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Summary

In addition to the well-known Lee–Carter model, two versions of a multi-population mortality model, known as 
augmented common factor models, were fitted to Hungarian data in the present study. The two subpopulations 
considered in the analysis were men and women. When predicting mortality rates, it is important to not only predict 
the trend in mortality change (improvement) given that the age-specific coefficient of this time-varying parameter 
also changes over time. The phenomenon of this time dependence of the age pattern and consideration thereof in 
mortality projections are known in the literature as rotation. As a result of the present research, possible trajectories 
for the life expectancy of men and women in Hungary up to the year 2050 were determined by predicting rotated 
and nonrotated versions of three different mortality models.

Keywords: multi-population mortality models, modeling jointly, time-varying age patterns, rotation, forecasting life 
expectancy

A halandóság-javulás időben változó életkori mintázata  
multipopulációs modellekben

Varga Lívia

Központi Statisztikai Hivatal, Budapest, Magyarország 
Budapesti Corvinus Egyetem, Budapest, Magyarország

Összefoglalás

Lee és Carter halandóság-előrejelző modellje több mint 30 éve népszerű módszer. E modell szerint a mortalitási rá-
ták logaritmusa egy hosszú távú trend lineáris függvénye, amelynek korspecifikus együtthatója lehetővé teszi a halan-
dóság változásának életkorok szerinti vizsgálatát. Az utóbbi évtizedekben számos kutató vállalkozott arra, hogy Lee 
és Carter modelljét továbbfejlessze, így az eredeti log-bilineáris modellnek ma már sokféle változata ismert. E tovább-
fejlesztett modellek közé tartoznak a multipopulációs halandósági modellek is, amelyek egy populáció alcsoportjainak 
(pl. egy régió országainak, egy ország területi egységeinek, férfiak és nők csoportjának) összefüggő elemzését és ha-
landóság-előrejelzését teszik lehetővé. 

A Lee–Carter modellcsaládba tartozó multipopulációs mortalitási modellek esetében a tény időszaki adatsorra 
illesztett (időtől, életkortól vagy születési évtől függő) paraméterek legalább egyike valamennyi alpopulációra nézve 
ugyanaz. E közös paraméter(ek) mellett szerepelnek még csoportspecifikus tényezők is, amelyek az alpopulációk sa-
játosságainak figyelembevételét teszik lehetővé a közös jellemzők mellett. Egymással szoros kapcsolatban álló és ha-
sonló szocio-ökonómiai háttérrel rendelkező alpopulációk esetében indokolt lehet a multipopulációs halandósági 
modellek használata, amelyek legfőbb célja, hogy egy populáció alcsoportjainak halandóságát ne egymástól függetle-
nül vizsgáljuk.

A kutatás során 1960 és 2022 közötti magyar adatokat felhasználva három mortalitási modellt illesztettünk: a 
Lee–Carter modellt és ennek két multipopulációs változatát, a két- és háromfaktoros ACF (,augmented common 
factor’) modellt. A cél az volt, hogy férfiak és nők mortalitását összefüggő módon vizsgáljuk, és a modellben szerep-
lő életkortól függő paraméterek közelmúltban megfigyelhető időbeli változását az előrejelzés során figyelembe ve-
gyük. A szakirodalomban rotáció néven ismert az a jelenség, amely szerint a fejlett országokban a halandóság-javulás 
lassul a legfiatalabb korcsoportokban és gyorsul a legidősebb koréveket tekintve. A hosszabbodó várható élettartam 
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– a reprodukcióhoz szükségesnél alacsonyabb szintű termékenység mellett – hozzájárul a társadalom öregedéséhez, 
amely Magyarországon is egyre nagyobb kockázatot jelent a nyugdíjrendszer fenntarthatósága szempontjából.

A kutatás eredményeként a vizsgált halandósági modellek rotált és nem rotált változatainak előrejelzése révén 
meghatároztuk a várható élettartam lehetséges pályáját Magyarországon 2050-ig, férfiakra és nőkre külön-külön. Azt 
találtuk, hogy a Lee–Carter modellben szereplő korspecifikus együttható múltban megfigyelhető változása egyelőre 
még nem támasztja alá a rotáció szükségességét a rövid távú előrejelzés során. A nem rotált modellek közül a három-
faktoros ACF modell illeszkedése volt a legjobb és ebben az esetben sikerült egy olyan rotált változatot kialakítani, 
amely hosszú távon tükrözi azt, amit a rotációtól várunk: a legidősebb korcsoportok nagyobb mértékben járulnak 
hozzá a várható élettartam növekedéséhez a jövőben, mint a legfiatalabbak. Ugyanakkor a rotált, háromfaktoros ACF 
modell hosszú távon egyre gyorsabban növekvő várható élettartamot jelez előre, ami óvatosságra int az előrejelzés 
során.

Kulcsszavak: multipopulációs halandósági modellek, alpopulációk együttes modellezése, időben változó életkori 
jellemzők, rotáció, várható élettartam előrejelzése

Forewords
Forecasting demographic indicators is an important top-
ic in economic, social and healthcare research. Many 
studies address the projection of mortality as a core part 
of this field. However, there is no universally accepted 
solution for forecasting mortality, thus models and meth-
odologies need to be adapted to specific circumstances. 
Lívia’s doctoral research focuses on studying the applica-
tion of such mortality models to Hungarian data, which 
have not been widely used in the Hungarian practice yet.

The application of multi-population mortality models 
has already been the subject of an earlier study by Lívia, 
which addressed the regional projection of Hungarian 
mortality. The results of this research have also been ap-
plied by the author, as an employee of the Hungarian 
Central Statistical Office (HCSO), to further develop 
county population projections. Another study by Lívia 
deals with the projection of Hungarian mortality rates by 
cause of death, in addition to a third paper on excess 
mortality due to the COVID-19 epidemic. In the pre-
sent paper, Lívia focuses on the age-dependent parame-
ters of the improving mortality trend in Hungary, and 
considers their recent properties in predicting mortality 
rates. The results of this research will allow a fine-tuning 
of the mortality models applied.

As can be seen from the short list above, her research 
covers a wide range of mortality issues. However, Lívia 
not only tackles questions of research interest, but as an 
employee of the HCSO, she also develops predictive 
models on which future research can be built. Her dili-
gence, thoroughness and the quality of her work mean 
that this task could not be in better hands. 

Burka Dávid, PhD
Supervisor

Corvinus University of Budapest
Budapest, Hungary

Lívia works on population projections at the Hungarian 
Central Statistical Office (HCSO), one of the pillars of 
which is mortality projections. The international litera-
ture describes a wide range of mortality models, and one 
of Lívia’s main goals is to learn as much as possible about 

these models. In her previous work, she analyzed the se-
lected models according to different disaggregations of 
Hungarian mortality data: she analyzed regional data 
and data disaggregated by cause of death. Her current 
research focuses on the analysis and projection of mortal-
ity and life expectancy for men and women. Among the 
selected models, her current work uses one that she has 
applied in practice for the first time. Lívia aims to broad-
en not only the aspect chosen, but also the range of mod-
els used in her doctoral research.

Lívia does a lot of work on the numerical program-
ming of the mortality models, which adds significant 
value to the Hungarian population projections. There-
fore, her work does not only involve compiling and ana-
lyzing the data, but also considerable programming ef-
forts. Population projections are always prepared in 
several versions, representing calculations under different 
scenarios. This research will contribute to the optimistic 
version of the mortality projection, which Lívia will build 
on in her future work at the HCSO. Lívia’s research is 
useful at her workplace and the work she has done is a 
niche project.

Kéki Zsuzsanna
Corporate Expert

Hungarian Central Statistical Office
Budapest, Hungary

Introduction

The mortality model of Lee and Carter (1992) has been 
a popular method for demographers, actuaries and re-
searchers for more than 30 years. According to this mod-
el, the logarithm of mortality rates is a function of a 
long-term trend. The age-specific coefficient of the trend 
allows the change in mortality to be varied by age. The 
trend and the age-specific pattern of the mortality change 
can show large differences, for example by sex or geog-
raphy. In recent decades, many researchers have attempt-
ed to improve the Lee–Carter model, for example by 
including additional factors, or by using new methods to 
fit the model and/or to predict the stochastic factor(s). 
The main aim of these developments was to improve the 
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fit of the original model and to make the forecast more 
accurate. As a result, many variants of the original log-
bilinear model are now known.

These improved models include multi-population 
mortality models (see, e.g., Villegas et al. 2017), which 
allow the analysis and prediction of mortality for sub-
groups of a population (e.g., countries in a region, ter-
ritorial units of a country, or groups of men and women) 
together. One of the main objectives of using multi-pop-
ulation mortality models is to study the mortality of sub-
groups of a population that are not independent of each 
other. In this type of model, which belongs to the Lee–
Carter family, at least one of the fitted parameters (which 
are dependent on time, or age, or year of birth) is the 
same for all subpopulations. In addition to these com-
mon parameter(s), there are also group-specific factors 
that allow the characteristics of the subpopulations to be 
taken into account, in addition to the common features. 
For subpopulations that are closely related and have sim-
ilar socioeconomic backgrounds, the use of multi-popu-
lation mortality models may be justified.

The popularity of the Lee–Carter model is partly due 
to the fact that it is not a data-intensive method, requir-
ing only a long time series of deaths and population size 
by age. Many examples for its application can be found 
in Hungarian research papers. Baran et al. (2007) fitted 
the original Lee–Carter model to Hungarian data for 
men and women. They also applied two- and three-fac-
tor versions of the model, following the idea suggested 
by Booth–Maindonald–Smith (2002). The authors also 
considered the choice of the ideal length of the base pe-
riod with respect to the change of political and econom-
ic regime in Hungary, which had an influence on mortal-
ity. Májer–Kovács (2011) applied the Lee–Carter model 
to predict life expectancy at old age, and to measure the 
associated uncertainty using Hungarian data, while also 
discussing the financial risks for the pension system. 
Bajkó et al. (2015) applied the Lee–Carter model to pre-
dict not only mortality rates but also fertility rates, and 
constructed a pension model. For validation purposes, 
they also made projections based on time series of differ-
ent lengths for an already known period in order to com-
pare the projected values with current data.

Vékás (2017) applied the notable models of the gener-
alized age–period–cohort model family (see, e.g., Ville-
gas–Kaishev–Millossovich 2018) to Hungarian data, 
which the author also described in a later paper (see 
Vékás 2019). The Lee–Carter model is also discussed in 
this framework. Petneházi–Gáll (2019) compared two 
methods for predicting mortality. The authors compared 
the results of the long short-term memory (LSTM) neu-
ral network with the original Lee–Carter prediction us-
ing data from different countries. Gogola–Vékás (2020) 

used the Lee–Carter model to predict the mortality rates 
for older age groups for their actuarial calculations using 
Hungarian and Czech data.

Obádovics–Tóth (2021, 2023) used a version of the 
Lee–Carter model modified by Lee–Miller (2001) to 
forecast mortality as part of their long-term population 
projection model. Tóth (2021a, 2022a, 2022b) analyzed 
the impact of the COVID-19 epidemic using the Lee–
Miller version of the model to project the mortality of 
the period affected by the COVID-19 pandemic, i.e., to 
estimate how mortality would have developed in the ab-
sence of the epidemic and to determine the extent of 
excess mortality in Hungary. Csiszár (2022) provided 
estimates of mortality by cause of death not only for 
Hungary, and compared the Lee–Carter model with the 
P-splines method. Szentkereszti–Vékás (2022) also ap-
plied the LSTM neural network method to Hungarian 
data and fitted the Lee–Carter model for comparison. 
Petneházi–Gáll (2023), following Baran et al. (2007), 
used more recent data to investigate the possibility of 
applying the one- and multi-factor Lee–Carter model to 
Hungarian data.

Tóth (2021b) investigated the applicability of the 
product-ratio model developed by Hyndman–Booth–
Yasmeen (2013) in Hungary, using data from the Viseg-
rad Group countries. Varga (2023) fitted multi-popula-
tion models from the Lee–Carter family to Hungarian 
regional data, allowing the joint analysis of mortality for 
subpopulations. The author found that the augmented 
common factor model and the augmented common fac-
tor model with common age effect showed a good fit. 
For some of the above literature, the Lee–Carter model 
is a mortality prediction model against which the results 
of modified versions or new methods are compared.

There are large differences in mortality between men 
and women in Hungary. However, there is a close rela-
tionship between the two subpopulations as they are ex-
posed to the same influences, for example, they receive 
care from the same health care system. Nowadays, the 
lifestyles of men and women are also less different. Mul-
ti-population models are often used to predict mortality 
for men and women together (see, e.g., Carter–Lee 
1992; Li–Lee 2005), however, country-specific, territorial 
applications are also widespread (see, e.g., Danesi–
Haberman–Millossovich 2015; Kleinow 2015; Enchev–
Kleinow–Cairns 2017 and Scognamiglio 2022). 

The present research examined multi-population mor-
tality models that can be considered as modified and ex-
tended versions of the Lee–Carter model. The theoreti-
cal background of the selected mortality models is 
presented below. These models were fitted to Hungarian 
data for men and women to predict life expectancy up to 
2050, which is also described below.
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Theoretical background

The Poisson Lee–Carter model

Lee and Carter fitted a model to the mortality data of 
the USA using long time series in which the logarithm of 
age-specific mortality rates is a linear function of an un-
observed time-varying parameter. The authors call this 
parameter the mortality index, which describes the long-
term trend in mortality change. Lee and Carter used sin-
gular value decomposition (SVD) to fit the model. 
Brouhns–Denuit–Vermunt (2002) presented the Poisson 
Lee–Carter model with a nonadditive error term in the 
initial equation and used maximum likelihood to fit the 
model parameters.

Assuming a Poisson distribution of the number of 
deaths, the initial equation of the Lee–Carter model can 
be written as follows:

Dxt ~ Poisson(Ec
xt mxt)	 (1)

ln mxt = αx + βxκt	 (2)

where mxt is the central mortality rate, i.e., the number 
of deaths (Dxt) divided by the central population (Ec

xt), 
also called the central exposure by age x and year t. On 
the right side of Equation 2, α and β depend only on age 
and κ on time. κt denotes the mortality index. Its age-
specific coefficient βx expresses that the trend in mortality 
varies with age. αx is the baseline shape of the mortality 
curve. The model includes two constraints to ensure that 
the solution to the initial equation is unique. Lee and 
Carter imposed the following constraints on βx and κt:

∑xβx = 1 and ∑tκt = 0.	 (3)

As a result, αx is the average of the log mortality rates 
by age over time. The right side of the initial equation of 
the model represents the unknown parameters, which 
were also determined in this study using the maximum 
likelihood method.

The projection of mortality rates is based on the pre-
diction of the mortality index. In their analysis of US 
data, Lee and Carter found that the mortality index de-
clined roughly linearly between 1900 and 1989, i.e., 
mortality was steadily improving (apart from the effect 
of the Spanish flu in 1918). They predicted the continu-
ation of this trend using an ARIMA(0,1,0) with drift 
model: 

κt = δ + κt-1 + ϵt,    ϵt ~ N(0, σκ
2)	 (4)

where δ denotes the drift parameter, and  is white noise. 
Brouhns–Denuit–Vermunt (2002) fitted an ARI-
MA(0,1,1) model instead of ARIMA(0,1,0) to predict 
the mortality index:

κt = C + κt-1 + ξt + θξt-1, 	 ξt ~ N(0, σκ
2)	 (5)

where the constant C refers to the average annual change 
in the mortality index κt, and ξt is the independent dis-
turbance. 

The augmented common factor model

The augmented common factor (ACF) model is a multi-
population model described by Li–Lee (2005). This 
model includes two mortality indices, the first of which 
does not differ between subpopulations, while the sec-
ond stochastic factor is group-specific. The same applies 
to the coefficients of the two indices: while the first ex-
presses the same age effects across groups, the second 
allows for variations between the subpopulations. Li–Lee 
(2005) fitted the model using the SVD method. Li 
(2013) and Li–Tickle–Parr (2016) assumed a Poisson 
distribution for the number of deaths and applied the 
maximum likelihood estimation. Assuming a Poisson 
distribution, the initial equation can be formulated as 
follows:

ln mxtj = αxj + βx
(1) κt

(1) + βxj
(2) κtj

(2)	 (6)

where βx
(1) κt

(1) is the common factor.1 κt
(1) describes the 

long-term common trend in mortality. The second index 
κtj

(2) shows the short- and medium-term discrepancy 
from the historical trend by subpopulation j. The follow-
ing constraints are required for the parameters:  
∑xβx

(1) = 1, ∑tκt
(1) =0, ∑xβxj

(2) =1 for ∀ j, and ∑tκtj
(2) = 0 for  

∀ j.
According to Li–Lee (2005), independence of the κt

(1) 
and κtj

(2) indices, and independence of the additional fac-
tor between groups can be assumed since the latter index 
refers to random, periodic changes in different subpopu-
lations. For example, the random walk with drift model 
can be used to predict mortality indices, and Li–Lee 
(2005) mentioned the possibility of using the AR(1) 
model for the group-specific index.

Li (2013) assumed a Poisson distribution for the num-
ber of deaths and fitted the ACF model using the maxi-
mum likelihood estimation. Another innovation of the 
author is the inclusion of more than one additional 
group-specific factor in the ACF model. Thus, the initial 
equation is:

ln mxtj = αxj + βx
(1) κt

(1) + ∑i=2
n βxj

(i) κtj
(i).	 (7)

As noted by Li (2013), the use of too many parame-
ters should be avoided because if the third- or higher-
order indices are irregular, then they are less suitable for 
prediction. Given the initial Equation 7, the following 

1  When only the parameters αxj, βx
(1) and κt

(1) appear on the right side of the equa-
tion, it is called the common factor (CF) model. In fact, Lee–Nault (1993) was 
the first to apply this model. In the CF model, the term αxj is the only group-
specific factor, and it may be appropriate if βx

(1) and κt
(1) are very similar across 

subpopulations.
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constraints are required: ∑xβx
(1) = 1, ∑tκt

(1) = 0, ∑xβxj
(i) = 1 

for ∀ i, j, and ∑tκtj
(i) =0 for ∀ i, j. Li (2013) used a ran-

dom walk with drift model for the common mortality 
index, and proposed AR(p) models for the additional 
time-varying factors to predict mortality rates.

Rotation of the age-varying parameters

In developed countries, mortality improvements have 
been slowing down in younger age groups and accelerat-
ing in older age groups. Li–Lee–Gerland (2013) referred 
to this phenomenon as ‘rotation’. For infants and young 
age groups, the rapid rate of improvement cannot be as-
sumed to continue in the long term, as it would lead to 
unreasonably low mortality rates in these age groups. It 
is therefore reasonable to assume that the improvement 
in mortality for younger age groups will slow down and 
that the older age groups will contribute more to the 
increase in life expectancy than in the past. If the phe-
nomenon of rotation is not taken into account, the re-
sults of the long-term projection become questionable: 
we may underestimate the number of elderly people and 
life expectancy as well. Li–Gerland (2011) introduced 
robust rotation for the parameter βx of the Lee–Carter 
model. They called this model the Lee–Carter method 
with robust rotation. This is different from Li–Lee–Ger-
land (2013), who developed the Lee–Carter method ex-
tended with a rotation model.

Li–Lee–Gerland (2013) assumed that βx values are 
converging to a certain level in the long run, which they 
called the ultimate βx. The rotation starts at the forecast 
horizon when life expectancy at birth exceeds a certain 
value. Li–Lee–Gerland (2013) identified that this value is 
80 years. The rotated time-dependent βxt values were de-
termined using a linear-weight function and a smooth-
weight function. In their model, the rotation ends when 
the rotated βxt values reach the ultimate βx values. In 
summary, Li–Lee–Gerland (2013) devised a model in 
which βxt for younger age groups gradually decreases 
over the projection period once life expectancy reaches a 
certain value. Since ∑xβx = 1, a decrease for younger age 
groups implies an increase for older age groups. Li–Lee–
Gerland (2013) expect that the rotation will also occur 
in developing countries as they achieve higher life expec-
tancy. According to Li–Lee–Gerland (2013), the Lee–
Carter model may be applicable in the medium term 
with nonrotated βx, as this parameter may be stable over 
shorter time periods.

The study by Vékás (2018) was the first in the Hun-
garian literature to present the phenomenon of rotation, 
following the methodology of Li–Lee–Gerland (2013). 
Vékás (2018) showed the importance of rotation based 
on the data of 22 age groups between 1950 and 2015. 
The author found that the rotation of mortality im-
provement is weakly detectable for men, but significant 
for women in Hungary. Furthermore, Vékás (2020) 

studied the rotation for the member states of the Euro-
pean Union and demonstrated that the rotation of the 
age pattern is important for both sexes in 11 of the 28 
member states.

In the literature, rotation is used for parameter  
βx 

(1)
(j) in the Lee–Carter model and in a multi-population 

version of this model developed by Li–Lee (2005). How-
ever, in multi-factor mortality models, there may also be 
multiple age patterns. In fact, αx is also a parameter that 
is usually considered static in the prediction, but it also 
changes over time (its value decreasing with improving 
mortality). 

In the present paper, we have attempted to account 
for the time dependence of the age-dependent parame-
ters in the Lee–Carter, ACF and ACF with three factors 
models. We also use the term rotation for this purpose. 
The change in age-dependent parameter values over 
time can be estimated by the least squares method as fol-
lows:

 
= + + ,    ~ (0, ) 

( )
( ) = + + ( ),   ( ) ~ (0, ) 

 

	 (8)

and

 
= + + ,    ~ (0, ) 

( )
( ) = + + ( ),   ( ) ~ (0, ) 

 

	
(9)

where the error terms εxtj and εxt(j) are normally distrib-
uted. To estimate these equations, the mortality models 
must be fitted using base periods of different lengths in 
order to model the change in age-dependent parameters 
over time. Thus, in Equations 8–9, t is equal to the num-
ber of shortened base periods. In the present study, the 
future time-dependent values of αxtj and ( )

( )   were de-
termined using parameters ax, bx, cx and dx. The sum of  

( )
( )   remains 1 in each year of the projection horizon, 

thus the original constraint of the mortality models is 
not violated.

Data and methodology

Table 1 summarizes the mortality models and their ab-
breviations used in the present study. The source of the 
age- and sex-specific mortality and population data for 
the models was the database of the Hungarian Central 
Statistical Office (HCSO), but the Human Mortality 
Database (HMD)2 also provides the necessary data. Age-
specific mortality and population data are available by 
year from 1950 onwards. The longest possible time se-
ries is preferred. However, the mortality models were 
fitted to a base period between 1960 and 2022. The 
mortality models were fitted using data by age expressed 
in year units, but the mortality data for those aged 90 
years and over were considered as one group, as the un-

2  Available at https://www.mortality.org/ 
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The log-likelihood functions for the mortality models can be written as follows:

Poisson Lee–Carter

 ℓ ( ) = ∑  ( + ( ) ( ))−
( ) ( )

+ C  

 

	 (10)

ACF

 ℓ ( ) = ∑  ( + ( ) ( ) + ( ) ( ))−
( ) ( ) ( ) ( )

+ C  

 

	 (11)

ACF with three factors

ℓ ( ) = ∑  + ( ) ( ) + ( ) ( ) + ( ) ( ) −
( ) ( ) ( ) ( ) ( ) ( )

+ C  	 (12)

where C is a constant.

certainty of the estimation may increase for smaller 
groups. In addition, the number of persons aged 90 and 
over is not available by individual age group for the 
whole base period.

The population data for the 1980s and 1990s have 
been adjusted in our research. We used the adjusted to-
tal population data based on the results of the 1990 and 
2001 censuses (see HCSO 1990, 2001). The age distri-
bution of the adjusted data was set to match the age 
composition of the population as reported between two 
censuses. We used the central exposure for our calcula-
tions, thus we also needed the population on 1 January 
2023, which was the population calculated from the 
2011 census using the statistics of the vital events. The 
population on 1 January 2023, calculated from the lat-
est census in October 2022, was also available during 
the analysis, but we did not use it to determine the mid-
year population in 2022 for the purposes of consistency. 

As a further adjustment, the ratio of deaths at known 
ages to total deaths was used to distribute the number 
of deaths at an unknown age. This is consistent with the 
methodology of the HMD (see Wilmoth et al. 2021). 
Finally, the number of deaths was rounded to the near-
est integer.

Lee–Carter (1992) assumed a Gaussian error term in 
the initial Equation 2. Following Brillinger (1986), 
Brouhns–Denuit–Vermunt (2002) found it more realistic 
to assume that the number of deaths follows a Poisson 
distribution. In the present study, the mortality models 
were fitted using the maximum likelihood estimation 
with Newton–Raphson iteration method, and we as-
sumed a Poisson distribution of the number of deaths. 
The numerical calculations were performed using the R 
software (R Core Team 2021). The iteration was repeat-
ed until the increase in the log-likelihood function was 
less than 10−6. 

Table 1 The fitted mortality models based on Hungarian data

Literature The names of the models The initial equations Constraints

Lee–Carter (1992), Brouhns– 
Denuit–Vermunt (2002)

Lee–Carter ln mxtj = αxj + βxj
(1) κtj

(1) ∑xβx
(i)

(j) = 1 
and 
∑tκt

(i)
(j) = 0 

for ∀ i, j
i = 1, 2, 3

Li–Lee (2005), Li (2013) ACF ln mxtj = αxj + βx
(1) κt

(1) + βxj
(2) κtj

(2)

Li (2013) ACF with three factors ln mxtj = αxj + βx
(1) κt

(1) + βxj
(2) κtj

(2) + βxj
(3) κtj

(3)

Note: The subscript j refers to the subpopulation, i.e., sex.

Source: Own editing
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In the models, the sex-specific parameters αxj are ap-
proximately equal to the average of the log mortality 
rates over time. However, one can also try a variant 
where αxj is equal to the log mortality rates of the last 
period (or a selected year). In the case of the Lee–Carter 
model, the study by Lee–Miller (2001) suggests this ap-
proach. We applied the Lee–Miller modification to the 
ACF model with parameter re-adjustment. In fact, not 
only the parameters βx or κt can be the same for sub-
populations in multi-population mortality models with 
multiple factors (see, e.g., Wen et al. 2021). Thus, we 
also fitted the ACF model with a common parameter αx. 
However, these two modified ACF models3 were ig-
nored due to the large fluctuations in the standardized 
residuals (see later) and were not used in predicting 
mortality rates.

Descriptive statistics

Figure 1 illustrates life expectancy at birth4 for men and 
women in Hungary between 1960 and 2022. It shows 
that the difference between the two sexes was smallest in 
the early 1960s, when men’s life expectancy at birth was 
only 4–5 years lower than that of women. Thereafter, 

3   The fitted parameters of the two models are presented in the online Appendix.
4  In calculating the life tables, we basically followed the methodology of Chiang 
(1968) and Eurostat (see https://ec.europa.eu/eurostat/cache/metadata/An-
nexes/demo_mor_esms_an1.pdf). We chose 0.2 as the average fraction of the 
year lived by an infant, and the fraction of the last year of life was 0.5 for all other 
cohorts. In addition, the group of people aged 90 and over was considered as the 
oldest cohort.

the gap gradually widened, reaching a peak in the first 
half of the 1990s. The gap was widest between 1992 and 
1995, when men’s life expectancy at birth was 9.3 to 9.5 
years lower than that of women. Since the second half of 
the 1990s, the gap has narrowed and the difference be-
tween male and female life expectancy at birth is 6–7 
years today. The favorable life expectancy gap of the ear-
ly 1960s has not been reached again during the past 60 
years. However, from 1960 to the present, life expec-
tancy has increased by years for both sexes. In 2022, life 
expectancy at birth was 72.7 years for men and 79.5 
years for women. In recent decades, the two sexes have 
followed different paths: the increase in life expectancy 
at birth for men has not been continuous, unlike that for 
women. Life expectancy for men declined between 1960 
and 1993 and was at its lowest in 1992–1993 (64.6 
years). The years 2020–2021 are important because of 
the COVID-19 epidemic, the effects of which were still 
being felt in 2022. However, the negative effect of the 
epidemic on mortality was probably temporary.

Figure 2 shows the logarithm of the central mortality 
rates for men and women over the last 63 years. The 
gradual downward shift of the curve indicates an im-
provement in mortality. Again, however, it is important 
to highlight two periods: the early 1990s and the early 
2000s. In the first half of the 1990s, partly as a result of 
the change of political and economic regime, mortality 
rates increased, especially for middle-aged people (espe-
cially men), as can be seen in Figure 2. The loss of life 
years among middle-aged women was compensated by 
improvements in mortality among the young and elder-
ly, thus life expectancy for women, unlike for men, did 

Figure 1 Life expectancy at birth for males and females between 1960 and 2022

Source: Own calculation
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not decrease (see Józan 2008 and Bálint 2016). In the 
early 1990s, the increase in mortality due to slowly pro-
gressive diseases was linked to the precariousness of life 
and to the increase in deaths from violent causes follow-
ing the change of political and economic regime. The 
emergence and growing importance of slowly progres-
sive diseases assumes a health-damaging lifestyle that had 
been in place for years or decades before the regime 
change, with alcohol consumption and smoking being 
highlighted as part of this. See Józan (2008, 2012).

It should also be noted that, as a result of the COV-
ID-19 epidemic, mortality was higher in older age 
groups in 2020–2021 than in 2019. Log mortality rates 
for women and men aged 57–59 and over were higher 
than in the last year before the epidemic. Comparing 
mortality at the beginning and the end of the observa-
tion period, there is a striking phenomenon among 
males. For men aged 52–66, the logarithm of the mor-
tality rates observed in 2022 was higher than the level 
observed in the early 1960s. For younger age groups, 
there has been a clear improvement in mortality for both 
sexes over recent decades.

Results and discussion

The fitted parameters of the mortality models

Figures 3 and 4 show the values of the parameters of the 
mortality models fitted to data from 1960 to 2022. If 
one would like to examine mortality for men and women 
without considering national characteristics (trend and 

age effects), then one can rely on the results of the Lee–
Carter model. The ACF and ACF with three factors are 
multi-population models that include common age ef-
fects and trends (for men and women together) in addi-
tion to sex-specific characteristics. For the multi-popula-
tion models, the first step was to determine the common 
parameters that could be calculated from the national 
data, and then to estimate the sex-specific parameters us-
ing the common parameters determined in the first step.

The value of αxj for all three models differs only slight-
ly from the average of the log mortality rates over the 
base period, and is approximately the same. The trend in 
mortality change is described by the mortality indices  
κt

(1)
(j), κt

(2)
j  and κt

(3)
j for the Lee–Carter, ACF and ACF with 

three factors models. It can be seen that the additional 
factors modify the evolution of the first mortality index. 
In parallel, the shape of the age pattern(s) change(s). For 
almost all mortality indices, the negative impact of the 
COVID-19 epidemic on mortality is clearly visible, and 
it is also observed that the rate of improvement in mor-
tality has already slowed down before 2020. Considering 
the ACF and ACF with three factors models, the values 
of the additional indices κt

(2)
j and κt

(3)
j were found to be 

predictable for both sexes. Further figures for the fitted 
parameters of the models are available in the online Ap-
pendix.

In order to develop a rotated version of the three 
models for forecasting purposes, it was necessary to fit 
the models to shorter base periods. The shortest base 
period was from 1960 to 2010 and the longest was from 
1960 to 2022. For the Lee–Carter model, we found that 

Figure 2 The logarithm of the central mortality rates between 1960 and 2022

Source: Own calculation
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there was considerable uncertainty in the choice of peri-
od length for parameter estimation in the case of males 
(if the model converged at all). This was not the case for 
the multi-factor models. Therefore, the rotated version 
of the Lee–Carter model for men was not used in this 
research. Figure 5 shows the change in the parameter 
βx

(1) of the Lee–Carter model fitted jointly to the male 
and female data for different base periods. Further fig-
ures of the sex-specific changes in parameters αxj and  

βx
(i)

(j) of the other mortality models are available in the 
online Appendix. The graphs show that the change in 
the age-dependent parameters has slowed down over 
time.

Figure 5 confirms that the mortality improvement 
slows down at the youngest ages, as demonstrated by 
the decreasing βx values. The same is true for the oldest 
ages, but this is the opposite of what would be expected 
from the phenomenon described as rotation. Józan 

Figure 3 The fitted parameters of the mortality models for males

Source: Own calculation
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(2008) also expected an acceleration of mortality im-
provement in Hungary in the 21st century for the oldest 
ages. However, taking into account the data of recent 
years, it can still be observed that the mortality improve-
ment of the middle-aged is lagging behind and that this 

age group can still make a significant contribution to 
the increase in life expectancy in the short and/or me-
dium term. As shown in Figure 5, an improvement in 
the mortality of the oldest age group can still be ex-
pected in Hungary.

Figure 4 The fitted parameters of the mortality models for females

Source: Own calculation
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The goodness of fit

There are several methods of in-sample analysis that can 
facilitate the choice between models. These include 
comparing the information criteria of the models, i.e., 
AIC and BIC (Akaike Information Criterion and Bayes-
ian Information Criterion). These can be calculated as 
follows (see, e.g., Villegas–Kaishev–Millossovich 2018):

AIC = 2k – 2L,	 (13)

BIC = k ln(n) – 2L	 (14)

where k indicates the number of parameters, n refers to 
the number of observations, and L is the maximum value 
of the log-likelihood. The smaller the AIC or the BIC 
value, the better the model. Both the AIC and BIC val-
ues confirm that, for both men and women, the ACF 
model with three factors has the best goodness of fit 
among the three mortality models, while the Lee–Carter 
model has the worst (see Table 2).

In the present research, fitted mortality models can be 
considered as nested models where the more general 
model is the ACF with three factors with the most pa-
rameters. According to Plat (2009), the likelihood ratio 
(LR) test is more appropriate for nested models for 
model selection than information criteria. For the LR 
test, the null hypothesis is that the nested model is the 
correct model against the more general model. The LR 
test statistic is calculated as:

ξLR = 2(Lgeneral – Lnested)	 (15)

where Lgeneral is the maximum log-likelihood value of the 
general model and Lnested is the log-likelihood of the 
nested model. Under the null hypothesis, ξLR has a χ2 
distribution with J degrees of freedom. J is the number 
of the additional estimated parameters in the general 
model in comparison with the nested model. The null 
hypothesis can be rejected if:

ξLR > χJ
2
,α	 (16)

where α denotes the significance level. Table 3 summa-
rizes the results of the LR tests: the general model always 
outperforms the nested model.

Another way to compare different mortality models is 
to analyze the standardized residuals. The magnitude 
and heatmap of the residuals can be used to determine 
whether additional factors need to be included. The 
more random the order of the residuals, the better the 
goodness of fit of a model. The value of the standardized 
residuals can be calculated as follows (see, e.g., Wen et al. 
2021):

 

 
 =   

 

	 (17)

where Dxtj is the number of deaths, Ex
c
tj denotes the cen-

tral exposure, and m ̂ xtj is the estimated central mortality 
rate at age x, in year t, and in population j. The heatmaps 
and scatter plots show the residuals plotted against age, 
calendar year, and year of birth (see the online 

Figure 5 The shape of the age effect in different time periods for both sexes combined based on the Lee–Carter model

Source: Own calculation
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Appendix).5 An analysis of the magnitude and arrange-
ment of the standardized residuals leads to the same 
conclusions as the AIC and BIC values. The ACF model 
with three factors seems to be the most appropriate of 
the three models, but the diagonal pattern suggests that 
the change (improvement) in mortality is not really in-
dependent of the year of birth. The cohort effect is not 
included in any of the three fitted models.

Table 2 The mortality models’ goodness of fit, 1960–2022

Sexes Measures Lee–Carter ACF ACF with 
three factors

Males AIC 35,773,942 35,695,354 35,690,129

BIC 35,775,559 35,697,982 35,693,769

Females AIC 32,918,361 32,911,775 32,907,238

BIC 32,919,978 32,914,403 32,910,877

Note: The most favorable values are highlighted in bold.

Source:  Own calculation

Table 3 The results of the likelihood ratio tests, 1960–2022

Null hypothesis Likelihood ratio 
test statistic

Degrees of 
freedom

χJ
2,α

Males Females

Lee–Carter model against 
ACF

78,892 6,892 153 125.4

Lee–Carter model against 
ACF with three factors

84,420 11,732 307 267.4

ACF against ACF with 
three factors

5,528 4,840 153 125.4

Note: α = 0.05

Source:  Own calculation

The future life expectancy at birth

In order to forecast age-specific mortality rates up to 
2050, it was necessary to forecast mortality indices, for 
which ARIMA models were chosen. In order to select 
appropriate ARIMA (p,d,q) models, we tested for the 
presence of unit roots6 in the time series, and checked 
the autocorrelation and normality of the residuals7 of the 
mortality models. On the basis of the unit root tests, we 
concluded that a first differencing was definitely neces-
sary. To determine the parameters p and q, we consid-

5  We applied the StMoMo package of Villegas–Kaishev–Millossovich (2018) to pre-
pare these figures.
6  For this, we used augmented Dickey–Fuller (ADF) and Kwiatkowski–Phillips–
Schmidt–Shin (KPSS) unit root tests.
7  The following tests were used: Ljung–Box Q-statistic, Breusch–Godfrey test, 
and Shapiro–Wilk test.

ered the values 0, 1 and 2. In order to compare the dif-
ferent ARIMA models, we also calculated the AIC and 
BIC values,8 which can also help in the selection process. 
The decision was also influenced by the width of the pre-
diction interval. The statistics of the possible ARIMA 
models for the mortality indices are available in the on-
line Appendix. Table 4 shows which ARIMA models 
were chosen for the projection. In the projection, the 
values for the years 2020–2021 were treated as outliers 
and filtered out using a dummy variable. The figures in 
the online Appendix show the predicted values of the 
mortality indices and their 80% and 95% prediction in-
tervals.

Table 4 ARIMA models of the mortality indices

The mortality 
models

κt
(1)

(j) κt
(2)

j κt
(3)

j

Lee–Carter ARIMA(0,1,1) 
with drift

– –

ACF ARIMA(0,1,0) 
with drift

ARIMA(0,1,1) 
with drift

–

ACF with three 
factors

ARIMA(0,1,0) 
with drift

ARIMA(0,1,1) 
with drift

ARIMA(0,1,1) 
with drift

Note: The ARIMA models do not differ by sex.

Source:  Own editing

To forecast the rotated versions of the three mortality 
models, it was also necessary to predict the age-varying 
parameters, which were determined as described above 
(see Equations 8 and 9). For the rotation of the age-
varying parameters, the changes observed since 2015 
were used. However, we cannot assume that recent 
trends will continue in the long term, thus this may be a 
weakness of the rotation method we used. Since two of 
the fitted models (the ACF and the ACF with three fac-
tors) have multiple βx coefficients, it was possible to ro-
tate several parameters. We first considered the case 
where all age patterns in all models were rotated. This 
approach proved to be inappropriate, especially in the 
case of three factors because life expectancy was not in-
creasing in the long run, but rather decreasing. Finally, 
we adopted the solution of rotating only βx

(1)
(j) in addition 

to αxj.
Using the selected ARIMA models and rotated age-

dependent parameters, we projected age-specific mortal-
ity rates up to 2050, and we calculated life expectancy 
for men and women. Figure 6 shows the results of differ-
ent rotated and nonrotated model variants. Life expec-

8   These can be calculated as follows: AIC = T ln(sum of squared residuals) + 2n 
and BIC = T ln(sum of squared residuals) + n ln(T) where n is the number of es-
timated parameters (p + q + possible constant term), and T is the number of 
usable observations (see, e.g., Enders 2014).
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tancy at birth is also summarized in the online Appendix. 
It was found that the rotated models can predict higher 
life expectancy from the first year of projection than the 
nonrotated models. Among the models, the nonrotated 
Lee–Carter model is the most pessimistic for both men 
and women, predicting 74 and 81.8 years respectively in 
2050. According to this model, the gap between the two 
sexes in life expectancy at birth will widen. The nonro-
tated ACF model and the nonrotated ACF model with 
three factors forecast very similar life expectancies. These 
are 74.3 years for men and 82.6 and 82.2 years for wom-
en in 2050. These models also predict a greater differ-
ence between the two sexes than is typical today. Of the 
rotated models, the three-factor ACF model is the most 
optimistic, predicting 77.7 years for men and 86.3 years 
for women in 2050. According to this model, the largest 
difference in life expectancy between the two sexes is 
expected in the last year of the projection.

One important question regarding rotation is which 
age groups contribute more to the increase in life expec-
tancy in the long run. On the basis of Figure 7, it could 
be predicted that the rotated Lee–Carter model would 
improve mortality in middle age to a greater extent. 
Figure 7 shows the log mortality rates in 2050 based on 
the different models for men and women separately. As 
the rotated Lee–Carter model was only fitted for wom-
en, conclusions could be drawn based on this projection. 
It can be observed that the rotated Lee–Carter model 
does indeed lead to improvements in the mortality of 
middle-aged people compared to the nonrotated ver-

sion, and that this leads to a significant improvement by 
2050. However, for the youngest and oldest age groups, 
mortality is higher for the rotated Lee–Carter model 
than for the nonrotated version. Our rotation method 
can only be a short-term solution for projections based 
on the Lee–Carter model.

The rotated ACF model improves mortality in almost 
all age groups except those aged 60 and over. Thus, al-
most all age groups will contribute to an increased life 
expectancy in 2050 based on the rotated ACF model 
compared to the nonrotated version. For the three-fac-
tor ACF model, we can observe what we originally ex-
pected from the rotation. In the youngest age groups, 
there is no significant difference between the rotated and 
nonrotated versions, while all other age groups show a 
more favorable projection, especially the group aged 90 
and over. According to this model, life expectancy will 
be higher in the long run until 2050 at an increasingly 
faster rate (see Figure 6).

Coherence in multi-population models

If mortality models without common parameters (e.g., 
the Lee–Carter model) are fitted separately by subpopu-
lation, this may lead to divergent mortality rates between 
groups in the projection. For groups with similar socio-
economic backgrounds, it is generally assumed that ob-
served past mortality differences between them, which 
are also due to biological endowments, will not change 

Figure 6 Life expectancy at birth for males and females between 1960 and 2050

Source: Own calculation
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Figure 7 The logarithm of the central mortality rates in 2050 based on different mortality models

Source: Own calculation
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in the future. For example, in developed countries, in-
fant mortality rates for women are usually lower than 
those for men (this is also the case in Hungary), and this 
trend is expected to continue in the projection. Howev-
er, predicting mortality rates for subpopulations inde-
pendently may lead to a crossover effect. If it is true that 
a multi-population mortality model can be used to avoid 
the crossover effect, then the model is coherent in the 
sense described by Li–Lee (2005).

By comparing the projected age-specific mortality 
rates of the subpopulations, it is possible to analyze how 
the mortality difference varies over the projection period 
and whether it remains constant. To investigate this, we 
calculated the ratio of the mortality rates for each age 
group and for each year of the projection: female mortal-
ity rates were divided by male mortality rates. The values 
of the female-to-male ratios are available in the online 
Appendix. From this perspective, it could be concluded 
that infant mortality is higher for women than for men 
throughout the projection period according to both the 
Lee–Carter and the ACF models. However, this seems 
unrealistic. Of the two multi-population models, the 
ACF model with three factors performs well in this re-
spect, and the same was found for the oldest age group 
(those aged 90 and over): female mortality does not in-
crease relative to male mortality. This is what we would 
expect on the basis of the current data. Looking at the 
future evolution of the female-to-male ratio, the Lee–
Carter model shows less change in the ratio in the long 
run. For the two multi-population models there are sev-
eral age groups where the ratio does not remain con-
stant.

Conclusions

In this study, we fitted three mortality models to Hun-
garian data from 1960 to 2022: the Lee–Carter model 
and its two multi-population variants, the two-factor and 
three-factor ACF models. The objective was to model 
mortality for men and women jointly and to take into 
account the time dependence of the age-varying coeffi-
cients of the mortality improvement trend in the fore-
cast. In the literature, this phenomenon is known as ro-
tation, whereby mortality improvement is slowing down 
in the youngest age groups and accelerating in the oldest 
age groups in developed countries. In Hungary, it is rea-
sonable to assume that the reserves of decreasing mortal-
ity of infants and young age groups are slowly diminish-
ing, and that the period of faster improvement in the life 
expectancy of the elderly is approaching, i.e., that their 
life expectancy will be significantly extended. Modelling 
the future evolution of life expectancy is an important 
issue for policy makers, as pension systems are challenged 
by population ageing and longevity risk.

Rotation is usually associated with the Lee–Carter 
model. The time dependence of the age pattern of the 
Lee–Carter model does not yet confirm the need for ro-

tation in short-term projections. However, we have con-
structed rotated versions of selected mortality models 
and projected age-specific mortality rates up to 2050. 
We found that among the nonrotated models, the three-
factor ACF model had the best fit to the data, and the 
female-to-male ratios of infant mortality rates and old-
age mortality rates were found to be appropriate, which 
is not the case for the other two models in this study. 
With the three-factor model, we have succeeded in de-
veloping a rotation version that reflects what is expected 
from rotation in the long run: the oldest age groups 
contribute more to the increase in life expectancy in the 
future than the youngest ones. However, the rotated 
three-factor ACF model predicts an increasingly rapid 
improvement in life expectancy in the long run, suggest-
ing caution in forecasting.

In the case of the Lee–Carter model, the rotation 
method we used may only be suitable in the short term: 
it leads to an increasing improvement in mortality in 
middle age, which is unsustainable in the long term. It 
was also seen that in the case of men, fitting the Lee–
Carter model to different base periods is not stable in 
terms of the evolution of the age pattern. Li–Lee–Ger-
land (2013) address the rotation of a single age pattern. 
In our study, we constructed rotated versions of multi-
factor mortality models, and the baseline shape of mor-
tality is also a rotated term in our models. The latter may 
be a suitable alternative to the Lee–Miller (2001) method 
to avoid jump-off bias. In multi-factor mortality models, 
the age-varying coefficients of the mortality indices are 
more volatile, so that the estimation of their year-to-year 
change is subject to uncertainty. It is important to ac-
count for rotation in projections, as the rate of improve-
ment in mortality does indeed vary between different 
age groups. Further research should be devoted to con-
structing rotated versions of other multi-population 
models and to developing a method of rotation that can 
be applied in both the short and long term.
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