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Abstract. This paper investigates an important functional representation
of the cone of bounded positive semidefinite operators. It is known that
the representation by strength functions turns the Löwner order into
the pointwise order. However, very little is known about the structure of
strength functions. Our main result says that the representation behaves
naturally with the infimum and supremum operations. More precisely,
we show that the pointwise minimum of two strength functions fA and
fB is a strength function if and only if the infimum of A and B exists.
This complements a recent result of L. Molnár stating that the pointwise
maximum of fA and fB exists if and only if A and B are comparable, as
this latter statement is equivalent to the existence of the supremum. The
cornerstone of each argument in this paper is a fact that was discovered
recently, namely that the strength function of the parallel sum A : B
(which is half of the harmonic mean) equals the parallel sum of the
strength functions fA and fB . We provide a new proof for this statement,
and as a byproduct, in some special cases, we describe the strength
function of the so-called (generalized) short.
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1. Introduction and notations

Let H be a complex Hilbert space with the inner product (·, ·) and denote
its unit sphere by SH. A bounded operator A : H → H is called positive
(A ∈ B+(H), in symbols) if its quadratic form is non-negative, i.e. (Ax, x) ≥ 0
for all x ∈ H. In this paper A ≤ B always refers to the Löwner order, that is,
A ≤ B if B − A ∈ B+(H). For a given subset T of H the symbol 1T denotes
its indicator function, i.e. 1T (x) = 1 if x ∈ T and 0 otherwise. The strength
function fA : SH → R+ of an A ∈ B+(H) is defined by

fA(x) = max{t ≥ 0 | tPx ≤ A}, x ∈ SH,

where Px is the rank one projection onto the one-dimensional subspace gen-
erated by x. This notion was originally introduced by Busch and Gudder in
[4], and it turned out to be a great tool for investigating several preserver
problems [6,12–15,17]. This is because the collection of strength functions
(being nonnegative functions) comes equipped with a natural order which
is the pointwise order, and the order structure among strength functions is
isomorphic to that of the positive operators in the sense that A ≤ B if and
only if fA(x) ≤ fB(x) for all x ∈ SH. For the proof, we refer to [4, Theorem
3] or [16, Proposition 2]. (For an analogous notion in a more general context
see [7].)

In [16], Molnár and the first author defined an analogue of the strength
function, but for a different order structure. The partial order considered is
the spectral order introduced by Olson in [19]. For positive operators, the
spectral order can be defined as follow: A,B ∈ B+(H), A is less than B in
the spectral order (A � B, in symbol) if and only if An ≤ Bn, for positive
integers n. The spectral order analogue of the strength function is defined in
a very natural way then

νA(x) = max{t ≥ 0 | tPx � A} x ∈ SH.

The spectral strength functions determine the spectral order in the sense
that A � B if and only if νA(x) ≤ νB(x) for all x ∈ SH. The most remark-
able property of the spectral order is that it induces B+(H) with a lattice
structure. So on one side, there are the lattice operations (which can also be
viewed as operator means on B+(H), see [18]) with respect to the spectral
order. On the other side, the set of nonnegative functions on SH also comes
with a natural partial order which makes it a lattice as well. For two functions
f, g : SH → R the symbols f ∧ g and f ∨ g stands for the pointwise minimum
and pointwise maximum, respectively. It is a natural question to ask whether
the order isomorphism A �−→ νA is also a lattice isomorphism. It was proved
in [16, Proposition 11] that this map, despite not being a lattice isomorphism
(lattice embedding would be a more appropriate term since we know that
this map is only injective and not surjective), preserves the infimum in the
sense that

νA�B(x) =
(
νA ∧ νB

)
(x), x ∈ SH,

where A � B is the infimum with respect to the spectral order. A natural
question to ask is whether the same holds true for the Löwner order and the
usual strength function.
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The situation with the Löwner order is much more complicated. First,
the greatest lower bound and the least upper bound (shortly the infimum and
supremum), which is guaranteed to exist with respect to the spectral order,
may not exist with respect to the Löwner order. According to Kadison’s
famous result [11], the set of self-adjoint operators is an anti-lattice, that is,
the greatest lower bound and the least upper bound of A,B ∈ Bsa(H) exists
if and only if they are comparable (i.e. if A ≤ B or B ≤ A). The infimum
problem in B+(H) is even more subtle: it was a long-standing open problem,
which was solved first in the finite-dimensional case by Gudder and Moreland
in [8]. (See also [9,10].) In the general case, the problem was solved by Ando
in [3]: it turned out that in contrast with the spectral order, the Löwner order
on B+(H) is very far from being a lattice order. However, our main result
says that the representation by strength functions respects the infimum and
the supremum (if these operators exist).

In Ando’s approach to the infimum problem, two binary operations
play a crucial role: a commutative operation called parallel sum, and a non-
commutative one called generalized short. Therefore we are going to inves-
tigate how strength functions behave under these operations. Below we are
going to explain this in greater detail.

2. Main results

The cornerstone of each proof in this paper is the fact that the representation
by strength functions respects the parallel sum. This was initially proved in
[16, Theorem 9], by Molnár and the first author. In this paper, we provide a
new proof that is more natural and intuitive. Let us recall that for positive
real numbers a, b, the parallel sum a : b is the half of their harmonic mean

2
1
a+ 1

b

. One can extend this notion for non-negative real numbers as follows.

We define a : b as a : b =
(
1
a + 1

b

)−1 = ab
a+b , when ab > 0 and it is defined

to be 0 when ab = 0. The parallel sum for strength functions (which are
nonnegative functions) is then defined pointwise. We recall that the parallel
sum A : B of A,B ∈ B+(H) is defined by its quadratic form:

(
(A : B)x, x

)
= inf

y∈H

{(
A(x − y), x − y

)
+

(
By, y

)}
, x ∈ H.

If A and B are invertible positive operators, then in analogy with the scalar
case we have A : B = A(A + B)−1B. (For more details on the parallel sum
we refer the reader to [3,20]). The key lemma reads as follows.

Key Lemma. Let A,B ∈ B+(H) be positive operators then fA:B = fA : fB.
That is,

fA:B(x) =

{
fA(x)fB(x)
fA(x)+fB(x) if x ∈ ranA1/2 ∩ ranB1/2 ∩ SH,

0 otherwise.

It is known that if A ∈ B+(H) and T ⊆ H is a closed linear sub-
space, then the set {C ∈ B+(H) | 0 ≤ C ≤ A, ranC ⊆ T } admits a largest
element, denoted by AT (see [1, Theorem 1]). It is called the short of A
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to T . Ando in [2] introduced the notion of generalized short as the strong
limit [B]A := limn→∞ A : nB. The connection between these two notions
is AT = [PT ]A, where PT is the orthogonal projection onto T . But [B]A
makes sense even in the case when ranB is not closed. Recall that the se-
quence (A : nB)n∈N is monotone increasing and bounded above by A, and
thus (fA:nB)n∈N is monotone increasing and bounded above as well. So the
supremum in the ordered set of real-valued functions exists, the question is
whether this coincides with the strength function of the supremum of the
sequence (A : nB)n, which is [B]A. The problem is that in general, the set
of strength functions is not closed under taking monotone increasing limits.
However, we can extract some non-trivial information about f[B]A.

Theorem 1. Let A,B ∈ B+(H) positive operators. Then f[B]A(x) = fA(x)
for all x ∈ ranB1/2 ∩ SH and f[B]A(x) = 0 for all x ∈ (H \ ranB1/2) ∩ SH.
In particular, if ranB is closed, then [B]A = AranB and f[B]A = fAranB =
fA · 1ranB∩SH .

Lastly, we discuss the lattice properties of the set of strength functions.
As it was proved by Molnár, the pointwise maximum of two strength functions
is a strength function (of some operator) if and only if the supremum of the
two operators exists. We complement his result with the case of the pointwise
minimum.

Theorem 2. Let A,B ∈ B+(H) be positive operators. The pointwise mini-
mum of fA and fB is a strength function if and only if the greatest lower
bound of A and B with respect to the Löwner order exists in B+(H). Let us
denote this operator by A ∧L B. Then we have

fA∧LB(x) =
(
fA ∧ fB

)
(x), for all x ∈ SH.

In fact, fA and fB are comparable on RA,B = ranA1/2 ∩ ranB1/2 ∩ SH, and
thus

fA∧LB = fA · 1RA,B
or fA∧LB = fB · 1RA,B

.

3. Strength functions and the parallel sum – Proof of the key
Lemma

Now we turn to the proofs of our results. We start with the Key Lemma.
Recall that this was first proved in [16, Theorem 9]. Our new proof is based
on a version of Vigier’s Theorem for strength functions. Vigier’s Theorem
on monotone convergence of self-adjoint operators is a fundamental result
in operator theory. It guarantees that if (An)n∈N, is a monotone decreasing
sequence of self-adjoint operators then the greatest lower bound of the family
exists in the strong closure. Of course, the family (fAn

)n∈N of the correspond-
ing strength functions is monotone decreasing, and the greatest lower bound
in the ordered set of real-valued functions exists. However, it is not obvious
that this greatest lower bound is the strength function of the greatest lower
bound of the operator sequence. Assume for a moment that this limiting
property holds. Then the proof of the Key Lemma can be done as follows.
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First we show that fA:B = fA : fB holds for positive definite operators.
It is known that the strength function of a positive operator A ∈ B+(H) is

fA(x) =
1

‖A−1/2x‖2 , if x ∈ ranA1/2 ∩ SH, (3.1)

and is equal to 0 otherwise, where A−1/2 is the (possibly unbounded) inverse
of A1/2 (densely) defined on the orthogonal of its kernel ([4, Theorem 4]).
Let A,B ∈ B+(H) be positive definite operators. Then by invertibility of A
and B, we see from the formula (3.1) above that

fA(x) =
1

(A−1x, x)
, and, fB(x) =

1
(B−1x, x)

, x ∈ SH.

Computing the parallel sum of these two functions, we get

fA(x) : fB(x) =
1

fA(x)−1 + fB(x)−1
=

1
(A−1x, x) + (B−1x, x)

=
1

((A−1 + B−1)x, x)
.

Since A : B = (A−1 + B−1)−1 is also invertible, by formula (3.1) again,
we have

fA:B(x) =
1

((A : B)−1x, x)
=

1
((A−1 + B−1)x, x)

,

hence

fA(x) : fB(x) = fA:B(x).

Now assume that A,B ∈ B+(H) are positive operators, and set An :=
A + 1

nI and Bn = B + 1
nI for all n ∈ N. Then (An)n∈N and (Bn)n∈N are

monotone decreasing sequences of positive definite operators such that An :
Bn converges to A : B in the strong operator topology (see e.g. [1, Theorem
8]). So by the above argument and the limiting property that we assumed to
be true, we have that fA:B = fA : fB.

What remains is to show that if (An)n∈N is a decreasing family of posi-
tive operators such that An converges to A in the strong operator topology (in
other words, A is the greatest lower bound of the set {An |n ∈ N}), then the
corresponding family of strength functions (fAn

)n∈N is monotone decreasing,
and the greatest lower bound of (fAn

)n∈N is the strength function of A, i.e.

fA(x) = inf
n∈N

fAn
(x), x ∈ SH.

We first establish the following identity for the strength function of a
positive operator T ∈ B+(H): for ‖x‖ = 1,

fT (x) = inf
(x,z)=1

(Tz, z). (3.2)

To see this, denote by m the infimum on the right hand side and let y ∈
H, if (x, y) = 0 then m|(x, y)|2 = 0 ≤ (Ty, y). Otherwise, we denote z =

1
(x,y)y hence (x, z) = 1, and we have m ≤ (Tz, z) which is equivalent to
m|(x, y)|2 ≤ (Ty, y). We then showed that m|(x, y)|2 ≤ (Ty, y), for all y ∈ H,
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i.e., the constant m satisfies mPx ≤ T . Since fT (x) is the maximum of all
such constants then m ≤ fT (x).

On the other hand, since fT (x)Px ≤ T , we have that fT (x)|(x, z)|2 ≤
(Tz, z), for all z ∈ H, so we see that fT (x) ≤ (Tz, z) whenever (x, z) = 1 and
it is then clear that

fT (x) ≤ inf
(x,z)=1

(Tz, z).

Now if (An)n∈N is a decreasing sequence converging to A (which is
actually the greatest lower bound of the operator set {An |n ∈ N}), then the
strength function of A can be computed as follows. Since A is the strong limit
of (An)n∈N, we have

(Az, z) = lim
n→∞

(Anz, z) = inf
n∈N

(Anz, z),

for all z ∈ H, this holds in particular for all z ∈ H such that (x, z) = 1. From
equation (3.2), we can compute the strength function of A in the following
way

fA(x) = inf
(x,z)=1

(Az, z) = inf
(x,z)=1

inf
n∈N

(Anz, z)

= inf
n∈N

inf
(x,z)=1

(Anz, z) = inf
n∈N

fAn
(x).

This completes the proof.
We remark that the key ingredient of the above proof was that the

pointwise limit of a decreasing sequence of strength functions is a strength
function. For the sake of completeness, let us remark that the analogue state-
ment for increasing sequences is not true in general.

Consider a separable Hilbert space H and a basis en, n ∈ N. If Pi denotes
the orthogonal projection onto the closed subspace Hi, generated by the first
i basis vectors, then Pi is monotone increasing and converges to the identity
operator I in the strong operator topology. This implies that if the least
upper bound of (fPi

)i∈N is again a strength function, say it is the strength
function of an operator T , then I ≤ T so that fT (x) ≥ 1 for all x ∈ SH.
However, the unit vector

√
6

π

∑

n

1
n

en

does not belong to any Hi so that fPi
(x) is 0 for all i ∈ N, but fT (x) ≥ 1 >

supi∈N fPi
(x). Therefore, there is no such operator T . This shows that for

upward-directed families of strength functions, the least upper bound is not
necessarily a strength function.

4. Strength functions and (generalized) short – Proof of
Theorem 1

Next we prove Theorem 1. Since we know how to compute the strength
function of parallel sums, one could think that the strength function of [B]A
should follow easily. But as we just saw, the strength functions do not have
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the monotone convergence property for increasing sequences. In fact, it is
not trivial to know at which point of the unit sphere does the strength of
the generalized short vanishes. Despite these subtleties, we can extract some
nontrivial information about f[B]A, and if B has closed range then we can
calculate f[B]A.

In order to calculate f[B]A, we need some information about ran([B]A)1/2.
We know from [5, Theorem 4.2] that

ran(nB : A)1/2 = ranA1/2 ∩ ran(nB)1/2 = ranA1/2 ∩ ranB1/2 ⊂ ranB1/2,

for all n, and thus

ran([B]A)1/2 ⊆
∨

n

ran(nB : A)1/2 ⊆ ranB1/2.

This means that if x ∈ SH, x /∈ ranB1/2, then f[B]A(x) = 0. On the other
hand, by the definition of [B]A we always have B : A ≤ [B]A, and thus
ran(B : A)1/2 ⊆ ran([B]A)1/2. But ran(B : A)1/2 = ranA1/2 ∩ ranB1/2, so
we get that

ranA1/2 ∩ ranB1/2 ⊆ ran([B]A)1/2.

Let us calculate f[B]A(x) for an x ∈ ranA1/2 ∩ ranB1/2 ∩ SH. We deduce
from the previous paragraph that neither fB(x) nor fA(x) is zero. Since
(nB) : A ≤ [B]A ≤ A for all integer n > 0, the Key Lemma implies that

nfB(x)fA(x)
nfB(x) + fA(x)

=
(
nfB(x)

)
: fA(x) = fnB:A(x) ≤ f[B]A(x) ≤ fA(x).

After simplifying by nfB(x) on the left-hand side and taking the limit we
obtain that f[B]A(x) = fA(x). If x ∈ SH and x ∈ ranB1/2 \ ranA1/2, then
fA(x) = 0, and thus 0 ≤ f[B]A(x) ≤ fA(x) = 0. Combining these observations
together, we conclude that if x ∈ ranB1/2 ∩SH then f[B]A(x) = fA(x) and if
x ∈ (H \ ranB1/2) ∩ SH then f[B]A(x) = 0. So the first part of the theorem
is proved.

It is important to highlight that the above argument does not offer
any information about f[B]A(x) if x ∈ ranB1/2 \ ranB1/2 ∩ SH. This is the
problematic subset of SH that shows the difference between the short to a
closed subspace (for example a closed operator range) and the generalized
short with respect to an operator with non-closed range. However, if ranB

is closed, then ranB1/2 = ranB, and thus ranB1/2 = ranB1/2, so we have a
complete description for f[B]A. Namely f[B]A(x) = fA(x) if x ∈ ranB ∩ SH
and f[B]A(x) = 0 otherwise. In other words, f[B]A(x) = fA(x) · 1ranB∩SH(x).

Finally, recall that the short of A ∈ B+(H) to a closed subspace T (de-
noted by AT ) is the supremum of the set {C ∈ B+(H) | 0 ≤ C ≤ A, ranC ⊆
T }. Obviously, if C belongs to this set, then 0 ≤ fC ≤ fA, so the natural
candidate for AT is the operator whose strength function is f := fA ·1T ∩SH .
The question is whether such an operator exists. The above argument just
tells that for any T with ranT = T the operator [T ]A can play this role, i.e.
f[T ]A = fAranT = f . In particular, if ranB is closed, then AranB = [B]A.
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5. Strength functions and lattice operations – Proof of
Theorem 2

In order to prove Theorem 2, first we have to recall Ando’s theorem on the
existence of the infimum in B+(H). He showed in [3] that the infimum of A
and B exists in B+(H) if and only if the generalized shorts [A]B and [B]A
are comparable, that is, [A]B ≤ [B]A of [B]A ≤ [A]B (and the infimum is
the smaller one).

Recall that if H is finite-dimensional, then every linear subspace is
closed, so we can use Theorem 1 to calculate strength functions. In this
case, f[B]A = fA · 1ranB . But fA vanishes outside ranA1/2 = ranA, so
f[B]A = fA · 1ranA∩ranB. And similarly, f[A]B = fB · 1ranA∩ranB. So Ando’s
theorem says that the infimum of A and B exists if and only if the strength
functions fA and fB are comparable on ranA ∩ ranB.

The situation in the infinite-dimensional case is similar, but we have to
be slightly more cautious with the ranges. Recall that RA,B = ranA1/2 ∩
ranB1/2 ∩SH and that the statement that we want to prove is the following:
fA ∧ fB is a strength function if and only if A ∧L B exists. In that case,
fA∧LB = fA · 1RA,B

or fA∧LB = fB · 1RA,B
.

First, assume that the pointwise minimum fA∧fB is a strength function
of an operator C ∈ B+(H). Then fC ≤ fA and fC ≤ fB , so C is a lower
bound for A and B. On the other hand if D ∈ B+(H) satisfies D ≤ A and
D ≤ B, then fD ≤ fA and fD ≤ fB , and thus fD ≤ fA ∧fB = fC , so D ≤ C.
This shows that A ∧L B exists and equals to C.

Next, assume that A ∧L B exists. As in the previous section, first we
have to calculate the range of (A ∧L B)1/2. Since A ∧L B ≤ A, we have
ran(A ∧L B)1/2 ⊆ ranA1/2, and similarly, ran(A ∧L B)1/2 ⊆ ranB1/2. On the
other hand, A : B ≤ A and A : B ≤ B, and thus A : B ≤ A∧LB. Again, using
that ran(A : B)1/2 = ranA1/2 ∩ ranB1/2, we conclude that ran(A ∧L B)1/2 =
ranA1/2∩ranB1/2, which implies by (3.1) that fA∧LB(x) = 0 if x /∈ RA,B . We
also know by Ando’s theorem that the existence of A∧LB implies that [B]A ≤
[A]B or [A]B ≤ [B]A. By symmetry, we can assume that [B]A ≤ [A]B. In
this case A∧L B = [B]A, which means two things: (1) f[B]A vanishes outside
RA,B (because fA∧LB vanishes), and (2) fA∧LB = f[B]A on RA,B . But we
know from Theorem 2 that if x ∈ RA,B then f[B]A(x) = fA(x). And similarly,
f[A]B(x) = fB(x). So we have that fA(x) = f[B]A(x) ≤ f[A]B(x) = fB(x) on
RA,B . Furthermore, if x /∈ RA,B then at least one of fA and fB vanishes,
so min{fA(x), fB(x)} = 0. Putting these observations together we conclude
that if A∧L B exists, then the pointwise minimum of fA and fB is a strength
function, and fA ∧ fB = f[B]A ∧ f[A]B = fA∧LB . Furthermore, in this case
fA∧LB = fA · 1RA,B

. This completes the proof.
For the sake of completeness, we end this paper by recalling Molnár’s

result on the pointwise maximum of strength functions (see [15, Proposition
3]. Kadison proved that the supremum in the set of self-adjoint operators
exists if and only if the operators in question are comparable. Notice that
two positive operators have a supremum in B+(H) if and only if they have
a supremum in the set of self-adjoint operators. This implies that fA ∨ fB is
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a strength function if and only if fA and fB are comparable. Indeed, if fA
and fB are comparable then fA ∨ fB is either fA or fB . On the other hand,
if fA ∨ fB = fC for some C, then fA ≤ f = fC and fB ≤ f = fC , so C is a
common upper bound. Now take any D such that A ≤ D and B ≤ D. Then
fA ≤ fD and fB ≤ fD, and thus fC = fA ∨ fB ≤ fD. This implies that the
supremum exists and thus A ≤ B or B ≤ A, or equivalently, fA and fB are
comparable.
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6720 Szeged
Hungary

e-mail: manana@aims.ac.za

Tamás Titkos
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