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Abstract
Understanding the state space of observed Markov processes is essential for
advancing causal inference in a wide range of scientific fields. This paper
demonstrates how the previously unknown state space can be reconstructed
by exploring the spectrum of the time-delay embedding matrix derived from
the autocorrelation sequence of the observed series. It also highlights that
the eigenvector associated with the smallest eigenvalue can provide valuable
insights into the hidden data generation process itself. The presented results
provide a deeper understanding of the complex dynamics of Markov chains
and hold promise for enhancing various scientific applications.

Keywords: Markov chain, hidden Markov model, state space reconstruction

1. Introduction

Causal discovery is a fundamental challenge in scientific inquiry. In various physics mod-
els, this challenge is effectively addressed by formulating dynamical evolution equations,
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which are governed by an equation of motion (EoM). The classical physics paradigm encom-
passes disciplines such as mechanics, hydrodynamics, electrodynamics, and quantum mech-
anics, where the respective EoMs, such as the equation of mechanics (Newton’s equation) and
the Navier–Stokes equation for hydrodynamics, serve as foundational principles. However,
in more complex systems, the EoM is often unknown, necessitating concerted efforts for its
reconstruction. In recent years, attempts have been made to uncover hidden dynamics through
the integration of artificial intelligence (AI) techniques (see, e.g. [1–4]).

The mathematical foundation upon which the reconstruction of dynamical systems rests is
provided by Takens’ theorem [5]. This theorem asserts that the state space of a deterministic
dynamic system can be reconstructed from observations of a single system variable, provided
a specific embedding dimension is chosen (see also [6, 7]). If the state space is reconstructable,
it enables the determination of dynamical insights from the embedded data.

In more complex scenarios where numerous factors influence the motion of the observed
system, achieving an adequate deterministic description becomes challenging. When most of
these effects are relatively small, the system can be treated as having a limited number of
degrees of freedom with noisy observations, as is typical in the deterministic systems refer-
enced earlier. However, in other instances where unknown effects are significant, they must
be considered as integral components of the dynamics, leading to the classification of such
systems as stochastic systems. While stochasticity plays an important role in mechanics [8], it
is inevitable in economics [9].

Similar to the deterministic case, stochastic systems can be approached by pre-definedmod-
els. Due to the difficulty of reliable data acquisition, generic models are commonly used in this
field. The autoregressive (AR) models are built on linear equations with Gaussian stochastic
components [10], while various other models incorporate non-Gaussianity [11–13]. In this
case, model fitting involves determining the model parameters.

It would be desirable to construct AI methods that could reconstruct the model even if it
has stochastic dynamics. However, Takens’ theorem does not apply to stochastic dynamic sys-
tems, such as Markov chains (MCs), due to severe limitations (see [14, 15]). The point is that
deterministic motion forms a subspace in the multi-dimensional space of the embedded vari-
ables (xt,xt−∆t, . . . ,xt−N∆t). For example, Newton’s equation claims that the embedded data
lie on a two-dimensional surface for any N, allowing the revelation of xt+∆t from the know-
ledge of (xt,xt−∆t). However, in a stochastic case, there is no confinement to a submanifold,
and such recovery is not possible.

In a recent paper [16], the authors employed the full power of topological theory in determ-
inistic dynamical systems, including time delay embedding, Takens’ theorem on state space
reconstruction, Stark’s generalization to forced systems, and Sauer’s results on embedding
ensuring invariance of counting and information dimensions against perturbed observations.
The work also addresses the identification of an optimal embedding dimension alternative to
Kennel, Brown, and Abarbanel’s method [17]. All the mentioned works focus on determin-
istic dynamical systems, excluding noise or stochastic components from their scope. While
they can handle a limited amount of noise, essentially stochastic processes are not considered.

Kantz and Ragwitz [16] highlighted that, from the perspective of time series analysis, the
most challenging task is to develop a suitable model for a specific phenomenon. According to
their work, several studies have reconstructed Fokker–Planck and Langevin equations [18, 19]
from observed data, with Friedrich and Peinke’s work considered pioneering in this regard.
However, this approach requires observations of the entire state space of the system. Implicit
or explicit reconstruction of unobserved variables has not yet been achieved.

In Kantz’s and Ragwitz’s paper [16], the focus is on predicting a full Markov model based
on transition probabilities from data. The approach utilizes discrete time delay embedding
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to approximate the continuous space and time Markov process, enabling predictions without
explicitly reconstructing a discrete state space. This method differs from traditional state space
reconstruction methods discussed in Stark et al [15], which outlines stringent conditions for
handling stochastic processes. Kantz and Ragwitz combine the time delay embedding with
constant prediction methods placing it within the broader category of predictions based on
local averaging (see Györfi et al [20]).

In the present study, we develop a state space reconstructionmethod for finite, discrete state,
stationary MCs. Our method can be used to determine the true number of states in a MC, even
when only a function of the MC is observed.

This paper is organized as follows. Section 2 introduces the theory andmethodology used to
restore the state space of a hiddenMarkov process. In section 3, we demonstrate our method on
synthetic data, including examples with special symmetries in the problem. Section 4 discusses
the results, and finally, section 5 concludes and presents future research directions.

2. Theory and methodology

In this section, we first introduce some definitions and notations. Then, we prove several theor-
ems that can help restore the state space of hidden MCs. Finally, we present the main theorem
and demonstrate the method for applying it to actual problems.

2.1. Definitions and notations

We consider an ensemble of X : N→ B series, where B is a (finite) set. We denote the probab-
ility of having b ∈ B at the nth step as P(Xn = b). We have a Markov process, if this probability
depends solely on the value at the (n− 1)th step. The conditional probability is denoted by

P(Xn = b|Xn−1 = a) = T(n)ab , (1)

and is called a transfer matrix.Wewill consider time-homogeneous processes, where the trans-
fer matrix does not depend on n, and we omit the upper index in the sequel.

Definition 1. A time-homogeneous MC is defined by the pair X= (B,T) (the state space and
the transfer matrix) and by the initial distribution P(X0 = a).

Properties of the transfer matrix:

(i) Tab ∈ [0,1];
(ii)

∑
b∈BTab = 1;

(iii) ∀λeigenvalue of T : |λ| ∈ [0,1];
(iv) from (ii) there exists at least one λ= 1 eigenvalue;
(v) P(Xn = b) =

∑
aP(Xn−1 = a)Tab;

(vi) from (iv): P(Xn = b) =
∑

aP(Xn−k = a)Tkab.

We assume that our finite state MC is irreducible and aperiodic, and it always converges to a
unique equilibrium distribution (the eigenvalue 1 has multiplicity one). We will assume in the
whole sequel that the initial distribution is already the equilibrium one and hence the process is
stationary. The stationary (or equilibrium) probability distribution is denoted by Pa = Peq(a).
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2.2. State space reconstruction

Inspired by Takens’ theorem, we consider the observations of a MC. Let X : N→ B be a MC,
and g is our observation function g : B−→ Bg, where Bg is the set of possible observations
with |Bg|⩽ |B|. We denote the observations by Yn = g(Xn). One can consider a more complex
observation like Yn = g(k)(Xn, . . .,Xn+k) with a proper g(k), but that makes no difference in our
investigation since Zn = (Xn, . . .,Xn+k) is also a MC.

Next, we introduce a bi-variate function h : Bg×Bg −→ R which provides the correla-
tion function. In fact we will deal with the observed pairs via f = h ◦ g, that is f(Xn,Xn+k) =
h(Yn,Yn+k) = h(g(Xn),g(Xn+k).

Definition 2. The Cf(k) autocorrelation function associated to a function f : B×B→ R is
defined as

Cf (k) = ⟨ f(X0,Xk)⟩=
∑
a,b∈B

P(X0 = a)P(Xk = b|X0 = a) f(a,b) ,

where Pa = Peq(a) = Peq(X0 = a) is the equilibrium probability distribution.

Using the transfer matrix we can also write

Cf (k) = ⟨ f(X0,Xk)⟩=
∑
a,b∈B

PaT
k
ab f(a,b) ,

with the remark that for k= 0 we have T0 = 1. With a little abuse of terminology, we will call
both f and Cf(k) as correlation functions where it does not cause confusion.

Here we should stress that in real-world scenarios g is typically given, we can not choose it,
while h can be chosen. The property that f has no special symmetry will be referred to in short
as f is generic. The proper definition of a generic observation and the discussion of symmetries
in f is postponed to section 4.

We recall that the characteristic polynomial of a matrix M is defined as

pM (x) = det(M− xI) =
|B|∑
k=0

wkx
k. (2)

Each matrix satisfies its own characteristic polynomial pM(M) = 0.
We remark that, since T has a unit eigenvalue,

∑
kwk = 0.

The following lemma forms the basis of the state space reconstruction method.

Lemma 1. With the above notations and assumptions for all l

W|B|
f (l)

!
=

|B|∑
k=0

wkCf (l+ k) = 0

where wk-s are the coefficients of the characteristic polynomial pT.
In other words, all shifted correlation functions satisfy a linear equation of order |B|, which

is independent of f and the shift l.

Proof. Let

Ql
b,c =

∑
a∈B

Pa f(a,b)Ta,c
l,
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then we obtain

W|B|
f (l) =

∑
b,c∈B

Ql
b,c

 |B|∑
k=0

wkT
k


c,b

= 0,

because T satisfies its own characteristic polynomial.

Apart from the formal proof, the main reason behind lemma 1 is that the correlation func-
tion Cf(k) consists of a sum of geometric series where the quotients are the eigenvalues
of the transfer matrix. Indeed, if the transfer matrix is diagonalizable: T= U−1DU where
D= diag(λ1, . . . ,λ|B|) is diagonal, then

Cf (k) =
∑

a,b,c∈B

PaU
−1
ac λ

k
cUcbf(a,b) =

∑
c∈B

Rcλ
k
c, (3)

where Rc =
∑

a,b∈BPaU
−1
ac Ucbf(a,b). Since each λ satisfies the characteristic polynomial, thus

does the complete correlation function, too. We remark that for k= 0 the condition T0 = 1 is
equivalent to λ0 = 1, even for λ= 0.

Because of this fact, the correlation function provides information about the eigenvalues of
the transfer matrix, in particular the number of the eigenvalues, which is |B|, the dimension of
the state space. A slight problem may arise, however, if the transfer matrix has multiple roots,
which can be present in special, very symmetric processes: in this case, the correlation func-
tions contain a smaller number of terms4. We remark that a single zero eigenvalue influences
the correlation functions, but only in the k= 0 element (using the λ0 = 1 rule).

It is another problem if some of the Rc coefficients are zero; that can be the result of using
a special f function to calculate the correlations. This is an example of a specific symmetry in
the system, which we exclude (cf discussion at the end of this subsection.

These pathological cases will be discussed further in section 4. Nowwe will assume that we
consider a generic enough process and generic enough correlation function that such problems
do not occur. In this generic situation, the number of states of the Markov process equals the
order of the characteristic polynomial.

Usually, we use lemma 1 in the reverse direction, which means that we observe a finite
chunk of the time series Yni=0, andwewant to give an estimate for |B|. If the correlation function
f is generic, then we have the following corollary of lemma 1:

Corollary 1. Assume that the underlying process has no special symmetries (T has no multiple
eigenvalues). If for a given f : B×B→ R we find a linear relation of N+ 1 order satisfying

WN
f (l) =

N∑
k=0

vkCf (k+ l) = 0, ∀ l

for some v, and there is no smaller-order linear relation with this property, then

N⩽ |B|.

If f is generic then

N= |B|.

4 In this case, the minimal polynomial is not equal to the characteristic polynomial.
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Proof. With this notation of lemma 1 we have

TrQ(l)

(
N∑
k=0

vkT
k

)
= 0.

This implies

N∑
k=0

vkT
k

∣∣∣∣
S

= 0, (4)

where S is the subspace spanned by all Q(l) matrices.
First, we consider the case when S is the complete space. Since for a matrix without mul-

tiple eigenvalues, the minimal polynomial satisfied by the transfer matrix is the characteristic
polynomial, then we find N⩾ |B|. If there is no smaller order linear relation with this property,
then N= |B|. If S is smaller, then we have less constraint, and so N< |B|. For generic f we
have a generic Ql and the space S is complete and the equality should hold.

We remark that if |B|= |Bg|, then the observations Yn form a MC themselves. In this case,
we can fully determine the transition matrix purely from observations, and our method is
not needed. Unfortunately, if only a projection of the MC is observed, that straightforward
estimate of the transition matrix is not possible. The reason is that the observed time series is
no longer Markovian. The transition probabilities Pn→n+k, although they provide |Bg| × |Bg|
dimensional transition matrices, do not arise from powers of a single |Bg| × |Bg| dimensional
generator transition matrix. Our method aims precisely at such a situation and provides the
reconstruction of the discrete, finite state space of the MC, assuming the observation lacks any
special symmetry.

As an illustration of degenerate cases where the dimension of the state space cannot be
reconstructed due to symmetry, consider a hypothetical scenario with a 2-dimensional vector-
valued discrete space for the MC. Let d= a− b and e= a+ b, but our observation is f =
d+αe. It is evident that the time delay embedding of f cannot reconstruct the process if α= 1;
however, in all other cases, it can. This specific case is excluded in Sauer’s paper [21] under the
condition termed ‘prevalent’, indicating that the subset of degenerate cases within the function
space of observations has zero measure or probability.

2.3. Methodology

Building upon the theory described in the previous subsection, we now outline the methodo-
logy that can be applied to actual data series.

In the reality we have (time) series y : N→ B, and we can measure the equilibrium auto-
correlation functions Cf(x)

Cf (k) = lim
M→∞

1
M

M−1∑
n=0

h(yn,yn+k)

= lim
M→∞

1
M

M−1∑
n=0

h(g(xn) ,g(xn+k))

= lim
M→∞

1
M

M−1∑
n=0

f(xn,xn+k) . (5)

6
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In practice, of course, M is finite, and there are precision issues; these will be discussed later.
In this subsection, we deal with the problem, of how to determine the minimal length linear
relation that is satisfied by Cf.

So let us assume that Cf satisfies a linear relation
s∑

k=0

ukCf (k+ l) = 0. (6)

In fact, we expect from lemma 1 that it is indeed true. For the estimate of the number of states
we need the smallest s possible (cf corollary 1).

To determine the uk coefficients, we prepare a matrix

F( f)
lk = Cf (k+ l) , k ∈ {0, . . . ,s} , l ∈ {0, . . . ,L} . (7)

The linear relation of equation (6) implies

0=
K∑
k=0

F( f)
lk uk. (8)

In matrix notation, with F( f ) matrix we write

F( f)v= 0. (9)

In the first method, we choose the maximal l to be s, then F is a symmetric, s+ 1 order
square matrix. Then (9) implies that F( f ) has at least one zero eigenvalue5. The eigenvectors
belonging to the zero eigenvalues give the coefficients of the linear equation for the correlation
functions. But usually, there are several such relations, and we need the one with the minimal
order.

We recall that if there are two linear equations with length s, then we can prepare a single
linear relation with length s− 1, by simply expressing the last variable from the first equation,
and substituting it into the second.

To generalize this observation, let us denote the non-zero subspace of F( f ) by:

Sp( f)+ = Span
{
v | F( f)v= λv, λ > 0

}
, N( f)

+ = dim
(
Sp( f)+

)
.

Then F( f ) has N0 = s+ 1−N+ zero eigenvalues. This means that there are N0 linear relations,
each of order s+ 1, that are satisfied by the correlation functions. But it follows that there is
also a single s+ 2−N0 order linear equation which is satisfied by Cf(k). So the minimal order
is smin+ 1= N+ + 1, implying smin = N+.

For another method, we do not require s=L. Then we start from (9) to write

|F( f)v|2 = vTF( f)TF( f)v= 0. (10)

Since the left-hand side is always positive, its zero value means a minimum. Normalizing∑K
k=0 v

2
k = 1 we arrive at the conditional minimization problem:

vTF( f)TF( f)v=minimal, vTv= 1. (11)

With the notation

S( f) = F( f)TF( f) (12)

5 To avoid confusion we remark that the eigenvalues of F and those of T are different. In particular, a zero eigenvalue
of T implies no restriction on the spectrum of F.
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we arrive at the condition, using Lagrange multipliers

vTS( f)v−λvTv=minimal. (13)

This leads to

S( f)v= λv (14)

eigenvalue equation. The condition vTv= 1 implies

0= |F( f)v|2 = vTS( f)v= λvTv= λ. (15)

Therefore we need the zero eigenvalues of the S( f ) matrix. All eigenvectors belonging to a
zero eigenvalue of the matrix S( f ) give a linear relation.

Now we are in the situation that lowers s until S( f ) has only a single zero eigenvalue. Or,
just as in the case of a square matrix F, we use the dimension of the nonzero eigenspace to
determine |B|.

2.4. Finite size analysis

The theoretical analysis above was valid for infinite data length and infinite precision calcu-
lations. In practice, however, computer number representation accuracy is finite, and we have
also a finite, sometimes just a limited number of data. The question is, what can we say in
these constrained possibility cases?

First, let us deal with the problem of finite data size. What we propose is to exploit the fact
that at the infinite number of data limits we in fact find a zero eigenvalue either for F or S. Thus
we expect that if we increase the number of data, we find smaller and smaller eigenvalues.

So we propose to prepare the plot λi(M), the ith eigenvalue as a function of the number
of data, for the complete domain of M, not just considering the spectrum at the maximal
available M.

We expect that in the case of a finite eigenvalue, there is a critical Mi, which is needed to
find that finite value. ForM>Mi we safely find the λi value in the spectrum, and so the λi(M)
shows a saturation.

The other type of eigenvalues, which are zero in the infinite number of data limit, show no
saturation; they decrease for largeM. We prove the following lemma:

Lemma 2. If the data consist of a large number of independent pieces, then the would-be-zero
eigenvalues of the embedded correlation matrix decrease as ∼1/M for M data points.

Proof. Let XM denote the MCs with M data points. We assume that the correlation length
L of the series is much smaller than M, hence we have approximately nM =M/L≫ 1 quasi-
independent observations for the correlation length. Let {Ca | a= 1 . . .nM} be the ensemble of
correlation functions, and {Fa | a= 1 . . .nM} the corresponding embeddings. The embedding
FM for the complete lengthM is their average FM = L

M

∑nM
a=1Fa. We denote F= F∞. Clearly,

F= limM→∞FM.
We can express Fa as Fa = F+ δFa. If these matrices are independent for different a, then

δFa is a random variable with zero mean. Therefore, FM = F+ δFM, where

δFM =
L
M

nM∑
a=1

δFa (16)
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is the average of approximately M i.i.d random variables. By the central limit theorem, δFM
is a normally distributed random variable with zero mean and standard deviation 1/

√
M. For

the quadratic form, we have

FTMFM = FTF+ δFTMF+FTδFM+ δFTMδFM = FTF+ δA. (17)

Now, consider an eigenvector vM of FTMFM corresponding to a would-be zero eigenvalue
(any of them). Let v= limM→∞ vM, which satisfies FTFv= 0. Introducing the difference
δvM = v− vM, and for the corresponding eigenvalue, we write λM = λ+ δλM (in this case
λ= 0). The eigenvalue equation becomes

FTMFMvM =
(
FTF+ δA

)
(v+ δvM) = λMvM = δλM (v+ δvM) . (18)

To leading order in the perturbation, we find

δAv+FTFδv= δλMv. (19)

Multiplying this equation by vT from the left, and using vTFTF= (FTFv)T = 0, we obtain

δλM = vTδAv. (20)

Using the form δA= δFTMF+FTδFM+ δFTMδFM, and noting that if vTFTFv= 0, then Fv= 0,
it follows that only the last term remains:

δλM = |δFMv|2 ∼O
(

1
M

)
. (21)

Thus, we expect that with a finite number of data points, the would-be-zero eigenvalues
approach zero as λi(M)∼ 1/M, without saturation. Numerical evidence supports this analysis
(cf section 3).

If we have a finite number of available data, then we see some (Nsat) eigenvalues that are
saturated already and some (Ndecr) that are decreasing. Then the best we can say, based on this
observation, is that the number of states |B| is at least Nsat, and that the remaining Ndecr states
fulfill an approximate linear law.

3. Results

Let us consider some simulated data to demonstrate, how our method works.

3.1. Generic 2-state MC

Our first, simplest example intends to show all the practical details. Later on, we use the same
methodology for other cases.

Let us have a 2-state MC with states B= {a,b} and with the transfer matrix

T=

(
0.3 0.7
0.6 0.4

)
. (22)

These numbers are meant to be general enough.
This transfer matrix has two eigenvalues: (1,−0.3). The unit eigenvalue is the consequence

of the fact that the sum of each row is one. The left eigenvalue belonging to λ= 1 is the
equilibrium distribution, in this case, we have Peq = (6/13,7/13).

9
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Figure 1. The correlation function in the exact case compared with the numerical one
from an MC containing 106 data.

Figure 2. The data number dependence of the spectrum of S matrix.

Let us consider a simple observable associated with f(x,y) = δxaδya. The corresponding
Cf(k) is

Cf (k) = Pa
(
Tk
)
aa
.

We expect generically that at k= 0T0 = 1 and soCf(0) = Pa; in this case it is 6/13. For k→∞
the probability of having a at zero and at k becomes independent, and so Cf(k→∞) = P2

a; in
our case it is (6/13)2. The exact Cf(k) curve is shown in the left panel of figure 1. In this
plot we also see the numerical result coming from an MC containing one million data. As we
see, the exact and the numerically determined autocorrelation functions are very close to each
other.

For a numerical analysis, we prepared the MC based on the given transfer matrix, starting
from state a. On this chain, we determined the autocorrelation function up to k= 12. Then,
using L= 6, we determine the F matrix and the corresponding S= FTF matrix. The num-
ber of its nonzero eigenvalues will determine the number of states |B|, which, in this case,
shall be 2.

In the left panel of figure 2 we see the spectrum for different numbers of data. As we see, in
the exact case there are two large eigenvalues and four small ones in the order of 10−16. This is
themachine accuracy of the eigenvalue determination in our case. The exact eigenvalue smaller
than this number can not be found even in the limit when we collect an infinite number of data.

On the right panel, we find the data number dependence of the different eigenvalues, where
horizontal lines show the exact values. As was promised, the nonzero eigenvalues are stabilized

10
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Figure 3. The data number dependence of the spectrum of S matrix.

after a certain M, which is rather small in this 2× 2 case. The would-be zero eigenvalues
decrease as 1/M (a straight line in the log-log plot).

As we have seen, the dimension of the state space can be determined from the number of
nonzero eigenvalues. In the present case, it was enough to collect a mere 1000 data to see the
two states. If we collect 107 data, we can state that with the precision of 10−7, there is no third
state in the system.

To go on, we shall determine the smallest linear relation that maps the data to zero. To
this end, we take L= 3 and repeat the procedure. We obtain the eigenvalues 6.79,0.252,1.04 ·
10−16. The eigenvector corresponding to the third, machine-zero eigenvalue, normalized in a
way that the last element is one, reads (−0.3,−0.7,1). If we multiply this vector with F, then
we indeed obtain (a numerical) zero. This eigenvector yields the polynomial

λ2 − 0.7λ− 0.3= 0.

This is indeed the characteristic polynomial of T, giving the roots 1 and −0.3, as we have
already seen.

3.2. 2-state MC with zero eigenvalue

Let us repeat that same analysis, with the matrix

T=

(
0.3 0.7
0.3 0.7

)
. (23)

This matrix has two eigenvalues: (1, 0). The equilibrium distribution is (0.3, 0.7).
Despite the T-matrix having a zero eigenvalue, this does not pose any problem for our

method. In figure 3, in the left panel we can see the correlation function. It starts with 0.3, and
in the second step, it reaches 0.09. On the right panel, we see the spectrum of the S matrix.
It has two finite eigenvalues, and, down to 10−7 we do not have a third one. This suggests,
correctly, that the number of states is 2.

We can reconstruct the characteristic polynomial, if we choose L= 3, and then take the
eigenvector belonging to the only zero eigenvalue. It reads (0,−1,1), corresponding to the
polynomial λ−λ2, which is indeed the correct characteristic polynomial of the above transfer
matrix.

11
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Figure 4. (left) The autocorrelation function of a 3-state Markov chain. (right) The data
number dependence of the eigenvalues of the S matrix. We can observe three stabilized
eigenvalues, corresponding to the number of states |B|= 3.

3.3. Generic 3-state MC

We can apply the same strategy for a 3-state MC, too. Let us choose for the states B= {a,b,c}
and for the transfer matrix:

T=

 0.1 0.2 0.7
0.7 0.1 0.2
0.2 0.7 0.1

 . (24)

A special feature of this matrix is that it has complex eigenvalues −0.35± 0.433i besides the
unit eigenvalue.

In figure 4 the left panel shows the autocorrelation function. As a consequence of the com-
plex eigenvalues of the transfer matrix, it exhibits oscillations.

On the right panel, the data number dependence of the spectrum is shown. As we can see,
we must wait until we have collected approximately 105 data points before we can confidently
claim that the third eigenvalue has stabilized. Nevertheless, the third eigenvalue deviates from
the 1/M law much before the saturation occurs.

3.4. 3-state MC with degenerate eigenvalues of the transfer matrix

In a 3-state Markov process, we can have a transfer matrix with two identical eigenvalues.
Consider

T=

 1/2 1/4 1/4
1/4 1/2 1/4
1/4 1/4 1/2

 . (25)

Its three eigenvalues are (1,1/4,1/4).
If we study the MC generated by this matrix we find the results plotted in figure 5. The

numerical procedure correctly identifies the two eigenvalues, however, we do not have inform-
ation about the multiplicities. In the next section, we analyze this problem in detail.

4. Discussion

4.1. Multiple eigenvalues and perturbation

As we have demonstrated in the previous section, the state space of Markov processes gen-
erated by a transfer matrix with a non-degenerate spectrum can be completely characterized

12
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Figure 5. (left) The correlation function of a 3-state Markov chain where the transfer
matrix has multiple eigenvalues. (right) The data number dependence of the eigenval-
ues of the S matrix. We can not obtain multiplicity information from the spectrum, and
correspondingly we just observe two stabilized eigenvalues.

by the nonzero part of the spectrum of the corresponding S matrix. As we have seen, the zero
and non-zero eigenvalues can be separated numerically only up to a certain precision that is
proportional to the collected data.

A single topic remained to be discussed, and this is the case of the degenerate spectrum. Let
us return for a moment to the last example of the previous subsection with transfer matrix (25),
and study the evolution of the probability distribution. It is governed by the equation

Pn+1 = PnT. (26)

The T matrix of (25) can be written as a sum of projectors:

Tab =Π
(eq)
ab +

1
4

(
δij−Π

(eq)
ab

)
, where Π

(eq)
ab =

1
3
. (27)

The initial condition can be written accordingly:

P0 = Peq + P̂,

where Peq = (1/3,1/3,1/3).
The point is that for any n we can write

Pn = Peq +
1
4n
P̂,

which corresponds to a 2-state MC.
This means that the reason that in the actual MC, we can not discover the third eigenvalue

is, that it does not appear in the process at all. All concrete MCs run in a 2-state subspace.
In practice, it is very unlikely that we encounter an exact degenerate spectrum. First of all,

multiple eigenvalues very rarely occur, as it is not connected directly to explicit symmetries
of the system, therefore a noisy environment most probably will break this symmetry, and lift
the degeneracy. Thanks to that and with the aid of corollary 1 we can determine |B| if the
observation is generic.

Anyway, if it is suspicious that the system has multiple eigenvalues we may use a simple
perturbation to reveal the hidden eigenvalues and states. We need to generate random uniform
number(s) and use them as additional stay probability for the observed state(s). For instance,
if qa ∈ [0,1] is the generated stay rate for state a, for each observed xi = a we shall insert an
additional a into the observed sequence with probability qa until the random trial stops. (Of

13
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Figure 6. (left) The correlation function of a 3-state Markov chain coming from a per-
turbed transfer matrix. (right) The data number dependence of the eigenvalues of the
S matrix. The perturbation lifted the degeneracy, and we can observe three stabilized
eigenvalues corresponding correctly to the number of states |B|= 3.

course, other perturbationsmaywork aswell.) The observed perturbed sequence is also coming
from a MC but the multiple eigenvalues are decoupled as the next example demonstrates.

One should note that if there are no multiple eigenvalues, such perturbation does not change
the number of eigenvalues.

Let us take the same T matrix as in (25), and the stay rates are incorporated using a per-
turbation matrix:

R=

 1 −1 0
−1 2 −1
0 −1 1

 , (28)

such as the perturbed transfer matrix is

Tpert = T+ pR, (29)

where p is a tuning parameter (in our example p= 0.1). The autocorrelation function and the
spectrum are shown in figure 6. As we can see, the autocorrelation function changes only
slightly, still, the spectrum of the S matrix exhibits a third eigenvalue, demonstrating that the
true number of states is 3.

4.2. Nearby eigenvalues

Even if the spectrum is not degenerate, nearby eigenvalues may be difficult to identify. In this
subsection, we try to give a hint about the numerical nature of this problem.

Let us assume that our original correlation function contains two geometric series, but the
q1, q2 quotients are close q1 ≈ q2. Let us introduce the notations

q1 = q+
∆q
2

, q2 = q− ∆q
2

. (30)

The original series is

Ck = a0 + a1q
k
1 + a2q

k
2. (31)

We approximate it with a single quotient series:

C ′
k = a0 +(a1 + a2)q

k. (32)

14
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Figure 7. The 3rd eigenvalue as a function of the perturbation parameter.

This latter correlation function satisfies the law C ′
k+1 − qC ′

k = 0. What happens, if we apply
this law to the original series? To characterize the error we introduce the corresponding χ2

value as

χ2 =
∞∑
n=0

(Ck+1 − qCk)
2
. (33)

After a short algebraic manipulation, we obtain the leading order in ∆q

χ2 =
∆q4

4
1+ q2

(1− q2)3
+O

(
∆q6

)
>

∆q4

4
. (34)

Another characterization of the problem comes from the study of the third eigenvalue of
the S matrix. Here we shall choose actual numerical values, for example, a0 = a1 = a2 = 1,
and q= 0.5. The third eigenvalue is zero for ∆q= 0, and it grows with ∆q. Numerically we
find the plot in figure 7.

In this log-log plot, we compared the third eigenvalue and the∼∆q4 law. As we see, some-
what surprisingly, it works for almost ∆q= 0.5.

This means that the smallest eigenvalue of the S matrix is proportional to the fourth power
of the splitting of the eigenvalues of the T-matrix. Since the number of data necessary to
resolve an eigenvalue is 1/λ, we find that we need to collect at least M∼ 1/∆q4 data to see
the different eigenvalues.

This is bad news at one hand, and good news at another. It is bad since the autocorrelation
function of an MC reveals very slowly the true number of states if the eigenvalues of the T
matrix are close.

In reality, however, few-state Markov processes are very rare. In nature, everything is inter-
connected; for example, the position of Mars can influence the period of a clock, even if only
in a very subtle way. Therefore, in real processes, many states are typically involved, some-
times even continuously (as in hydrodynamics). But the above evidence suggests that we can
approximate these cases with a finite number of states since the difference in observables like
the correlation function will be small. If we have a finite amount of data M, then we shall
examine the spectrum of the S matrix with the finite size analysis described in this paper, and
use so many states that correspond to the number of nonzero (would-be) eigenvalues. In most
practical applications there will be no difference between the two models.
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5. Conclusions and future work

In this paper, we proposed a method that is capable of reconstructing the phase space of a
Markov process and getting some information about the eigenvalues of the corresponding
transfer matrix. For that, we needed to know a (generic enough) autocorrelation function.

The method is based on the observation that all autocorrelation functions satisfy a linear
relation.With the embedding of the autocorrelation function, we can create a symmetric matrix
(the embeddingmatrix itself, or the PCAmatrix). In theory, the number of nonzero eigenvalues
yields the number of states in the Markov process, while the minimal length zero eigenvalue
reproduces the characteristic equation of the transfer matrix.

The practical application of the theoretical method is challenged by some problems, first
of all, the finite number of available data, but also the finite precision calculations in the
eigenvalue determination. We propose a finite-size scaling method to separate the established
nonzero eigenvalues and the would-be zero eigenvalues, up to a given precision. We have
shown that the value of the would-be zero eigenvalues scale by 1/M where M is the sample
size, while the established eigenvalues reach a constant value.

We discussed also the problem of multiple, or (as it occurs in practice) nearby eigenvalues.
We demonstrated that the necessary sample size is M∼ 1/∆q4, to resolve eigenvalues of the
T matrix that differ by ∆q.
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