
1

c1
,
1

c2

}
1

u− 1
,

therefore c = max{c1, c2} is a suitable constant.
For the second inequality, using (P’3) we obtain

φ′(u)

φ(u)
≤ max

{
1

r1
,
1

r2

}
1

u− 1
,

thus r = min{r1, r2} is a proper constant for this constraint.

When φ1(u) ≤ 0 and φ2(u) ≤ 0 hold for all [1, (t∗)2], their sum also satisfies the conditions, since φ1(u) +
φ2(u) = −((−φ1(u)) + (−φ2(u)). Furthermore, (−φ1(u)) + (−φ2(u)) satisfies the conditions of Lemma 5.4,
and if we multiply φ by a non-zero number, we get the same function p, according to Lemma 5.1.

Lemma 5.5. Let φ(u) be a strictly monotonic polynomial over [1, (t∗)2], and assume that φ(1) = 0.
Then φ(u) satisfies the conditions (P’2) and (P’3).

Proof. According to our assumptions, φ(u) = (u − 1)s(u), where s(u) is a polynomial of degree at least 0.
Furthermore, in the case of u = 1, the statement holds, since both sides of (P’2) and (P’3) are 0. Therefore,
it can be assumed that u > 1.
Let us denote the degree of the polynomial φ(u) by k. We apply induction on k.
When k = 1, the transformation function can be written as φ(u) = ζ(u− 1), where ζ is a nonzero constant.
In this case, φ′(u)

φ(u) = 1
u−1 , therefore, c = 1 and r = 1 are suitable constants, the constraints are satisfied for

k = 1.
Assume that all polynomials of degree k − 1 (which are invertible over [1, (t∗)2] with φ(1) = 0) satisfy the
inequalities (P’2) and (P’3) with constants ck−1 and rk−1.
Let φ(u) = (u− 1)s(u) be a polynomial of degree k (i.e., s(u) is a polynomial of degree k − 1). In this case,

φ′(u)

φ(u)
=

1

u− 1
+

s′(u)

s(u)

By induction,
1

ck−1

1

u− 1
≤ s′(u)

s(u)
≤ 1

rk−1

1

u− 1
.

Using these inequalities, and choosing the values of ck and rk as

ck =
ck−1

ck−1 + 1
and rk =

rk−1

rk−1 + 1
,

it can be shown that (P’2) and (P’3) are satisfied.
Therefore, for a suitable polynomial of degree k, c = 1

k and r = 1
k are constants that satisfy the inequalities,

and the statements of the lemma are true for general k.

Besides the construction rules defined in the previous lemmas, we can also apply the results that follow from
Corollary 5.1. Namely, we can multiply a function φ with a nonzero number, change the monotonicity of the
transformation function, or add jump discontinuities, and the resulting function will remain in the defined
function class.

17

6. Numerical results. In this section, we present our numerical results to examine the effect of the
choice of the function p(t) on the performance of the general long-step IPA.
First, we implemented a greedy variant of the examined algorithm. That is, we fixed the value of α2 as 1 and
calculated the value of α1 as the largest step-length for which the new point remains in the neighborhood
W(τ, β). The pseudocode of the greedy variant is described in the following figure:

Algorithm 6.1 Outline of the greedy algorithm
Input: A ∈ Rm×n, b ∈ Rm, c ∈ Rn, a function p(t) : (ξ,∞) → R

an update parameter 0 < τ < 1, a neighborhood parameter 0 < β < 1,
an accuracy parameter ε > 0,
a starting point (x0,y0, s0) ∈ W(τ, β) with µ0 =

xT
0 s0
n

x := x0, y := y0, s := s0 and µ := µ0

while xT s > ε do
Determine ∆x+,∆s+,∆y+ and ∆x−,∆s−,∆y− according to (2.8)
α2 := 1
ᾱ1 := max{α1 ∈ [0, 1] : (x(α),y(α), s(α)) ∈ W(τ, β)},
where x(α) = x+ ᾱ1∆x− + α2∆x+, y(α) = y + ᾱ1∆y− + α2∆y+ and s(α) = s+ ᾱ1∆s− + α2∆s+
x := x(α)
y := y(α)
s := s(α)

µ := xT s
n

end while

Since the step-length applied in the analysis (α1 = 1
c

√
β
τn) is a lower bound on the value of ᾱ1 calculated in

the greedy variant, and the duality gap is a strictly decreasing function of α1, the complexity of the greedy
IPA is at least as good as of the IPA investigated in the analysis.
The numerical tests were carried out on a Dell laptop with an Intel i7 processor and 16 GB RAM. We solved
LP problem instances from the Netlib library [22]. After transforming the problem instances to standard
form, we eliminated the redundant constraints by applying the procedure eliminateRedundantRows.m by
Ploskas and Samaras [35]. For the modified LP problems, we applied a similar method to procedure CLEAN
by Adler et al. [1] to eliminate fix-valued variables.
To start the algorithm from a strictly feasible initial point in the neighborhood W(τ, β), we first transformed
the problems into symmetric form, then applied the self-dual embedding technique [40]. To avoid doubling
the number of constraints during the symmetric reformulation, we carried it out according to the last Remark
of [26, p. 232]. For the embedded problem, x = e and s = e is a suitable initial point since it is strictly
feasible and is in the neighborhood W(τ, β).
The numerical results for the classic AET functions φ(t) = t, φ(t) =

√
t and φ(t) = t−

√
t can be found in

our previous paper [20]. The running times required for the presolve and postsolve procedures can also be
found in [20]. We also published some preliminary numerical results in [18] for the functions φ(t) = t arctan t,
φ(t) = t2 and φ(t) = t ln t.
For the numerical tests in this paper, we chose different functions from Table 1. Since according to Lemma
5.1, infinitely many functions φ belong to a function p(t), instead of φ, we display the function p in Table 2.
In the numerical tests, the applied functions were the following:

• p1(t) =
1

t
− t,

• p2(t) =
1− t4

2t3
,

• p3(t) = 1− t2,

• p4(t) =
−2t ln t

4 ln t+ 1
,

• p5(t) =

{
1
t − t if t ≤ 1√

τ
,

2 (1− t) if t > 1√
τ
,

18

• p6(t) = − cos t ln (t/2)− t− cos 1 ln (2) + 1.

The value of the precision parameter ε was 10−5. The chosen values of β and τ are shown in the second row
of Table 2.
The function p1(t) corresponds to the case of φ(t) = t and is shown for reference. As can be seen from
Table 1, p3(t) does not belong to our function class, i.e. theoretically, the convergence of the general method
cannot be proved for this particular function, but as can be seen from the numerical results, all problems
could be solved using p3(t) as well, and the running times with this function were among the best.
The functions p2(t) and p4(t) are special cases of the functions given in the seventh and eighth rows of
Table 1, with k = 2. Since the values of the parameters β and τ depend on the value of k, in these two
cases we applied the settings β = 1/16 and τ = 1/16. For the other functions, β = 1/8 and τ = 1/8
were suitable parameter values that met all the conditions. Therefore, in the case of p2(t) and p4(t), the
applied wide neighborhood was narrower, and we could only perform smaller updates when choosing our
next target point. And this had a significant effect on the numerical results; the average number of iterations
and running times were worse for these two functions. Based on these observations, choosing higher-order
transformation functions for the AET method does not help numerically (even though we have already seen
in Lemma 5.5 that there are polynomials of any degree in our function class).
The function p5(t) is the first AET function that has a jump discontinuity, and in terms of the average
number of iterations, this gave the best result. If we consider only the five functions that belong to our class,
this also gave the best average running time.
The function p6(t) is non-decreasing over [1,∞). So far, functions that change their monotonicity have not
been examined in the context of the AET method; therefore, this function is important from a theoretical
point of view. But, as can be seen in Table 2, it was not efficient in practice.

We also implemented the theoretical version of the algorithmic framework, where we applied the same step-

lengths as in the analysis, namely, α1 = 1
c

√
βτ
n and α2 = 1. Since this variant is inefficient in practice, the

main reason for implementing it was to make some observations on the behavior of the analyzed algorithm.
With the staring points x0 = e and s0 = e, at the beginning, all coordinates of the vector v are equal to
1√
τ
. We observed that the coordinates remained in a really narrow interval around this value, not just for

LP problems, but also for sufficient LCPs [19].
In the case of the theoretical variant, all coordinates are greater than 1, that is, the iterates never leave
the neighborhood N−

∞(1 − τ). This is the main reason why we only considered the interval [1,∞) when
introducing construction rules for the function φ(t) in Section 5. In the case of the greedy variant, the
largest coordinates of v are also far from the upper bound

√
n/τ applied in the analysis; in fact, the upper

bound seems to be independent of the problem size even in this latter case. The lower bound for the greedy
variant is always below 1, since we take the largest step for which the new iterate is still in W(τ, β). The
limits on the coordinates of v for four test problems are shown in Table 3.

7. Conclusion. In this paper, we introduced an Ai-Zhang-type long-step algorithmic framework for
linear optimization. We also proposed a new class of AET functions for which the convergence and best
known complexity of the general algorithm can be proved.
In the analysis, the function p(t) derived from the right-hand side of the scaled Newton-system plays a
far more significant role than the transformation function φ(t) itself. Therefore, the conditions defining
our function class have been formulated for the function p(t). However, we also discussed a suitable set of
sufficient properties for the function φ(t) so that the corresponding function p(t) is suitable for the general
algorithm, and gave different construction rules that can be used to define new functions that belong to our
class.
We also pointed out during the analysis that the continuity, monotonicity, and convexity assumptions often
made in papers related to the AET technique can be relaxed, and the resulting functions can work well not
just in theory but in practice as well. Following this line of thought, we generalized the AET technique for
piecewise continuously differentiable transformation functions.
Furthermore, we implemented the general algorithmic framework in MATLAB and tested different trans-
formation functions on problem instances from the Netlib library. We found that the performance of the
methods for which the same parameter settings could be applied is similar for LP problems. We also made

19

p1(t) p2(t) p3(t) p4(t) p5(t) p6(t)

β = τ = 1
8 β = τ = 1

16 β = τ = 1
8 β = τ = 1

16 β = τ = 1
8 β = τ = 1

8

Name m n Iter. Sec. Iter. Sec. Iter. Sec. Iter. Sec. Iter. Sec. Iter. Sec.
25fv47 1856 3712 88 1269.94 105 1512.84 81 1026.14 103 1478.27 79 999.36 100 1192.32
adlittle 139 278 22 0.34 23 0.38 22 0.33 22 0.35 22 0.30 24 0.36
afiro 53 106 15 0.04 16 0.06 16 0.04 16 0.04 16 0.04 18 0.04
agg 591 1182 36 21.22 48 29.35 31 15.63 44 26.38 32 16.11 45 21.45
agg2 758 15 35 41.01 44 51.71 33 34.35 41 47.78 32 32.01 43 39.92
agg3 758 15 44 51.79 60 70.67 38 37.25 56 65.33 36 35.88 52 47.96
bandm 418 836 42 9.74 53 12.66 38 7.69 50 12.12 37 7.57 49 9.28
beaconfd 222 444 18 0.90 25 1.20 16 1.09 22 1.04 20 1.08 22 0.86
blend 116 232 19 0.20 20 0.28 19 0.18 20 0.24 19 0.18 20 0.20
bnl1 1550 3100 103 886.69 136 1164.02 87 654.98 126 1081.27 83 625.76 131 941.94
bore3d 260 520 49 3.43 64 4.68 44 2.67 62 4.33 43 2.73 55 3.22
brandy 247 494 43 2.76 50 3.43 38 2.03 48 3.02 37 2.03 47 2.46
degen2 759 1518 24 29.01 26 30.89 24 24.62 25 29.73 25 25.55 27 26.08
e226 443 886 44 11.95 56 15.61 39 9.26 55 15.17 37 8.47 49 10.63
etamacro 869 1738 93 157.95 150 254.89 77 118.05 131 222.52 75 110.39 131 207.65
fffff800 1007 2014 80 203.84 106 277.41 69 152.29 98 250.03 65 143.86 97 235.00
finnis 1038 2076 70 194.14 99 272.90 63 151.88 90 249.28 63 150.36 86 226.52
fit1d 2077 4154 36 724.19 41 819.92 34 601.19 40 802.85 33 588.45 41 773.31
fit1p 2078 4156 38 761.87 46 915.07 35 618.90 43 855.96 36 635.58 43 809.35
ganges 1933 3866 25 411.37 28 460.17 24 351.52 27 441.87 26 371.26 32 493.58
gfrd_pnc 1404 2808 35 227.25 48 312.67 31 176.64 46 299.25 30 172.32 43 278.50
grow15 1247 2494 25 119.02 40 187.76 24 99.31 31 146.25 25 102.46 45 199.84
grow7 583 1166 26 15.28 34 19.76 24 11.50 29 17.39 24 12.20 38 21.26
israel 318 636 48 5.51 65 7.53 42 4.21 61 7.04 43 4.26 57 6.43
kb2 79 158 27 0.12 32 0.19 23 0.11 30 0.14 23 0.10 33 0.17
lotfi 366 732 29 4.70 39 6.62 28 3.93 33 5.58 28 4.17 36 5.96
nug05 227 454 11 0.57 11 0.64 14 0.62 11 0.58 15 0.71 14 0.80
nug06 488 976 13 4.86 12 4.36 15 4.80 13 4.92 16 4.99 15 5.45
nug07 933 1866 20 43.04 20 43.42 21 39.46 20 42.84 23 42.58 22 44.95
nug08 1634 3268 16 168.29 15 158.43 17 155.60 15 158.28 18 163.79 17 170.40
recipe 249 498 19 1.17 24 1.60 19 1.02 23 1.43 20 1.12 23 1.53
sc105 164 328 14 0.31 17 0.49 14 0.27 15 0.36 16 0.32 18 0.43
sc205 317 634 17 1.99 15 1.86 17 1.80 19 2.23 17 1.72 17 2.09
sc50a 79 158 14 0.09 17 0.11 15 0.07 16 0.10 15 0.07 17 0.11
sc50b 78 156 13 0.07 15 0.09 13 0.06 13 0.07 14 0.07 14 0.08
scagr25 672 1344 30 25.47 34 28.67 26 18.78 32 27.26 26 19.11 35 28.58
scagr7 186 372 21 0.63 23 0.82 19 0.49 23 0.67 19 0.52 25 0.75
scfxm1 583 1166 60 34.56 77 44.30 53 25.56 73 41.59 51 24.92 71 39.25
scfxm2 1164 2328 68 259.06 85 324.68 63 207.37 82 312.19 61 202.96 80 289.06
scfxm3 1745 3490 71 855.43 88 1057.33 63 660.59 84 1007.07 62 650.95 81 922.37
scrs8 1270 2540 68 331.70 92 446.30 62 260.76 84 409.68 58 244.69 82 377.31
sctap1 662 1324 54 42.90 61 49.09 55 36.48 61 49.56 53 36.23 59 45.58
scsd1 762 1524 17 20.85 18 21.74 17 16.90 17 21.10 18 19.19 19 21.86
scsd6 1352 2704 22 131.71 22 132.39 22 114.00 23 138.29 22 114.87 23 131.66
scsd8 2752 5504 19 878.98 18 837.57 20 813.24 18 835.24 22 885.31 21 913.11
share2b 164 328 21 0.44 25 0.56 20 0.34 25 0.54 21 0.40 23 0.50
ship04l 1965 3930 29 499.50 34 581.51 30 446.96 32 547.33 33 502.70 36 579.85
ship08s 1714 3428 40 459.16 55 628.24 37 370.29 51 581.44 38 398.16 49 533.78
standata 1350 2700 44 255.01 49 283.15 45 230.22 49 284.26 47 240.90 47 258.29
standgub 1351 2702 44 256.99 49 285.00 45 230.77 49 285.52 46 241.85 47 260.53
standmps 1350 2700 53 306.94 61 351.32 51 257.47 59 340.02 51 295.51 55 302.73
stocfor1 159 318 33 0.63 47 1.03 27 0.55 44 0.83 28 0.60 41 0.86

Avg. 37.40 187.20 46.88 225.33 34.62 153.85 44.23 214.55 34.60 156.67 44.52 201.66

Table 2
Numerical results for the selected Netlib test problems

some interesting observations, namely that the higher-order or not monotonous transformation functions do
not perform as efficiently in practice as other simpler functions, and therefore, they have theoretical rather
than practical importance.
We also examined the implementation of our method with the theoretical step-lengths. Similarly to [19],

20

Name Function
Theoretical
algorithm

Greedy
algorithm Theoretical

upper bound
vmin vmax vmin vmax

afiro
p1(t) 2.7869 2.8419 0.9568 4.9871

29.1205p5(t) 2.8254 2.8313 0.9395 4.1782
p6(t) 2.7588 2.8514 0.8322 4.5475

blend
p1(t) 2.7753 2.8396 0.9568 5.4633

43.0814p5(t) 2.8267 2.8302 0.9568 4.1210
p6(t) 2.7332 2.8470 0.8322 5.4240

recipe
p1(t) 2.7724 2.8341 0.9568 5.0944

63.1190p5(t) 2.8271 2.8297 0.9395 4.0486
p6(t) 2.7138 2.8392 0.8322 6.3958

bandm
p1(t) 2.7811 2.8346 0.9568 4.6539

81.7802p5(t) 2.8275 2.8293 0.9395 4.3239
p6(t) 2.7355 2.8416 0.8322 4.4222

Table 3
Bounds on the coordinates of v

we discovered that if the starting point is well-centered, then the coordinates of the vector v remain in
the interval [1, t∗]. This means that allowing vi < 1 in Ai-Zhang-type methods is mostly for theoretical
reasons. It makes it possible to prove the complexity O(

√
nL), but if we apply the step-length used during

the analysis, the iterates always remain in the smaller neighborhood N−
∞(1− τ).

In our future research, we would like to examine this latter phenomenon from a theoretical point of view
and introduce similar AET function classes for other problems and other types of IPAs. Further, we would
like to examine the relationship between our function class and others proposed in the literature. e.g., the
classes of Haddou et al. [23] and Illés et al. [25]. In [23], the authors propose a general short-step weighted
path-following method. They consider a different formulation of the central path problem, then apply
a Darvay-type transformation without reorganizing the centering equation (similarly to [7]). Comparing
their function class to ours raises several questions; for example, if we used the AET method described in
[23], the function p(t) could not be appropriately defined since it would change in every iteration. Illés
et al. [25] proposed an algorithmic framework and a related function class for P∗(κ)-LCPs. The main
difference between their approach and ours is that they consider short-step IPAs while we analyze a long-
step framework; furthermore, they fix the values of the algorithm parameters while we gave sets of feasible
parameter values by formulating sufficient constraints on them.
Furthermore, we would like to compare our function class to other, not AET-related function classes, e.g.,
kernel function [30] and self-regular function-based approaches [33]. This is a promising research area since
these methods consider suitable transformations of the right-hand side of the scaled system, similarly to our
case. Since continuity and often convexity of the function on the right-hand side of the scaled Newton-system
were assumed in the previously examined cases, we hope that the extensions proposed in this paper will open
new possibilities in this area.

REFERENCES

[1] I. Adler, N. Karmarkar, M. G. Resende, and G. Veiga, Data structures and programming techniques for the
implementation of Karmarkar’s algorithm, ORSA J Comput, 1 (1989), pp. 84–106, https://doi.org/10.1287/ijoc.1.2.
84.

[2] W. Ai and S. Zhang, An O(
√
nL) iteration primal-dual path-following method, based on wide neighborhoods and large

updates, for monotone LCP, SIAM J. Optim., 16 (2005), pp. 400–417, https://doi.org/10.1137/040604492.
[3] S. Asadi and H. Mansouri, Polynomial interior-point algorithm for P∗(κ) horizontal linear complementarity problems,

Numer. Algorithm., 63 (2013), pp. 385–398, https://doi.org/10.1007/s11075-012-9628-0.
[4] S. Asadi, H. Mansouri, Z. Darvay, M. Zangiabadi, and N. Mahdavi-Amiri, Large-neighborhood infeasible predictor–

corrector algorithm for horizontal linear complementarity problems over Cartesian product of symmetric cones, J. Op-
tim. Theory Appl., 180 (2019), pp. 811–829, https://doi.org/10.1007/s10957-018-1402-6.

[5] S. Asadi, H. Mansouri, G. Lesaja, and M. Zangiabadi, A long-step interior-point algorithm for symmetric cone
Cartesian P∗(κ)-HLCP, Optimization, 67 (2018), pp. 2031–2060, https://doi.org/10.1080/02331934.2018.1512604.

[6] Y.-Q. Bai, M. El Ghami, and C. Roos, A new efficient large-update primal-dual interior-point method based on a
finite barrier, SIAM Journal on Optimization, 13 (2002), pp. 766–782, https://doi.org/10.1137/S1052623401398132.

[7] Zs. Darvay, A weighted-path-following method for linear optimization, Studia Universitatis Babes-Bolyai, Series Inform-
atica, 47 (2002), pp. 3–12.

21

https://doi.org/10.1287/ijoc.1.2.84
https://doi.org/10.1287/ijoc.1.2.84
https://doi.org/10.1137/040604492
https://doi.org/10.1007/s11075-012-9628-0
https://doi.org/10.1007/s10957-018-1402-6
https://doi.org/10.1080/02331934.2018.1512604
https://doi.org/10.1137/S1052623401398132

[8] Zs. Darvay, New interior point algorithms in linear programming, Adv. Model. Optim., 5 (2003), pp. 51–92.
[9] Zs. Darvay, T. Illés, B. Kheirfam, and P. R. Rigó, A corrector–predictor interior-point method with new search

direction for linear optimization, Cent. Eur. J. Oper. Res., 28 (2020), pp. 1123–1140, https://doi.org/10.1007/
s10100-019-00622-3.

[10] Zs. Darvay, T. Illés, and Cs. Majoros, Interior-point algorithm for sufficient LCPs based on the technique of algebra-
ically equivalent transformation, Optim. Lett., 15 (2021), pp. 357–376, https://doi.org/10.1007/s11590-020-01612-0.

[11] Zs. Darvay, T. Illés, J. Povh, and P. R. Rigó, Feasible corrector-predictor interior-point algorithm for P∗(κ)-
linear complementarity problems based on a new search direction, SIAM J. Optim., 30 (2020), pp. 2628–2658, https:
//doi.org/10.1137/19M1248972.

[12] Zs. Darvay, T. Illés, and P. R. Rigó, Predictor-corrector interior-point algorithm for P∗(κ)-linear complementarity
problems based on a new type of algebraic equivalent transformation technique, Eur. J. Oper. Res., (2021), https:
//doi.org/10.1016/j.ejor.2021.08.039.

[13] Zs. Darvay, I. M. Papp, and P. R. Takács, Complexity analysis of a full-Newton step interior-point method for linear
optimization, Period. Math. Hung., 73 (2016), pp. 27–42, https://doi.org/10.1007/s10998-016-0119-2.

[14] Zs. Darvay and P. R. Rigó, New interior-point algorithm for symmetric optimization based on a positive-asymptotic
barrier function, Numerical Functional Analysis and Optimization, 39 (2018), pp. 1705–1726, https://doi.org/10.
1080/01630563.2018.1492938.

[15] Zs. Darvay and P. R. Rigó, Interior-point algorithm for symmetric cone horizontal linear complementarity problems
based on a new class of algebraically equivalent transformations, Optim. Lett., 18 (2024), pp. 615–634, https://doi.
org/10.1007/s11590-023-02020-w.

[16] Zs. Darvay and P. R. Takács, Large-step interior-point algorithm for linear optimization based on a new wide neigh-
bourhood, Cent. Eur. J. Oper. Res., 26 (2018), pp. 551–563, https://doi.org/10.1007/s10100-018-0524-0.

[17] Zs. Darvay and P.-R. Takács, New method for determining search directions for interior-point algorithms in linear
optimization, Optim. Lett., 12 (2018), pp. 1099–1116, https://doi.org/10.1007/s11590-017-1171-4.

[18] M. E.-Nagy and A. Varga, A numerical comparison of long-step interior point algorithms for linear optimization,
SOR ’21 Proceedings - The 16th International Symposium on Operational Research in Slovenia, (2021), pp. 75–80.

[19] M. E.-Nagy and A. Varga, A new Ai–Zhang type interior point algorithm for sufficient linear complementarity prob-
lems, J. Optim. Theor. Appl., (2022), https://doi.org/10.1007/s10957-022-02121-z.

[20] M. E.-Nagy and A. Varga, A new long-step interior point algorithm for linear programming based on the algebraic
equivalent transformation, Cent. Eur. J. Oper. Res., (2022), https://doi.org/10.1007/s10100-022-00812-6.

[21] Z. Feng and L. Fang, A new O(nL)-iteration predictor–corrector algorithm with wide neighborhood for semidefinite
programming, J. Comput. Appl. Math., 256 (2014), pp. 65–76, https://doi.org/10.1016/j.cam.2013.07.011.

[22] D. M. Gay, Electronic mail distribution of linear programming test problems, Math Program Soc COAL Newsl, 13 (1985),
pp. 10–12.

[23] M. Haddou, T. Migot, and J. Omer, A generalized direction in interior point method for monotone linear comple-
mentarity problems, Optimization Letters, 13 (2019), pp. 35–53.

[24] T. Illés, P. R. Rigó, and R. Török, Predictor-corrector interior-point algorithm based on a new search direction
working in a wide neighbourhood of the central path, Corvinus Econ. Work. Paper., (2021).

[25] T. Illés, P. R. Rigó, and R. Török, Unified approach of primal-dual interior-point algorithms for a new class of
AET functions, Corvinus Econ. Work. Paper., (2022).

[26] B. Jansen, C. Roos, and T. Terlaky, The theory of linear programming: skew symmetric self-dual problems and the
central path, Optim, 29 (1994), pp. 225–233, https://doi.org/10.1080/02331939408843952.

[27] B. Kheirfam and M. Haghighi, A full-Newton step feasible interior-point algorithm for P∗(κ)-LCP based on a new
search direction, Croat. Oper. Res. Rev., (2016), pp. 277–290, https://doi.org/10.17535/crorr.2016.0019.

[28] M. Kojima, S. Mizuno, and A. Yoshise, A primal-dual interior point algorithm for linear programming, in Progress
in mathematical programming, Springer, 1989, pp. 29–47, https://doi.org/10.1007/978-1-4613-9617-8_2.

[29] M. Kojima and S. Shindo, Extension of Newton and quasi-Newton methods to systems of PC1 equations, Journal of
the Operations Research Society of Japan, 29 (1986), pp. 352–375, https://doi.org/10.15807/jorsj.29.352.

[30] G. Lesaja and C. Roos, Unified analysis of kernel-based interior-point methods for P∗(κ)-linear complementarity
problems, SIAM Journal on Optimization, 20 (2010), pp. 3014–3039, https://doi.org/10.1137/090766735.

[31] Y. Li and T. Terlaky, A new class of large neighborhood path-following interior point algorithms for semidefinite

optimization with O
(
n log

Tr(X0S0)
ε

)
iteration complexity, SIAM. J. Optim., 20 (2010), pp. 2853–2875, https://doi.

org/10.1137/080729311.
[32] C. Liu, H. Liu, and W. Cong, An O(

√
nL) iteration primal-dual second-order corrector algorithm for linear program-

ming, Optim. Lett., 5 (2011), pp. 729–743, https://doi.org/10.1007/s11590-010-0242-6.
[33] J. Peng, C. Roos, and T. Terlaky, Self-regularity: A New Paradigm for Primal-dual Interior-point Algorithms,

Princeton Series in Applied Mathematics, Princeton University Press, 2002, https://doi.org/10.2307/j.ctt7sf0f.
[34] M. Pirhaji, H. Mansouri, and M. Zangiabadi, An O

(√
nL

)
wide neighborhood interior-point algorithm for semidef-

inite optimization, Comput. Appl. Math., 36 (2017), pp. 145–157, https://doi.org/10.1007/s40314-015-0220-9.
[35] N. Ploskas and N. Samaras, Linear Programming Using MATLAB®, vol. 127, Springer, 2017, https://doi.org/10.

1007/978-3-319-65919-0.
[36] F. A. Potra, Interior point methods for sufficient horizontal LCP in a wide neighborhood of the central path with best

known iteration complexity, SIAM. J. Optim., 24 (2014), pp. 1–28, https://doi.org/10.1137/120884341.
[37] P. R. Rigó, New trends in algebraic equivalent transformation of the central path and its applications, PhD thesis,

Budapest University of Technology and Economics, 2020.
[38] G. Sonnevend, An "analytical centre" for polyhedrons and new classes of global algorithms for linear (smooth, convex)

programming, in System modelling and optimization, Springer, 1986, pp. 866–875.

22

https://doi.org/10.1007/s10100-019-00622-3
https://doi.org/10.1007/s10100-019-00622-3
https://doi.org/10.1007/s11590-020-01612-0
https://doi.org/10.1137/19M1248972
https://doi.org/10.1137/19M1248972
https://doi.org/10.1016/j.ejor.2021.08.039
https://doi.org/10.1016/j.ejor.2021.08.039
https://doi.org/10.1007/s10998-016-0119-2
https://doi.org/10.1080/01630563.2018.1492938
https://doi.org/10.1080/01630563.2018.1492938
https://doi.org/10.1007/s11590-023-02020-w
https://doi.org/10.1007/s11590-023-02020-w
https://doi.org/10.1007/s10100-018-0524-0
https://doi.org/10.1007/s11590-017-1171-4
https://doi.org/10.1007/s10957-022-02121-z
https://doi.org/10.1007/s10100-022-00812-6
https://doi.org/10.1016/j.cam.2013.07.011
https://doi.org/10.1080/02331939408843952
https://doi.org/10.17535/crorr.2016.0019
https://doi.org/10.1007/978-1-4613-9617-8_2
https://doi.org/10.15807/jorsj.29.352
https://doi.org/10.1137/090766735
https://doi.org/10.1137/080729311
https://doi.org/10.1137/080729311
https://doi.org/10.1007/s11590-010-0242-6
https://doi.org/10.2307/j.ctt7sf0f
https://doi.org/10.1007/s40314-015-0220-9
https://doi.org/10.1007/978-3-319-65919-0
https://doi.org/10.1007/978-3-319-65919-0
https://doi.org/10.1137/120884341

[39] X. Yang, Y. Zhang, and H. Liu, A wide neighborhood infeasible-interior-point method with arc-search for linear
programming, J. Appl. Math. Comput., 51 (2016), pp. 209–225, https://doi.org/10.1007/s12190-015-0900-z.

[40] Y. Ye, M. J. Todd, and S. Mizuno, An O
(√

nL
)
-iteration homogeneous and self-dual linear programming algorithm,

Math Oper Res, 19 (1994), pp. 53–67, https://doi.org/10.1287/moor.19.1.53.

23

https://doi.org/10.1007/s12190-015-0900-z
https://doi.org/10.1287/moor.19.1.53

	cewp_202401.pdf
	General_LP_ENM_VA.pdf
	Introduction
	Notations

	The theoretical basis of the general algorithm
	The general algorithmic framework and its analysis
	Convergence analysis
	The complexity of the algorithms

	Constants and properties for special functions
	Properties of the function
	A modified AET technique with piecewise continuously differentiable transformation functions
	Construction rules

	Numerical results
	Conclusion
	References

