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Abstract. In a housing market of Shapley and Scarf, each agent is endowed with one indi-
visible object and has preferences over all objects. An allocation of the objects is in the 
(strong) core if there exists no (weakly) blocking coalition. We show that, for strict prefer-
ences, the unique strong core allocation “respects improvement”—if an agent’s object 
becomes more desirable for some other agents, then the agent’s allotment in the unique 
strong core allocation weakly improves. We extend this result to weak preferences for both 
the strong core (conditional on nonemptiness) and the set of competitive allocations (using 
probabilistic allocations and stochastic dominance). There are no counterparts of the latter 
two results in the two-sided matching literature. We provide examples to show how our 
results break down when there is a bound on the length of exchange cycles. Respecting 
improvements is an important property for applications of the housing markets model, 
such as kidney exchange: it incentivizes each patient to bring the best possible set of donors 
to the market. We conduct computer simulations using markets that resemble the pools of 
kidney exchange programs. We compare the game-theoretical solutions with current tech-
niques (maximum size and maximum weight allocations) in terms of violations of the 
respecting improvement property. We find that game-theoretical solutions fare much bet-
ter at respecting improvements even when exchange cycles are bounded, and they do so at 
a low efficiency cost. As a stepping stone for our simulations, we provide novel integer 
programming formulations for computing core, competitive, and strong core allocations.
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1. Introduction
Shapley and Scarf [47] introduce so-called “housing markets” to model trading in commodities that are inherently 
indivisible. Specifically, in a housing market, each agent is endowed with an object (e.g., a house or a kidney donor) 
and has ordinal preferences over all objects, including the agent’s own. The aim is to find plausible or desirable alloca-
tions in which each agent is assigned one object. A standard approach in the literature is to discard allocations that 
can be blocked by a coalition of agents. Specifically, a coalition of agents blocks an allocation if they can trade their 
endowments so that each of the agents in the coalition obtains a strictly preferred allotment. Similarly, a coalition of 
agents weakly blocks an allocation if they can trade their endowments so that each of the agents in the coalition 
obtains a weakly preferred allotment and at least one of them obtains a strictly preferred allotment. Thus, an 
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allocation is in the (strong) core if it is not (weakly) blocked. A distinct but also well-studied solution concept is 
obtained from competitive equilibria, each of which consists of a vector of prices for the objects and a (competitive) 
allocation such that each agent’s allotment is one of the agent’s most preferred objects among those that the agent can 
afford. Interestingly, the three solution concepts are entwined: the strong core is contained in the set of competitive 
allocations, and each competitive allocation pertains to the core.

In a separate line of research, Balinski and Sönmez [11] study the classic two-sided college admissions model of 
Gale and Shapley [23] and prove that the student-optimal stable matching (SOSM) mechanism respects improvement 
of student’s quality. This means that, under SOSM, an improvement of a student’s rank at a college will, ceteris pari-
bus, lead to a weakly preferred match for the student. The natural transposition of this property to (one-sided) hous-
ing markets requires that an agent obtains a weakly preferred allotment whenever the agent’s object becomes more 
desirable for other agents. We study the following question: do the most prominent solution concepts for Shapley 
and Scarf’s [47] housing market “respect improvement”? We obtain several positive answers to this question, which 
we describe in more detail in the next section.

The respecting improvement property is important in many applications in which centralized clearinghouses use 
mechanisms to implement barter exchanges. A leading example is kidney exchange programs (KEPs), in which end- 
stage renal patients exchange their willing but immunologically incompatible donors (Roth et al. [41]). In the context 
of KEPs, the respecting improvement property means that whenever a patient brings a “better” donor (e.g., younger 
or with universal blood type 0 instead of A, B, or AB) or registers an additional donor, the KEP should assign the 
patient the same or a better exchange donor.1 In other words, the respecting improvement property incentivizes each 
patient to bring the best possible set of donors to the market. However, in current KEPs, the typical objective is to 
maximize the number of transplants and their overall qualities (see, e.g., Biró et al. [17]), which can lead to violations 
of the respecting improvement property. As an illustration, consider the maximization of the number of transplants 
in Figure 1, in which each node represents a patient–donor pair. A directed edge, from A to B say, indicates the com-
patibility of the donor in node B with the patient in node A. Patients may have different levels of preference over their 
set of compatible donors. Initially there are only continuous edges, on which a thick (thin) edge points to the most 
(least) preferred donor. For example, patient 3 has two compatible donors: donors 1 and 4, and donor 1 is preferred 
to donor 4. Obviously, the unique way to maximize the number of (compatible) transplants is obtained by picking 
the three-cycle (1, 2, 3). Suppose that patient 3 succeeds in bringing a second donor to the KEP, and this donor turns 
out to be compatible for patient 4. Then, the discontinuous edge is included as patient–donor pair 3 “improves.” But, 
now, the unique way to maximize the number of (compatible) transplants is obtained by picking the two two-cycles 
(1, 2) and (3, 4), which means that patient 3 receives a kidney that is strictly worse than the kidney patient 3 would 
have received initially.

Similarly, the allocations induced by the standard objectives of KEPs need not pertain to the core. We refer to 
Example 1 for an illustration of this for the case of the maximization of the number of transplants. As a consequence, 
blocking coalitions may exist. This is an undesirable feature because patient groups could make a potentially justified 
claim that the matching procedure is not in their best interest. A particular instance could occur in the organization of 
international kidney exchanges if a group of patient–donor pairs, all citizens of the same country, learn that an inter-
nal (i.e., national) matching would yield a better match for all of them.

Next, we describe our contributions and review the related literature.

1.1. Contributions
Section 3 contains our theoretical results on the respecting improvement property. First, we show that, for strict pre-
ferences (Section 3.1), the unique strong core allocation (which coincides with the unique competitive allocation) 
respects improvement (Theorem 1).

In the case of preferences with ties (Section 3.2), we first analyze the set of competitive allocations. Because, 
typically, multiple competitive allocations exist, we have to make set-wise comparisons. Focusing on the agent’s 

Figure 1. The maximization of the number of transplants does not respect improvement. 
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allotments obtained at competitive allocations, we establish a natural extension of our first result by using stochastic 
dominance and probabilistic allocations (Theorem 2). As a corollary, we obtain that the agent’s most preferred allot-
ment in the new market is weakly preferred to the agent’s most preferred allotment in the initial market, and simi-
larly, the agent’s least preferred allotment in the new market is weakly preferred to the agent’s least preferred 
allotment in the initial market (Corollary 1). Next, we focus on the (possibly empty) strong core. We prove that, when 
preferences have ties, the strong core respects improvement conditional on the strong core being nonempty. More 
precisely, under the assumption that strong core allocations exist in both the initial and new markets, we show that 
the agent under consideration weakly prefers each allotment in the new strong core to each allotment in the initial 
strong core (Theorem 3 and Corollary 2).

Finally, in Section 3.3, we relax an important assumption in the housing market of Shapley and Scarf [47], namely, 
that allocations can contain exchange cycles of any length; that is, cycles are unbounded. The definition of core and 
strong core can be naturally adjusted to the requirement that the length of exchange cycles does not exceed an exoge-
nously given maximum. Wako [52] shows that the set of competitive allocations coincides with the core based on an 
antisymmetric weak domination concept. This equivalent definition, which we call the Wako-core, allows for a natu-
ral direct extension to the case of bounded exchange cycles. Unfortunately, when exchange cycles are bounded, the 
core (and, hence, also the set of competitive allocations and the strong core) can be empty.2 Conditional on the exis-
tence of a core, competitive, or strong core allocation, we show that, even if preferences are strict, when the length of 
exchange cycles is limited (upper bound three or higher), the core, the set of competitive allocations, and the strong 
core do not respect improvement in terms of the most preferred allotment (Proposition 2).

In Section 4, we provide novel integer programming (IP) formulations for finding core, competitive, and strong 
core allocations, which serves as a stepping stone for our simulations in Section 5. For unbounded length exchanges, 
our novel edge formulation is much more efficient than the IP solution proposed by Quint and Wako [39]. Further-
more, our simple sets of constraints for the three solution concepts clearly show the hierarchy between them by pin-
pointing the additional requirements needed when moving from one solution concept to a stronger one. For 
bounded length exchanges, we obtain an improvement of the Quint–Wako formulations by focusing only on the fea-
sible cycles. Our formulations are concise and useful for practical computations.

Section 5 complements our theoretical analysis and consists of computer simulations comparing core, competitive, 
and strong core allocations with maximum size and maximum total weight3 allocations. To carry out our simulations, 
we draw markets from pools similar to those observed in KEPs and study both unbounded and bounded length 
exchange cycles.4 The maximization of the size and the weight of the allocations correspond to the maximization of 
the number of transplants and overall quality of the transplants, respectively. In the simulations, we use our novel IP 
formulations for unbounded length exchanges and adjustments of the IP models developed in Klimentova et al. [28] 
for bounded length exchanges.

We first study the frequency of violations of the respecting improvement property (in terms of the most preferred 
allotment) for all models. We observe a large number of violations for maximum size and maximum weight alloca-
tions, whereas we only see a negligible amount of violations for core, competitive, and strong core allocations for 
bounded length cycles. In view of these findings, we analyze the potential trade-off between stability (no blocking) 
requirements and the maximum number of transplants. We find that, when the size of the instances increases, the 
trade-off decreases significantly: core allocations for instances with 150 patient–donor pairs yield a less than 1% reduc-
tion in the number of transplants. We complement this analysis by studying the number of weakly blocking cycles 
(or, equivalently, the number of violated stability constraints). Thus, we obtain an estimation of how much deficiency 
in terms of “robustness”/“fairness” we have to accept vis-à-vis the “ideal” (but potentially empty) strong core.

An important conclusion from our simulations is that, when kidney exchange programs are sufficiently large, one 
can take into account agents’ preferences and largely ensure the respecting improvement property without a signifi-
cant reduction in the number of transplants. Finally, our simulations also show that the novel IP formulations have a 
high potential of being used in practice as they prove to be efficient at finding optimal allocations for problems of 
practical size.

1.2. Literature Review
1.2.1. Housing Markets. The nonemptiness of the core is proved in Shapley and Scarf [47] by showing the balanced-
ness of the corresponding nontransferable utility game and also in a constructive way by showing that David Gale’s 
famous top trading cycles (TTC) algorithm always yields competitive allocations. Roth and Postlewaite [40] later 
show that, for strict preferences, the TTC results in the unique strong core allocation, which coincides with the unique 
competitive allocation in this case. However, if preferences are not strict (i.e., ties are present), the strong core can be 
empty or contain more than one allocation, but the TTC still produces all competitive allocations. Wako [50] shows 
that the strong core is always a subset of the set of competitive allocations. Quint and Wako [39] provide an efficient 
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algorithm for finding a strong core allocation whenever there exists one. Their work is further generalized and simpli-
fied by Cechlárová and Fleiner [19], who use graph models. Wako [52] shows that the set of competitive allocations 
coincides with the core based on an antisymmetric weak domination concept, which we refer to as Wako-core in this 
paper. This equivalence is key for our extension of the definition of competitive allocations to the case of bounded 
exchange cycles.

1.2.2. Respecting Improvement. For Gale and Shapley’s [23] college admissions model, Balinski and Sönmez [11] 
prove that SOSM respects improvement of student’s quality. Kominers [29] generalizes this result to more general set-
tings. Balinski and Sönmez [11] also show that SOSM is the unique stable mechanism that respects improvement of 
student quality. Abdulkadiroğlu and Sönmez [3] propose and discuss the use of TTC in a model of school choice, 
which is closely related to the college admissions model. Abdulkadiroğlu and Che [2] state and Hatfield et al. [25] for-
mally prove that the TTC mechanism respects improvement of student quality.

Hatfield et al. [25] also focus on the other side of the market and study the existence of mechanisms that respect 
improvement of a college’s quality. The fact that colleges can match with multiple students leads to a strong impossi-
bility result: they prove that there is no stable or Pareto-efficient mechanism that respects improvement of a college’s 
quality. In particular, the (Pareto-efficient) TTC mechanism does not respect improvement of a college’s quality.

In the context of KEPs with pairwise exchanges, the incentives for bringing an additional donor to the exchange 
pool was first studied by Roth et al. [42]. In the model of housing markets their donor-monotonicity property boils 
down to the respecting improvement property. They show that so-called priority mechanisms are donor-monotonic 
if each agent’s preferences are dichotomous, that is, the agent is indifferent between all acceptable donors. However, 
if agents have nondichotomous preferences, then any mechanism that maximizes the number of pairwise exchanges 
(so, in particular, any priority mechanism) does not respect improvement. This can be easily seen by means of Exam-
ple 4 in Section 3.3.

1.2.3. IP Formulations for Matching. Quint and Wako [39] already give IP formulations for finding core and strong 
core allocations, but the number of constraints in their paper is highly exponential as their formulations contain a 
no-blocking condition for each set of agents and any possible exchanges among these agents. Other studies provide 
IP formulations for other matching problems. In particular, for Gale and Shapley’s [23] college admissions model, 
Baïou and Balinski [9] already describe the stable admissions polytope, which can be used as a basic IP formulation. 
Further recent papers in this line of research focus on college admissions with special features (Ágoston et al. [5]), sta-
ble project allocation under distributional constraints (Ágoston et al. [6]), and the hospital–resident problem with cou-
ples (Biró et al. [15]) and ties (Delorme et al. [21], Kwanashie and Manlove [31]).

1.2.4. Kidney Exchange Programs. Starting with the seminal works Saidman et al. [44] and Roth et al. [43], initial 
research on KEPs focuses on IP models for selecting pairs for transplantation in such a way that maximum (social) 
welfare, generally measured by the number of patients transplanted, is achieved. Constantino et al. [20], Dickerson 
et al. [22], and Mak-Hau [32] propose new, compact formulations that, besides extending the models in Saidman et al. 
[44] and Roth et al. [43] to accommodate nondirected donors and patients with multiple donors, also aim to effi-
ciently solve problems of larger size. The reader is referred to Ashlagi and Roth [8] for a recent operations perspective 
on KEPs.

In Europe, at least 10 countries have active national kidney exchange programs. Details of current practices and 
optimization aspects are summarized in Biró et al. [16, 17], respectively. Furthermore, there are already several inter-
national collaborations between European countries, which motivated a new line of research on group fairness (Car-
valho et al. [18], Klimentova et al. [27], Mincu et al. [34]), in which agents (e.g., hospitals, regional and national 
programs) can collaborate. Allowing agents to control their internal exchanges, Carvalho et al. [18] study strategic 
interaction using noncooperative game theory. Specifically, for the two-agent case, they design a game such that 
some Nash equilibrium maximizes the overall social welfare. Considering multiple matching periods, Klimentova 
et al. [27] assume agents to be nonstrategic. Taking into account that, at each period, there can be multiple optimal 
allocations, each of which can benefit different agents, the authors propose an integer programming model to achieve 
an overall fair allocation. Finally, Mincu et al. [34] propose integer programming formulations for the case in which 
optimization goals and constraints can be distinct for different agents.

A recent line of research acknowledges the importance of considering patients’ preferences (associated with, e.g., 
graft quality) over matches, raising the question of individual fairness. In the computer science and operations 
research literature, Biró and Cechlárová [13] consider a model for unbounded length kidney exchanges, in which 
patients most care about the quality of the graft they receive, but as a secondary factor, they prefer to be involved in 
an exchange cycle that is as short as possible. The authors show that, although core allocations can still be found by 
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the TTC algorithm, finding a core allocation with the maximum number of transplants is a computationally hard 
problem (inapproximable unless P�NP). In two independent papers (Biró and McDermid [14], Huang [26]) stable 
exchanges are studied for bounded length cycles with NP-hardness results for the case of three-cycles. Recently, Kli-
mentova et al. [28] provide integer programming formulations for the case in which each patient has preferences over 
the organs that the patient can receive. The authors focus on allocations that among all (strong) core allocations have 
maximum cardinality. Moving away from the (strong) core, they also analyze the trade-off between maximum cardi-
nality and the number of blocking cycles. As we show through simulations in this paper, core allocations do not cre-
ate a substantial number of violations of the respecting improvement property (for best allotments) and, thus, 
incentivize the participation in KEPs.

In the economics and game theory literature, the preferences of the recipients are dichotomous (i.e., either accept-
able or unacceptable) in the classic papers, starting with Roth et al. [42]. Abbassi et al. [1] study a multiobject hous-
ing market under dichotomous preferences for both bounded and unbounded length exchange cycles with the aim 
of maximizing social welfare with truthful mechanisms in which it is a dominant strategy for each agent to report 
the true private information on the agent’s own items offered for exchange and the agent’s wish list. They show 
that, for the length-constrained variants, the problem is inapproximable. The first departure from this literature is 
by Nicolò and Rodrı́guez-Álvarez [36], who consider a setting in which the quality of potential transplants is given 
and each recipient can set an acceptability threshold. They prove an impossibility result for pairwise exchanges 
(that they later generalize in Nicolò and Rodrı́guez-Álvarez [37]), and they study conditions under which truth- 
telling is the unique protective strategy for the recipients. In a follow-up paper, Nicolò and Rodrı́guez-Álvarez [38] 
consider pairwise exchanges with age-based preferences and ties, and they propose a deterministic sequential prior-
ity rule that satisfies efficiency, strategy-proofness, and nonbossiness. Andersson and Kratz [7] consider a model 
motivated by the Swedish application, in which (1) ABO-incompatible transplants are allowed in the exchanges and 
(2) each ABO-incompatible recipient–donor pair only accepts a fully compatible donor. They study a priority match-
ing rule on their trichotomous preference domain. Another proposal for giving incentives to compatible pairs by 
prioritizing patients in case of future graft failure was given by Sönmez et al. [48]. In a recent paper, Balbuzanov 
[10] considers bounded length exchange problems under strict preferences. He shows that there is no deterministic 
mechanism that satisfies individual rationality, ex post efficiency, and weak strategy-proofness. He also provides a 
random mechanism for pairwise exchanges that is individually rational, ordinally efficient, and anonymous.

2. Preliminaries
We consider housing markets as introduced by Shapley and Scarf [47]. Let N � {1, : : : , n}, n ≥ 2, be the set of agents. 
Each agent i ∈N is endowed with one object, which, with some abuse of notation, is denoted by i. Thus, N also 
denotes the set of objects. Each agent i ∈N has complete and transitive (weak) preferences Ri over objects.5 We denote 
the strict part of Ri by Pi, that is, for all j, k ∈N, jPik if and only if jRik and not kRij. Similarly, we denote the indiffer-
ence part of Ri by Ii, that is, for all j, k ∈N, jIik if and only if jRik and kRij. Let R ≡ (Ri)i∈N. A (housing) market is a pair 
(N, R) or, if no confusion is possible, simply R.6 Object j ∈N is acceptable to agent i ∈N if jRii. Agent i’s preferences 
are called strict if they do not exhibit ties between acceptable objects; that is, for all acceptable j, k ∈N with j ≠ k, we 
have jPik or kPij. A housing market has strict preferences if each agent has strict preferences. A housing market in 
which agents do not necessarily have strict preferences is often referred to as a housing market with weak preferences.

Given a housing market M � (N, R) and a set S ⊆N, the submarket MS is the housing market in which S is the set 
of agents/objects and the preferences (Ri)i∈S are restricted to the objects in S.

The acceptability graph of a housing market M � (N, R) is the directed graph GM � (N, E) or G for short, in which 
the set of nodes is N and (i, j) is a directed edge in E if j is an acceptable object for i, that is, jRii. In particular, all self- 
cycles (i, i) are in the graph (but, for convenience, they are omitted in all figures). Let Ñ ⊆N and Ẽ ⊆ E ∩ (Ñ × Ñ). For 
each i ∈ Ñ , the set of agent i’s most preferred edges in graph G̃ ≡ (Ñ , Ẽ), or simply Ẽ, is the set ẼT, i

≡ {(i, j) :
(i, j) ∈ Ẽ and for each (i, k) ∈ Ẽ, jRik}. The most preferred edges in graph G̃ is the set ∪i∈Ñ ẼT, i.

Let M � (N, R) be a housing market. An allocation is a redistribution of the objects such that each agent receives 
exactly one object; that is, an allocation is a vector x � (xi)i∈N ∈NN such that 

(1) For each i ∈N, xi ∈N denotes agent i’s allotment, that is, the object that the agent receives.
(2) No object is assigned to more than one agent, that is, ∪i∈N{xi} �N:
We focus on individually rational allocations, that is, allocations for which each agent receives an acceptable object. 

Then, an allocation x can equivalently be described by its corresponding cycle cover Gx of the acceptability graph G. 
Formally, Gx � (N, Ex) is the subgraph of G in which (i, j) ∈ Ex if and only if xi� j. Thus, the graph Gx consists of dis-
connected trading or exchange cycles7 that cover G. We often write an (individually rational) allocation in cycle nota-
tion, that is, as a set of exchange cycles (in which we sometimes omit self-cycles). We refer to Example 1 for an 
illustration.
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An allocation x Pareto-dominates an allocation z if, for each i ∈N, xiRizi, and for some j ∈N, xjPjzj. An allocation is 
Pareto efficient if it is not Pareto-dominated by any allocation. Two allocations x, z are welfare equivalent if, for each 
i ∈N, xiIizi.

Next, we recall the definition of solution concepts that are studied in the literature. A nonempty coalition S ⊆N 
blocks an allocation x if there is an allocation z such that 

(1) {zi : i ∈ S} � S.
(2) For each i ∈ S, ziPixi.

An allocation x is in the core8 of the market if there is no coalition that blocks x. For each market R, let C(R) denote its core.
A nonempty coalition S ⊆N weakly blocks an allocation x if there is an allocation z such that 
(1) {zi : i ∈ S} � S.
(2) For each i ∈ S, ziRixi.
(3) For some j ∈ S, zjPjxj.

An allocation x is in the strong core9 of the market if there is no coalition that weakly blocks x. For each market R, let 
SC(R) denote its (possibly empty) strong core.

A price vector is a vector p � (pi)i∈N ∈ RN, where pi denotes the price of object i. A competitive equilibrium is a pair 
(x, p), where x is an allocation and p is a price vector such that 

(1) For each agent i ∈N, object xi is affordable, that is, pxi ≤ pi.
(2) For each agent i ∈N, each object the agent prefers to xi is not affordable, that is, jPixi implies pj>pi.

An allocation is a competitive allocation if it is part of some competitive equilibrium. Because there are n objects, we 
can assume without loss of generality that prices are integers in the set {1, 2, : : : , n}.

Remark 1. If (x, p) is such that 
(1) For each i ∈N, pxi ≤ pi or
(2) For each i ∈N, pi ≤ pxi ,

then for each i ∈N, pxi � pi. This follows immediately by looking at each exchange cycle separately (see, e.g., the 
proof in Cechlárová and Fleiner [19, lemma 1]). Hence, at each competitive equilibrium (x, p), for each i ∈N, 
pxi � pi. w

Wako [52] proves that the set of competitive allocations can be defined equivalently as a different type of core. For-
mally, a nonempty coalition S ⊆N antisymmetrically weakly blocks an allocation x if there is an allocation z such that 

(1) {zi : i ∈ S} � S.
(2) For each i ∈ S, ziRixi.
(3) For some j ∈ S, zjPjxj.
(4) For each i ∈ S, if ziIixi, then zi�xi.

Requirements 1–3 say that coalition S weakly blocks x. The additional requirement 4 is that, if an agent in S is indif-
ferent between allotments at x and z, then the agent must get the very same object, that is, zi� xi. An allocation x is in 
the core defined by antisymmetric weak domination if there is no coalition that antisymmetrically weakly blocks x. 
Wako [52] proves that the set of competitive allocations coincides with the core defined by antisymmetric weak domi-
nation. Henceforth, we often refer to the set of competitive allocations as the Wako-core, and for each market R, we 
denote this set by WC(R). Note that, when preferences are strict, requirement 4 is redundant, and the equivalence of 
strong core and Wako-core follows immediately.

Note that the three blocking notions introduced are nested: blocking implies antisymmetrical weak blocking and 
antisymmetrical weak blocking implies weak blocking. Therefore, for each market R, SC(R) ⊆WC(R) ⊆ C(R).10

The following lemma is helpful for computations and is also used in our IP formulations and simulations. It states 
that, for each of the three cores, to check whether it contains a given allocation, it is not necessary to check blocking by 
any possible coalition. It is sufficient to check potential blocking by coalitions that constitute cycles in the acceptability 
graph.11

Lemma 1. The strong core, Wako-core, and core consist of individually rational allocations. Moreover, each of the cores is 
equivalently characterized by the absence of blocking by cycles in the acceptability graph G � (N, E). Formally, let x be an 
individually rational allocation. Then, x is in the strong core/Wako-core/core if there is no coalition {i1, : : : , ik} with for each 
l � 1, : : : , k (mod k), (il, il+1) ∈ E, that weakly blocks x/antisymmetrically weakly blocks x/blocks x through some allocation z 
with for each l � 1, : : : , k (mod k), zil � il+1.

Proof. Individual rationality is immediate. To prove the statement for the strong core, let x be an individually 
rational allocation. Suppose there is a nonempty coalition T that weakly blocks x through some allocation w. Let 
j ∈ T be such that wjPjxj. Let S ⊆ T be the agents that constitute the exchange cycle, say (i1, : : : , ik), in w that 

Biró et al.: Housing Markets: Respecting Improvement, IP, and Kidney Exchange 
6 Mathematics of Operations Research, Articles in Advance, pp. 1–35, © 2023 The Author(s) 



involves agent j, that is, j ∈ S. One immediately verifies that S � {i1, : : : , ik} weakly blocks x through the allocation 
z defined by

zi ≡
wi if i ∈ S;

xi if i ∉ S:

�

This proves the statement for the strong core. The statements for the core and the Wako-core follow similarly. w

An individually rational allocation x is a maximum size allocation if, for each individually rational allocation z, 
| {i ∈N : xi ≠ i} | ≥ |{i ∈N : zi ≠ i} | . We provide an example to illustrate the three cores and maximum size allocation.

Example 1. Let N � {1, : : : , 6} and let preferences be given by Table 1. Throughout the paper, we do not display 
agents’ unacceptable objects. For instance, agent 1 is indifferent between objects 2 and 3 and strictly prefers both 
objects to object 5.

Figure 2 displays the induced acceptability graph.12 Here, a thick edge denotes the most preferred object(s), and a 
thin edge denotes the second most preferred object (if any).

Consider the allocations defined in Table 2. For instance, xd (in cycle notation but without self-cycles) is the alloca-
tion xd � (xd

1, xd
2, xd

3, xd
4, xd

5, xd
6) � (3, 1, 4, 2, 5, 6). Using Lemma 1, it can be easily verified that xa is the unique strong core 

allocation, and xa and xb are the competitive allocations, whereas xa, xb, xc, and xd form the core. Hence, the strong 
core is a singleton and a proper subset of the set of competitive allocations, whereas the latter set is also a proper sub-
set of the core. Finally, xe is the unique maximum size allocation and does not pertain to the core. w

Shapley and Scarf [47] (see also page 135 Roth and Postlewaite [40]) show that the set of competitive allocations is 
nonempty and coincides with the set of allocations that are obtained through David Gale’s top trading cycles algo-
rithm,13 which is discussed in Section 3.1. Roth and Postlewaite [40] show that, if preferences are strict, then there is a 
unique strong core allocation that coincides with the unique competitive allocation. In general, when preferences are 
not strict, the strong core can be empty (see, e.g., Endnote 14) or contain more than one allocation (see, e.g., Example 1).

If preferences are strict, the unique competitive allocation is Pareto efficient (because it is in the strong core) and 
Pareto dominates any other allocation (Roth and Postlewaite [40, lemma 1]); in particular, any other core allocation is 
Pareto inefficient. If preferences are not strict, it is possible that each competitive allocation is Pareto dominated by 
some allocation that is not competitive.14

Finally, competitive allocations need not be welfare equivalent; in fact, different agents can strictly prefer distinct 
competitive allocations (see, e.g., Endnote 14). However, Wako [51] shows that all strong core allocations are welfare 
equivalent. The latter result also immediately follows from Quint and Wako’s [39] algorithm, which is discussed in 
Section 3.2.

Table 1. Preference in Example 1.

1 2 3 4 5 6

2, 3 1 2 3 2 1
5 3 4 2 6 6
1 2 3 4 5

Figure 2. Acceptability graph in Example 1. 

Table 2. Allocations in Example 1.

xa � {(1, 3, 2)}
xb � {(1, 2), (3, 4)}
xc � {(1, 5, 2), (3, 4)}
xd � {(1, 3, 4, 2)}
xe � {(1, 5, 6), (2, 3, 4)}
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3. Respecting Improvement
Let R, R̃ be two preference profiles over objects N. Let i ∈N. We say that R̃ is an improvement for i with respect to R if 
the only difference between R and R̃ is that, at R̃, object i is ranked weakly higher by the other agents than at R.15 In 
other words, 

(1) Only agents different from i have possibly different preferences at R̃ and R.
(2) For each agent j ≠ i, object i can become preferred to some additional objects.
(3) For each agent j ≠ i and each pair of objects different from i, preferences remain unchanged.

Formally, 
(1) R̃i � Ri.
(2) For all j ≠ i and all k with k Rj j, i Ij k⇒ i R̃j k and i Pj k⇒ i P̃j k.
(3) For all j ≠ i and all k, l ≠ i, k Rj l � k R̃j l.
As a simple example with N � {1, 2, 3, 4, 5}, let R be any preference profile such that 4 P5 1 I5 2 I5 3 P55. Let R̃ be the 

preference profile in which agents 1, 2, 3, and 4 have the same preferences as at R and let R̃5 be defined by 
1 I54 P5 2 I5 3 P55. Then, R̃ is an improvement for agent 1 with respect to R.

Let R be a domain of markets. A single-valued allocation rule (on R) is a map φ�that associates with each market 
R ∈R an allocation φ(R). For each i ∈N, let φi(R) denote agent i’s allotment at φ(R). We say that φ�respects improve-
ment (on R) if, for each i ∈N and each pair of markets R, R̃ ∈R such that R̃ is an improvement for i with respect to R, 
we have that φi(R̃)Riφi(R). Respecting improvement is a natural and important property for applications of the hous-
ing markets model, such as kidney exchange programs. If the program employs an allocation rule that respects 
improvement, then it incentivizes all patients to bring the best possible set of donors to the market.

We also study a (generalized) respecting improvement property for multivalued allocation rules. A multivalued 
allocation rule (on R) is a map Φ�that associates with each market R ∈R a (possibly empty) set of allocations Φ(R).

Because multivalued allocation rules yield sets of allocations, we have to compare sets of allotments for individual 
agents. Let X be a set of allocations and i ∈N. The best allotments for agent i at X are the objects that the agent weakly 
most prefers among all objects in {xi : x ∈ X}, denoted by X+i . Analogously, the worst allotments for i at X are the 
objects that the agent weakly least prefers among all objects in {xi : x ∈ X}, denoted by X�i .

Let Φ�be a nonempty16 multivalued allocation rule (on R). We say that Φ�respects improvement for the best allot-
ments or satisfies the RI-best property if, for each i ∈N, each pair of markets R, R̃ ∈R such that R̃ is an improvement 
for i with respect to R and each pair of allotments x̃i ∈Φ

+
i (R̃) and xi ∈Φ

+
i (R), we have x̃iRixi. Similarly, we say that Φ�

respects improvement for the worst allotments or satisfies the RI-worst property if, for each i ∈N, each pair of mar-
kets R, R̃ ∈R such that R̃ is an improvement for i with respect to R, and each pair of allotments x̃i ∈Φ

�
i (R̃) and 

xi ∈Φ
�
i (R), we have x̃iRixi.

Finally, in the case of a multivalued allocation rule Φ�that, for some markets, can yield the empty set, we say that it 
conditionally respects improvement if the preceding requirements hold conditional on Φ(R),Φ(R̃)≠ ∅.

In the following three sections, we state and prove our main theoretical results. For a complete and transparent 
overview of all theoretical findings we refer to the summarizing Table 14 in Section 6.

3.1. Strict Preferences
We consider housing markets with strict and weak preferences separately. The reason is that, when preferences are 
strict, the strong core is always a singleton (which consists of the unique competitive allocation) so that the corre-
sponding algorithm and notation are relatively simple. Tackling first the case of strict preferences also facilitates the 
discussion of the (general) case of weak preferences in the next section.

Before we present and prove our first main result, we describe the TTC algorithm for finding strong core alloca-
tions when preferences are strict. The graphs defined in the algorithm are crucial tools for the proof of Theorem 1.

Let M � (N, R) be a housing market with strict preferences. We construct a subgraph GCP of the acceptability graph 
G by using the TTC algorithm of David Gale (Shapley and Scarf [47]). The node set of GCP is N, and its directed edges 
ECP � EC ∪ EP are partitioned into two sets EC and EP, where EC consists of the edges in the TTC cycles and EP con-
sists of all other edges that turn up during the execution of the algorithm and that point to more preferred objects.

3.1.1. TTC Algorithm: Construction of GCP. Set EC ≡ ∅, EP ≡ ∅, and M1 ≡M. Let G1 � (N1, E1) ≡ (N, E) denote the 
acceptability graph of M1. We iteratively construct “shrinking” submarkets Mt (t � 2, 3, : : : ) whose acceptability graph 
is denoted by Gt � (Nt, Et). Set t ≡ 1. 

Step 1. Let ET
t be the set of most preferred edges in Gt.

Step 2. Let ct be a (top trading) cycle in (Nt, ET
t ). Let Ct and Et denote the node set and edge set of ct, respectively.

Step 3. Add the edges of ct to EC, that is, EC ≡ EC ∪ Et.
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Step 4. Let ET
t (Ct
→

) denote the subset of edges of ET
t pointing to Ct from outside Ct. Formally, ET

t (Ct
→

) ≡ {(i, j)
∈ ET

t : i ∈Nt \Ct and j ∈ Ct}. Add ET
t (Ct
→

) to EP, that is, EP ≡ EP ∪ ET
t (Ct
→

).
Step 5. If Nt�Ct, stop. Otherwise, let Nt+1 ≡Nt \Ct, denote the submarket MNt+1 by Mt+1, and go to step 1.

When the algorithm terminates, the set of (top trading) cycles in EC is the unique competitive allocation and, hence, 
the unique strong core allocation (see Roth and Postlewaite [40]). The following two facts about the graph GCP are 
useful for later reference. 

Fact 1. Cycles only contain edges in EC. Each path that is not part of a cycle has an edge in EP.
Fact 2. For any distinct ℓ, ℓ′ ∈N, if there is a path from agent ℓ�to agent ℓ′, then either the two agents are in the 

same cycle or agent ℓ′ is removed from the market before agent ℓ.
For each profile of strict preferences R, let τ(R) denote the unique competitive allocation (or strong core allocation). 

Theorem 1 states that the allocation rule τ�respects improvement. We provide a direct proof (based on the TTC algo-
rithm) that is helpful to understand the similar but more complicated proof of Theorem 3 (with weak preferences). 
An anonymous reviewer suggested an alternative proof of Theorem 1 based on a two-sided matching model and by 
applying Hatfield et al. [25, theorem 9].17 We include the details of the alternative proof in Appendix A as it discloses 
an interesting relationship between one- and two-sided matching problems.

Theorem 1. When preferences are strict, the competitive allocation rule (or strong core allocation rule) τ�respects improvement.

Proof. Let i ∈N and R, R̃ profiles of strict preferences such that R̃ is an improvement for i with respect to R. Let 
x � τ(R) and x̃ � τ(R̃). We can assume that there is a unique agent j ≠ i with R̃j ≠ Rj and prove that x̃iRixi. (If there 
is more than one such agent, we repeatedly apply the one-agent result to obtain the result.) We can also assume 
that iR̃jxj. (Otherwise, xjP̃ji, in which case all steps of the TTC algorithm are identical for R and R̃ so that x̃ � x.)

Consider graph GCP for market (N, R), that is, the graph that is obtained in the TTC algorithm for x. It follows 
from Facts 1 and 2 that agents i and j are related in (exactly) one of the following four ways: 

(a) i and j are independent: there is no path from i to j nor from j to i.
(b) i and j are cycle members: i and j are in the same (top trading) cycle.
(c) i is a (noncycle) predecessor of j: there is a path from i to j with some edge in EP.18

(d) j is a (noncycle) predecessor of i: there is a path from j to i with some edge in EP.19

We distinguish among three cases, depending on the relation between agents i and j (see Figure 3). In each 
case, we describe if and how agent i’s trading cycle changes to prove that x̃iRixi. 

Case I: (a) i and j are independent or (d) j is a predecessor of i.
Let F(i) be the set of followers of i in graph GCP, that is, the nodes that can be reached from i through a path in GCP (see 

Figure 3). We use the convention i ∈ F(i). From (a) and (d), it follows that j ∉ F(i). Fact 2 implies that the TTC algorithm 
for R partitions the agents in F(i) into trading cycles. Because, for each agent ℓ ∈ F(i), R̃ℓ � Rℓ, it follows that the TTC 
algorithm for R̃ partitions the agents in F(i) into the same trading cycles. Hence, x̃i � xi.

Case II: (b) i and j are cycle members.
Let c be the cycle in graph GCP that contains i and j. Let p(i, j) be the unique path from i to j in the graph GCP (see 

Figure 3. (Color online) Graph GCP (simplified) in the proof of Theorem 1. Each ellipse represents a top trading cycle. 
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Figure 3). Obviously, p(i, j) is part of c. Let N(i, j) be the nodes on p(i, j). (So i, j ∈N(i, j).) Let F∗(N(i, j)) be the fol-
lowers outside of N(i, j) that can be reached by some path in GCP that (1) starts from some node in N(i, j) and (2) 
does not contain edges in c. Fact 2 implies that the TTC algorithm for R partitions the agents in F∗(N(i, j)) into trad-
ing cycles. Because, for each agent ℓ ∈ F∗(N(i, j)), R̃ℓ � Rℓ, it follows that the TTC algorithm for R̃ partitions the 
agents in F∗(N(i, j)) into the same trading cycles. Then, because iR̃jxj and R̃j is obtained from Rj by shifting i up, 
the trading cycle of agent i at x̃ is the cycle c̃ that consists of the path p(i, j) and the edge (j, i). Because p(i, j) is part of 
the trading cycle c (in which i points to object xi), it follows that agent i points to object xi in trading cycle c̃, that is, 
x̃i � xi.

Case III: (c) i is a predecessor of j.
We define the best path from i to j to be the path from i to j in GCP, where at each node ℓ ≠ j on the path, the path 

follows agent ℓ‘s (unique) most preferred edge in

{(ℓ, ℓ′) ∈ ECP : there is a path from ℓ′ to j using edges in ECP}:

Let pb(i, j) denote the unique best path from i to j in GCP (see Figure 3).
Because, for each ℓ ≠ j, R̃ℓ � Rℓ, iR̃jxj, and R̃j is obtained from Rj by shifting i up, it follows that, at some step in 

the TTC algorithm for R̃, agent j starts pointing to agent i and keeps doing so as long as agent i is present.
Next, consider the agent l with (l, j) on path pb(i, j). Let k ∈N with kPlj (see Figure 3). Because (l, j) is an edge in 

GCP but agent l strictly prefers k to j, it follows that the TTC algorithm for R removes agent k before agent j. Fact 2 
implies that the TTC algorithm for R partitions the agents in F(k) (i.e., the followers of k, where k ∈ F(k)) into trad-
ing cycles. Because j ∉ F(k) and for each ℓ ∈ F(k), R̃ℓ � Rℓ, it follows that the TTC algorithm for R̃ partitions the 
agents in F(k) into the same trading cycles. Recall that k is an arbitrary object with kPlj. Thus, we can conclude 
that, at some step in the TTC algorithm for R̃, agent l starts pointing to agent j and keeps doing so as long as 
agent j is present.

We can repeat the same arguments until we conclude that each agent in the cycle c̃ formed by pb(i, j) and the 
edge (j, i), at some step in the TTC algorithm for R̃, starts pointing to its direct follower and keeps doing so as 
long as the follower is present. Thus, cycle c̃ is a trading cycle at x̃. Let i′ be the direct follower of i in c̃. Note that, 
in graph GCP, (i, i′) ∈ EC or (i, i′) ∈ EP. If (i, i′) ∈ EC, then i′ � xi, in which case x̃i � i′ � xi. If (i, i′) ∈ EP, then, by defi-
nition of EP, x̃i � i′Pixi. w

3.2. Weak Preferences
As discussed in Section 2, when preferences are weak, the strong core can be empty or contain more than one alloca-
tion, and it can be different from the set of competitive allocations (which is always nonempty). Therefore, the analy-
sis of the case of weak preferences is divided into two parts accordingly.

3.2.1. Competitive Allocations. For each market R, let T (R) denote the set of competitive allocations. We show that 
the multivalued allocation rule T satisfies the RI-best and RI-worst properties. However, we first prove a stronger 
result by focusing on probabilistic allocations. The RI-best and RI-worst properties then follow as a corollary.

Given a profile of weak preferences R, the TTC algorithm can be applied if we first break ties. Specifically, each 
indifference class in each agent’s ranking of the objects is replaced by a strict ranking of the involved objects. Thus, 
different ways of breaking ties yield different profiles of strict preferences and, hence, also to potentially distinct out-
puts of the TTC algorithm. The set of allocations that can be generated by breaking ties and applying TTC equals the 
set of competitive allocations (see also Endnote 14).

One could conjecture that, if an agent’s object improves in the preferences of the other agents so that at least one 
new competitive allocation is created, then at least one such allocation is weakly preferred to some old and removed 
competitive allocation. Surprisingly, as the following example shows, this need not be the case.

Example 2. Let N � {1, : : : , 7}, let the initial preferences R be given by Table 3, and let the new preferences R̃ after 
the improvement of agent 7 be given by Table 4.

Table 3. Preferences R in Example 2.

1 2 3 4 5 6 7

2, 3 1 1 3 4 2 4
6 4,7 5 7 5
7 6
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Consider the allocations defined in Table 5. It can be easily verified that the set of competitive allocations at R and 
R̃ is T (R) � {xa, xc, xd} and T (R̃) � {xa, xb, xd}, respectively. Note that T (R̃) \ T (R) � {xb} and T (R) \ T (R̃) � {xc}. 
Because xc

7 � 5 P7 6 � xb
7, it follows that, for agent 7, each new competitive allocation after the improvement (i.e., xb) 

is strictly worse than each old competitive allocation that was removed from the set of competitive allocations 
(i.e., xc). w

Suppose that ties in weak preferences are broken uniformly at random. Then, the resulting probability distribution 
over profiles of strict preferences together with the TTC algorithm induce a probability distribution over (competitive) 
allocations and, hence, over allotments for each of the individual agents. Thus, we obtain a probabilistic allocation 
given by a doubly stochastic n× n matrix aTTC(R) and in which, for each (i, j) ∈N ×N, entry aTTC

ij (R) denotes the prob-
ability that agent i receives object j.

Let i ∈N. Let Ri be agent i’s weak preferences. A probabilistic allocation a (first order) stochastically dominates 
another probabilistic allocation a′ for agent i, denoted by a ≽ SD

Ri
a′, if for each object j, agent i obtains j or any other 

weakly preferred object with a higher probability under a than under a′, that is,

for each j ∈N,
X

kRij
aik ≥

X

kRij
a′ik:

A well-known important fact is that, if agent i has a cardinal utility function over objects that is consistent with the 
agent’s weak preferences Ri, then a ≽ SD

Ri
a′ implies that the agent’s expected utility at a is weakly higher than at a′.

Theorem 2. Let i ∈N. Let R, R̃ be a pair of profiles of preferences such that R̃ is an improvement for i with respect to R. 
Then, aTTC(R̃) ≽ SD

Ri
aTTC(R):

Proof. It is sufficient to prove the result for the situation in which R̃ is a minimal improvement in the ranking of 
only one of the other agents’, say j, that is, (a) object i is in an indifference class in Rj and moves right above it in 
R̃j, or (b) object i is in itself an indifference class in Rj and moves into the indifference class right above it in R̃j. In 
particular, for each k ≠ j, R̃k � Rk. Any other improvement can be obtained by a series of consecutive minimal 
improvements.

We first prove the statement for case (a). Let T � {i � i1, i2, : : : , it} with t ≥ 2 be the objects in the indifference 
class in Rj of which i is a member. Let R∗ be the set of strict profiles (i.e., profiles of strict preferences) generated 
by breaking all ties in R. Similarly, let R̃∗ be the set of strict profiles generated by breaking all ties in R̃.

We define a function f from R∗ to R̃∗ as follows. Formally, let R∗ ∈R∗ be a strict profile generated by breaking 
all ties in R. Then, define f (R∗) as the strict profile obtained from R∗ by moving object i right above all other 
objects in T\{i} (possibly it is already there) in R∗j . One easily verifies that f (R∗) is a strict profile that can be gener-
ated by breaking all ties in R̃, that is, f (R∗) ∈ R̃

∗. Hence, f is well-defined.
Let R∗ ∈R∗. Note that there are exactly t�1 other strict profiles generated by R that f maps to f (R∗) as well. 

(The only difference between these t strict profiles is the rank of object i in agent j’s preferences. Because there 
are t objects in T, object i can take up any of the positions 1, : : : , t in the ranking restricted to objects in T.) Con-
versely, one easily verifies that f is surjective: for each strict profile R̃∗ ∈ R̃

∗, f�1(R̃∗) consists of exactly t strict pro-
files generated by breaking all ties in R.

Note that breaking all ties in R in all possible ways yields exactly t times more strict profiles than breaking all 
ties in R̃ in all possible ways, that is, |R∗ | � t |R̃∗ | . Because ties are broken uniformly at random, this implies that 
the probability that a given strict profile R̃∗ is generated by breaking all ties in R̃ equals the sum of probabilities 
of each of the t strict profiles in f�1(R̃∗) being generated from R.

Table 5. Allocations in Example 2.

xa � {(1, 3), (2, 6), (4, 5)}
xb � {(1, 3), (2, 7, 6), (4, 5)}
xc � {(1, 2), (3, 4), (5, 7)}
xd � {(1, 2), (3, 7, 4)}

Table 4. Preferences R̃ in Example 2.

1 2 3 4 5 6 7

2, 3 1 1 3 4 2 4
6,7 7 5 7 5

4 6
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Let R̃∗ ∈ R̃
∗. We complete the proof of case (a) by comparing the allotment of agent i when TTC is applied to R̃∗

and when it is applied to any of the t profiles in f�1(R̃∗). Let R∗ ∈ f�1(R̃∗). Because R̃∗ is an improvement for i with 
respect to R∗ and both R̃∗ and R∗ are strict profiles, Theorem 1 yields τi(R̃

∗
)R∗i τi(R∗). Because R∗ ∈ f�1(R̃∗) is obtained 

from R by (only) breaking ties, we have that, for all objects ℓ,ℓ′ ∈N, ℓR∗i ℓ
′ ⇒ ℓRi ℓ

′. Hence, τi(R̃
∗
)Ri τi(R∗). In other 

words, agent i’s TTC allotment at R̃∗ is weakly preferred to the TTC allotment at each of the t profiles in f�1(R̃∗). 
This, together with the previous observation on the corresponding probabilities, implies that aTTC(R̃) ≽ SD

Ri
aTTC(R).

Next, we prove the statement for case (b). Let T � {i � i1, i2, : : : , it} with t ≥ 2 be the objects in the indifference 
class in R̃j of which i is a member. Let R∗ be the set of strict profiles (i.e., profiles of strict preferences) generated 
by breaking all ties in R. Similarly, let R̃∗ be the set of strict profiles generated by breaking all ties in R̃.

We define a function g from R̃∗ to R∗ as follows. Formally, let R̃∗ ∈ R̃
∗ be a strict profile generated by breaking 

all ties in R̃. Then, define g(R̃∗) as the strict profile obtained from R̃∗ by moving object i right below all other 
objects in T\{i} (possibly it is already there) in R̃∗j . One easily verifies that g(R̃∗) is a strict profile that can be gener-
ated by breaking all ties in R, that is, g(R̃∗) ∈R∗. Hence, g is well-defined.

Let R̃∗ ∈ R̃
∗. Note that there are exactly t�1 other strict profiles generated by R̃ that g maps to g(R̃∗) as well. 

(The only difference between these t strict profiles is the rank of object i in agent j’s preferences. Because there 
are t objects in T, object i can take up any of the positions 1, : : : , t in the ranking restricted to objects in T.) Con-
versely, one easily verifies that g is surjective: for each strict profile R∗ ∈R∗, g�1(R∗) consists of exactly t strict pro-
files generated by breaking all ties in R̃.

Note that breaking all ties in R̃ in all possible ways yields exactly t times more strict profiles than breaking all 
ties in R in all possible ways, that is, |R̃∗ | � t |R∗ | . Because ties are broken uniformly at random, this implies that 
the probability that a given strict profile R∗ is generated by breaking all ties in R equals the sum of probabilities 
of each of the t strict profiles in g�1(R∗) being generated from R̃.

Let R∗ ∈R∗. We complete the proof of case (b) by comparing the allotment of agent i when TTC is applied to R∗

and when it is applied to any of the t profiles in g�1(R∗). Let R̃∗ ∈ g�1(R∗). Because R̃∗ is an improvement for i with 
respect to R∗ and both R̃∗ and R∗ are strict profiles, Theorem 1 yields τi(R̃

∗
)R∗i τi(R∗). Because R∗ is obtained from R 

by (only) breaking ties, we have that, for all objects ℓ,ℓ′ ∈N, ℓR∗i ℓ
′ ⇒ ℓRi ℓ

′. Hence, τi(R̃
∗
)Ri τi(R∗). In other words, 

each of agent i’s TTC allotments at the t profiles in g�1(R∗) is weakly preferred to the TTC allotment at R∗. This, 
together with the previous observation on the corresponding probabilities, implies that aTTC(R̃) ≽ SD

Ri
aTTC(R). w

Example 3. Consider again the markets and improvement discussed in Example 2. If, in line with Theorem 2, we 
also consider the probabilities of obtaining the competitive allocations in each of the two markets by breaking the 
ties in the TTC with uniform random probabilities, we get that for R, Prob(xa |R) � 1

2 , Prob(xc |R) � 1
4, and 

Prob(xd |R) � 1
4, whereas for R̃, Prob(xa |R̃) � 1

4 , Prob(xb |R̃) � 1
4, and Prob(xd |R̃) � 1

2. Because xa
7 � 7, xb

7 � 6, xc
7 � 5, xd

7 � 4, 
and 4 P7 5 P7 6 P7 7, we obtain aTTC(R̃) ≻SD

R7
aTTC(R); that is, for agent 7, the probabilistic allocation at R̃ strictly sto-

chastically dominates the probabilistic allocation at R. Thus, at R̃, agent 7 has a higher expected utility than at R. w

As a corollary to Theorem 2, we obtain that the competitive allocation rule T satisfies the RI-best and the RI-worst 
properties.

Corollary 1. Let i ∈N. Let R, R̃ be a pair of profiles of preferences such that R̃ is an improvement for i with respect to R. Then, 
• There is x̃ ∈ T (R̃) such that, for each x ∈ T (R), x̃iRixi.
• There is x ∈ T (R) such that, for each x̃ ∈ T (R̃), x̃iRixi.

Proof. We first prove the first statement. Let xi ∈ T +i (R). Then, there is some tie-breaking of R such that the associated 
TTC allocation gives allotment xi to agent i. Hence, 

P
kRixi

aTTC
ik (R) > 0. From Theorem 2, 

P
kRixi

aTTC
ik (R̃) ≥

P
kRixi

aTTC
ik (R). 

So 
P

kRixi
aTTC

ik (R̃) > 0. Hence, there is some tie-breaking of R̃ such that the associated TTC allocation, say x̃ ∈ T (R̃), gives 
an allotment to agent i that the agent weakly prefers to xi, that is, x̃iRixi. Because xi is a best allotment for agent i among 
all allotments in {yi : y ∈ T (R)}, the first statement follows.

Next, we prove the second statement. Let xi ∈ T �i (R). Then, xi is a worst allotment for agent i among all allot-
ments in {yi : y ∈ T (R)}. Hence, all TTC allocations obtained after tie-breaking of R give an allotment to agent i 
that the agent weakly prefers to xi. Hence, 

P
kRixi

aTTC
ik (R) � 1. From Theorem 2, 

P
kRixi

aTTC
ik (R̃) ≥

P
kRixi

aTTC
ik (R). So 

P
kRixi

aTTC
ik (R̃) � 1. In other words, all TTC allocations obtained after tie-breaking of R̃ give an allotment to agent i 

that the agent weakly prefers to xi. Hence, agent i’s worst allotments in {yi : y ∈ T (R̃)} are weakly preferred to xi, 
and the second statement follows. w
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Note that, in general, there is no competitive allocation in which each agent receives the agent’s most preferred allot-
ment (among those that are obtained at competitive allocations); that is, agents do not unanimously agree on the best 
competitive allocation (see, e.g., agents 3 and 4 and competitive allocations xa and xb in Example 1). Nonetheless, Cor-
ollary 1 implies that any optimistic agent who believes that the agent always receives the best possible allotment sub-
scribes to the thesis that the competitive correspondence respects any of the agent’s potential improvements. A similar 
statement holds for any pessimistic agent who believes that the agent always receives the worst possible allotment.

3.2.2. Strong Core. We now turn to the strong core, which, in the case of weak preferences, is a (possibly strict) sub-
set of the set of competitive allocations.

Similarly to the case of strict preferences, before we state and prove our generalization of Theorem 1 to the domain 
of weak preferences, we first describe the efficient algorithm of Quint and Wako [39] for finding a strong core alloca-
tion whenever there exists one. The graphs defined in the algorithm are crucial tools for the proof of Theorem 3.

Let M � (N, R) be a housing market with weak preferences. We use the simplified interpretation of Cechlárová and 
Fleiner [19] and construct a subgraph GSP of the acceptability graph G with node set N and edge set ESP ≡ ES ∪ EP, 
which are useful for our later analysis.

A strongly connected component of a directed graph is a subgraph in which there is a directed path from each 
node to every other node. An absorbing set is a strongly connected component with no outgoing edge.20 Note that 
each directed graph has at least one absorbing set.

3.2.3. Quint–Wako Algorithm: Construction of GSP. Set ES ≡ ∅, EP ≡ ∅, and M1 �M. Let G1 � (N1, E1) ≡ (N, E)
denote the acceptability graph of M1. We iteratively construct shrinking submarkets Mt (t � 2, 3, : : : ) whose accept-
ability graph is denoted by Gt � (Nt, Et). Set t ≡ 1. 

Step 1. Let ET
t be the set of most preferred edges in Gt.

Step 2. Let St be an absorbing set in (Nt, ET
t ). Let Nt(St) and ET

t (St) denote the node set and edge set of St.
Step 3. Add the edges of St to ES, that is, ES ≡ ES ∪ ET

t (St).
Step 4. Let ET

t (St
→

) denote the subset of edges of ET
t pointing to Nt(St) from outside Nt(St). Formally, ET

t (St
→

) ≡

{(i, j) ∈ ET
t : i ∈Nt \Nt(St) and j ∈Nt(St)}. Add ET

t (St
→

) to EP, that is, EP ≡ EP ∪ ET
t (St
→

).
Step 5. If Nt �Nt(St), stop. Otherwise, let Nt+1 ≡Nt \Nt(St) denote the submarket MNt+1 by Mt+1, and go to step 1.

The following two facts about the graph GSP are useful for later reference. 
Fact 1∗. Absorbing sets only contain edges in ES. Each path that is not part of an absorbing set has an edge in EP.
Fact 2∗. For any distinct ℓ, ℓ′ ∈N, if there is a path from agent ℓ�to agent ℓ′, then either the two agents are in the 

same absorbing set or agent ℓ′ is removed from the market before agent ℓ.
Quint and Wako [39] prove that there is a strong core allocation for M if and only if, for each absorbing set St 

defined in the algorithm there exists a cycle cover, that is, a set of cycles covering all the nodes of St. See Figure 4 for 
an illustration. Finding a cycle cover, if one exists, can be done with the classic Hungarian method (Kuhn [30]) for 
finding a perfect matching for the corresponding bipartite graph in which the objects are on one side, the agents are 
on the other side, and there is an undirected arc between an object–agent pair if the object is among the agent’s most 
preferred objects (which might include the agent’s own object). We refer to Abraham et al. [4], Quint and Wako [39], 
and Cechlárová and Fleiner [19] for further details on this reduction.
Remark 2. If, for each absorbing set St defined in the preceding algorithm, there exists a cycle cover, then the set 
of cycle covers (one cycle cover for each absorbing set) constitutes a strong core allocation. Conversely, as shown 
in the proof of Quint and Wako [39, theorem 5.5], each strong core allocation can be written as a set of cycle cov-
ers (one for each absorbing set St). Therefore, if the strong core is nonempty, all its allocations can be obtained by 
selecting all possible cycle covers in the algorithm. w

Remark 3. In the Quint–Wako algorithm, each agent obtains the same welfare at any two cycle covers in which 
the agent is involved (because the agent is indifferent between any two of the agent’s outgoing edges in an 

Figure 4. (Color online) Three absorbing sets. 
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absorbing set). Together with Remark 2, this immediately proves Wako [51, theorem 2(2)], which states that all 
strong core allocations are welfare equivalent. w

We can now show that the multivalued allocation rule SC conditionally respects improvement.

Theorem 3. Let i ∈N. Let R, R̃ be a pair of profiles of preferences such that R̃ is an improvement for i with respect to R. If 
SC(R),SC(R̃)≠ ∅, then, for each x̃ ∈ SC(R̃) and each x ∈ SC(R), x̃iRixi.

Proof. Let x ∈ SC(R). It follows from Remark 3 that it is sufficient to show that there exists x̃ ∈ SC(R̃) with x̃iRixi. 
We can assume that there is a unique agent j ≠ i with R̃j ≠ Rj. (If there is more than one such agent, we repeat-
edly apply the one-agent result to obtain the result.) We can also assume that iR̃jxj. (Otherwise, xjP̃ji, in which 
case all steps of the Quint–Wako algorithm are identical for R and R̃ so that x ∈ SC(R) � SC(R̃).)

Consider graph GSP for market (N, R), that is, the graph that is generated in the Quint–Wako algorithm to 
obtain x. It follows from Facts 1∗ and 2∗ that agents i and j are related in (exactly) one of the following four ways: 

(a) i and j are independent: there is no path from i to j nor from j to i.
(b) i and j are absorbing set members: i and j are in the same absorbing set.
(c) i is a predecessor of j: there is a path from i to j in GSP with some edge in EP.21

(d) j is a predecessor of i: there is a path from j to i in GSP with some edge in EP.22

We distinguish among three cases, depending on the relation between agents i and j. 
Case I: (a) i and j are independent or (d) j is a predecessor of i.

Let F(i) be the followers of i in graph GSP, that is, the nodes that can be reached through a path in GSP. We use the 
convention i ∈ F(i). From (a) and (d), it follows that j ∉ F(i). Fact 2∗ implies that the Quint–Wako algorithm for R parti-
tions the agents in F(i) into a collection of absorbing sets. Because, for each agent k ∈ F(i), R̃k � Rk, it follows that the 
Quint–Wako algorithm for R̃ partitions the agents in F(i) into the same collection of absorbing sets. Because SC(R̃)≠ ∅, 
it follows from Remark 2 that there exists x̃ ∈ SC(R̃) such that, for each agent k ∈ F(i), x̃k � xk. In particular, x̃i � xi.

Case II: (b) i and j are absorbing set members.
Let St be the absorbing set that contains i and j in the Quint–Wako algorithm for R. Note that (i, xi) is an edge in 

the edge set ET
t (St) of the absorbing set St (possibly xi� i). Let F∗(Nt(St)) be the followers outside of Nt(St) that can 

be reached by some path in GSP that starts from a node in Nt(St). Then, xi ∉ F∗(Nt(St)). Fact 2∗ implies that the 
Quint–Wako algorithm for R partitions the agents in F∗(Nt(St)) into a collection of absorbing sets. Because, for each 
agent ℓ ∈ F∗(Nt(St)), R̃ℓ � Rℓ, it follows that the Quint–Wako algorithm for R̃ partitions the agents in F∗(Nt(St)) into 
the same absorbing sets. Then, because iR̃jxj and R̃j is obtained from Rj by shifting i up, when the Quint–Wako 
algorithm is applied to R̃, the absorbing set that contains i again contains xi and j and its edge set again contains 
(i, xi). Thus, at each x̃ ∈ SC(R̃)≠ ∅, agent i receives an object x̃i such that x̃i Iixi.

Case III: (c) i is a predecessor of j.
A path from i to j in GSP is said to be a best path from i to j if, at each node ℓ ≠ j on the path, the path follows one 

of agent ℓ‘s most preferred edges in

{(ℓ,ℓ′) ∈ ESP : there is a path from ℓ′ to j using edges in ESP}:

Let Pb(i, j) denote the set of best paths from i to j in GSP.
Because, for each ℓ ≠ j, R̃ℓ � Rℓ, iR̃jxj, and R̃j is obtained from Rj by shifting i up, it follows that at some step in 

the Quint–Wako algorithm for R̃, agent j starts pointing to agent i and keeps doing so as long as agent i is present.
Next, let pb(i, j) ∈ Pb(i, j) be any best path. Consider the agent l with (l, j) on path pb(i, j). Let k ∈N with kPlj. 

Because (l, j) is an edge in GSP but agent l strictly prefers k to j, it follows that the Quint–Wako algorithm for R 
removes agent k before agent j. Fact 2∗ implies that the Quint–Wako algorithm for R partitions the agents in F(k) 
(i.e., the followers of k, where k ∈ F(k)) into absorbing sets. Because j ∉ F(k) and for each ℓ ∈ F(k), R̃ℓ � Rℓ, it follows 
that the Quint–Wako algorithm for R̃ partitions the agents in F(k) into the same absorbing sets. Recall that k is an 
arbitrary object with kPlj. Thus, we can conclude that, at some step in the Quint–Wako algorithm for R̃, agent l 
starts pointing to agent j and keeps doing so as long as agent j is present.

We can repeat the same arguments until we conclude that each agent in the cycle formed by pb(i, j) and the 
edge (j, i), at some step, starts pointing to its direct follower and keeps doing so as long as the follower is present. 
Hence, at some step of the algorithm, the cycle formed by pb(i, j) and the edge (j, i) is part of an absorbing set. Let 
ib be the direct follower of agent i in path pb(i, j). Thus, at each x̃ ∈ SC(R̃)≠ ∅, agent i receives an object x̃i such 
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that x̃i Iiib. Note that, in graph GSP, (i, ib) ∈ ES or (i, ib) ∈ EP. If (i, ib) ∈ ES, then ibIixi, in which case x̃iIixi. If 
(i, ib) ∈ EP, then by definition of EP, ibRixi, in which case x̃iRixi. w

An immediate corollary to Theorem 3 is that the strong core satisfies the conditional RI-best and RI-worst 
properties.

Corollary 2. For each i ∈N and each pair of profiles of preferences R, R̃ such that SC(R),SC(R̃)≠ ∅ and R̃ is an improve-
ment for i with respect to R, 
• There is x̃ ∈ SC(R̃) such that, for each x ∈ SC(R), x̃iRixi.
• There is x ∈ SC(R) such that, for each x̃ ∈ SC(R̃), x̃iRixi.

3.3. Bounded Length Exchange Cycles
Motivated by kidney exchange programs, we consider housing markets in which the length of allowed exchange 
cycles in allocations is limited. We provide several examples to demonstrate the possible violations of the respecting 
improvement property (or variants/extensions of the property) in the setting of bounded length exchanges.

3.3.1. Definitions. Let M � (N, R) be a housing market. Let k be an integer that indicates the maximum allowed 
length of exchange cycles. An allocation is a k-allocation if each exchange cycle has length at most k, that is, there exists 
a partition of N � S1 ∪ S2 ∪⋯∪ Sq such that, for each p ∈ {1, : : : , q}, |Sp | ≤ k and {xi : i ∈ Sp} � Sp. Assuming that block-
ing coalitions are subject to the same length of allowed exchange cycles, the definition of the three cores can be 
adjusted accordingly as well.23 Specifically, the k-core consists of the k-allocations for which there is no blocking coali-
tion of size at most k; the strong k-core consists of the k-allocations for which there is no weakly blocking coalition of 
size at most k; the Wako-k-core consists of the k-allocations that are not antisymmetrically weakly dominated through 
a coalition of size at most k.

Similarly to the unbounded case, the three blocking notions are nested. Hence, the strong k-core is a subset of the 
Wako-k-core, and the Wako-k-core is a subset of the k-core. Moreover, again similarly to the unbounded case, it fol-
lows easily that, for strict preferences, the strong k-core coincides with the Wako-k-core.

To keep notation as simple as possible, whenever the context is clear, we omit “k” from k-allocation, k-core, etc., and 
instead refer to k-housing markets to invoke the restriction on exchange cycles, blocking coalitions, allocations, and cores.

The practically important case of pairwise exchanges, that is, k� 2, is known as the stable roommates problem 
(introduced in Gale and Shapley [23]): 
• Strict preferences: the strong core, Wako-core, and core coincide and correspond to the set of stable matchings.
• Weak preferences: the Wako-core and core coincide and correspond to the set of weakly stable matchings, 

whereas the strong core corresponds to the set of strongly stable matchings.
We refer to Manlove [33] for more details. It is important to note that any of the cores can be empty when exchange 

cycles are bounded even if preferences are strict. Therefore, the following analysis necessarily concerns conditional 
respecting improvement properties.

3.3.2. Pairwise Exchanges (k 5 2). As mentioned in Section 1, the maximization of the number of pairwise exchanges 
does not respect improvement. Example 4 proves this formally. A consequence is that the priority mechanisms studied 
by Roth et al. [42] need not be donor-monotonic if agents’ preferences can be nondichotomous.

Table 6. Preferences R in Example 4.

1 2 3 4

2 1 3 2
3 4 4
1 2

Table 7. Preferences R̃ in Example 4.

1 2 3 4

2 1 1 2
3 4 3 4
1 2
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Example 4. Let N � {1, 2, 3, 4}. Let the initial preferences R be given by Table 6 and the new preferences R̃, in 
which object 1 becomes acceptable for agent 3, by Table 7.

Initially, at R, there are two ways to maximize the number of pairwise exchanges, namely, by picking either of the 
two-cycles (1, 2) and (2, 4). Assume, without loss of generality, that (1, 2) is selected. (In case (2, 4) is selected, similar 
arguments can be employed.) Now, suppose the discontinuous edge (in Figure 5) is included so that agent 1 
“improves” and we obtain R̃. Then, the unique way to maximize the number of pairwise exchanges is obtained by 
picking the two two-cycles (1, 3) and (2, 4), which means that agent 1 is strictly worse off than in the initial 
situation. w

The following example shows that the (strong, Wako-) core violates the conditional RI-worst property even if pre-
ferences are strict.

Example 5. Let N � {1, 2, 3, 4}. Let the initial preferences R be given by Table 8 and the new preferences R̃, in 
which object 1 becomes acceptable for agent 3, by Table 9.

Initially, at R, the unique (strong, Wako-) core allocation is xa � {(1, 2), (3, 4)}. Now, suppose the discontinuous 
edge (in Figure 6) is included so that agent 1 “improves” and we obtain R̃. Then, another (strong, Wako-) core 
allocation is created, xb � {(1, 3), (2, 4)}, which is strictly worse for agent 1. Hence, the (strong, Wako-) core vio-
lates the conditional RI-worst property under strict preferences. w

The next example shows that when preferences are weak, the core/Wako-core also violates the conditional RI-best 
property.

Example 6. Let N � {1, 2, 3, 4}. Let the initial preferences R be given by Table 10 and the new preferences R̃, in 
which object 4 becomes acceptable for agent 1, by Table 11.

Initially, at R, there exist two (Wako-) core allocations xa � {(3, 4)} and xb � {(1, 3), (2, 4)}. The best allotment for 
agent 4 is object 3, obtained at allocation xa. Now, suppose the discontinuous edge in Figure 7 is included so that 

Figure 5. Acceptablity graph in Example 4. 

Table 8. Preferences R in Example 5.

1 2 3 4

2 4 4 3
3 1 3 2
1 2 4

Table 9. Preferences R̃ in Example 5.

1 2 3 4

2 4 1 3
3 1 4 2
1 2 3 4

Figure 6. Acceptability graph in Example 5. 
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agent 4 “improves” and we obtain R̃. Then, the new cycle (1, 4) blocks allocation xa, whereas (1, 3) blocks the (unique) 
new feasible allocation xc � {(1, 4)}. Thus, the (Wako-) core consists of the unique allocation xb. Hence, agent 4’s allot-
ment at the unique (Wako-) core allocation (xb

4 � 2) is strictly worse than the best allotment (xa
4 � 3) initially. Hence, 

the (Wako-) core violates the conditional RI-best property under weak preferences. w

We summarize these two findings in the following statement.

Proposition 1. Under strict preferences and pairwise exchanges, the (strong, Wako-) core violates the conditional RI-worst 
property. Under weak preferences and pairwise exchanges, the (Wako-) core violates the conditional RI-best property.

3.3.3. Three-Way and Longer Bounded Exchanges (k ≥ 3). In the following example, we exhibit two housing mar-
kets, and we prove that, for each housing market, the three cores coincide (and are nonempty). Subsequently, we use 
the example to show that the three cores do not conditionally respect improvement for the best allotments when the 
maximum allowed length of exchange cycles is three.

Example 7. Throughout the example, we focus on the core. However, because all blocking arguments can be 
replaced by weak blocking arguments, all statements also hold for the strong core and, hence, also for the Wako- 
core. Let N � {1, : : : , 10} be the set of agents. We consider two housing markets that only differ in preferences. 
First, consider the housing market (N, R), or simply R for short, with “cyclic” strict preferences given in Table 12.

Table 10. Preferences R in Example 6.

1 2 3 4

3 4 1, 4 1
1 2 3 3

2
4

Table 11. Preferences R̃ in Example 6.

1 2 3 4

3 4 1,4 1
4 2 3 3
1 2

4

Figure 7. Acceptability graph in Example 6. 

Table 13. Preferences Rb in Example 7.

1 2 3 4 5 6 7 8 9 10

4 3 4 5 6 7 8 1 10 1
2 1 2 8 4 5 6 9 8 9
10 2 3 3 5 6 7 7 9 10
1 4 8

Table 12. Preferences R in Example 7.

1 2 3 4 5 6 7 8 9 10

2 3 4 5 6 7 8 9 10 1
10 1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8 9 10

Biró et al.: Housing Markets: Respecting Improvement, IP, and Kidney Exchange 
Mathematics of Operations Research, Articles in Advance, pp. 1–35, © 2023 The Author(s) 17 



Because only directly neighboring objects (and one’s own object) are acceptable, it follows that the only exchange 
cycles in which each agent is assigned an acceptable object are the 10 self-cycles and the 10 two-cycles (i, i+ 1) (mod 
10) in which agents i and i+1 swap their objects.24 The core C(R) � {xa, xb} consists of the following two allocations:

xa � {(1, 2), (3, 4), (5, 6), (7, 8), (9, 10)} and
xb � {(10, 1), (2, 3), (4, 5), (6, 7), (8, 9)}:

Next, we create an extended housing market Rb by inserting one three-cycle in R. Preferences Rb are provided in 
Table 13, in which the changes with respect to R are bold-faced and depicted in Figure 8.

Apart from the earlier mentioned self-cycles and two-cycles, the only additional exchange cycle with only accept-
able objects in Rb is cb � (1, 4, 8). Allocation xb is in the core of Rb because cb does not block xb: agent 4 obtains object 8 
in cb, which is strictly less preferred than the agent’s assigned object 5 at xb. In fact, xb is the unique core allocation of 
Rb. To see this, note first that xa is not in the core of Rb as cb blocks it. And, second, the only new exchange cycle created 
in Rb, that is, cb, cannot be part of a core allocation because, if it were, then to avoid blocking cycle (4, 5), the next two- 
cycle (5, 6) would have to be part of the allocation, in which case, 7 would remain unmatched (i.e., be a self-cycle) and 
cycle (6, 7) would block the allocation. Therefore, xb is the unique core allocation of Rb, that is, C(Rb) � {xb}. w

Using the previous example, we can easily prove that, when k� 3, the strong core, Wako-core, and core violate the 
conditional RI-best property even if preferences are strict.

Proposition 2. Suppose the maximum allowed length of exchange cycles is three. Then, there are three-housing markets 
with strict preferences (N, R) and (N, R̃) with 
• X(R) ≡ SC(R) �WC(R) � C(R) ≠ ∅ and
• X(R̃) ≡ SC(R̃) �WC(R̃) � C(R̃)≠ ∅
such that, for some i ∈N, R̃ is an improvement for i with respect to R but 
• X(R̃) ⊆ X(R),
• For the unique x ∈ X(R)\X(R̃) and for the unique x̃ ∈ X(R̃)\X(R), xi Pix̃i.

Proof. Let (N, R̃) be the three-housing market with N � {1, : : : , 10} and R̃ � Rb from Example 7. Let (N, R) be the 
three-housing market that is obtained from (N, R̃) by making object 1 unacceptable for agent 8. Obviously, R̃ is 
an improvement for agent 1 with respect to R. As shown in Example 7, SC(R̃) �WC(R̃) � C(R̃) � {xb}≠ ∅. One 
also easily verifies that SC(R) �WC(R) � C(R) � {xa, xb}≠ ∅. Finally, agent 1’s most preferred allotment in SC(R) �
WC(R) � C(R) is object 2, whereas agent 1’s unique (hence, most preferred) allotment in SC(R̃) �WC(R̃) � C(R̃) is 
object 10. Because agent 1 strictly prefers object 2 to object 10, the result follows. w

Remark 4. Example 7 and the proof of Proposition 2 can be adjusted to demonstrate the violation of the condi-
tional RI-best property for any larger upper bound k on the length of the exchange cycles as follows. We keep the 
structure of the example with the double outer cycle and the embedded three-cycle but we extend the length of 
the outer cycle so that we do not create any new cycle of length at most k, also keeping the parity of the highest 
two nodes of the embedded three-cycle. That is, if 1 is the starting node and i, j are the other two nodes of the 
embedded three-cycle, then both i and j remain even. For example, for k� 4, we extend the double outer cycle to 
consist of 14 vertices, and we have an inner three-cycle that consists of agents 1, 6, and 10. w

Figure 8. (Color online) Acceptability graph for Rb in Example 7. 
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Remark 5. When k� 3, the strong core, Wako-core, and core also violate the conditional RI-worst property even 
if preferences are strict. This follows from Example 5 and the observation that there is no three-cycle with only 
acceptable objects. w

Remark 6. Motivated by kidney exchange programs, we consider a limitation on the length of allowed exchange 
cycles. All results (Examples 4–7 and Propositions 1 and 2) are negative; that is, we show violations of (adjusted 
versions of the) respecting improvement property. However, there can exist different types of restrictions 
(instead of bounded length), for instance, because of technological or logistical reasons that may exclude specific 
cyclical exchanges. We conjecture that such restrictions lead to additional negative results but leave an in-depth 
study for future research. w

4. Integer Programming Formulations
In this section, we propose new IP formulations for the core, the set of competitive allocations (i.e., the Wako-core), 
and the strong core. First, we propose novel edge formulations for the unbounded case for all three solution concepts. 
Second, we improve the formulations in Quint and Wako [39] by giving alternative cycle formulations for the core 
and strong core. Third, we provide a new formulation for the Wako-core for the case of bounded length exchange 
cycles. The novel IP formulations serve as a stepping stone for our computational experiments in Section 5.

4.1. Novel Edge Formulations
Let (N, R) be a housing market and G ≡ G(N, R) � (N, E) its acceptability graph. Because all three cores only contain 
individually rational allocations, we can restrict attention to the edges of the acceptability graph. Specifically, with 
each edge (i, j) ∈ E, we associate a variable yij as follows:

yij �
1 if agent i receives object j;
0 otherwise:

(

Then, the base model reads as follows: X

j:(i, j)∈E
yij � 1 ∀i ∈ N, (1) 

X

j:(j, i)∈E
yji � 1 ∀i ∈ N, (2) 

yij ∈ {0, 1} ∀(i, j) ∈ E: (3) 

Constraints (1) guarantee that agent i receives exactly one (acceptable) object (possibly the agent’s own). Constraints 
(2) guarantee that object i is given to exactly one agent. Each vector (yij)(i, j)∈E that satisfies (1)–(3) yields an allocation x 
defined by xi� j if and only if yij�1. Moreover, each allocation can be obtained in this way. So there is a one-to-one 
correspondence between allocations and vectors that satisfy (1)–(3).

We introduce for each i ∈N an additional integer variable pi that represents the price of object i:
pi ∈ {1, : : : , n} ∀i ∈N: (4) 

In what follows, we give our IP formulations for the general case of weak preferences and explain how they can be 
simplified for strict preferences. We tackle the core, the set of competitive allocations (i.e., the Wako-core), and the 
strong core (in this order) by subsequently adding constraints. Given an allocation x, we say that x dominates an edge 
(i, j) in the acceptability graph G if agent i weakly prefers the agent’s allotment xi to object j, that is, xi Ri j.

4.1.1. IP for the Core. It follows from Lemma 1 that an individually rational allocation x is in the core if and only if 
each cycle in G contains an edge that is dominated by x or, equivalently, there exists no cycle in G that consists of 
undominated edges. Note that the undominated edges in G form a cycle-free subgraph of G if and only if there is a 
topological order of the objects in the subgraph of G that consists of the undominated edges. The existence of this 
topological order is equivalent to the existence of prices of the objects such that, for each undominated edge (i, j), 
pi< pj. Therefore, an allocation x is in the core if and only if there exist prices (pi)i∈N such that

(i, j) ∈ E is not dominated by x ⇒ pi < pj: (*) 
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Thus, core allocations are characterized by Constraints (1)–(4) together with (5):

pi + 1 ≤ pj + n ·
X

k:kRij
yik ∀(i, j) ∈ E: (5) 

Proposition 3. Let x be an allocation. Let y be the corresponding vector that satisfies (1)–(3). Allocation x is in the core if 
and only if there are prices (pi)i∈N such that (4) and (5) hold.

Proof. First, observe that, for each (i, j) ∈ E,
(i, j) is dominated by x � xi Ri j

� there is k ∈N with k Ri j and yik � 1
�

X

k:kRij
yik � 1: (**) 

Suppose x is in the core. Then, there exist prices (pi)i∈N that satisfy (4) and (*). We verify that (5) holds. Let 
(i, j) ∈ E. If (i, j) is not dominated by x, then (5) follows immediately from (*). Suppose (i, j) is dominated by x. 
From (**), 

P
k:kRijyik � 1. Hence,

pi + 1 ≤ n+ 1 ≤ pj + n � pj + n ·
X

k:kRij
yik:

Suppose that there exist prices (pi)i∈N such that (4) and (5) hold. We verify that (*) holds. Let (i, j) ∈ E and suppose 
it is not dominated by x. From (**), 

P
k:kRijyik � 0. Hence, from (5), pi + 1 ≤ pj + n · 0, that is, pi<pj. w

4.1.2. IP for the Set of Competitive Allocations (Wako-Core). The set of competitive allocations is characterized by 
Constraints (1)–(5) together with (6):

pi ≤ pj + n · (1� yij) ∀(i, j) ∈ E: (6) 

Proposition 4. Let x be an allocation. Let y be the corresponding vector that satisfies (1)–(3). Allocation x is competitive if 
and only if there exist prices (pi)i∈N such that (4)–(6) hold. Moreover, if such prices exist, then, together with x, they consti-
tute a competitive equilibrium.

Proof. Suppose x is competitive. Let (pi)i∈N be prices such that (x, p) is a competitive equilibrium. Then, (4) and 
(*) hold. From the first part of the proof of Proposition 3, it follows that (5) holds. We now prove that (6) holds as 
well. Let (i, j) ∈ E. If yij�0, then, immediately, pi ≤ pj + n � pj + n · (1� yij). If yij�1, then xi� j, and because (x, p) is 
a competitive equilibrium, it follows from Remark 1 that pi � pxi � pj.

Suppose that there exist prices (pi)i∈N such that (4)–(6) hold. We verify that (x, p) is a competitive equilibrium. 
First, it follows from (6) that, for each i ∈N, taking j�xi yields pi ≤ pxi + n · (1� 1) � pxi , that is, pi ≤ pxi . Hence, 
from Remark 1, for each i ∈N, pi � pxi . Second, let j ∈N be an object such that j Pi xi. Then, (i, j) ∈ E is not dominated 
by x. From the second part of the proof of Proposition 3, it follows that (*) holds. Hence, we obtain pi<pj. w

4.1.3. IP for the Strong Core. The strong core is characterized by Constraints (1)–(6) together with (7):

pi ≤ pj + n ·
X

k:kPij
yik

0

@

1

A ∀(i, j) ∈ E: (7) 

Proposition 5. Let x be an allocation. Let y be the corresponding vector that satisfies (1)–(3). Allocation x is in the strong 
core if and only if there exist prices (pi)i∈N such that (4)–(7) hold. Moreover, if such prices exist, then, together with x, they 
constitute a competitive equilibrium.

Proof. Suppose x is in the strong core. By Remark 2, x can be obtained in the Quint–Wako algorithm by choosing, 
for each absorbing set in the algorithm, a particular cycle cover. Hence, there exist price (pi)i∈N such that (i) Con-
straints (4) are satisfied, (ii) all objects in the same absorbing set have the same price, and (iii) an absorbing set 
that is processed earlier by the algorithm has a strictly higher associated price (of its objects). It is easy to verify 
that (x, p) is a competitive allocation. Hence, from the first part of the proof of Proposition 4, it follows that (5) 
and (6) hold. Finally, to see that (7) holds, note that, from the definition of the prices, it follows that (i) if jRixi, 
then pi ≤ pj, and (ii) if xiPij, then pi ≤ n � n(

P
k:kPijyik).
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Suppose that there exist prices (pi)i∈N such that (4)–(7) hold. It follows from Proposition 4 that (x, p) is a com-
petitive equilibrium. We prove that x is a strong core allocation. Suppose there is a coalition S that weakly blocks 
x through an allocation z. From Lemma 1, it follows that we can assume, without loss of generality, that S �
{1, : : : , r} and that, for each i � 1, : : : , r� 1, zi � i+ 1, zr�1, and z1P1x1. Because x is individually rational, r>1. 
Because (x, p) is a competitive equilibrium, p1 < p2. Because 3 � z2 R2 x2, we have 

P
k:kP23y2k � 0. Hence, from (7),

p2 ≤ p3 + n ·
X

k:kP23
y2k

 !

� p3:

So p2 ≤ p3. By repeatedly applying the same arguments, we find p2 ≤ p3 ≤⋯≤ pr ≤ p1. Because p1 < p2, we obtain a 
contradiction. Therefore, there is no coalition that weakly blocks x. Hence, x is a strong core allocation. w

Remark 7. We note that, in the case of strict preferences, Constraints (7) are satisfied by any competitive equilib-
rium (x, p). To see this note that, if yij� 1, then (6) implies (7) because 1� yij � 0, and hence,

pi ≤ pj + n · (1� yij) � pj ≤ pj + n ·
X

k:kPij
yik

0

@

1

A:

Otherwise, if yij� 0, then (5) implies (7) because, for strict preferences 
P

k:kPijyik �
P

k:kPijyik + yij �
P

k:kRijyik, and hence,

pi < pi + 1 ≤ pj + n ·
X

k:kRij
yik

0

@

1

A � pj + n ·
X

k:kPij
yik

0

@

1

A:

Therefore, in either case, Constraints (7) are satisfied. This reflects the fact that, for strict preferences, the strong core is 
a singleton that consists of the unique competitive allocation. w

4.2. Quint and Wako’s IP Formulations
To compare our IP formulations with the IP formulations for the core and strong core given by Quint and Wako [39], 
we describe the latter IP formulations using our notation.

First, for both the core and strong core, Quint and Wako [39] use the basic Constraints (1)–(3). We refer to their 
equations (9.2)–(9.4) as well as (8.2)–(8.4), together with an integrality condition.

Next, to obtain the core, Quint and Wako [39] impose the following additional no-blocking condition (see Quint 
and Wako [40, equation (9.1)]):

X

i∈S

X

j:jRiπi

yij

0

@

1

A ≥ 1 ∀S ⊆ N,π ∈ ΠS: (8) 

Finally, to obtain the strong core, Quint and Wako [39] impose the following additional no-blocking condition (see 
Quint and Wako [39, equation (8.1)):

X

i∈S

X

j:jPiπi

yij +
1
|S |
X

j:jIiπi

yij

0

@

1

A ≥ 1 ∀S ⊆ N,π ∈ ΠS, (9) 

where ΠS is the set of allocations in the submarket MS (so that π�is an allocation in MS).
Constraints (8) and (9) directly describe that no coalition S can block/weakly block through an allocation π, respec-

tively. Both sets of constraints are highly exponential (in the number of agents) because they are required not only for 
all subsets S of N, but also for all possible redistributions within each S.

4.2.1. Alternative Cycle Formulations. In view of Lemma 1, it is sufficient to impose Constraints (8) and (9) for the 
cycles of the acceptability graph G. Based on this observation and results in Klimentova et al. [28], we describe alterna-
tive cycle formulations for the core and strong core. Furthermore, we provide a new proposition and IP formulation 
for the Wako-core.

Let M � (N, R) be a housing market. Let K denote the set of exchange cycles in G(N, R). For a cycle c ∈ K, let N(c) 
and A(c) denote the set of nodes and edges in c, respectively, and let |c | denote the size/length of c. We write ci� j if 
agent i receives object j in the exchange cycle c, that is, (i, j) ∈ A(c).
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Proposition 6 (Klimentova et al. [28]). An allocation x is in the core if and only if, for each cycle c ∈K, for some agent 
i ∈N(c), xiRici.

The corresponding IP constraints, which reduce Constraints (8) to cycles, are as follows:
X

(i, j)∈A(c)

X

k:kRij
yik ≥ 1 ∀c ∈ K: (10) 

Next, we describe the alternative cycle formulation for the strong core. First, we focus on the special case of strict 
preferences.

Proposition 7 (Klimentova et al. [28]). Suppose preferences are strict. Then, an allocation x is in the strong core if and 
only if, for each cycle c ∈K, c is an exchange cycle in x or for some agent i ∈N(c), xiPici.

Proposition 7 leads to the following constraints:

X

(i, j)∈A(c)
yij + |c | ·

X

(i, j)∈A(c)

X

k:kPij
yik

2

4

3

5≥ |c | ∀c ∈ K: (11) 

The alternative cycle formulation for the strong core in the general case (in which preferences can have ties) is as 
follows.

Proposition 8 (Klimentova et al. [28]). An allocation x is in the strong core if and only if, for each cycle c ∈K, 
(i) c is an exchange cycle in x, or
(ii) For some agent i ∈N(c), xiPici, or
(iii) For each agent i ∈N(c), ciIixi.

The corresponding IP constraints, which reduce Constraints (9) to cycles, are as follows:

X

(i, j)∈A(c)

X

k:kIij
yik + |c | ·

X

(i, j)∈A(c)

X

k:kPij
yik

2

4

3

5≥ |c | ∀c ∈ K: (12) 

Finally, similarly to the core and strong core, we provide a new alternative characterization for the Wako-core.

Proposition 9. An allocation x is in the Wako-core if and only if, for each cycle c ∈K, 
(i) c is an exchange cycle in x, or
(ii) For some agent i ∈N(c), xiPici, or
(iii) For some agent i ∈N(c), ciIixi and ci ≠ xi.

The proof of Proposition 9 is omitted as it can be shown in a similar way as Proposition 8 (see Klimentova et al. 
[28]). Proposition 9 leads to the following constraints, which can be used to find competitive allocations (i.e., 
allocations in the Wako-core):

X

(i, j)∈A(c)
yij + |c | ·

X

(i, j)∈A(c)

X

k:kRij, k≠j
yik

2

4

3

5 ≥ |c | ∀c ∈ K: (13) 

To see the correctness of this new formulation, observe that the first term of (13) is equal to |c | if condition (i) of Prop-
osition 9 is satisfied and less than |c | otherwise and the second term has value at least |c | if condition (ii) or (iii) of 
Proposition 9 is satisfied and zero otherwise. Therefore, Constraint (13) is satisfied if and only if at least one of the 
three conditions of Proposition 9 holds.

4.3. Bounded Length Exchange Cycles
Note that the preceding cycle formulations are not very practical because of the exponentially large number of cycles. 
In fact, this justifies the novel IP formulations proposed in Section 4.1. However, the cycle formulations are practical 
for the case of bounded length exchange cycles.

One easily verifies that Lemma 1 can be extended to bounded length exchange cycles in a natural way: the strong 
core, Wako-core, and core of a k-housing market can be defined equivalently by the absence of corresponding block-
ing cycles of size at most k. In fact, Klimentova et al. [28] provide IP formulations for the core and strong core by 
adapting Constraints (10) and (12) to bounded exchange cycles. One can similarly adapt Constraints (13) to obtain an 
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IP formulation for the Wako-core of a k-housing market. In our simulations, we use the most efficient cycle-edge for-
mulations by Klimentova et al. (see the detailed description in Klimentova et al. [28, section 3.3]).

5. Computational Experiments
This section is dedicated to computer simulations that use the IP formulations proposed in Section 4 and Klimentova 
et al. [28]. The main objective is the comparison of different solution concepts, in particular, with respect to the 
respecting improvement property. The simulations for strict and weak preferences were conducted separately, espe-
cially in view of our theoretical findings in Section 3.

Throughout, we consider two objective functions, namely, (1) the maximization of the size of the allocation (corre-
sponding to the maximization of the number of transplants in the context of KEPs) and (2) the maximization of the 
total weight (weights of edges can be interpreted as the scores given to the corresponding transplants in a KEP, i.e., 
reflecting the quality of the transplants). Note that we use and distinguish between the two objectives for each of the 
cores as well as, in each of the cores, the allocations that yield a maximum number of transplants may be different 
from the allocations that yield maximum total weight.

The remainder of this section is organized as follows. In Section 5.1, we provide an overview of the test instances 
used for computational analysis and discuss the most relevant implementation details. In Section 5.2, we present our 
results on the frequency of violations of the (conditional) respecting improvement property for the best allotments 
with respect to all models. One important finding is that the strong core, Wako-core, and core perform much better 
than the size and weight maximization models. Then, to analyze the potential trade-off between stability require-
ments and size/weight, we study in Section 5.3 the reduction in size/weight of maximum size/weight allocations 
when ever more stringent stability (no blocking) requirements are imposed, that is, moving to core, then to competi-
tive/Wako-core, and finally to strong core allocations. For the unbounded case, we furthermore analyze the price of 
fairness. Finally, as a counterpart to the analysis in Section 5.3, Section 5.4 computes for each model the average num-
ber of weakly blocking cycles. Thus, we obtain an estimation of how much robustness/fairness we have to give up 
vis-à-vis the strong core.

5.1. Test Instances and Implementation Details
Test instances were generated with the generator proposed in Santos et al. [45] and Klimentova et al. [27] to mimic 
the pools observed in KEPs and are available from https://doi.org/10.25747/xh4y-2r05. The generator creates com-
patibility (acceptability) graphs for KEPs with the set of agents N consisting of incompatible pairs and nondirected 
donors (NDDs), that is, donors with no associated recipient. Dummy edges were created from an NDD to each node 
to handle chains initiated by NDDs in the same way as cycles are operated. Thus, the preferences of the NDDs repre-
sent the interest of the patients on the waiting list. The size of an instance (i.e., number of agents/nodes |N |) ranged 
from 20 to 150; 50 instances of each size were generated. The weights associated with the edges of the graph were gen-
erated randomly within the interval (0, 1), and preferences were assigned in accordance with the weights: the higher 
the weight of an outgoing edge of a given node, the more preferred the corresponding (pointed) object for the (point-
ing) agent is. To generate instances with weak preferences, outgoing edges with weights within each interval of 
length 1

|N | were considered equally preferable.
For unbounded length exchange cycles, in order to speed up the running time of the IP formulations, we imple-

mented the TTC algorithm and used its output as a starting allocation for all models. Even if this starting allocation 
was infeasible for the IP formulation (which can happen for the strong core) it was accepted by the solver.

All programs were implemented using Python programming language and tested using Gurobi as the optimiza-
tion solver (Gurobi Optimization [24]). The code is available at https://gitlab.com/xenia.klimentova/housemarket_pub. 
Tests were executed on a MacMini 8 running macOS version 10.14.3 in an Intel Core i7 CPU with six cores at 3.2 GHz 
and 8 GB of RAM. Average CPU times required to solve an instance of a given size for each of the formulations in Sec-
tion 4 are presented in Appendix C.

5.2. Violations of the Respecting Improvement Property
In this section, we conduct a computational analysis on how often the (conditional) RI property is violated for the 
best allotments under different models for both unbounded and bounded exchange cycles. For the unbounded case, 
we considered only the size and weight maximization models, that is, not the strong core, Wako-core, and core. The 
reason is that Theorem 1 and Corollary 2 show that the strong core satisfies the (conditional) RI-best property; Theo-
rem 1 and Corollary 1 show that the Wako-core (competitive allocations) satisfies the RI-best property; and Schlotter 
et al. [46] prove that the core satisfies the RI-best property (for weak preferences).
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For each model and instances with 20 and 30 nodes, we run Algorithm 1 to determine the number of violations of 
the (conditional) RI-best property. The algorithm proceeds as follows. For each pair of distinct agents i and j and start-
ing from the original preferences, we let object i make consecutive improvements by moving it up in the preference 
list of agent j (until it is at the top). Specifically, let k be the lowest (least preferred) object that agent j strictly prefers to 
i. In the case of strict preferences, at each step of the while loop, object i is swapped with object k. In the case of ties 
(weak preferences), object i first becomes tied with (equally preferred to) object k. After each such improvement, the 
allocations (for the model under consideration) that provide the best allotments for i for the original (R) and improved 
(R̃) preferences are compared. If such an allocation does not exist for R̃, the algorithm continues with the next itera-
tion of the while loop. If such an allocation does exist for R̃, then we check whether there is a violation of the RI-best 
property (i.e., whether agent i obtains a strictly worse allotment in the allocation for R̃).

In the formal description of the algorithm, we use the following definition and notation. For any agent i and any 
preferences Ri, we define for each object ℓ�a rank ri

ℓ ∈ {1, : : : , |N | } such that, for all objects ℓ, ℓ′, we have ri
ℓ ≤ (< , �) ri

ℓ′

if and only if ℓRi(Pi, Ii)ℓ
′. In other words, objects with a smaller rank are more preferred.

Algorithm 1 (Procedure for Checking the RI-Best Property)
Ensure: M number of violations of the RI-best property 
1: M← 0;
2: for i ∈N, j ∈N, i ≠ j do
3: Let R be the current preferences of agents;
4: Find an allocation with a best allotment for i with respect to R, denote the allocation by y;
5: For yiℓ � 1, denote r � ri

ℓ;
6: while ∃kPji do
7: Let k be the first strictly preferred object for j that precedes i in Rj;
8: if strict preferences then
9: Swap i with k in the preferences of j;

10: end if
11: if weak preferences then
12: Let i become equally preferred for j as k (i.e., rj

i← rj
k);

13: end if
14: Denote the modified preferences by R̃;
15: Find an allocation with a best allotment for i with respect to R̃, denote allocation by ỹ;
16: if core/Wako-core/strong core is empty then
17: continue;
18: end if
19: For ỹiℓ̃ � 1, denote r̃ � ri

ℓ̃
;

20: if r < r̃ then
21: The RI-best property is violated: M←M+ 1;
22: end if
23: r← r̃; R← R̃;
24: end while
25: end for

Figures 9 and 10 present box plots (in which outliers are omitted) for the number of violations of the RI-best prop-
erty for strict and weak preferences, respectively, for models in which the RI-best property is violated at least once. 
Max-w refers to maximum weight allocations, and Max-t to allocations with maximum size, that is, maximum num-
ber of transplants. Similarly, Core-{t, w}, W:-Core-{t, w}, and S:Core-{t, w}, refer to the core, Wako-core and strong 
core, respectively.25 Models that lead to the same result, independently of the considered objective, are plotted 
together. This is the case, for example, for Core-t and Core-w with k�3 and strict preferences (see Figure 9) and 
W:-Core and Core with k�2, 3 and weak preferences (see Figure 10).

It can be immediately observed that the (Wako-, strong) core models produced only a few cases of violations of the 
RI-best property. To give an indication, the total number of violations for all instances with weak preferences, 
|N | � 30, and k�3 was 4,549 for Max-t and 3,145 for Max-w but only 10 for Core-{t, w}, 20 for W:-Core-{t, w}, and 2 
for S:Core-{t, w}. For maximum size and maximum weight allocations (Max-t and Max-w, respectively) for both the 
unbounded and bounded cases, one can observe a significant number of violations. These numbers increase with 
instance size. Interestingly, for the unbounded case, the number of violations for Max-t was lower than that for 
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Max-w. This can be explained by the fact that the former (size objective) problem usually induces multiple allocations 
that yield the same allotment for some agent, whereas the latter (weighted objective) problem usually induces a 
unique allocation. On the contrary, for the bounded case, maximum weight allocations tend to violate the RI-best 
property less often than maximum size allocations. A further inspection of the data shows that this difference 
between the unbounded and bounded case is mostly because of a higher number of violations for Max-t in the 
bounded case; the number of violations for Max-w is rather constant.26

5.3. Impact of Stability on the Number of Transplants
The most important finding in Section 5.2 is that, in terms of respecting improvement, the strong core, Wako-core, 
and core perform much better than the size and weight maximization models. Next, we analyze the potential trade- 
off between stability requirements and size/weight.

Focusing on the case of unbounded exchange cycles and weak preferences, Figure 11 depicts average maximum 
size and weight when increasingly stringent stability requirements are imposed. Starting off with no stability require-
ments (Max), we consecutively add the constraints required for core, competitive, and strong core allocations. We 
refrain ourselves from presenting the results for the case of strict preferences as all curves are similar (also recall that, 
for strict preferences, the competitive and strong core allocations coincide).

Figure 10. (Color online) Total number of violations of the RI-best property of all instances of a given size with weak preferences. 

Figure 9. (Color online) Total number of violations of the RI-best property of all instances of a given size with strict preferences. 
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As expected, both the number of transplants and total weight decrease by increasing the number of constraints: 
when moving from Max to Core, then to Competitive, and finally to StrongCore, the corresponding curves shift 
downward. The StrongCore curve is nonmonotonic, which is explained by the nonexistence of strong core allocations 
for several instances. Next to the curve, we indicate the number of instances (out of the total 50) for which a strong 
allocation existed.

Figure 12 makes a similar analysis for the bounded case when k� 2 and k� 3, indicated as [k] next to the name of 
the curves. If the core, Wako-core, or strong core turned out to be empty, then we computed an allocation that mini-
mizes the number of associated blocking cycles in the same way as described in Klimentova et al. [28].27

Figure 11. (Color online) Average number of transplants (left) and average total weight of transplants (right) for unbounded 
length and weak preferences. Each number indicates the number of instances (out of 50) for which a strong core allocation 
existed. 

Figure 12. (Color online) Comparison of the average number of transplants (left) and the average total weight of transplants 
(right) for bounded length exchange cycles (k � 2, 3, indicated as [k] next to the name of the curves) and weak preferences. Solid 
lines are used for the unbounded case ([∞]), dotted lines for k � 2, and dashed lines for k � 3. 
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To facilitate the comparison between the bounded and unbounded cases, Figure 12 also contains the two curves of 
the unbounded case from Figure 11 associated with maximum size/weight (Max), denoted by Max[∞], which pro-
vide upper bounds. Unsurprisingly, the curves associated with k�2 are located below those associated with k�3. We 
can observe that the maximum number of transplants for k�3 and unbounded k are very similar (see Figure 12 (left)). 
Notice also that, even though some curves overlap and seem identical, there are minor differences among them 
except for the case k�2 in which the core and Wako-core coincide. As before, we present results for weak preferences 
only as this is the more general case. In the case of strict preferences, for k�3, the curves are similar, whereas for k�2, 
the core, Wako-core, and strong core coincide.

From a practical point of view, an interesting question to explore is the impact of (core) stability requirements on 
the achievable number of transplants. Although KEPs have many other key performance indicators, the achievable 
number of transplants is unarguably the most relevant one, as this criterion is optimized as a first objective in all Euro-
pean KEPs (Biró et al. [17]). Figure 13 depicts our findings on the price of fairness for unbounded exchange cycles. 
The price of fairness is calculated as the average percentage loss in the number of transplants for maximum weight 
allocations as well as for core, competitive, and strong core allocations under both objectives when compared with 
the maximum number of transplants achievable. Because the strong core can be empty for weak preferences, the cor-
responding curves in Figure 13 (right) are based on the instances (out of the 50 instances of each size) with a none-
mpty strong core. Note that for strict preferences (Figure 13, left) there exists a unique competitive equilibrium, which 
is also the unique strong core allocation. Therefore, the curves that correspond to the two objectives and both types of 
allocations (Compet:-t, Compet:-w, S:Core-t, and S:Core-w) coincide. For weak preferences (Figure 13, right), even 
though there may exist multiple strong core allocations, for all instances in our simulations, the number of transplants 
turns out to be the same for the two objectives. So the corresponding curves S:Core-t and S:Core-w coincide again.

As can be observed, the price of fairness for competitive and strong core allocations is significantly higher than for 
core allocations. It decreases with problem size for all allocation models and both objective functions. In particular, 
for the core with the maximum number of transplants objective (Core-t), when the size of instances is larger than 50, 
the loss in the number of transplants is less than 3% (decreasing to 1% for instances of size 150). This finding is of 
major practical relevance as it implies that when kidney exchange programs are sufficiently large, one can take into 
account preferences without a significant reduction in the number of transplants.

5.4. Analysis of the Number of Blocking Cycles
Finally, as a counterpart to the analysis in Section 5.3, we compute for each model the average number of weakly 
blocking cycles. Thus, we obtain an estimation of how much deficiency in terms of robustness/fairness we have to 
accept vis-à-vis the ideal (but potentially empty) strong core.

Figure 13. (Color online) Price of fairness with respect to the maximum number of transplants for maximum weight allocations 
as well as core, competitive, and strong core allocations with maximum number of transplants (-t) and maximum total weight 
(-w) objectives for strict (left) and weak (right) preferences and unbounded exchange cycles. Solid lines are used for models that 
maximize the number of transplants and dash-dotted lines for those that maximize the total weight. 
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Specifically, we analyze the average number of weakly blocking cycles when their length can be up to l � 2, 3, 4, 5. 
When also the length of exchange cycles of allocations is bounded, say by k, the analysis is naturally restricted to the 
case l ≤ k. Results on blocking cycles are very similar and, hence, omitted.

Figure 14 shows the average number of weakly blocking cycles of length l� 2 for Max, core, competitive/Wako- 
core, and strong core allocations. Figures for l�3, 4, 5 are relegated to Appendix B as the conclusions drawn for these 
cases are similar to those for l�2. If the core, Wako-core, or strong core turned out to be empty, then we computed an 
allocation that minimizes the number of associated blocking cycles in the same way as described in Klimentova et al. 
[28]. In particular, for the strong core in the case of bounded exchange cycles, following the same procedure as in Kli-
mentova et al. [28], the corresponding two curves (k�2, 3) are based on counting the minimum number of weakly 
blocking cycles28 (hence, we register zero weakly blocking cycles if and only if an instance has a nonempty strong 
core). In the case of unbounded exchange cycles, the structure of the formulation is such that it prevents us from effi-
ciently minimizing the number of weakly blocking cycles for the instances with an empty strong core. For that reason, 
the corresponding strong core curve is omitted altogether from our analysis.

Interestingly, the “unstability” of the allocations that maximize the number of transplants (curves Max[∞], Max[2], 
Max[3] in Figure 14 (left)) barely depends on the maximum allowed length of exchange cycles. This is not true for the 
Core: the number of weakly blocking cycles is considerably smaller for k�2. For this and all the remaining cases, the 
average number of weakly blocking cycles is very low—in most cases below one. It is worth noting that the average 
number of weakly blocking cycles tends to be smaller when the objective is to maximize the total weight (Figure 14
(right)). A possible explanation for this is that weights reflect patients’ preferences, and therefore, an objective function 
that takes into account weights tends to create less weakly blocking cycles (which are determined by preferences).

Although these findings are already insightful, Figure 15 complements the analysis by focusing on the average 
number of agents that strictly prefer their allotments in at least one weakly blocking cycle (i.e., the number of patients 
that can receive a strictly better kidney). An important conclusion that can be drawn from the figure is that the maxi-
mization of total weight yields a lower number of agents that can obtain a better allotment in some weakly blocking 
cycle when compared with the maximum size allocations (compare curves Max in Figure 15 (left) and (right)). Com-
paring Figure 15 with Figure 13 gives insights into the reduction of the total number of transplants that would be nec-
essary to meet a certain level of patients’ preferences.

6. Conclusion
This paper advances the current state of the art in several lines of research on Shapley–Scarf housing markets. We 
prove that, in the case of strict preferences, the strong core (containing the unique competitive allocation) respects 

Figure 14. (Color online) Average number of weakly blocking cycles of length l � 2 for allocations with maximum number of 
transplants (left) and maximum total weight of transplants (right) for unbounded exchange cycles ([∞]) and exchange cycles of 
length up to k � 2 and k � 3 for weak preferences. Solid lines are used for the unbounded case, dotted lines for k � 2, and dashed 
lines for k � 3. 
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improvement. More importantly, we provide several extensions of the result to the case of weak preferences, for 
which there do not seem to exist parallel results in other matching models.

In a very recent paper, Schlotter et al. [46] tackle some of the questions that we leave open in our current paper. 
They prove that the core satisfies the RI-best property for unbounded exchanges and weak preferences (and also for a 
more general domain of partial orders) but that it violates the RI-worst property even for strict preferences. Similarly, 
they also show that the (strong, Wako-) core satisfies the conditional RI-best property for strict preferences.

We summarize our main theoretical findings and the additional results from Schlotter et al. [46] in Table 14.
We also contribute to the computation of the core, strong core, and set of competitive allocations by providing integer 

programming models that no longer involve an exponential number of constraints. These models assume that there is 
no limit on the size of an exchange cycle. However, because there are applications in which this assumption is unrealis-
tic (for instance in kidney exchange programs), we also propose alternative IP models for bounded length cycles.

Finally, our new IP formulations constitute a practical stepping stone for our computational experiments, which 
provide several insights in the properties of allocation rules for kidney exchange programs. If a limit is set to the 
length of exchange cycles, then the proposed game-theoretical solutions need not satisfy the respecting improvement 
property. However, our computer simulation results show that violations of the property are remarkably less 

Figure 15. (Color online) Weak preferences. Conditional on the existence of at least one weakly blocking cycle, average number 
of agents that receive a strictly better allotment in at least one weakly blocking cycle. The gray line is a reference line showing the 
number of nodes in an instance. 

Table 14. Summary of main theoretical results on the respecting improvement property.

Housing market (k �∞) Roommates problem (k � 2) k � 3

Strict preferences
Strong core RI (Theorem 1) Cond. RI-best (Schlotter et al. [46]), no 

cond. RI-worst (Example 5)
No cond. RI (Proposition 2, Remark 5)

Wako-core RI (Theorem 1) Cond. RI-best (Schlotter et al. [46]), no 
cond. RI-worst (Example 5)

No cond. RI (Proposition 2, Remark 5)

Core RI-best, no RI-worst (Schlotter et al. [46]) Cond. RI-best (Schlotter et al. [46]), no 
cond. RI-worst (Example 5)

No cond. RI (Proposition 2, Remark 5)

Weak preferences
Strong core Cond. RI (Theorem 3, Corollary 2) No cond. RI-best (Schlotter et al. [46]), 

no cond. RI-worst (Example 5)
No cond. RI (Proposition 2, Remark 5)

Wako-core RI-best/worst (Theorem 2, Corollary 1) No cond. RI-best (Example 6), no 
cond. RI-worst (Example 5)

No cond. RI (Proposition 2, Remark 5)

Core RI-best, no RI-worst (Schlotter et al. [46]) No cond. RI-best (Example 6), no 
cond. RI-worst (Example 5)

No cond. RI (Proposition 2, Remark 5)
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frequent for the (Wako-, strong) core than for maximum size and weight allocations. In view of these findings, we 
analyze the potential trade-off between stability requirements and the maximum number of transplants. We find 
that, when the size of the instances increases, the trade-off decreases significantly: core allocations for instances with 
150 patient–donor pairs entail a less than 1% reduction in the number of transplants. An important implication is 
that, when kidney exchange programs are sufficiently large, one can take into account agents’ preferences and largely 
ensure the respecting improvement property without a significant reduction in the number of transplants.
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Appendix A. Alternative Proof of Theorem 1
We prove that, when preferences are strict, the competitive allocation rule (or strong core allocation rule) τ�respects 
improvement by associating a two-sided school choice problem with each one-sided housing market and applying Hat-
field et al. [25, online theorem 9].

We first provide some intuition/a sketch of the proof. There is a “standard” connection between the (classic) TTC for the 
housing market and the generalized TTC for the school choice model. Specifically, replace each agent i with a student–school 
pair (si, ci), let each student inherit the preferences (of the corresponding agent) over the schools, and let each school have its stu-
dent on the top of the priority list. It is well-known that the two top trading algorithms produce essentially the same outcome. 
Now consider a “reversed” construction, in which each student has the student’s school as a top choice and each school inherits 
the preferences of the original corresponding agent as priorities. Again, the very same cycles are created in the TTC for this 
reversed school choice problem, only with the difference that now each student is assigned to the student’s own school. The 
proof of Theorem 1 that is presented combines these two reductions by having the standard version for one agent only, say 
agent i, and the reversed version for all other agents. It is obvious that the very same cycles occur again as long as agent i is not 
involved. The key part of the proof is to show that, in the combined reduction, student si is assigned to the school that corre-
sponds to the object agent i receives in the original housing market.

Formally, let i ∈N. Let R, R̃ be two profiles of strict preferences over objects N such that R̃ is an improvement for i 
with respect to R.

Consider housing market (N, R). We construct an associated two-sided (school choice) problem (S, C, R′, ≻) with out-
side option ∅ as in Hatfield et al. [25] as follows. First, S � {sk : k ∈N} is the set of students. Second, C � {ck : k ∈N} is the 
set of schools, each of which has capacity one. Third, strict preferences R′ � (R′sk

)sk∈S and strict priority rankings ≻�
(≻ck )ck∈C satisfy the following conditions: 
• Student si has strict preferences R′si 

over schools C and the outside option ∅ such that, for all k, l ∈N, ckR′si
cl if and only if 

kRil and for all k ∈N, ckP′si
∅.

• For each j ∈N\{i}, student sj has strict preferences R′sj 
over schools C and the outside option ∅ such that cj is the most pre-

ferred school (and preferred to ∅).
• School ci is endowed with a strict priority ranking ≻ci over students S such that si is the agent with highest priority.
• For each j ∈N\{i}, school cj is endowed with a strict priority ranking ≻cj over students S such that, for all k, l ∈N, sk≻cj sl if 

and only if kRjl.
We similarly associate a problem (S, C, R′, ≻′) with housing market (N, R̃) such that the only (possible) difference 

between problems (S, C, R′, ≻′) and (S, C, R′, ≻) is that, for some j ∈N\{i}, ≻cj ′ ≠ ≻cj . (This follows from the fact that that 
the only (possible) difference between the two housing markets (N, R̃) and (N, R) is that, for some j ∈N\{i}, R̃j ≠ Rj.)

Next, we relate the top trading cycles algorithm τ�for housing markets (N, R) and (N, R̃) with the top trading cycles 
algorithm φTTC for the associated two-sided problems (S, C, R′, ≻) and (S, C, R′, ≻′) (for the definition of φTTC we refer to 
Hatfield et al. [25, section 2.1.3]).

Claim A.1. Let k ∈N. Then, φTTC
si
(S, C, R′, ≻) � ck if and only if τi(N, R) � k. Similarly, φTTC

si
(S, C, R′, ≻′) � ck if and only if 

τi(N, R̃) � k.
The difference between (S, C, R′, ≻) and (S, C, R′, ≻′) is that student si is ranked higher (i.e., has higher priority) by 

some schools at (S, C, R′, ≻′) relative to (S, C, R′, ≻). Hatfield et al. [25, online theorem 9] states that the top trading cycles 
algorithm for two-sided problems respects improvements of student quality. Hence,

φTTC
si
(S, C, R′, ≻′)R′si

φTTC
si
(S, C, R′, ≻): (A.1) 
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Moreover, note that R′si 
finds all schools acceptable, and at both (S, C, R′, ≻) and (S, C, R′, ≻′), the number of school seats 

equals the number of students. Hence,

φTTC
si
(S, C, R′, ≻′) ≠ ∅ ≠ φTTC

si
(S, C, R′, ≻): (A.2) 

Hence, (A.1), (A.2), Claim A.1, and the definition of R′si 
yield τi(N, R̃)Ri τi(N, R). So τ�respects improvement.

Proof of Claim A.1. It is sufficient to show that

for all k ∈ N, φTTC
si
(S, C, R′, ≻) � ck if and only if τi(N, R) � k: (A.3) 

(The statement that φTTC
si
(S, C, R′, ≻′) � ck if and only if τi(N, R̃) � k follows similarly.)

We apply TTC to two-sided problem (S, C, R′, ≻) as well as to housing market (N, R). We show that, as long as agent i 
(in the housing market) or, equivalently, student si and college ci (in the two-sided problem) are present, at each step of 
the algorithm, there is a one-to-one correspondence between cycles of the two-sided problem and of the housing market.

Consider the initial situation. We distinguish among three types of cycles.
First, if (si, ci) is a cycle at (S, C, R′, ≻), then ci is student si’s most preferred school, and hence, i is a self-cycle at (N, R). 

Similarly, if i is a self-cycle at (N, R), then (si, ci) is a cycle at (S, C, R′, ≻). In particular, (A.3) holds.
Second, let j ∈N\{i}. If (sj, cj) is a cycle at (S, C, R′, ≻), then student sj has highest priority at school cj, and hence, j is a 

self-cycle at (N, R). Similarly, if j is a self-cycle at (N, R), then (sj, cj) is a cycle at (S, C, R′, ≻). Obviously, removing these 
cycles is equivalent to removing student sj, school cj, and agent j.

Third, let c � (si1 , ci2 , si3 , : : : , ciℓ ) with ℓ > 2 be a cycle at (S, C, R′, ≻). Note that ℓ�is even and ci ∉ {ci2 , ci4 , : : : , ciℓ} (otherwise, 
we are in the case of cycle (si, ci) because, at the initial step, student si is present, the only student that can point to ci is 
student si, and school ci points to si). 

Case I: si ∈ {si1 , si3 , si5 , : : : , siℓ�1}. Without loss of generality, we can assume that i1 � i. Then, at cycle c, 
• Student si1 � si points to the student’s most preferred school ci2 .
• School ci2 points to the school’s highest priority student si3 .
• i3� i4 because student si3 points to school ci4 , but ci3 is the student’s most preferred school (which is present at the initial 

step), that is, ci4 � ci3 , which implies that i3� i4.
• School ci4 points to the school’s highest priority student si5 .
• i5� i6 (because of a similar argument).
• …
• School ciℓ�2 points to the school’s highest priority student siℓ�1 .
• iℓ�1 � iℓ.
• School ciℓ�points to the school’s highest priority student si1 � si.

Thus, (i1, i2, i4, i6, : : : , iℓ) is a cycle at (N, R). 
Case II: si ∉ {si1 , si3 , si5 , : : : , siℓ�1}. Then, at cycle c, 
• i1� i2.
• School ci2 points to the school’s highest priority student si3 .
• i3� i4;
• School ci4 points to the school’s highest priority student si5 .
• i5� i6.
• …
• School ciℓ�2 points to the school’s highest priority student siℓ�1 .
• iℓ�1 � iℓ.
• School ciℓ�points to the school’s highest priority student si1 .

Thus, (i2, i4, i6, : : : , iℓ) is a cycle at (N, R).
Reversely, if (i1 � i, i2, i4, i6, : : : , iℓ) with ℓ > 2 is a cycle at (N, R), then c � (si1 , ci2 , si4 , ci4 , si6 , ci6 , : : : , siℓ , ciℓ ) is a cycle at 
(S, C, R′, ≻) (case I). Similarly, if (i2, i4, i6, : : : , iℓ) with ℓ > 2 is a cycle at (N, R) and i ∉ {i2, : : : , iℓ}, then c � (si2 , ci2 , si4 , ci4 , : : : , siℓ , ciℓ )

is a cycle at (S, C, R′, ≻) (case II).
In case I, we obtain (A.3). In case II, removing the cycle at (N, R) and the associated cycle at (S, C, R′, ≻) is equivalent 

to removing students si1 , si2 , : : : , siℓ , schools ci1 , ci2 , : : : , ciℓ , and agents i1, i2, : : : , iℓ.
We can repeatedly apply similar arguments (as in the three types of cycles) to the reduced two-sided problem and the 

reduced housing market, remove cycles, etc., until we obtain (A.3). w

Appendix B. Analysis of the Number of Weakly Blocking Cycles of Length 3, 4, 5
Figure B.1 extends the results presented in Figure 14 by considering weakly blocking cycles of length up to l� 3. The con-
clusions drawn for l� 2 remain valid for this case.

For the unbounded case, the number of weakly blocking cycles is larger because one must consider also the cases 
when l> 3. Figure B.2 provides information on the number of weakly blocking cycles of length up to 4 and 5 (indicated 
by suffixes _4 and _5). We do not present results for l> 5 as searching for these larger weakly blocking cycles would lead 
to excessively long CPU time.
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Appendix C. CPU Time for Unbounded Models
In Table C.1, we present the average CPU time for solving an instance of a given size with one of the three newly pro-
posed IP models for the unbounded case. Recall that the allocation obtained by the TTC algorithm was used as a starting 
allocation for all formulations.

Figure B.1. (Color online) Average number of weakly blocking cycles of length up to l � 3 for allocations with maximum num-
ber of transplants (left) and maximum total weight of transplants (right) for unbounded exchange cycles ([∞]) and exchange 
cycles of length up to k � 3 for weak preferences. 

Figure B.2. (Color online) Average number of weakly blocking cycles of length up to l � 4 and l � 5, indicated as _l next to the 
name of a curve, for allocations with maximum number of transplants (left) and maximum total weight of transplants (right), for 
unbounded exchange cycles and weak preferences. 
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In the case of weak preferences, CPU times are much longer for the core and, especially, the competitive allocations. 
However, finding strong core allocations for weak preferences is faster than doing so for strict preferences. Moreover, 
surprisingly, finding the strong core is the most time-consuming task for strict preferences, whereas it is the least time- 
consuming task for weak preferences. Finally, we notice that the models for finding core and strong core allocations per-
form (with respect to CPU time) within the same ranges of magnitude compared with the corresponding models for the 
bounded case analyzed in Klimentova et al. [28].

Endnotes
1 Allowing for additional donors does not require an extension to a model in which agents can be endowed with multiple objects: an agent’s 
set of donors can only be assigned to one other agent and this agent can only “consume” its most preferred element from the set.
2 The corresponding decision problem is NP-hard (Biró and McDermid [14], Huang [26]) even for tripartite graphs (also known as the cyclic 
3-D stable matching problem (Ng and Hirschberg [35])).
3 In the literature on KEPs, it is often assumed that each edge has a weight representing the fit/quality of the donor’s kidney for the receiving 
patient. The total weight of an exchange cycle is the sum of the weights associated with the edges involved in the exchange. The total weight 
of an allocation is the sum of the weights of its exchange cycles. Details are in Section 5.
4 In KEPs, all transplants in the same exchange cycle are usually carried out simultaneously. Obviously, if the number of surgical teams and 
operation rooms is small, some of the transplants have to be conducted in a nonsimultaneous way. In many countries, this “risky” solution is 
not allowed because of possible reneging (Biró et al. [16]). Thus, in practice, exchange cycles are usually bounded.
5 In other words, an agent can be indifferent between objects, including the agent’s own endowment.
6 Therefore, when keeping the set of agents fixed, we interchangeably refer to R as the profile of preferences and the market.
7 Note that a (trading/exchange) cycle is a nonempty directed path in which only the first and last nodes are equal. A single node is a self- 
cycle, that is, a degenerate cycle.
8 In the literature, the core is sometimes called the weak core or regular core.
9 In the literature, the strong core is sometimes called the strict core.
10 Wako [51] shows that the strong core coincides with the set of competitive allocations if and only if any two competitive allocations are 
welfare equivalent. Hence, whenever the set of competitive allocations is a singleton, it coincides with the strong core.
11 This result and generalizations of it have appeared in the literature; see, for example, Biró [12, proposition 1.1.3]. We include a short, self- 
contained proof.
12 Throughout the paper, self-cycles are omitted from the acceptability graphs in the examples.
13 If preferences are not strict, then the top trading cycles algorithm is applied to the preference profiles that can be obtained by breaking ties 
in all possible ways.
14 Sotomayor [49, example 1], which is attributed to Jun Wako, is illustrative: N � {1, 2, 3} with 2P13P11, 1I23P22, 2P31P33. The set of competi-
tive allocations consists of x � {(1, 2), (3)} and x′ � {(1), (2, 3)}, which are Pareto dominated by core allocations {(1, 2, 3)} and {(1, 3, 2)}, respec-
tively. Moreover, x1P1x1′ and x3′P3x3. The strong core is empty.
15 We can relax the definition by allowing for differences in the relative ranking of unacceptable objects, but because we only study individu-
ally rational allocations, such a relaxation has no impact.
16 In other words, for each R ∈R, Φ(R)≠ ∅.
17 We are very grateful to the reviewer for suggesting the alternative proof.

Table C.1. Average CPU time (in seconds) for solving an instance of a given size with the proposed formulation.

|N |

Maximum number of transplants Maximum total weight Maximum number of transplants Maximum total weight

Core Compet. S. core Core Compet. S. core Core Compet. S. core Core Compet. S. core

Strict preferences Weak preferences
20 0.00 0.03 0.01 0.00 0.02 0.01 0.00 0.04 0.01 0.00 0.03 0.01
30 0.03 0.13 0.04 0.02 0.11 0.03 0.02 0.28 0.04 0.02 0.17 0.03
40 0.08 0.48 0.12 0.06 0.25 0.11 0.09 0.63 0.10 0.06 0.44 0.08
50 0.24 1.74 0.38 0.16 0.58 0.34 0.20 2.15 0.25 0.17 1.06 0.21
60 0.47 2.39 0.87 0.28 0.91 0.79 0.52 6.03 0.44 0.26 2.87 0.39
70 1.06 3.91 1.94 0.66 2.29 1.50 0.84 16.99 1.09 0.53 7.35 0.77
80 1.62 6.54 3.26 0.82 3.39 2.32 1.41 32.21 1.63 0.76 17.47 1.01
90 3.14 36.34 5.31 3.27 5.38 3.59 3.29 167.15 2.36 1.82 80.88 1.49
100 3.53 16.19 19.26 2.43 6.15 9.81 4.51 188.35 8.87 3.08 95.39 4.62
110 8.73 21.42 28.26 4.97 9.01 13.79 6.68 331.64 16.40 5.92 159.12 7.24
120 17.84 72.87 57.36 6.81 15.36 24.32 20.14 392.88 19.60 6.79 218.58 10.87
130 14.34 46.92 84.49 14.24 22.68 34.11 14.78 586.27 21.75 12.32 438.23 10.42
140 29.50 61.99 110.82 21.51 34.33 46.67 41.59 708.92 40.97 16.43 539.56 14.89
150 41.99 161.10 214.32 30.66 52.61 70.77 57.13 786.43 61.79 27.82 682.99 23.91
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18 It follows from Fact 2 that, in this case, j is removed from the market before i.
19 It follows from Fact 2 that, in this case, i is removed from the market before j.
20 In other words, there is no edge from a node in the absorbing set to a node outside the absorbing set.
21 It follows from Fact 2∗ that, in this case, j was removed from the market before i.
22 It follows from Fact 2∗ that, in this case, i was removed from the market before j.
23 For the core and strong core, see also Biró and McDermid [14]. In view of Wako’s [52] result, we similarly adjust the set of competitive allo-
cations by using the (equivalent) Wako-core.
24 So the core coincides with the set of stable matchings of the corresponding roommate problem (Gale and Shapley [23]).
25 Recall that we use and distinguish between the objectives/suffixes t and w for each of the cores as well as, in each of the cores, the alloca-
tions that yield a maximum number of transplants may be different from the allocations that yield maximum total weight.
26 We conjecture that this is related to the impact of objects that move up from being unacceptable to being acceptable. In the bounded case, 
the potential new trading cycles induced by a new acceptable object can easily increase the maximum size allocation but less easily the maxi-
mum weight allocation. Because a change of allocation brings along possibilities of violations of the RI-best property, Max-t is more likely to 
experience an increase.
27 Note that, in the IP formulations, the stability requirements are written for each cycle; hence, the minimization of the number of blocking 
cycles is equivalent to the minimization of the number of violated constraints.
28 This is among the allocations with the maximum number of transplants and maximum total weight of transplants in Figure 14 (left) and 
(right), respectively.
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[41] Roth AE, Sönmez T, Ünver MU (2004) Kidney exchange. Quart. J. Econom. 119(2):457–488.
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Biró et al.: Housing Markets: Respecting Improvement, IP, and Kidney Exchange 
Mathematics of Operations Research, Articles in Advance, pp. 1–35, © 2023 The Author(s) 35 


	Shapley&hx2013;Scarf Housing Markets: Respecting Improvement, Integer Programming, and Kidney Exchange
	Introduction
	Preliminaries
	Respecting Improvement
	Integer Programming Formulations
	Computational Experiments
	Conclusion


