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A B S T R A C T

Motivated by an example of fiscal and monetary policy interaction of a national economy, the
problem of uncertain/nonlinear two players discrete-time noncooperative games is investigated.
Since the models of the systems are uncertain, the notion of Nash equilibrium solution is not
suitable, instead, new Nash guaranteeing strategies and Nash guaranteed costs are defined. The
system’s uncertainties and/or nonlinearities are assumed to be of quadratically bounded type.
First, conditions of the Nash guaranteeing strategies are derived for general uncertain nonlinear
systems. These results are specified for systems that have linear nominal part and quadratic
cost functions. Approximate solutions are obtained by tractable quadratic matrix inequalities.
To illustrate the application of the proposed method, two numerical examples are given.

1. Introduction

Dynamic games have been intensively researched for decades. There are several problems in the field of engineering and
economics, where processes can be modelled as a result of interaction of different players (see e.g., [1–15], and the references
therein). These processes can be considered as control problems with several agents having individual inputs and individual objective
(or cost) functions. If these agents/players are not supposed to cooperate, very often a suitably defined Nash solution is determined,
from which no player can deviate without increasing his/her cost (e.g., [2,4,5,9,10,12–14]). The modelled processes are typically
uncertain. A usual way to model the uncertainties is the application of stochastic dynamic games (e.g., [6,11,15]). Other authors
consider uncertain elements as external perturbations to avoid the necessity of stochastic assumptions [5,10,14,16]. Parametric un-
certainty is investigated e.g. in [17], however a cooperative control protocol is investigated for multiagent systems with optimization
of a global cost function in that paper. Both types of uncertain games are discussed in [2], where ’’optimality’’ is comprehended in
different ways (as Nash, Stackelberg or cooperative games). Papers applying the robust techniques consider exogenous disturbances
affecting the system dynamics, and players determine their strategies considering the worst case disturbances. However, it is a
research gap that uncertainties due to the imperfect knowledge of system dynamics have not been considered yet. An exception
is [16], where linear fractional uncertainties were considered for zero-sum difference games, but in the present paper a more general
class of uncertainties is admitted in non-zero sum noncooperative games. The authors are aware of papers that applied the robust
techniques to linear- (or linear-affine-) quadratic games. An open challenge is to extend these results, if the dynamic equation of the
game is not necessary linear or linear-affine. The dynamic equation of the motivating example is such that the nonlinearities can be
separated from the linear parts, and can be treated together with the deterministic unknown system uncertainties. Such technique
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has not been applied yet to robust games, therefore a new Nash guaranteeing cost concept is introduced in this paper, and sufficient
conditions for the Nash guaranteeing solution are derived in the form of highly nonlinear equations. Relaxing the requirement of
getting an exact solution, an approximation is determined. The corresponding feedback strategies are determined by solving certain
quadratic matrix inequalities, for which solvers are available. The authors are not aware of similar results with nonlinear terms
in the game dynamics. Furthermore, the proposed approach can be applied to economic games as well, where the expectations of
economic players affect the dynamics, however the standard assumptions of the stochastic approach usually do not hold true. This
paper provides a new method to treat the expectations by robust technique getting rid of the stochastic assumptions.

The present paper contributes to the theory of uncertain discrete-time infinite horizon games. It has been motivated by an
conomic game problem modelling the conflicts of fiscal and monetary policy. The examined uncertain game is more general than
thers in the sense that it takes into consideration the model uncertainties. Furthermore, all these uncertainties and the nonlinear
lements of the dynamics are modelled by a common unknown deterministic function, for which a quadratic boundedness condition
s supposed. This uncertainty structure is the extension of several types of uncertainties. The contributions of the present paper are
s follows.

• A new notion of Nash guaranteeing strategy is defined for uncertain dynamic games.
• All system nonlinearities and uncertainties are modelled by common deterministic but unknown functions assumed to be

quadratically constrained.
• Nash guaranteeing strategies are determined for general nonlinear uncertain games.
• The results are specified for games with linear nominal part and quadratic cost functions. An approximate solution is given

by quadratic matrix inequalities.

The paper is organized as follows. Section 2 presents the motivational example. In Section 3, the conditions of the Nash
uaranteeing strategies are given for general nonlinear systems. The Nash solution is determined in Section 4, when the nominal
ystem is linear, and the cost functions are quadratic. Both the cases of general quadratically bounded uncertainties and the
ncertainties of linear fractional form are discussed. Two numerical examples illustrate the results in Section 5. Finally, Section 6
oncludes the paper.

In the paper, standard notations are applied. The transpose of matrix 𝐴 is denoted by 𝐴𝑇 , and 𝑃 > 0 (≥ 0) denotes the positive
semi-) definiteness of 𝑃 . Notation 𝑣𝐻 is used for the complex conjugate transpose of a complex vector 𝑣, while 𝐮 is used for the

vector series 𝑢0, 𝑢1,…, and 𝐼 denotes the identity matrix of appropriate dimension. The notation of time-dependence is omitted, if
it does not cause any confusion. Other notations are defined at the first appearance.

2. A motivational example

The fiscal and monetary policy interaction of a national economy can be considered as a game theoretical problem. The main
mission of monetary policy is the maintenance of price stability, keeping inflation at a low level, while the implementation of a
countercyclical policy is expected from the fiscal policy. Monetary policy should enjoy a degree of independence from fiscal policy,
otherwise an irresponsible procyclical policy of the government may lead to an unwanted increase of inflation. This means that the
two policies can be considered as two agents with different controls and with different goals. One of the most important controls
of the fiscal policy is the balance of the central budget, but there are also other interventional tools affecting the output and the
redistribution of incomes. Monetary policy also has several tools to control the money supply and to support the countercyclical
policy. One of these tools is the base rate, which is determined autonomously by the central bank. Both groups of control affect the
dynamics of the national economy, therefore the dynamic game can be a good approach to model the impacts of interactions of the
two policies. There are several models of this type applied to the fiscal-monetary game known from the literature. Continuous-time
models are considered by e.g. [18–20], while discrete models are applied by [21–24].

An objective is defined for each agent/player on the basis of which a dynamic Nash equilibrium is sought. Although there would
be more options, a relatively simple generic model is presented here with the most important controls as a motivational example.

Economic processes are inherently uncertain; therefore, it is suitable to take this into consideration in the formal models,
too. The uncertainties in macroeconomic models are usually considered in the literature in a stochastic framework. A couple of
examples regarding the fiscal-monetary games are [19,22], and [23]. In economic models, less attention has been paid so far to
robust techniques, which are widespread in technical applications though. The point of the robust approach is that no stochastic
assumptions are needed, instead, uncertainties are modelled by unknown deterministic functions, for which only certain boundedness
conditions must hold true. This approach is also suitable to treat the expectations, which are crucial in economic models including
inflation.

The dynamics of a generic fiscal-monetary game contains a dynamic equation describing the real sphere, and another equation
modelling the price dynamics. Our motivational example is an uncertain model applying the deterministic approach of modelling
the uncertain expectations. Assume that a reference trajectory of the nominal GDP is denoted by 𝑥∗𝑡 , and let 𝑔∗𝑡 denote a reference
path of the central budget balance, which may be identically zero (𝑡 = 0, 1,…). Consider the uncertain dynamics

𝑧𝑡+1 = −𝛼1
(

𝑖𝑡 − 𝐸
[

𝜋𝑡+1
])

+ 𝛼2𝑔𝑡, (1)

𝜋𝑡+1 = 𝛽𝐸
[

𝑧𝑡+1
]

+ 𝐸
[

𝜋𝑡+1
]

, (2)
2
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where 𝑧𝑡 =
𝑥𝑡−𝑥∗𝑡
𝑥∗𝑡

, 𝑔𝑡 =
𝑔𝑡−𝑔∗𝑡
𝑥∗𝑡

with the nominal balance 𝑔𝑡, 𝑖𝑡 is the nominal interest rate, 𝜋𝑡 is the inflation, 𝛼1, 𝛼2, and 𝛽 are positive
constant parameters. 𝐸[.] denotes the expectation, which is considered to be uncertain:

𝐸
[

𝑧𝑡+1
]

= 𝑧𝑡 + 𝑝1(𝑡, 𝑧𝑡, 𝜋𝑡), (3)

𝐸
[

𝜋𝑡+1
]

= 𝜋𝑡 + 𝑝2(𝑡, 𝑧𝑡, 𝜋𝑡) (4)

with unknown but bounded 𝑝′𝑖s possibly depending on time and on the two state variables. Eqs. (3)–(4) mean that the expectations
are basically naive, i.e. the previous values affect the expectations, but also nonlinearities may occur as a result of non-foreseen
developments. The 𝑝′𝑖s therefore may be zero or nonzero for different 𝑡′s with certain boundedness constraints. This seems to be a
more realistic approach than assuming any specific probability distributions for the expectations, although the obviously existing
uncertain fluctuations should be modelled. If the robust approach is applied, only certain bounds are given for these uncertain
fluctuations, but their specific forms should not necessarily be known. The boundedness of uncertainties itself without specifying
a probability distribution with known parameters (e.g. white noise with known variance) seems to be more flexible in economic
applications.

Let 𝜋∗ be a reference path for the inflation (inflation target) and assume that 𝑖∗ = 𝜋∗ is a constant reference interest rate. The
objective function of the fiscal policy is

𝐽𝐹 =
∞
∑

𝑡=0

(

𝛾1𝑧
2
𝑡 + 𝛾2𝑔

2
𝑡
)

, (5)

while the objective function of he monetary policy is

𝐽𝑀 =
∞
∑

𝑡=0

(

𝜚1
(

𝜋𝑡 − 𝜋∗)2 + 𝜚2
(

𝑖𝑡 − 𝑖∗
)2
)

, (6)

with positive coefficients 𝛾1, 𝛾2, 𝜚1, and 𝜚2. The minimization of the objective function 𝐽𝐹 supports the fiscal policy to keep the GDP
as close as possible to a predetermined target trajectory 𝑥∗𝑡 , and also to keep the central budget balance as a share of the GDP around
the target path 𝑔∗𝑡 to prevent the accumulation of a large state debt. The minimization of the objective function 𝐽𝑀 supports the
monetary policy to prevent the harmful deviation from its inflation target 𝜋∗, and to stabilize the base rate 𝑖∗, which is supposed
to be consistent with this target. Since the uncertainties represented by functions 𝑝1, 𝑝2 are unknown, the minima of the objectives
cannot be determined, only a guaranteed cost can be expected for both. The problem is to define an appropriate Nash guaranteeing
cost solution, and to find it to compare different catching-up development paths for an economy.
3. Nonlinear uncertain difference games

Consider the uncertain dynamics

𝑥𝑡+1 = 𝑓
(

𝑥𝑡, 𝑢
1
𝑡 , 𝑢

2
𝑡
)

, (7)

where 𝑓 ∶ 𝐑𝑛𝑥 × 𝐑𝑛𝑢1 × 𝐑𝑛𝑢2 → 𝐑𝑛𝑥 is continuous, and 𝑢𝑖𝑡 is the control of Player 𝑖 (𝑖 = 1, 2). Function 𝑓 is not known, but it is from
a known set

⊂
{

𝜑 ∶ 𝐑𝑛𝑥 × 𝐑𝑛𝑢1 × 𝐑𝑛𝑢2 → 𝐑𝑛𝑥 , 𝜑(0, 0, 0) = 0
}

.

Introducing the notation 𝐮𝑖 =
(

𝑢𝑖0, 𝑢
𝑖
1,… , 𝑢𝑖𝑡,…

)

, the objective function of Player 𝑖 is

𝐽 𝑖
𝑓
(

𝑥0,𝐮1,𝐮2
)

=
∞
∑

𝑡=0
𝑖 (𝑥𝑡, 𝑢

1
𝑡 , 𝑢

2
𝑡
)

, (8)

where 𝑖 ∶ 𝐑𝑛𝑥 ×𝐑𝑛𝑢1 ×𝐑𝑛𝑢2 → 𝐑, and 𝑖 (𝑥, 𝑢1, 𝑢2
)

≥ 0. Both players intend to minimize 𝐽 𝑖
𝑓 applying feedback information pattern,

i.e. 𝑢1𝑡 = 𝜇1 (𝑥𝑡
)

, 𝑢2𝑡 = 𝜇2 (𝑥𝑡
)

with 𝜇𝑖(0) = 0, (𝑖 = 1, 2). The pair of strategies is called admissible, if the functions 𝑥 → 𝜇𝑖(𝑥) (𝑖 = 1, 2)
are continuous, the closed loop system

𝑥𝑡+1 = 𝑓
(

𝑥𝑡, 𝜇
1(𝑥𝑡), 𝜇2(𝑥𝑡)

)

(9)

is well-defined for any given 𝑥0 and 𝑓 ∈  , and

𝐽 𝑖
𝑓
(

𝑥0, 𝜇
1, 𝜇2) ∈ 𝐑 ∪ {∞}, ∀𝑓 ∈  , 𝑖 = 1, 2.

The set of admissible strategy pairs is denoted by 𝐹𝐵 . Let 𝑓 ∈  be given. A set 0
𝐹𝐵(𝑓 ) ⊂ 𝐹𝐵 is called the set of admissible

trategies with respect to 𝑓 , if the origin is an asymptotically stable equilibrium of (9) considered with 𝑓 = 𝑓 and with the given
strategy pair (𝜇1, 𝜇2), moreover 𝐽 𝑖

𝑓

(

𝑥0, 𝜇1, 𝜇2) < ∞ for any 𝑥0. According to usual notations let 𝑖 denote the ‘other’ player’s index,
i.e. 𝑖 = 1, 𝑖 = 2, and 𝑖 = 2, 𝑖 = 1.

Definition 1. (a) The strategy
(

𝜇1∗, 𝜇2∗) ∈ 𝐹𝐵 is a guaranteed cost strategy with guaranteed cost 𝑉 𝑖(𝑥0) (𝑖 = 1, 2) if
𝑖 ( 1∗ 2∗) 𝑖 ( )
3

𝐽𝑓 𝑥0, 𝜇 , 𝜇 ≤ 𝑉 𝑥0 , ∀𝑓 ∈  , 𝑖 = 1, 2.
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(b) If, in addition, for
(

𝜇1∗, 𝜇2∗) and for 𝑉 1, 𝑉 2 it is also true that there exist functions 𝑓 ∈  and 
𝑖 (
𝑥, 𝑢1, 𝑢2

)

≥ 𝑖 (𝑥, 𝑢1, 𝑢2
)

such that
(

𝜇1∗, 𝜇2∗) ∈ 0
𝐹𝐵(𝑓 ), and

𝑉 𝑖(𝑥0) = 𝐽
𝑖
𝑓
(

𝑥0, 𝜇
1∗, 𝜇2∗) ≤ 𝐽

𝑖
𝑓

(

𝑥0, 𝑢
𝑖, 𝜇𝑖∗

)

for all
(

𝑢𝑖, 𝜇𝑖∗
)

∈ 0
𝐹𝐵(𝑓 ), then

(

𝜇1∗, 𝜇2∗) is a pair of Nash guaranteeing feedback strategies with guaranteed costs 𝑉 1(𝑥0) and

𝑉 2(𝑥0). (The objective function 𝐽
𝑖
𝑓 is determined by the running cost 

𝑖
.)

emark 1. For notational convenience, two-players uncertain games are considered throughout the paper, but all results can be
ormulated for N-player games on account of slightly more complicated formulas.

Consider a fixed 𝑓0 ∈  .

heorem 1. Consider system (7) with objective functions (8). Assume that there exist
(

𝜇1, 𝜇2) ∈ 𝐹𝐵 , 𝑉 𝑖 ∶ 𝐑𝑛𝑥 → 𝐑, and
𝑖
+ ∶ 𝐑𝑛𝑥 × 𝐑𝑛𝑢1 × 𝐑𝑛𝑢2 → 𝐑+, such that, for 𝑖 = 1, 2,

(A) 𝑉 𝑖(0) = 0, 𝑉 𝑖(𝑥) > 0, if 𝑥 ≠ 0,
(B) 𝑉 𝑖 (𝑓

(

𝑥, 𝜇1(𝑥), 𝜇2(𝑥)
))

≤ 𝑉 𝑖 (𝑓0
(

𝑥, 𝜇1(𝑥), 𝜇2(𝑥)
))

+ 𝑖
+
(

𝑥, 𝜇1(𝑥), 𝜇2(𝑥)
)

, ∀𝑥 ∈ 𝐑𝑛𝑥 , 𝑓 ∈  ,
(C) 𝑉 𝑖(𝑥) ≥ 𝑉 𝑖 (𝑓0

(

𝑥, 𝜇1(𝑥), 𝜇2(𝑥)
))

+ 𝑖 (𝑥, 𝜇1(𝑥), 𝜇2(𝑥)
)

+ 𝑖
+
(

𝑥, 𝜇1(𝑥), 𝜇2(𝑥)
)

,
then

(

𝜇1, 𝜇2) are guaranteed cost strategies with guaranteed costs 𝑉 𝑖(𝑥0).
(D) If, in addition,

(

𝜇1, 𝜇2) ∈ 0
𝐹𝐵(𝑓0) and

𝑉 𝑖(𝑥) = 𝑉 𝑖 (𝑓0(𝑥, 𝜇1(𝑥), 𝜇2(𝑥))
)

+ ̃𝑖 (𝑥, 𝜇1(𝑥), 𝜇2(𝑥)
)

≤ 𝑉 𝑖
(

𝑓0(𝑥, 𝑢𝑖(𝑥), 𝜇𝑖(𝑥))
)

+ ̃𝑖(𝑥, 𝑢𝑖(𝑥), 𝜇𝑖(𝑥)), ∀(𝑢𝑖(𝑥), 𝜇𝑖(𝑥)) ∈ 0
𝐹𝐵(𝑓0)

holds true, where ̃𝑖 = 𝑖 + 𝑖
+, then

(

𝜇1, 𝜇2) is a pair of Nash guaranteeing feedback strategies with Nash guaranteed costs 𝑉 𝑖(𝑥0).

Proof. Let 𝑓 be an arbitrary element of  , and
(

𝜇1, 𝜇2) ∈ 𝐹𝐵 satisfy the conditions of the theorem. Let 𝑥(⋅) be the trajectory of
the closed system (9). Consider the forward difference for 𝑉 𝑖. Applying conditions B and C subsequently, one obtains

𝑉 𝑖 (𝑥𝑡+1
)

− 𝑉 𝑖 (𝑥𝑡
)

= 𝑉 𝑖 (𝑓
(

𝑥𝑡, 𝜇
1(𝑥𝑡), 𝜇2(𝑥𝑡)

))

− 𝑉 𝑖 (𝑥𝑡
)

≤ 𝑉 𝑖(𝑓0(𝑥𝑡, 𝜇1(𝑥𝑡), 𝜇2(𝑥𝑡))) + 𝑖
+(𝑥𝑡, 𝜇

1(𝑥𝑡), 𝜇2(𝑥𝑡)) − 𝑉 𝑖(𝑥𝑡)

+𝑖(𝑥𝑡, 𝜇1(𝑥𝑡), 𝜇2(𝑥𝑡)) − 𝑖(𝑥𝑡, 𝜇1(𝑥𝑡), 𝜇2(𝑥𝑡))

≤ 𝑉 𝑖(𝑥𝑡) − 𝑖(𝑥𝑡, 𝜇1(𝑥𝑡), 𝜇2(𝑥𝑡)) − 𝑉 𝑖(𝑥𝑡) = −𝑖(𝑥𝑡, 𝜇1(𝑥𝑡), 𝜇2(𝑥𝑡)). (10)

Applying condition A, after rearranging and taking the sum from 0 to 𝑇 , one obtains
𝑇
∑

𝑡=0
𝑖(𝑥𝑡, 𝜇1(𝑥𝑡), 𝜇2(𝑥𝑡)) ≤ 𝑉 𝑖(𝑥0) − 𝑉 𝑖(𝑥𝑇+1) ≤ 𝑉 𝑖(𝑥0).

Since the sum of nonnegative terms on the left side has a bound independent of 𝑇 , it is convergent as 𝑇 → ∞, and the limit is
𝐽 𝑖
𝑓 (𝑥0, 𝜇

1, 𝜇2) ≤ 𝑉 𝑖(𝑥0), which verifies the first assertion of the theorem.

To show the assertion of part D, consider the trajectory 𝑥0(⋅) of (9) with 𝑓 = 𝑓0. Taking the sum of the equation part in D for
𝑥 = 𝑥0𝑡 , (𝑡 = 0, 1,… , 𝑇 ) results in

𝑉 𝑖(𝑥0) − 𝑉 𝑖(𝑥0𝑇+1) =
𝑇
∑

𝑡=0
̃𝑖(𝑥0𝑡 , 𝜇

1(𝑥0𝑡 ), 𝜇
2(𝑥0𝑡 )).

Since
(

𝜇1, 𝜇2) ∈ 0
𝐹𝐵(𝑓0), the second term of the left hand side converges to 0, as 𝑇 → ∞, while the right hand side converges to

𝐽 𝑖
𝑓0
(𝑥0, 𝜇1, 𝜇2), consequently, 𝑉 𝑖(𝑥0) = 𝐽 𝑖

𝑓0
(𝑥0, 𝜇1, 𝜇2). On the other hand, applying the inequality part of D for the trajectory 𝑥 = 𝑥0,𝑢𝑡

of (9) considered with 𝑓 = 𝑓0 and (𝑢𝑖, 𝜇𝑖) ∈ 0
𝐹𝐵(𝑓0), it follows that

𝑉 𝑖(𝑥0) − 𝑉 𝑖(𝑥0,𝑢𝑇+1) ≤
𝑇
∑

𝑡=0
̃𝑖(𝑥0,𝑢𝑡 , 𝑢𝑖(𝑥0,𝑢𝑡 ), 𝜇𝑖(𝑥0,𝑢𝑡 )).

If 𝑇 → ∞, the second term of the left hand side converges to 0, while the right hand side converges to 𝐽 𝑖
𝑓0
(𝑥0, 𝑢𝑖, 𝜇𝑖). Therefore

𝐽 𝑖
𝑓0
(𝑥0, 𝜇1, 𝜇2) = 𝑉 𝑖(𝑥0) ≤ 𝐽 𝑖

𝑓0
(𝑥0, 𝑢𝑖, 𝜇𝑖)

for all (𝑢𝑖, 𝜇𝑖) ∈ 0
𝐹𝐵(𝑓0). Consequently, (𝜇1, 𝜇2) is a pair of Nash guaranteeing feedback strategies with Nash guaranteed costs

𝑉 1(𝑥0) and 𝑉 2(𝑥0). □
1 2
4

In what follows we shall deal with the admissibility of a strategy pair (𝜇 , 𝜇 ) with respect to a function 𝑓 ∈  .
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Assumption 1. Let 𝑓 ∈  , and let (𝑥, 𝑢1, 𝑢2) ≐ 1(𝑥, 𝑢1, 𝑢2) + 2(𝑥, 𝑢1, 𝑢2).

(a) There exists a function 𝛷 ∶ [0,∞) → [0,∞) such that (𝑥, 𝑢1, 𝑢2) ≥ 𝛷
(

‖

‖

‖

𝑢1‖‖
‖

+ ‖

‖

‖

𝑢2‖‖
‖

)

> 0, if ‖‖
‖

𝑢1‖‖
‖

+ ‖

‖

‖

𝑢2‖‖
‖

≠ 0, and 𝛷(0) = 0.

(b) The function 𝑥 → (𝑥, 0, 0) can be written as (𝑥, 0, 0) = 𝑄(ℎ(𝑥)), where 𝑄(𝑠) > 0, if 𝑠 ≠ 0, 𝑄(0) = 0, ℎ(0) = 0, and system

𝑥𝑡+1 = 𝑓 (𝑥𝑡, 0, 0), 𝑦𝑡 = ℎ(𝑥𝑡)

is zero-state detectable, i.e. if ℎ(𝑥𝑡) = 0 for all 𝑡 = 𝑡0, 𝑡0 + 1,… then lim𝑡→∞ 𝑥𝑡 → 0.

Corollary 1. Suppose that the conditions A - C of Theorem 1 are satisfied and Assumption 1 is true for a function 𝑓 ∈  . If the function
𝑉 (𝑥) ≐ 𝑉 1(𝑥) + 𝑉 2(𝑥) is continuous and radially unbounded, then (𝜇1, 𝜇2) ∈ 0

𝐹𝐵(𝑓 ). If in addition, Assumption 1 holds with 𝑄(ℎ(𝑥)) > 0
for any 𝑥 ≠ 0, then (𝜇1, 𝜇2) ∈ 0

𝐹𝐵(𝑓 ) for all 𝑓 ∈  .

Proof. The boundedness of 𝐽 𝑖
𝑓 (𝑥, 𝜇

1, 𝜇2), (𝑖 = 1, 2) follows from Theorem 1 for any 𝑓 ∈  . By summing for 𝑖 = 1, 2 the left and right
sides of inequality (10), one obtains that

𝑉 (𝑥𝑡+1) − 𝑉 (𝑥𝑡) ≤ −(𝑥𝑡, 𝜇1(𝑥𝑡), 𝜇2(𝑥𝑡)).

Assumption 1 implies that 𝑉 (𝑥𝑡+1) − 𝑉 (𝑥𝑡) ≤ 0, and 𝑉 (𝑥𝑡+1) − 𝑉 (𝑥𝑡) = 0 if and only if

𝑥𝑡 ∈  ≐
{

𝑥 ∶ 𝜇1(𝑥) = 0, 𝜇2(𝑥) = 0, 𝑄(ℎ(𝑥)) = 0
}

.

Let 1 ⊂  be the largest positively invariant set. Then Corollary 5.4.8 of [25] implies that any solution of (9) converges to the set
1 as 𝑡 → ∞. However, because of item (b) of Assumption 1, any trajectory starting in 1 converges to the origin. By continuity,
one can easily prove that any trajectory converges to the origin, as well, i.e. (𝜇1, 𝜇2) ∈ 0

𝐹𝐵(𝑓 ).
If Assumption 1 holds with 𝑄(ℎ(𝑥)) > 0 for any 𝑥 ≠ 0, then  = {0}, thus the origin is the only invariant subset of .

Therefore, as a consequence of Corollary 5.4.9 of [25], the origin is an asymptotically stable equilibrium of (9) with any 𝑓 ∈  .
Thus (𝜇1, 𝜇2) ∈ 0

𝐹𝐵(𝑓 ) for all 𝑓 ∈  .

To find the Nash guaranteeing solution, one has

• to find functions 𝑓0, 𝑉 𝑖 and 𝑖
+ (𝑖 = 1, 2), for which conditions A), B) and C) are satisfied;

• to determine the Nash solution of the problem determined by 𝑓0 and ̃𝑖 (𝑖 = 1, 2).

This is a difficult task in the general nonlinear case. In this paper we specifically present the solution for the linear–quadratic
uncertain problem.

4. Linear–quadratic uncertain difference games

Consider a discrete time uncertain game of two players, where the game evolution is described by

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵1𝑢
1
𝑡 + 𝐵2𝑢

2
𝑡 +𝐻𝑝𝑡, (11)

𝑞𝑡 = 𝐴𝑞𝑥𝑡 + 𝐺𝑝𝑡, (12)

where 𝑥 ∈ 𝐑𝑛𝑥 is the state, 𝑢1 ∈ 𝐑𝑛𝑢1 and 𝑢2 ∈ 𝐑𝑛𝑢2 are the inputs of Player 1 and Player 2, 𝐴,𝐵1, 𝐵2,𝐻,𝐴𝑞 and 𝐺 are given matrices
of appropriate dimension. All system nonlinearities/uncertainties are represented by function 𝑝 possibly depending on 𝑡 and 𝑥.
Function 𝑞 is the uncertain output. The only available information about 𝑝 ∈ 𝐑𝑛𝑝 and 𝑞 ∈ 𝐑𝑛𝑞 is that their values are constrained by
the set 𝛺 = 𝛺1 ×⋯ ×𝛺𝑠,

𝛺𝑖 =

{

[

𝑝𝑖
𝑞𝑖

]

∈ 𝐑𝑛𝑝𝑖+𝑛𝑞𝑖 ∶
[

𝑝𝑖
𝑞𝑖

]𝑇 [

𝑄0𝑖 𝑆0𝑖
𝑆𝑇
0𝑖 𝑅0𝑖

] [

𝑝𝑖
𝑞𝑖

]

≥ 0

}

, 𝑖 = 1,… , 𝑠, (13)

where 𝑄0𝑖 = 𝑄𝑇
0𝑖, 𝑅0𝑖 = 𝑅𝑇

0𝑖 and 𝑆0𝑖 are constant matrices, 𝑝, and 𝑞 are partitioned appropriately. We shall use the notations
𝑄0 = diag{𝑄01,… , 𝑄0𝑠}, 𝑅0 = diag{𝑅01,… , 𝑅0𝑠}, 𝑆0 = diag{𝑆01,… , 𝑆0𝑠}.

Assumption 2. Inequalities

𝑅0 ≥ 0, (14)

𝛯0 ≐ 𝑄0 + 𝐺𝑇𝑆𝑇
0 + 𝑆0𝐺 + 𝐺𝑇𝑅0𝐺 < 0 (15)
5

hold true.
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We note that condition (14), i.e. the positive semi-definiteness of 𝑅0 assures that the system (11)–(12) is well posed, i.e. for
any (𝑥, 𝑢1, 𝑢2) there is a 𝑝 so that

[

𝑝𝑇 , 𝑞𝑇
]𝑇 ∈ 𝛺, while condition (15) guarantees that the origin is an equilibrium point of system

11)–(12). It is worth noting that the considered model of uncertainties involves several types of uncertainties frequently investigated
n the literature. For example, if 𝑄0 = 0, 𝑆0 = 𝐼 and 𝑅0 = 0, then one speaks about positive real uncertainty, if 𝑄0 = −𝐼 ,
𝑆0 = 0 and 𝑅0 = 𝐼 , then one has norm-bounded or linear-fractional uncertainties depending on whether 𝐺 = 0 or 𝐺 ≠ 0, and
if 𝑄0 =

1
2 (𝐾

𝑇
1 𝐾2 +𝐾𝑇

2 𝐾1), 𝑆0 =
1
2 (𝐾1 +𝐾2)𝑇 and 𝑅0 = 𝐼 , then one faces the case of sector-bounded uncertainties.

Consider furthermore the objective functionals

𝐽𝑖(𝑥0,𝐮1,𝐮2) =
∞
∑

𝑡=0

(

𝑥𝑇𝑡 𝑄𝑖𝑥𝑡 + 𝑢1𝑡
𝑇𝑅𝑖1𝑢

1
𝑡 + 𝑢2𝑡

𝑇𝑅𝑖2𝑢
2
𝑡

)

, 𝑖 = 1, 2, (16)

ith matrices 𝑄𝑖 = 𝑄𝑇
𝑖 ≥ 0 and 𝑅𝑖𝑖 = 𝑅𝑇

𝑖𝑖 > 0, 𝑅𝑖𝑗 = 𝑅𝑇
𝑖𝑗 ≥ 0, 𝑖, 𝑗 = 1, 2, 𝑖 ≠ 𝑗.

We wish to find Nash guaranteeing linear feedback strategies of Players 1 and 2 for the game (11)–(13) and (16), i.e. the problem
s to find

𝛼𝑖(𝑥𝑡) = 𝐾𝑖𝑥𝑡, 𝑖 = 1, 2,

hich satisfy the conditions of Theorem 3.1. We note that (𝛼1, 𝛼2) ∈ 𝐹𝐵 .

.1. The case of general quadratically constrained uncertainty

In what follows, we consider the game (11), (12), (16) with the general constraint set (13), and apply the following cast

𝑖(𝑥, 𝑢1, 𝑢2) = 𝑥𝑇𝑄𝑖𝑥 + 𝑢1𝑇𝑅𝑖1𝑢
1 + 𝑢2𝑇𝑅𝑖2𝑢

2, 𝑖 = 1, 2, (17)

𝑓0(𝑥, 𝑢1, 𝑢2) = 𝐴𝑥 + 𝐵1𝑢
1 + 𝐵2𝑢

2, (18)

𝑓𝑝(𝑥, 𝑢1, 𝑢2) = 𝐴𝑥 + 𝐵1𝑢
1 + 𝐵2𝑢

2 +𝐻𝑝, (19)

and 𝑓𝑝 ∈  , if and only if
[

𝑝𝑇 𝑞𝑇
]𝑇 ∈ 𝛺 with 𝑞 = 𝐴𝑞𝑥 + 𝐺𝑝. The system with 𝑓0 is called the nominal system.

In order to formulate the results, we need some notations. For any positive constants 𝜔𝑗 , 𝑗 = 1,… , 𝑠 set

𝜔 = diag
{

𝜔1𝐼𝑛𝑝1 ,… , 𝜔𝑠𝐼𝑛𝑝𝑠

}

, 𝜔 = diag
{

𝜔1𝐼𝑛𝑞1 ,… , 𝜔𝑠𝐼𝑛𝑞𝑠

}

.

Furthermore, for any positive numbers 𝜏𝑖𝑗 and 𝜇𝑖
𝑗 (𝑖 = 1, 2, 𝑗 = 1,… , 𝑠), set 0 = 𝑆𝑇

0 + 𝑅0𝐺, and

𝛯(𝜏𝑖, 𝜇𝑖) = 𝜏𝑖
(

𝛯0 + 𝑇
0 𝜇

𝑖0

)

(20)

emma 1. Suppose that Assumption 1 holds true. Let 𝑖 = 1, 2, and let 𝑃𝑖 = 𝑃 𝑇
𝑖 > 0, 𝜏 𝑖𝑗 > 0 and 𝜇𝑖

𝑗 > 0 (𝑗 = 1,… , 𝑠) be given so that
nequalities

𝛯0 + 𝑇
0 𝜇

𝑖0 < 0, (21)

𝑃𝑖 ≐
(

𝑃−1
𝑖 +𝐻𝛯(𝜏 𝑖, 𝜇𝑖)−1𝐻𝑇

)−1
> 0 (22)

are satisfied. Then functions 𝑉 𝑖(𝑥) = 𝑥𝑇 𝑃𝑖𝑥 and

̃𝑖
+(𝑥, 𝑢

1, 𝑢2) ≐
[

𝑥𝑇 𝑢1𝑇 𝑢2𝑇
]

𝑖

⎡

⎢

⎢

⎣

𝑥
𝑢1

𝑢2

⎤

⎥

⎥

⎦

(23)

ith

𝑖 ≐
⎡

⎢

⎢

⎣

𝐴𝑇 𝐴𝑇
𝑞

𝐵𝑇
1 0

𝐵𝑇
2 0

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑃𝑖 0

0 𝜏 𝑖
(

𝑅0 + (𝜇𝑖)−1
)

⎤

⎥

⎥

⎦

[

𝐴 𝐵1 𝐵2
𝐴𝑞 0 0

]

, (24)

𝑃𝑖 ≐ 𝑃𝑖 − 𝑃𝑖 (25)

satisfy conditions A and B of Theorem 1 for any feedback strategies 𝛼1(𝑥) = 𝐾1𝑥 and 𝛼2(𝑥) = 𝐾2𝑥. Moreover, ̃𝑖
+(𝑥, 𝑢

1, 𝑢2) ≥ 0 for any
𝑥, 𝑢1, 𝑢2.

Proof. Under the assumptions of the lemma, condition A of Theorem 1 is obvious.
Next, condition B will be investigated. In view of (18)–(19), one has to show that

𝑉 𝑖 (𝑥 +𝐻𝑝) ≤ 𝑉 𝑖 (𝑥) + ̃𝑖
+(𝑥,𝐾1𝑥,𝐾2𝑥), ∀

[

𝑝
𝑞

]

∈ 𝛺, (26)

𝑖̃ (𝑥,𝐾 𝑥,𝐾 𝑥) as ̃𝑖 (𝑥,𝐾 𝑥,𝐾 𝑥) = 𝑥𝑇 𝑥, where  =
[

𝐼 𝐾𝑇 𝐾𝑇 ]
[

𝐼 𝐾𝑇 𝐾𝑇 ]𝑇
6

here  ≐ 𝐴+𝐵1𝐾1+𝐵2𝐾2. Let us write + 1 2 + 1 2 𝑖 𝑖 1 2 𝑖 1 2 .
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Then, in view of (12) relation (26) is equivalent to

𝐹1(𝑥, 𝑝) ≐ 𝑉 𝑖 (𝑥 +𝐻𝑝) − 𝑥𝑇𝑖𝑥 − 𝑉 𝑖 (𝑥) =
[

𝑥𝑇 𝑝𝑇
]

[

−𝑖 𝑇 𝑃𝑖𝐻
𝐻𝑇 𝑃𝑖 𝐻𝑇 𝑃𝑖𝐻

] [

𝑥
𝑝

]

≤ 0

or all
[

𝑥𝑇 𝑝𝑇
]𝑇 such that

[

𝑝𝑇 (𝐴𝑞𝑥 + 𝐺𝑝)𝑇
]𝑇 ∈ 𝛺.

On the other hand,
[

𝑝
𝑞

]

∈ 𝛺 means that
[

𝑝
𝑞

]𝑇 [

𝑄0 𝑆0
𝑆𝑇
0 𝑅0

] [

𝑝
𝑞

]

≥ 0, which implies that

[

𝑝
𝑞

]𝑇 [

𝜏𝑖𝑄0 (𝜏 𝑖𝑆0)
(𝜏𝑖𝑆0)𝑇 𝜏 𝑖𝑅0

]

[

𝑝
𝑞

]

≥ 0, ∀
[

𝑝
𝑞

]

∈ 𝛺, and ∀𝜏 𝑖𝑗 > 0, 𝑖 = 1, 2,
𝑗 = 1,… , 𝑠.

(27)

sing (12), one can show that (27) is equivalent to
[

𝑥
𝑝

]𝑇 [

𝐴𝑇
𝑞 (𝜏

𝑖𝑅0)𝐴𝑞 𝐴𝑇
𝑞 (𝜏

𝑖0)
(𝜏 𝑖0)𝑇𝐴𝑞 𝜏𝑖𝛯0

]

[

𝑥
𝑝

]

≥ 0, ∀𝜏 𝑖𝑗 > 0, 𝑖 = 1, 2,
𝑗 = 1,… , 𝑠,

(28)

nd for all
[

𝑥𝑇 𝑝𝑇
]𝑇 such that

[

𝑝𝑇 (𝐴𝑞𝑥 + 𝐺𝑝)𝑇
]𝑇 ∈ 𝛺.

It is well-known that for any matrices 𝑋 ∈ 𝐑𝑛×𝑚 and 𝑌 ∈ 𝐑𝑚×𝑠 and symmetrical invertible matrix 𝛬 ∈ 𝐑𝑚×𝑚,
[

0 𝑋𝑌
𝑌 𝑇𝑋𝑇 0

]

≤
[

𝑋𝛬−2𝑋𝑇 0
0 𝑌 𝑇𝛬2𝑌

]

. (29)

Applying (29) by choosing 𝛬2 = 𝜇𝑖 (𝜏 𝑖)−1, with arbitrary 𝜇𝑖
𝑗 > 0, 𝑖 = 1, 2, 𝑗 = 1,… , 𝑠, one can increase the left hand side of inequality

(28) so that
[

𝑝
𝑞

]

∈ 𝛺 implies

𝐹2(𝑥, 𝑝, 𝜏 𝑖, 𝜇𝑖) ≐
[

𝑥
𝑝

]𝑇
⎡

⎢

⎢

⎣

𝐴𝑇
𝑞 𝜏

𝑖(𝑅0 + (𝜇𝑖)−1)𝐴𝑞 0

0 𝜏𝑖(𝛯0 + 𝑇
0 𝜇

𝑖0)

⎤

⎥

⎥

⎦

[

𝑥
𝑝

]

≥ 0,

and ∀𝜏 𝑖𝑗 > 0, ∀𝜇𝑖
𝑗 > 0, 𝑖 = 1, 2,

𝑗 = 1,… , 𝑠,

nd for all
[

𝑥𝑇 𝑝𝑇
]𝑇 such that

[

𝑝𝑇 (𝐴𝑞𝑥 + 𝐺𝑝)𝑇
]𝑇 ∈ 𝛺.

Thus, 𝐹1(𝑥, 𝑝) ≤ 𝐹1(𝑥, 𝑝)+𝐹2(𝑥, 𝑝, 𝜏 𝑖, 𝜇𝑖) for any
[

𝑝𝑇 𝑞𝑇
]𝑇 ∈ 𝛺, therefore, it is enough to show that under the choice of (23)–(25),

1(𝑥, 𝑝) + 𝐹2(𝑥, 𝑝, 𝜏 𝑖, 𝜇𝑖) ≤ 0. It can immediately be seen that

𝐹1(𝑥, 𝑝) + 𝐹2(𝑥, 𝑝, 𝜏 𝑖, 𝜇𝑖) =
[

𝑥
𝑝

]𝑇

𝛹𝑖

[

𝑥
𝑝

]

,

where

𝛹𝑖 =

⎡

⎢

⎢

⎢

⎣

−𝑖 + 𝐴𝑇
𝑞 𝜏

𝑖
(

𝑅0 + (𝜇𝑖)−1
)

𝐴𝑞 𝑇 𝑃𝑖𝐻

𝐻𝑇 𝑃𝑖 𝐻𝑇 𝑃𝑖𝐻 + 𝜏 𝑖
(

𝛯0 + 𝑇
0 𝜇

𝑖0

)

.

⎤

⎥

⎥

⎥

⎦

Let us investigate the condition 𝛹𝑖 ≤ 0. Firstly, we shall show that the matrix in position (2,2) of 𝛹𝑖 is negative definite. Indeed, by
(20) and (21) we have that 𝛯(𝜏 𝑖, 𝜇𝑖) < 0. Using the Schur complement lemma twice, one obtains that

𝐻𝑇 𝑃𝑖𝐻 + 𝜏 𝑖(𝛯0 + 𝑇
0 𝜇

𝑖0) = 𝐻𝑇 𝑃𝑖𝐻 + 𝛯(𝜏 𝑖, 𝜇𝑖) < 0

⇔ 𝑃−1
𝑖 +𝐻𝛯(𝜏 𝑖, 𝜇𝑖)−1𝐻𝑇 > 0,

hich is true by (22). Thus the Schur-complement lemma is applicable to 𝛹𝑖 ≤ 0, which results in the inequality

0 ≥ −𝑖 + 𝐴𝑇
𝑞 𝜏

𝑖
(

𝑅0 + (𝜇𝑖)−1
)

𝐴𝑞 −𝑇 𝑃𝑖 +𝑇

(

𝑃𝑖 − 𝑃𝑖𝐻
(

𝛯(𝜏 𝑖, 𝜇𝑖) +𝐻𝑇 𝑃𝑖𝐻
)−1

𝐻𝑇 𝑃𝑖

)

. (30)

he application of the matrix inversion lemma to the last term of (30) gives that

0 ≥ −𝑖 + 𝐴𝑇
𝑞 𝜏

𝑖
(

𝑅0 + (𝜇𝑖)−1
)

𝐴𝑞 −𝑇 𝑃𝑖 +𝑇
(

𝑃−1
𝑖 +𝐻𝛯(𝜏𝑖, 𝜇𝑖)−1𝐻𝑇

)−1


= −𝑖 + 𝐴𝑇
𝑞 𝜏

𝑖
(

𝑅0 + (𝜇𝑖)−1
)

𝐴𝑞 +𝑇
(

𝑃𝑖 − 𝑃𝑖

)

. (31)

emembering the definition of 𝑖 one can see that the right hand side of (31) is zero, thus 𝛹𝑖 ≤ 0 is satisfied, which means that the
irst assertion of the lemma is true. To show the second assertion, one only has to observe that 𝑃𝑖 > 0, (21) and the definition of 𝑃𝑖
n (23) imply that 𝑃 ≥ 𝑃 , i.e. 𝑃 ≥ 0. Thus, by taking into account (24), ̃𝑖 (𝑥, 𝑢1, 𝑢2) ≥ 0 for any 𝑥, 𝑢1, 𝑢2 is immediate. □
7
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In what follows, we shall assume the following:

ssumption 3. The matrix pair
(

𝐴,
[

𝐵1, 𝐵2
])

is stabilizable.

heorem 2. Suppose that Assumption 3 and the assumptions of Lemma 1 are true, and function ̃𝑖
+ is chosen according to Lemma 1. If

𝑃𝑖, 𝜏𝑖𝑗 , 𝜇
𝑖
𝑗 , 𝐾1 and 𝐾2 satisfy additionally matrix inequality

𝑃𝑖 ≥ 𝑄𝑖 +
2
∑

𝑗=1
𝐾𝑇

𝑗 𝑅𝑖𝑗𝐾𝑗 + 𝐴𝑇
𝑞 𝜏

𝑖
(

𝑅0 + (𝜇𝑖)−1
)

𝐴𝑞

+ 𝑇
(

𝑃−1
𝑖 +𝐻𝛯(𝜏𝑖, 𝜇𝑖)−1𝐻𝑇

)−1
, 𝑖 = 1, 2, (32)

hen 𝛼1(𝑥) = 𝐾1𝑥 and 𝛼2(𝑥) = 𝐾2𝑥 yield guaranteed cost strategies with guaranteed cost 𝑉 𝑖(𝑥0) = 𝑥𝑇0 𝑃𝑖𝑥0.

Proof. According to Theorem 1, we have to show that condition C is also valid. Substitution into the inequality of C gives that

𝑉 𝑖(𝑓0(𝑥,𝐾1𝑥,𝐾2𝑥)) + 𝑖(𝑥,𝐾1𝑥,𝐾2𝑥) + ̃𝑖
+(𝑥,𝐾1𝑥,𝐾2𝑥)

= 𝑥𝑇
[

𝑇 𝑃𝑖 +𝑄𝑖 +
2
∑

𝑗=1
𝐾𝑇

𝑗 𝑅𝑖𝑗𝐾𝑗 + 𝐴𝑇
𝑞 𝜏

𝑖(𝑅0 + (𝜇𝑖)−1)𝐴𝑞

+𝑇
(

(𝑃−1
𝑖 +𝐻𝛯(𝜏 𝑖, 𝜇𝑖)−1𝐻𝑇 )−1 − 𝑃𝑖

)


]

𝑥.

Thus, the assertion of the theorem is immediate. □

Assumption 4. The matrix pair
(

𝐴,𝑄1 +𝑄2
)

is detectable.

Corollary 2. (i) Suppose that Assumption 4 and the conditions of Theorem 2 hold true. Then (𝛼1, 𝛼2) ∈ 0
𝐹𝐵(𝑓0), i.e.

|

|

𝜆(𝐴 + 𝐵1𝐾1 + 𝐵2𝐾2)|| < 1.

(ii) If in addition 𝑄1 +𝑄2 > 0, then (𝛼1, 𝛼2) ∈ 0
𝐹𝐵(𝑓 ) for all 𝑓 ∈  .

Proof. (i). Suppose, on the contrary, that matrix  has an eigenvalue 𝜆 with the eigenvector 𝑣 such that |𝜆| ≥ 1. Take the sum
of both sides of (32) for 𝑖 = 1, 2, and multiply the obtained inequality by 𝑣𝐻 and 𝑣 from left and from right, respectively. After
arranging and taking into consideration that 𝑃𝑖 ≥ 𝑃𝑖, one obtains that

0 ≥𝑣𝐻 (𝑄1 +𝑄2)𝑣 +
2
∑

𝑖=1
𝑣𝐻 (𝐴𝑇

𝑞 𝜏
𝑖(𝑅0 + (𝜇𝑖)−1)𝐴𝑞)𝑣 +

2
∑

𝑖,𝑗=1
𝑣𝐻𝐾𝑇

𝑖 𝑅𝑖𝑗𝐾𝑖𝑣

+ (𝜆𝜆 − 1)𝑣𝐻 (𝑃1 + 𝑃2)𝑣. (33)

Since all terms on the right hand side of (33) are nonnegative, it follows from (33) that (𝑄1 + 𝑄2)𝑣 = 0, 𝐾1𝑣 = 0, 𝐾2𝑣 = 0, and
𝐴𝑞𝑣 = 0, which contradicts to Assumption 4.

(ii) The statement is an immediate consequence of Corollary 1. □

orollary 3. Suppose that Assumptions 2 and 3 are true. Let 𝑖 = 1, 2 and let 𝜏𝑖𝑗 > 0 and 𝜇𝑖
𝑗 > 0 (𝑗 = 1,… , 𝑠) be given so that inequality

21) is satisfied.

(i) If matrices 𝑃𝑖 = 𝑃 𝑇
𝑖 > 0, 𝐾𝑖 are such that

0 ≥
⎡

⎢

⎢

⎢

⎣

𝛷𝑖 − 𝑃𝑖 𝑇 𝑃𝑖 𝑃𝑖𝐻
𝑃𝑖 −𝑃𝑖 0
𝐻𝑇 𝑃𝑖 0 −𝐻𝑇 𝑃𝑖𝐻 + 𝛯(𝜏 𝑖, 𝜇𝑖)

⎤

⎥

⎥

⎥

⎦

, 𝑖 = 1, 2, (34)

where 𝛷𝑖 = 𝑄𝑖 +
∑2

𝑗=1 𝐾
𝑇
𝑗 𝑅𝑖𝑗𝐾𝑗 + 𝐴𝑇

𝑞 𝜏
𝑖(𝑅0 + (𝜇𝑖)−1)𝐴𝑞 , then matrices 𝑃1, 𝑃2,

𝑃𝑖 =
(

𝑃−1
𝑖 −𝐻𝛯(𝜏𝑖, 𝜇𝑖)−1𝐻𝑇

)−1
, 𝑖 = 1, 2 (35)

are positive definite and satisfy inequality (32).
(ii) Conversely, if matrices 𝑃 = 𝑃 𝑇 > 0, 𝐾 are such that (22) and (32) hold true, then 𝑃 = 𝑃 𝑇 > 0, 𝐾 satisfy matrix inequality (34).
8
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Proof. To show (i), first we observe that 𝛯(𝜏𝑖, 𝜇𝑖) < 0 by assumptions, thus the positive definiteness of matrices 𝑃𝑖 given by (35) is

mmediate. Next apply a congruence transformation to (34) with matrix 𝑑𝑖𝑎𝑔{𝐼, 𝑃−1
𝑖 , 𝐼}, then one obtains that

0 ≥
⎡

⎢

⎢

⎢

⎣

𝛷𝑖 − 𝑃𝑖 𝑇 𝑃𝑖𝐻
 −𝑃−1

𝑖 0
𝐻𝑇 𝑃𝑖 0 −𝐻𝑇 𝑃𝑖𝐻 + 𝛯(𝜏 𝑖, 𝜇𝑖)

⎤

⎥

⎥

⎥

⎦

, 𝑖 = 1, 2.

ince −𝐻𝑇 𝑃𝑖𝐻 + 𝛯(𝜏𝑖, 𝜇𝑖) < 0, the Schur-complement lemma is applicable, which yields with a short computation that

0 ≥ 𝛷𝑖 +𝑇 𝑃𝑖 −

[

𝑃𝑖 + 𝑃𝑖𝐻
(

𝛯(𝜏 𝑖, 𝜇𝑖) −𝐻𝑇 𝑃𝑖𝐻
)−1

𝐻𝑇 𝑃𝑖

]

. (36)

Now, the matrix inversion lemma shows that the expression in the square brackets in (36) is nothing else than 𝑃𝑖. Substituting the
expression in the square brackets with 𝑃𝑖, and expressing 𝑃𝑖 by 𝑃𝑖, one obtains from (36) the inequality (32).

To show (ii), one can apply analogous considerations in backward order, therefore the details are omitted. □

heorem 3. Suppose that Assumptions 2–4 and the assumptions of Lemma 1 are true, and function ̃𝑖
+ is chosen according to Lemma 1.

f 𝑃𝑖, 𝜏 𝑖𝑗 , 𝜇
𝑖
𝑗 , (𝑖 = 1, 2, 𝑗 = 1,… , 𝑠), 𝐾1 and 𝐾2 satisfy matrix equations

𝑃𝑖 = 𝑄𝑖 +
2
∑

𝑗=1
𝐾𝑇

𝑗 𝑅𝑖𝑗𝐾𝑗 + 𝐴𝑇
𝑞 𝜏

𝑖
(

𝑅0 + (𝜇𝑖)−1
)

𝐴𝑞 +𝑇 𝑃𝑖, 𝑖 = 1, 2, (37)

[

𝑅11 + 𝐵𝑇
1 𝑃1𝐵1 𝐵𝑇

1 𝑃1𝐵2
𝐵𝑇
2 𝑃2𝐵1 𝑅22 + 𝐵𝑇

2 𝑃2𝐵2

]

[

𝐾1
𝐾2

]

= −

[

𝐵𝑇
1 𝑃1

𝐵𝑇
2 𝑃2

]

𝐴, (38)

𝑃𝑖 =
(

𝑃−1
𝑖 +𝐻𝛯(𝜏 𝑖, 𝜇𝑖)−1𝐻𝑇

)−1
, (39)

then condition D of Theorem 1 is satisfied, i.e. 𝛼1(𝑥) = 𝐾1𝑥 and 𝛼2(𝑥) = 𝐾2𝑥 are admissible with respect to 𝑓0, and they yield Nash
guaranteeing feedback strategies with Nash guaranteed cost 𝑉 𝑖(𝑥0) = 𝑥𝑇0 𝑃𝑖𝑥0 (𝑖 = 1, 2).

Proof. The admissibility with respect to 𝑓0 of (𝛼1, 𝛼2) follows from Corollary 2. We have seen that (32) implies the inequality in
of Theorem 1, thus (37) implies the equality part in condition D of Theorem 1. It remained to show that the inequality part in

ondition D of Theorem 1 holds true, as well. For simplicity, we consider the case 𝑖 = 1, 𝑖 = 2. Suppose that 𝛼2(𝑥) = 𝐾2𝑥 is fixed
ith 𝐾2 satisfying (38), and let 𝑢1 be arbitrary. Applying the notation 𝐴𝑐𝑙2 = 𝐴 + 𝐵2𝐾2, a straightforward computation shows that

𝛩(𝑥, 𝑢1) ≐ 𝑉 1 (𝑓0(𝑥, 𝑢1, 𝐾2𝑥)
)

+ 𝐿1(𝑥, 𝑢1, 𝐾2𝑥) + 𝐿̃1
+(𝑥, 𝑢

1, 𝐾2𝑥)

= 𝛩0(𝑥) + 𝛩1(𝑥, 𝑢1) + 𝛩2(𝑢1),

here the terms are collected so that 𝛩𝑖 contains the 𝑖th powers of 𝑢1, namely

𝛩0(𝑥) = 𝑥𝑇
(

𝑄1 +𝐾𝑇
2 𝑅12𝐾2 + 𝐴𝑇

𝑞 𝜏
1
(

𝑅0 + (𝜇1)−1
)

𝐴𝑞 + 𝐴𝑇
𝑐𝑙2

𝑃1𝐴𝑐𝑙2

)

𝑥,

𝛩1(𝑥, 𝑢1) = 2𝑢1𝑇𝐵𝑇
1 𝑃1𝐴𝑐𝑙2𝑥,

𝛩2(𝑢1) = 𝑢1𝑇
(

𝑅11 + 𝐵𝑇
1 𝑃1𝐵1

)

𝑢1.

sing the necessary and sufficient condition of the minimum of multivariate functions gives that

𝛩(𝑥,𝐾∗
1𝑥) = min

𝑢1
𝛩(𝑥, 𝑢1),

here

𝐾∗
1 = −

(

𝑅11 + 𝐵𝑇
1 𝑃1𝐵1

)−1
𝐵𝑇
1 𝑃1𝐴𝑐𝑙2 .

xpressing 𝐾1 from the first equation of (38) with given 𝐾2, one can see that 𝐾1 = 𝐾∗
1 , which verifies the inequality part in D of

heorem 1. Therefore, the statement follows from Theorem 1. □

emark 2. We note that, in the uncertainty free case (i.e. for 𝐻 = 0, 𝐴𝑞 = 0, 𝐺 = 0), Eq. (39) implies that 𝑃𝑖 = 𝑃𝑖, while Eqs. (37),
38) reduce to the equations (3.3a)–(3.4b) of Theorem 3.2 in [12]. In this way, Theorem 3 widens the range of solvable problems,
hile returning the results known from earlier literature for a narrower class of problems.

emark 3. Eqs. (37)–(39) are highly nonlinear in the decision variables, thus their direct solution with available standard tools
s hard. If one solves the problem obtained by changing the equality in (37) to ‘‘≥’’, then one obtains an approximation to the Nash
9
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guaranteeing feedback problem. The advantage of this approach is that the new problem can be transformed to a more tractable
problem.

Approximations to the Nash equilibrium problem has been studied e.g. in [3,13,26] (see also the references therein) for
ncertainty free games. The concepts of 𝜖𝛼-, 𝜖𝑥0 -, 𝜖𝛼,𝛽 -, etc Nash equilibrium solutions are introduced to characterize the deviation
f the relaxed solution from the exact one by requesting some further constraints on the admissibility of feedbacks. Similar
onsiderations can also be made in the case of the Nash guaranteeing problem. Since this is not one of the main goals of this
aper, we only present the simplest concept of the 𝜖𝛼-Nash guaranteed equilibrium solution (which is a slight modification of the
𝛼,𝛽 -Nash equilibrium solution of [13]).

The pair (𝛼1, 𝛼2) ∈ 0
𝐹𝐵(𝑓0) (𝛼𝑖(𝑥) = 𝐾𝑖𝑥, 𝑖 = 1, 2) is said to be an 𝜖𝜚-Nash guaranteeing feedback strategy pair with

pproximate Nash guaranteed costs 𝑉 𝑖(𝑥0) for the game (11)–(13) and (16), if there exists a constant 𝜖𝑥0 ,𝜚 ≥ 0 parameterized
n the initial condition 𝑥(0) = 𝑥0 and constant 𝜚 > 1, such that

(𝑖) 𝐽 𝑖
𝑓𝑝

(

𝑥0, 𝛼1, 𝛼2
)

≤ 𝑉 𝑖(𝑥0), ∀𝑓𝑝 ∈  , 𝑖 = 1, 2, (40)

(𝑖𝑖) 𝐽 𝑖
𝑓0

(

𝑥0, 𝛼1, 𝛼2
)

≤ 𝐽 𝑖
𝑓0

(

𝑥0, 𝛼𝑖, 𝛼𝑖
)

+ 𝜖𝑥0 ,𝜚 (41)

s satisfied for all such 𝛼𝑖, 𝛼𝑖, 𝛼𝑖(𝑥) = 𝐾𝑖𝑥, 𝛼𝑖(𝑥) = 𝐾𝑖𝑥 for which |

|

𝜚𝜆𝑀 (𝐴𝑐𝑙)|| < 1, where 𝐴𝑐𝑙 = 𝐴 + 𝐵𝑖𝐾𝑖 + 𝐵𝑖𝐾𝑖 and 𝜆𝑀 (𝐶) denotes
he eigenvalue of 𝐶 with maximum absolute value, 𝐽 𝑖

𝑓0
are the cost functions defined by running costs ̃𝑖 = 𝑖 + ̃𝑖

+, 𝑖 and
𝑖̃
+ are defined by (17) and Lemma 1, respectively.

laim. Suppose that the conditions of Theorem 3 hold true.

If 𝑃𝑖, 𝜏𝑖𝑗 > 0, 𝜇𝑖
𝑗 > 0, (𝑖 = 1, 2, 𝑗 = 1,… , 𝑠), 𝐾1 and 𝐾2 satisfy matrix inequality (32) and matrix Eqs. (38), (39), then 𝛼1(𝑥) = 𝐾1𝑥

nd 𝛼2(𝑥) = 𝐾2𝑥 are 𝜖𝜚-Nash guaranteeing feedback strategies with approximate Nash guaranteed costs 𝑉 𝑖(𝑥0) = 𝑥𝑇0 𝑃𝑖𝑥0, 𝑖 = 1, 2.

roof. It follows from (32) by Theorem 2 that 𝑉 𝑖(𝑥0) = 𝑥𝑇0 𝑃𝑖𝑥0, 𝑖 = 1, 2 satisfy (40). To show (41) one can follow the lines of the
roofs of the corresponding theorems of [3,13], therefore the details are omitted.

The next corollary formulates the problem to be solved, which is quadratic in the decision variables.

orollary 4. Suppose that the conditions of Theorem 3 hold true. If 𝑃𝑖 = 𝑃 𝑇
𝑖 > 0, 𝜏 𝑖𝑗 > 0, 𝜈𝑖𝑗 > 0, (𝑖 = 1, 2, 𝑗 = 1,… , 𝑠), 𝐾1 and 𝐾2

atisfy for 𝑖 = 1, 2 matrix Eqs. (38) and matrix inequalities

0 > 𝜈𝑖𝛯0 + 𝜏𝑖𝑇
0 0 (42)

0 ≥

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝛷̃𝑖 − 𝑃𝑖 𝑇 𝑃𝑖 𝑃𝑖𝐻 𝐾𝑇
𝑖 0

𝑃𝑖 −𝑃𝑖 0 0 0
𝐻𝑇 𝑃𝑖 0 −𝐻𝑇 𝑃𝑖𝐻 + 𝜏 𝑖𝛯0 0 𝑇

0 𝜏
𝑖

𝐾𝑖 0 0 −𝑅−1
𝑖𝑖 0

0 0 𝜏 𝑖0 0 −𝜈𝑖

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(43)

where 𝛷̃𝑖 = 𝑄𝑖 +𝐾𝑇
𝑖
𝑅𝑖𝑖𝐾𝑖 + 𝐴𝑇

𝑞

(

𝜏 𝑖𝑅0 + 𝜈𝑖
)

𝐴𝑞 , then 𝑃𝑖 given by (35) satisfies matrix inequality (32), and 𝛼1(𝑥) = 𝐾1𝑥 and 𝛼2(𝑥) = 𝐾2𝑥
re 𝜖𝜚-Nash guaranteeing feedback strategies with approximate Nash guaranteed costs 𝑉 𝑖(𝑥0) = 𝑥𝑇0 𝑃𝑖𝑥0, 𝑖 = 1, 2.

roof. We shall use here the results of Corollary 3. Accordingly, we have to investigate inequality (34). Using the definition of 𝛷𝑖
nd 𝛯(𝜏 𝑖, 𝜇𝑖), inequality (34) can equivalently be written as

0 ≥
⎡

⎢

⎢

⎣

𝛷̂𝑖 − 𝑃𝑖 𝑇 𝑃𝑖 𝑃𝑖𝐻
𝑃𝑖 −𝑃𝑖 0
𝐻𝑇 𝑃𝑖 0 −𝐻𝑇 𝑃𝑖𝐻 + 𝜏 𝑖𝛯0

⎤

⎥

⎥

⎦

+
⎡

⎢

⎢

⎣

𝐾𝑇
𝑖 0
0 0
0 𝑇

0

⎤

⎥

⎥

⎦

[

𝑅𝑖𝑖 0
0 𝜏𝑖𝜇𝑖

]

[

𝐾𝑖 0 0
0 0 0

]

,

where 𝛷̂𝑖 = 𝑄𝑖 + 𝐾𝑇
𝑖
𝑅𝑖𝑖𝐾𝑖 + 𝐴𝑇

𝑞

(

𝜏𝑖𝑅0 + 𝜏 𝑖(𝜇𝑖)−1
)

𝐴𝑞 . The application of the Schur-complement lemma and a congruence

transformation with 𝑑𝑖𝑎𝑔{𝐼, 𝐼, 𝐼, 𝐼, 𝜏𝑖} thereafter yields

0 ≥

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝛷̂𝑖 − 𝑃𝑖 𝑇 𝑃𝑖 𝑃𝑖𝐻 𝐾𝑇
𝑖 0

𝑃𝑖 −𝑃𝑖 0 0 0
𝐻𝑇 𝑃𝑖 0 −𝐻𝑇 𝑃𝑖𝐻 + 𝜏 𝑖𝛯0 0 𝑇

0 𝜏
𝑖

𝐾𝑖 0 0 −𝑅−1
𝑖𝑖 0

0 0 𝜏 𝑖0 0 −𝜏 𝑖(𝜇𝑖)−1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

Introduce new variables by definition 𝜈𝑖𝑗 ≐ 𝜏 𝑖𝑗∕𝜇
𝑖
𝑗 , (𝑖 = 1, 2 𝑗 = 1,… , 𝑠), then one obtains (43). On the other hand, condition (21) is

𝑖)−1𝜏 𝑖𝛯 + 𝜏 𝑖𝑇 𝑖
10

equivalent to (𝜇 0 0 0 < 0, which is the same as (42) in view of the definition of 𝜈𝑗 .
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4.2. The case of linear-fractional uncertainty

In this subsection we investigate the case of 𝑄0𝑗 = −𝐼 , 𝑅0𝑗 = 𝐼 and 𝑆0𝑗 = 0, (𝑗 = 1,… , 𝑠). Being a special case, the results of the
previous section are naturally applicable for it. However, this special case is worth of additional investigation, because the nominal
system can be given in this case in such a way that the results are ‘‘better’’ than in the general case. If Assumption 2 is valid, then
(𝐼 − 𝐺𝐺𝑇 ) > 0, (equivalently (𝐼 − 𝐺𝑇𝐺) > 0,) which implies that (𝐼 − 𝛥𝐺) is invertible for any 𝛥 satisfying condition 𝛥𝑇 𝛥 ≤ 𝐼 , thus
the game (11), (12), (16) with (13) can also be described as

𝑥𝑡+1 = (𝐴 + 𝛿𝐴𝑡)𝑥𝑡 + 𝐵1𝑢
1
𝑡 + 𝐵2𝑢

2
𝑡 ,

𝛿𝐴𝑡 = 𝐻(𝐼 − 𝛥𝑡𝐺)−1𝛥𝑡𝐴𝑞 ,

where 𝛥𝑇
𝑡 𝛥𝑡 ≤ 𝐼 . For simplicity, we shall assume that 𝛥𝑡 consists of one single block, i.e. 𝑠 = 1 (though all the considerations below

may be performed with 𝛥 having appropriate block diagonal structure with 𝑠 > 1). According to Lemma 2.5 of [27], the set

𝛶 =
{

𝛥 = (𝐼 − 𝛥𝐺)−1𝛥 ∶ 𝛥𝑇 𝛥 ≤ 𝐼
}

can also be written as

𝛶 =
{

𝛥 = 𝐺𝑇 (𝐼 − 𝐺𝐺𝑇 )−1 +𝛱(𝐼 − 𝐺𝐺𝑇 )−1∕2 ∶ 𝛱𝑇𝛱 ≤ (𝐼 − 𝐺𝑇𝐺)−1
}

.

Let us introduce notations 𝐴0 ≐ 𝐴 +𝐻𝐺𝑇 (𝐼 − 𝐺𝐺𝑇 )−1𝐴𝑞 and 0 ≐ 𝐴0 + 𝐵1𝐾1 + 𝐵2𝐾2. Consider

𝑓0(𝑥, 𝑢1, 𝑢2) = 𝐴0𝑥 + 𝐵1𝑢
1 + 𝐵2𝑢

2,

𝑓𝛥(𝑥, 𝑢1, 𝑢2) = (𝐴 + 𝛿𝐴𝑡)𝑥 + 𝐵1𝑢
1 + 𝐵2𝑢

2 +𝐻𝑝,

and 𝑓𝛥 ∈  , if and only if 𝛥𝑇
𝑡 𝛥𝑡 ≤ 𝐼 . As before, 𝑓0 is called the nominal system. Applying the same considerations as in the previous

ubsection, one can derive the following result.

heorem 4. Suppose that Assumption 2 holds true,
(

𝐴0,
[

𝐵1, 𝐵2
])

is stabilizable,
(

𝐴0, 𝑄1 +𝑄2
)

is detectable. If 𝑃𝑖 = 𝑃 𝑇
𝑖 > 0 and 𝜇𝑖 > 0

re such that, for 𝑖 = 1, 2,

𝑃𝑖 ≐
(

𝑃−1
𝑖 − 𝜇𝑖𝐻(𝐼 − 𝐺𝑇𝐺)−1𝐻𝑇 )−1 > 0, (44)

𝑃𝑖 = 𝑄𝑖 +
1
𝜇𝑖𝐴

𝑇
𝑞
(

𝐼 − 𝐺𝐺𝑇 )−1 𝐴𝑞 +𝐾𝑇
1 𝑅𝑖1𝐾1 +𝐾𝑇

2 𝑅𝑖2𝐾2 +𝑇
0 𝑃𝑖0, (45)

[

𝑅11 + 𝐵𝑇
1 𝑃1𝐵1 𝐵𝑇

1 𝑃1𝐵2
𝐵𝑇
2 𝑃2𝐵1 𝑅22 + 𝐵𝑇

2 𝑃1𝐵2

]

[

𝐾1
𝐾2

]

=

[

𝐵𝑇
1 𝑃1

𝐵𝑇
2 𝑃2

]

𝐴0, (46)

hen 𝛼1(𝑥) = 𝐾1𝑥, 𝛼2(𝑥) = 𝐾2𝑥 are admissible with respect to the nominal system, and they are Nash guaranteeing strategies with Nash
uaranteed costs 𝑉 𝑖(𝑥0) = 𝑥𝑇0 𝑃𝑖𝑥0.

emark 4. A remark analogous to Remark 2 can be formulated concerning Theorem 4.

emark 5. Clearly, (44)–(46) are highly nonlinear. Therefore, one has to be satisfied with an approximate solution obtained by
eplacing the equality in (45) with ‘‘≥’’. Keeping in mind the considerations in Remark 3 and applying the matrix inversion — and
he Schur complement lemma, and introducing new variables with the definition 𝜈𝑖 ≐ 1∕𝜇𝑖, the following corollary is obtained.

orollary 5. Suppose that the conditions of Theorem 4 hold true. If 𝑃𝑖 = 𝑃 𝑇
𝑖 > 0, 𝜈𝑖 > 0, 𝐾1 and 𝐾2 satisfy matrix Eq. (46) and matrix

nequality

0 ≥

⎡

⎢

⎢

⎢

⎢

⎣

𝛷𝑖 − 𝑃𝑖 𝑇
0 𝑃𝑖 𝑃𝑖𝐻 𝐾𝑇

𝑖
𝑃𝑖0 −𝑃𝑖 0 0
𝐻𝑇 𝑃𝑖 0 −𝐻𝑇 𝑃𝑖𝐻 − 𝜈𝑖(𝐼 − 𝐺𝑇𝐺) 0
𝐾𝑖 0 0 −𝑅−1

𝑖𝑖

⎤

⎥

⎥

⎥

⎥

⎦

𝑖 = 1, 2, (47)

here 𝛷𝑖 = 𝑄𝑖 +𝐾𝑇
𝑖
𝑅𝑖𝑖𝐾𝑖 + 𝜈𝑖𝐴𝑇

𝑞
(

𝐼 − 𝐺𝐺𝑇 )−1 𝐴𝑞 , then

𝑃𝑖 =
(

𝑃−1
𝑖 +𝐻(𝐼 − 𝐺𝑇𝐺)−1𝐻𝑇 ∕𝜈𝑖

)−1
> 0, 𝑖 = 1, 2, (48)

1(𝑥) = 𝐾1𝑥 and 𝛼2(𝑥) = 𝐾2𝑥 are admissible approximate 𝜖𝜚-Nash guaranteeing feedback strategies with approximate Nash guaranteed
ost 𝑉 𝑖(𝑥0) = 𝑥𝑇0 𝑃𝑖𝑥0, where 𝑃𝑖 is given by (48).

emark 6. Relations (46) and (47) have quadratic in the decision variables, thus they are more tractable with available software
11

ools than (45)–(46) .
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Table 1
Results for Example 1 with the first type of uncertainties obtained with Corollaries 4 and 5.

Data Corollary 4 Corollary 5

𝐻 = 0.1 𝑃1 = 1.3161 𝑃2 = 0.3225 𝑃1 = 1.3139 𝑃2 = 0.2241
𝐴𝑞 = 0.1 𝑃1 = 1.3028 𝑃2 = 0.2222 𝑃1 = 1.3006 𝑃2 = 0.2218
𝐺 = 0.1 𝐾1 = −0.3225 𝐾2 = −0.1100 𝐾1 = −0.3227 𝐾2 = −0.1101

𝐻 = 0.5 𝑃1 = 2.809 𝑃2 = 0.4556 𝑃1 = 2.4842 𝑃2 = 0.3972
𝐴𝑞 = 0.5 𝑃1 = 2.0263 𝑃2 = 0.3302 𝑃1 = 1.8373 𝑃2 = 0.2937
𝐺 = 0.2 𝐾1 = −0.3731 𝐾2 = −0.1210 𝐾1 = −0.3865 𝐾2 = −0.1236

Table 2
Results for Example 1 with the second type of uncertainties obtained with Corollary 4.

Data Corollary 4 Data Corollary 4

𝐻 = 0.1 𝑃1 = 1.3130 𝑃2 = 0.2240 𝐻 = 0.5 𝑃1 = 2.3465 𝑃2 = 0.3845
𝐴𝑞 = 0.1 𝑃1 = 1.2998 𝑃2 = 0.2218 𝐴𝑞 = 0.5 𝑃1 = 1.7599 𝑃2 = 0.2885
𝐺 = −1 𝐾1 = −0.3220 𝐾2 = −0.1100 𝐺 = −1 𝐾1 = −0.3631 𝐾2 = −0.1548

5. Numerical examples

The effectiveness of the proposed method will be illustrated first by an example, which is the modification of an example
onsidered in [12]. As a real world application, the monetary–fiscal game mentioned in Section 2 will be analysed in Example 2.
e note that the methods published in the previous literature were not applicable in these cases. The computations have been

erformed by MATLAB and YALMIP.

xample 1 ([12]). To illustrate the effectiveness of our approach we consider the example of [12] modified so as to allow
ncertainties of types discussed above. Consider (11), (12), (16) and (13) with 𝐴 = 1, 𝐵1 = 2, 𝐵2 = 1, 𝑄1 = 1, 𝑄2 = 0.2, 𝑅11 = 2,
22 = 0.5 and 𝑅12 = 𝑅21 = 0. First we consider the uncertainty free case both with Corollaries 4 and 5, i.e. 𝐻 = 0, 𝐴𝑞 = 0,
= 0, 𝑄0 = −1, 𝑆0 = 0, and 𝑅0 = 1. Both methods yielded the same results as [12] (see Remarks 2, 4): 𝑃1 = 1.2854, 𝑃2 = 0.2197,

𝐾1 = −0.3205 and 𝐾2 = −0.1096. Consider again 𝑄0 = −1, 𝑆0 = 0, 𝑅0 = 1 and nonzero uncertainties, the parameters of which and
the results of computations are given in Table 1. One can see that both methods tolerate relatively large uncertainties, and making
use of the special structure of the uncertainties at choosing the nominal system yields smaller guaranteed costs.

Secondly, consider the case of cone-bounded nonlinear uncertainty described by 𝑄0 = 0, 𝑅0 = 0, 𝑆0 = 1 and 𝐺 = −1. It can be
seen that this means the following bounds for 𝑝

−
|

|

|

|

|

𝐴𝑞𝑥
2

|

|

|

|

|

+
𝐴𝑞𝑥
2

≤ 𝑝 ≤
|

|

|

|

|

𝐴𝑞𝑥
2

|

|

|

|

|

+
𝐴𝑞𝑥
2

.

The results obtained with Corollary 4 are given in Table 2.

Example 2. Consider the uncertain fiscal-monetary game, the dynamics of which is given by (1)–(4) with the objective functions
(5) and (6). To determine the Nash guaranteeing feedback strategies and the corresponding guaranteed costs belonging to an initial
point, parameters 𝛼1, 𝛼2 and 𝛽 must be specified. We rely on some benchmark values found in the literature. Regarding parameter
𝛼1, a cross-country analysis of [7] found that it is from the interval [0.056; 0.180]. Parameter 𝛼2 expresses the impact of the balance
of the central budget on the output gap, it is estimated around 0.3. [8] found that parameter 𝛽 may take its value from interval
[0.18; 0.41]. Introduce the new variables 𝜋 = 𝜋 − 𝜋∗ and 𝑖̃ = 𝑖 − 𝑖∗. By this transformation one obtains the dynamic system

[

𝑧𝑡+1
𝜋𝑡+1

]

=
[

0 𝛼1
𝛽 1

] [

𝑧𝑡
𝜋𝑡

]

+
[

𝛼1 (𝜋∗ − 𝑖∗)
0

]

+
[

−𝛼1 𝛼2
0 0

] [

𝑖̃𝑡
𝑔𝑡

]

+
[

0 𝛼1
𝛽 1

] [

𝑝1
𝑝2

]

If 𝜋∗ = 𝑖∗, the identically zero solution, where 𝑧𝑡 ≡ 0, 𝜋𝑡 ≡ 0, 𝑖̃𝑡 ≡ 0, 𝑔𝑡 ≡ 0, is an equilibrium point of the system with 𝑝1 = 0 and
𝑝2 = 0.

Let

𝑥𝑡 =
[

𝑧𝑡
𝜋𝑡

]

, 𝑢1𝑡 = 𝑔𝑡, 𝑢2𝑡 = 𝑖̃𝑡,

𝐴 =
[

0 𝛼1
𝛽 1

]

, 𝐵1 =
[

𝛼2
0

]

, 𝐵2 =
[

−𝛼1
0

]

, 𝐻 =
[

0 𝛼1
𝛽 1

]

,

𝐴𝑞1 =
[

𝛿1 𝛿1
]

, 𝐴𝑞2 =
[

𝛿2 𝛿2
]

,

𝑄1 =
[

𝛾1 0
0 0

]

, 𝑄2 =
[

0 0
0 𝛾2

]

, 𝑅1 = 𝜚1, 𝑅2 = 𝜚2,
12
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Table 3
Results for Example 2 with uncertainties (49) obtained with Corollary 4.

Data (1) Corollary 4 Data (2) Corollary 4

𝛼1 = 0.118 𝜆𝑀 (𝑃1) = 1.690 𝜆𝑀 (𝑃2) = 1.289 𝛼1 = 0.125 𝜆𝑀 (𝑃1) = 1.594 𝜆𝑀 (𝑃2) = 1.264
𝛼2 = 0.3 𝜆𝑀 (𝑃1) = 1.183 𝜆𝑀 (𝑃2) = 1.246 𝛼2 = 0.3 𝜆𝑀 (𝑃1) = 1.068 𝜆𝑀 (𝑃2) = 1.104
𝛽 = 0.295 𝐾1 = − [0.684 2.582] 𝛽 = 0.325 𝐾1 = − [0.692 2.406]

𝐾2 = [0.981 3.457] 𝐾2 = [1.145 3.672]

where the parameters of the running cost have been chosen as 𝛾1 = 0.2, 𝛾2 = 0.2, 𝜚1 = 0.01 and 𝜚2 = 0.005.
If no uncertainties are present, i.e. 𝛿1 = 𝛿2 = 0 and 𝐻 = 0, then the following results are obtained with Corollary 4:
for 𝛼1 = 0.118, 𝛼2 = 0.3 and 𝛽 = 0.295: 𝜆𝑀 (𝑃1) = 0.8522, 𝜆𝑀 (𝑃2) = 0.9857, |𝜆()| ≤ 0.7877,
for 𝛼1 = 0.125, 𝛼2 = 0.3 and 𝛽 = 0.325: 𝜆𝑀 (𝑃1) = 0.8288, 𝜆𝑀 (𝑃2) = 0.9436, |𝜆()| ≤ 0.7624.
(Note the 𝑃1 and 𝑃2 coincide with 𝑃1 and 𝑃2 up to 15 digits.)
Suppose that nonzero uncertainties are present, and the scalar valued uncertainties 𝑝1 and 𝑝2 are bounded according to 𝑄01 = −1,

01 = 1, 𝑆01 = 0.5, 𝐺1 = −1, and 𝑄02 = 0, 𝑅02 = 0, 𝑆02 = 1 and 𝐺2 = −1. This means that

−

√

5
2

|

|

|

|

|

𝐴𝑞1𝑥
2

|

|

|

|

|

−
𝐴𝑞1𝑥
2

≤ 𝑝1 ≤
√

5
2

|

|

|

|

|

𝐴𝑞1𝑥
2

|

|

|

|

|

−
𝐴𝑞1𝑥
2

, −
|

|

|

|

|

𝐴𝑞2𝑥
2

|

|

|

|

|

+
𝐴𝑞2𝑥
2

≤ 𝑝2 ≤
|

|

|

|

|

𝐴𝑞2𝑥
2

|

|

|

|

|

+
𝐴𝑞2𝑥
2

. (49)

ne can see that 𝛯01 = −1, 𝛯02 = −2, the pair
(

𝐴,
[

𝐵1, 𝐵2
])

is controllable, 𝑄1 + 𝑄2 > 0 thus Assumptions 2–4 are satisfied. Under
he choice of 𝛿1 = 0.08 and 𝛿2 = 0.1, the application of Corollary 4 yielded the results given in Table 3. For the initial values
0 =

[

−0.07 0.15
]

, 𝑉 1(𝑥0) = 0.0253 and 𝑉 2(𝑥0) = 0.0182 were obtained as guaranteed costs for the parameter set in column data (1)
of Table 3, and 𝑉 1(𝑥0) = 0.0227 and 𝑉 2(𝑥0) = 0.0172 for the parameter set data (2). Simulations were performed with the uncertain
functions

𝑝1 =

⎧

⎪

⎨

⎪

⎩

− 𝑦1
2 +

√

5|𝑦1|
2 sin( 1

|𝑦1|
), if 𝑦1 ≠ 0,

0, if 𝑦1 = 0,
𝑝2 =

{

− 𝑦2
2 + |𝑦2|

2 sin( 1
|𝑦2|

), if 𝑦2 ≠ 0,

0, if 𝑦2 = 0,

here 𝑦𝑖 = 𝐴𝑞𝑖𝑥, (𝑖 = 1, 2) which satisfy the bounding conditions (49). The trajectories with the two parameter sets data (1) and
ata (2) of Table 3 are depicted in Fig. 1.

It can be seen that the proposed method is capable to compute the approximate Nash equilibrium solutions under relatively
arge uncertainties. Further, the monetary–fiscal game model is suitable to evaluate and compare different catch-up scenarios for an
conomy. If predetermined reference paths for the state and control variables, i.e. for 𝑥∗𝑡 , 𝜋∗

𝑡 , 𝑔∗𝑡 and 𝑖∗𝑡 are given, one can compute
he corresponding actual paths and other economically relevant quantities (as e.g. the government debt). A detailed analysis exceeds
he frames of the present paper, it can be the topic of further research.

. Conclusion

In this paper, the problem of uncertain/nonlinear two players discrete-time noncooperative games was investigated. The
ncertainty of the model prevent to find the classical Nash equilibrium solution, instead, properly defined Nash guaranteeing
trategies and Nash guaranteed costs were determined. The system’s uncertainties/nonlinearities were assumed to be of quadratically
ounded type. Conditions of the Nash guaranteeing strategies were derived for general uncertain nonlinear games with the aim of
erving as a guideline to the solution process. These results are applied for games that have linear nominal part, quadratic cost
unctions and general quadratically bounded uncertainties/nonlinearities. The special case of linear-fractional uncertainties were
lso discussed. Approximate solutions were obtained by tractable quadratic matrix inequalities. To illustrate the application of the
roposed method, first an academic numerical example was given. Secondly, the method was also applied to the monetary–fiscal
ame, which may support a sound economic policy for the catching-up economies to prevent countercyclical policies that may lead
o unwanted increase of state debt and to high inflation weakening the domestic currency. A limitation of the proposed approach
s that the nonlinearities do not depend on controls in the present model, and measurement errors are not taken into consideration
ither: these are open questions for further research. A further limitation concerns the economic model, in which the state debt is
ot endogenized in the monetary–fiscal game model, although it can be calculated for any simulated path. It is still an open question
ow it can be included in the dynamic equation, which still remains tractable applying the proposed approach.
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Fig. 1. Trajectories and feedback strategies with initial values 𝑧0 = −0.07 and 𝜋0 = 0.15.
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