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We study the structure of isometries of the quadratic Wasserstein space W2(Sn,
‖ · ‖) over the sphere endowed with the distance inherited from the norm of Rn+1. 
We prove that W2 (Sn, ‖ · ‖) is isometrically rigid, meaning that its isometry group 
is isomorphic to that of (Sn, ‖ · ‖). This is in striking contrast to the non-rigidity 
of its ambient space W2 (Rn+1, ‖ · ‖) but in line with the rigidity of the geodesic 
space W2 (Sn,�). One of the key steps of the proof is the use of mean squared error 
functions to mimic displacement interpolation in W2 (Sn, ‖ · ‖). A major difficulty 
in proving rigidity for quadratic Wasserstein spaces is that one cannot use the 
Wasserstein potential technique. To illustrate its general power, we use it to prove 
isometric rigidity of Wp (S1, ‖ · ‖) for 1 ≤ p < 2.

© 2024 The Author(s). Published by Elsevier Inc. This is an open access article 
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1. Motivation and main result

In recent years, there has been considerable activity in characterising isometries of various metric spaces 
of probability measures. See e.g. [2–4,6,7,9–21,24,27] for results about the total variation, Lévy, Kuiper, 
Lévy-Prokhorov, Kolmogorov-Smirnov, and Wasserstein metrics. Among these, an interesting result is due 
to Kloeckner. In [18, Theorem 1.1 and Theorem 1.2], he shows that the quadratic Wasserstein space 
W2
(
Rn+1, ‖ · ‖

)
, where ‖ · ‖ stands for the metric induced by the norm, exhibits the rare phenomenon 

of not being isometrically rigid, meaning that not all isometries of W2
(
Rn+1, ‖ · ‖

)
are induced by an isom-

etry of 
(
Rn+1, ‖ · ‖

)
. In this paper, we consider the metric subspace (Sn, ‖ · ‖) of the base space 

(
Rn+1, ‖ · ‖

)
and prove that the non-rigidity does not carry over: the exotic isometries of W2

(
Rn+1, ‖ · ‖

)
send measures 

supported on Sn to measures supported also outside of Sn, while we gain no new exotic isometries by 
restricting to this smaller metric space. In general, when H is an arbitrary Borel subset of Rn+1, then 
Wp(H, ‖ · ‖) embeds isometrically into Wp

(
Rn+1, ‖ · ‖

)
, but this does not necessarily imply that there exists 

such a natural embedding for their isometry groups. To see an example, we mention the case of the real 
line (R, | · |) with the subset H = [0, 1] (see [12, Theorem 2.5 and Theorem 3.7] for details): the isometry 
group of W1([0, 1], | · |) is the Klein group, which cannot be embedded by a group homomorphism into the 
isometry group of W1(R, | · |), which is isomorphic to the isometry group of the real line.

Finally, we draw attention to Santos-Rodríguez’s paper [24] and our recent work [15]. In [24], the author 
considers (among others) Wasserstein spaces with p > 1 whose underlying metric space is a rank-one sym-
metric space, which class contains the sphere Sn with the spherical distance �, while in [15], we considered 
finite-dimensional tori and spheres with their geodesic distances for all parameters p ≥ 1. Together, these 
two papers show that Wp (Sn,�) is isometrically rigid for all p ≥ 1. As explained above, in this paper, 
we replace the angular distance � with another natural metric: the distance inherited from the norm of 
Rn+1. We focus on the case of p = 2 because this is the only parameter value for which the ambient space 
Wp

(
Rn+1, ‖ · ‖

)
is not rigid. We expect that for p �= 2, techniques similar to the ones used in [14] would 

lead to a proof of isometric rigidity. The situation is analogous to the case of the real line and the unit 
interval: the quadratic Wasserstein space is not rigid over R but it is rigid over the compact subset [0, 1], 
see [18, Theorem 1.1] and [12, Theorem 2.6]. Our main result reads as follows.

Theorem 1.1. For all n ∈ N, the quadratic Wasserstein space W2 (Sn, ‖ · ‖) is isometrically rigid. That is, 
for any isometry Ψ: W2 (Sn, ‖ · ‖) → W2 (Sn, ‖ · ‖), there exists an isometry ψ : Sn → Sn such that Ψ = ψ#.

In our recent works [14,15], recovering measures from their Wasserstein potentials — see (2.3) for precise 
definition — turned out to be a powerful method to prove isometric rigidity. However, this method cannot 
be used in the case of W2 (Sn, ‖ · ‖), as shown by the following simple example. Let δx denote the Dirac 
measure concentrated at x ∈ Sn, let μz := 1

2 (δz + δ−z) for z ∈ Sn, and note that for any x ∈ Sn we have 
d2
W2

(μz, δx) = 1
2 (‖x − z‖2 + ‖x + z‖2) = 2 independently of x and z — see (2.1) for the precise definition 

of the p-Wasserstein distance dWp
. This means that every element of the set {μz | z ∈ Sn} has the same 

Wasserstein potential function, and hence potentials do not determine measures uniquely in general.
Our complimentary result Theorem 3.1 demonstrates sensitivity of the Wasserstein potential method to 

the parameter value p. Namely, we show that, at least in the special case of S1, measures are uniquely 
determined by their potentials if 1 ≤ p < 2, and hence Wp

(
S1, ‖ · ‖

)
is isometrically rigid.

2. The Wasserstein space Wp (Sn, ‖ · ‖) and the Wasserstein potential

In this section, we recall all the necessary notions and notations. Let (Y, ρ) be a complete and separable 
metric space, p ≥ 1 a fixed real number, and P(Y ) the set of all Borel probability measures on Y . The 
p-Wasserstein space Wp(Y, ρ), where p ∈ [1, ∞), is then defined as the set
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⎧⎨⎩μ ∈ P(Y )

∣∣∣∣∣∃ŷ ∈ Y :
ˆ

Y

ρ(y, ŷ)p dμ(y) < ∞

⎫⎬⎭
of probability measures endowed with the p-Wasserstein metric

dWp
(μ, ν) :=

⎛⎝ inf
π∈Π(μ,ν)

¨

Y×Y

ρ(x, y)p dπ(x, y)

⎞⎠1/p

, (2.1)

where the infimum is taken over the set Π(μ, ν) of all couplings of μ and ν. A Borel probability measure 
π on Y × Y is called a coupling of μ and ν if π (A× Y ) = μ(A) and π (Y ×B) = ν(B) for all Borel sets 
A, B ⊆ Y . For more details about Wasserstein spaces, we refer the reader to the comprehensive textbooks 
[1,8,23,26]. Now we only mention that optimal couplings always exist, and the infimum in (2.1) becomes 
minimum [1, Theorem 1.5]. Furthermore, finitely supported measures are dense in Wasserstein spaces, see, 
e.g., [26, Theorem 6.18].

An isometric embedding between metric spaces (X, d) and (Y, ρ) is a map φ : (X, d) → (Y, ρ) which 
preserves distances, i.e., a map such that d(x, x′) = ρ (φ(x), φ(x′)) for all x, x′ ∈ X. We shall use the term 
isometry for a surjective isometric embedding from a metric space onto itself. It is important to note that 
if (X, d) is a compact metric space, then every isometric embedding φ : (X, d) → (X, d) is surjective and 
hence an isometry [5, Theorem 1.6.14].

For a Borel-measurable map ψ : Y → Y , its push-forward ψ# : Wp(Y, ρ) → Wp(Y, ρ) is defined by (
ψ#(μ)

)
(A) := μ(ψ−1[A]), where A ⊆ Y is a Borel set and ψ−1[A] = {x ∈ X |ψ(x) ∈ A}. In particu-

lar, when ψ : Y → Y is an isometry, then so is ψ# by the very definition of the Wasserstein distance, giving 
rise to a canonical embedding of the isometries of (Y, ρ) to the isometries of Wp(Y, ρ).

In this paper, we consider the compact metric space (Sn, ‖ · ‖), where

Sn := {x ∈ Rn+1 : ‖x‖ = 1}

is the unit sphere of Rn+1 equipped with the distance inherited from the Euclidean norm of Rn+1, that is, 
dist(x, y) = ‖x − y‖. The point −x is called the antipodal of x. Since (Sn, ‖ · ‖) is bounded, the Wasserstein 
space Wp (Sn, ‖ · ‖) is the entire set P (Sn) endowed with the distance

dWp
(μ, ν) :=

⎛⎝ inf
π∈Π(μ,ν)

¨

Sn×Sn

‖x− y‖p dπ(x, y)

⎞⎠1/p

. (2.2)

We write Wp (Sn, ‖ · ‖) instead of the usual Wp (Sn) notation to avoid any confusion with the results in 
[15,24]. As the Wasserstein distance metrizes the weak convergence of probability measures over bounded 
metric spaces (see, e.g., [25, Theorem 7.12]), by Prokhorov’s theorem, (Sn, ‖ · ‖) being compact tells us that 
Wp(Sn, ‖ · ‖) is compact too — see also Remark 6.19 in [26]. This implies that every isometric embedding 
of Wp (Sn, ‖ · ‖) into itself is an isometry.

For a measure μ ∈ P (Sn), its support supp(μ) is the set of all points x ∈ Sn for which every open 
neighbourhood of x has positive measure. As usual, δx denotes the Dirac measure supported on the single 
point x ∈ Sn.

The question arises whether it is possible to identify a measure if we know its distance from all Dirac 
measures. (Recall that dWp

(δx, δy) = ‖x − y‖ for all x, y ∈ Sn and thus the set of all Dirac measures is an 
isometric copy of the underlying metric space.) To answer this question, we first introduce the notion of 
Wasserstein potential T (p)

μ . For a given μ ∈ Wp (Sn, ‖ · ‖), the Wasserstein potential is the function
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T (p)
μ : Sn → R; T (p)

μ (x) := dpWp
(δx, μ) =

ˆ

Sn

‖x− y‖p dμ(y). (2.3)

Now, the question above can be rephrased as follows: does the Wasserstein potential determine the measure 
uniquely?

3. Does the Wasserstein potential determine the measure uniquely?

The answer to this question is no, in general. A prominent example is W2 (Sn, ‖ · ‖) where measures 
supported on antipodal points with both weights equal to 1

2 have the same (constant) potential function 
— see the example in Section 1, after Theorem 1.1. Beyond this, exotic isometries of W2(R, | · |) (see [18, 
Section 5.1 and Section 5.2]) are also counterexamples.

However, we will now prove that it does in the case of S1 � T = {z ∈ C : |z| = 1} equipped with the 
distance function r(z, ω) =

∣∣1
2 (z − ω)

∣∣ for 1 ≤ p < 2. This normalization of the distance is consistent with 
the one used in [27]. In this section, we assume that 1 ≤ p < 2, and we recall that the p-Wasserstein distance 
of μ, ν ∈ Wp(T ) in this case is

dWp
(μ, ν) =

⎛⎝ inf
π∈Π(μ,ν)

¨

T×T

∣∣∣∣12(z − ω)
∣∣∣∣p dπ (z, ω)

⎞⎠1/p

,

and therefore for any z ∈ T , the Wasserstein potential is of the form

T (p)
μ (z) = dpWp

(δz, μ) =
ˆ

T

∣∣∣∣12(z − ω)
∣∣∣∣p dμ (ω) . (3.1)

We showed in [15] that Fourier analytic methods can sometimes solve the problem of rigidity in a very 
elegant way. For example, we showed that isometric rigidity of W2(T , �) can be proved by using the Fourier 
transform of the Wasserstein potential, however, the same method fails in the case W1(T , �). As we will 
see, if we endow T with the distance r(z, ω) =

∣∣1
2 (z − ω)

∣∣, then the situation changes: the same method 
works to prove isometric rigidity of W1(T , r), but fails in the case W2(T , r).

Now we recall the very basics of Fourier analysis on the abelian group T . The main reason for doing 
so is to fix the notation. The continuous characters of T are exactly the power functions with an integer 
exponent. That is, if ϕk(z) = zk for all k ∈ Z and Γ is the dual group (i.e., the group of all continuous 
characters), then Γ = {ϕk : T → C | k ∈ Z}, and Γ ∼= Z. The group T is compact, hence it admits a unique 
Haar probability measure λ, which can be expressed explicitly as

dλ (z) = dz
2πiz .

The Fourier transform of a (complex-valued) function f ∈ L1 (T , λ) is defined by

f̂(k) =
ˆ

T

fϕkdλ = 1
2πi

ˆ

T

f(z)z−(k+1)dz (k ∈ Z).

Let us denote the set of all (complex-valued) measures of finite total variation by M (T ). The Fourier 
transform of μ ∈ M (T ) is defined by

μ̂(k) =
ˆ

ϕndμ =
ˆ

z−k dμ (z) (k ∈ Z).

T T
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We note that L1 functions can be naturally identified with absolutely continuous measures (with respect to 
the Haar measure), see [22, Subsection 1.3.4.]. The convolution of L1 functions f and g is defined by

(f ∗ g) (z) =
ˆ

T

f
(
zω−1) g(ω) dλ(ω) (3.2)

and the convolution of f ∈ L1 (T , λ) and μ ∈ M(T ) is defined by

(f ∗ μ) (z) =
ˆ

T

f
(
zω−1) dμ(ω). (3.3)

It is a key identity that the Fourier transform factorizes the convolution, that is,

̂f ∗ ν = f̂ · ν̂. (3.4)

Now we are ready to state and prove the main result of this section. It says that if 1 ≤ p < 2, then the 
Wasserstein space Wp(T , r) is isometrically rigid.

Theorem 3.1. Let p ∈ [1, 2) be a real number and let Ψ: Wp (T , r) → Wp (T , r) be an isometry. Then there 
exists an isometry ψ : (T , r) → (T , r) such that Ψ = ψ#.

Proof. First observe that the diameter of Wp(T , r) is 1, and dWp
(μ, ν) = 1 if and only if μ = δx and ν = δ−x

for some x ∈ T . Since Ψ is an isometry, we have

1 = dWp
(δx, δ−x) = dWp

(Ψ(δx),Ψ(δ−x)) (3.5)

for all x ∈ T , which implies that Ψ (δx) is a Dirac measure as well.
Let us define the map ψ : T → T via the identity Ψ(δx) = δψ(x) – this means that Ψ coincides with ψ#

on the set of Dirac measures. The map ψ : (T , r) → (T , r) is in fact an isometry:

r (ψ(x), ψ(y)) = dWp

(
δψ(x), δψ(y)

)
= dWp

(Ψ(δx),Ψ(δy)) = dWp
(δx, δy) = r(x, y)

for all x, y ∈ T , and (T , r) is compact. These together combine into that 
(
ψ−1)

# ◦ Ψ is an isometry which 
fixes all Dirac measures. If we now prove that any isometry of Wp(T , r) which fixes all Dirac measures must 
be the identity, we are done: in that case, 

(
ψ−1)

# ◦ Ψ = idWp(T ,r), i.e., Ψ = ψ# as claimed.
From now on, let us assume that Φ: Wp(T , r) → Wp(T , r) is an isometry such that Φ(δz) = δz for all 

z ∈ T . Then we have

T (p)
μ (z) = dpWp

(δz, μ) = dpWp
(Φ(δz),Φ(μ)) = dpWp

(δz,Φ (μ)) = T p
Φ(μ)(z)

for all z ∈ T and μ ∈ Wp (T , r). The question is whether this implies μ = Φ(μ). The proof will be done 
once we prove that a measure μ ∈ Wp(T , r) is uniquely determined by its Wasserstein potential. To this 
end, assume that μ and ν are two measures such that

T (p)
μ (z) = T p

ν (z) for all z ∈ T . (3.6)

We need to show that (3.6) implies μ = ν. Let us introduce the map

fp(z) :=
∣∣∣∣1(z − 1)

∣∣∣∣p . (3.7)
2
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Then by (3.1) and (3.3) one can observe that T (p)
μ (z) = (fp ∗ μ)(z) holds for all z ∈ T and μ ∈ Wp(T ). 

Indeed, we have

T (p)
μ (z) = dpWp

(δz, μ) =
ˆ

T

∣∣∣∣12(z − ω)
∣∣∣∣p dμ (ω)

=
ˆ

T

∣∣∣∣12 (zω−1 − 1
)∣∣∣∣p dμ (ω) =

ˆ

T

fp
(
zω−1) dμ (ω) = (fp ∗ μ) (z).

(3.8)

The key observation is that the Fourier transform of fp does not vanish anywhere, that is, f̂p(n) �= 0 for all 
n ∈ Z. For n = 0, we have

f̂p(0) =
ˆ

T

∣∣∣∣12(z − 1)
∣∣∣∣p dλ(z) > 0,

while for n �= 0, we use that

fp(z) =
(∣∣∣∣12(z − 1)

∣∣∣∣2
) p

2

=
(

1
4
(
2 − z − z−1)) p

2

=
(

1 − 1
4
(
2 + z + z−1)) p

2

,

and by the binomial series expansion we get that

fp(z) =
∞∑
k=0

(p
2
k

)(
−1
4
(
2 + z + z−1))k

, (3.9)

where 
( p

2
0
)

= 1 and 
( p

2
k

)
=

∏k−1
j=0

(
p
2−j

)
k! . Using that the sign of 

( p
2
k

)
(−1)k is negative for all k ≥ 1, equality 

(3.9) can be written as

fp(z) = 1 −
{
p

2 · 2 + z + z−1

4 +
∞∑
k=2

(
p
2
∏k−1

j=1 (j − p
2 )

k!

(2 + z + z−1

4

)k)}
. (3.10)

It is a useful feature of the group T that the Fourier series of a function coincides with its power series. 
Therefore, the above binomial expansion gives us useful information about f̂p, namely, f̂p(k) coincides with 
the coefficient of zk in the expansion (3.9).

Let us note that for n �= 0, the coefficient of zn must be strictly negative because the expressions 
p
2 , 1 − p

2 , 2 − p
2 , . . . are all positive – here we use the assumption that p < 2. So we obtained that f̂p(0) > 0

and f̂p(n) < 0 for n �= 0 which means that f̂p(n) �= 0 for all n ∈ Z.
By (3.8), the assumption that T (p)

μ (z) = T p
ν (z) for all z ∈ T implies that fp ∗ μ = fp ∗ ν. By (3.4), this 

means that f̂p · μ̂ = f̂p · ν̂. Since f̂p(n) �= 0 for every n, we can deduce that μ̂ = ν̂, but the Fourier transform 
completely determines the measure [22, Chapter 1], hence μ = ν, and the proof is done. �
4. Isometric rigidity of W2 (Sn, ‖ · ‖) — proof of Theorem 1.1

The assumption p < 2 was crucial in the previous section, and therefore the quadratic case cannot be 
handled with the same Fourier-analytic technique. In this section, we use a method that allows us to prove 
isometric rigidity in the quadratic case not only over the circle but over higher-dimensional spheres too. We 
start this section with three propositions which will be utilized later in the proof of Theorem 1.1.
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The first proposition, which can be found also in the Appendix of [14] (see the proof of Lemma 3.13 there), 
helps us understand how a translation affects the Wasserstein distance. For μ ∈ P

(
Rn+1) and v ∈ Rn+1, 

the translation of μ by v is the measure (tv)#μ ∈ P
(
Rn+1) where tv : Rn+1 → Rn+1, x �→ x + v is the 

translation by v. Recall that elements of W2 (Sn, ‖ · ‖) can be considered as elements of W2(Rn+1, ‖ · ‖)
because W2(Sn, ‖ · ‖) naturally embeds into W2(Rn+1, ‖ · ‖). The barycenter of μ ∈ W2 (Sn, ‖ · ‖) is defined 
to be the point m(μ) =

´
Sn x dμ(x) ∈ Rn+1. Note that the barycenter m(μ) defined above is also the unique 

point in Rn+1 satisfying 〈m(μ), z〉 =
´
Rn+1 〈x, z〉 dμ(x) for all z ∈ Rn+1, which equation is used to define 

the barycenter in an infinite-dimensional setting. However, in finite dimensions, the above direct definition, 
which does not refer to the dual space, is available.

Proposition 4.1. Let μ, ν ∈ W2
(
Rn+1) and v ∈ Rn+1. Then we have

d2
W2

((tv)#μ, ν) = d2
W2

(μ, ν) + 〈v, v + 2m(μ) − 2m(ν)〉 . (4.1)

In particular, substituting v = m(ν) −m(μ) gives

d2
W2

(μ, ν) = d2
W2

(
(t−m(μ))#μ, (t−m(ν))#ν

)
+ ‖m(ν) −m(μ)‖2. (4.2)

Subsequently, ν is a translated version of μ if and only if dW2(μ, ν) = ‖m(ν) −m(μ)‖.

Proof. For any π ∈ Π(μ, ν) and v ∈ Rn+1, we have (t(v,0))#π ∈ Π ((tv)#μ, ν), and vice versa. (Here, 0
stands for 0 ∈ Rn+1.) Hence

d2
W2

((tv)#μ, ν) = inf
π∈Π(μ,ν)

¨

Rn+1×Rn+1

‖x− y‖2 d
(
(t(v,0))#π

)
(x, y)

= inf
π∈Π(μ,ν)

¨

Rn+1×Rn+1

‖x + v − y‖2 dπ(x, y)

= inf
π∈Π(μ,ν)

¨

Rn+1×Rn+1

(
‖x− y‖2 + ‖v‖2 + 2 〈x, v〉 − 2 〈y, v〉

)
dπ(x, y)

= d2
W2

(μ, ν) + ‖v‖2 + 2
ˆ

Rn+1

〈x, v〉 dμ(x) − 2
ˆ

Rn+1

〈y, v〉 dν(y),

which gives (4.1). The identity (4.2) follows if we translate both arguments in the left-hand side by the 
vector m(ν). �

In quadratic Wasserstein spaces over uniquely geodesic spaces, the α-weighted mean squared-error func-
tion

ρ �→ (1 − α)d2
W2

(μ, ρ) + αd2
W2

(ν, ρ)

defined by μ and ν has a unique minimizer — provided that the optimal coupling of μ and ν is unique — 
which is the displacement convex combination or displacement interpolation of μ and ν with weights (1 −α)
and α [25,26]. Intuitively, this is the measure that we obtain if we start moving μ to ν according to the optimal 
transport plan, but stop at proportion α of the journey. A great challenge concerning (Sn, ‖ · ‖) is that it has 
no geodesics at all, and hence the quadratic Wasserstein space W2 (Sn, ‖ · ‖) has no geodesics either. Still, 
mean squared-error functions make perfect sense on W2 (Sn, ‖ · ‖), they are invariant under isometries in an 
appropriate sense, and hence if the measures μ and ν defining them are fixed by an isometry Φ, then so are 
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the unique minimizers — if they exist. We will prove in Proposition 4.2 that on (Sn, ‖ · ‖), the minimizer of 
the α-weighted squared-error function is the projection of the displacement interpolation onto the sphere. 
This is similar to how for a measure μ ∈ P (Sn), its closest Dirac measure supported on a point in Rn+1

is δm(μ), while among those supported on Sn, it is the projection of δm(μ). We are going to exploit this 
characterisation in Step 6 of the proof of Theorem 1.1.

We will use the following projection of the α-weighted mean of two points x, y onto Sn frequently:

pα(x, y) := (1 − α)x + αy

‖(1 − α)x + αy‖ (α ∈ [0, 1], x, y ∈ Sn) .

Note that pα(x, y) is not defined when α = 1
2 and x = −y.

Let us define the cost cα : Sn × Sn → [0, 2] by

cα(x, y) := min
z∈Sn

{
(1 − α)‖x− z‖2 + α‖z − y‖2} = 2(1 − ‖(1 − α)x + αy‖). (4.3)

If π ∈ P (Sn × Sn) is a coupling of μ and ν, then let ρ(α)
π ∈ W2 (Sn, ‖ · ‖) be defined to be the displacement 

interpolation in Rn+1 at time α between μ and ν according to the plan π, projected to Sn. Formally,

ρ(α)
π := ({(x, y) �→ pα(x, y)})# π. (4.4)

Now let μ, ν ∈ W2 (Sn, ‖ · ‖) and consider the α-weighted mean squared error

Qμ,ν
α : W2 (Sn, ‖ · ‖) → [0,∞); ρ �→ Qμ,ν

α (ρ) := (1 − α)d2
W2

(μ, ρ) + αd2
W2

(ν, ρ). (4.5)

Proposition 4.2. Let μ, ν ∈ W2 (Sn, ‖ · ‖) be such that there is a unique optimal transport plan π∗ for them 
with respect to the cost cα defined in (4.3). Suppose that α �= 1

2 or α = 1
2 and π∗ ({(z,−z) : z ∈ Sn}) = 0. 

Then the mean squared error Qμ,ν
α defined in (4.5) has a unique minimizer which is equal to ρ(α)

π∗ , the push-
forward of π∗ by pα — see (4.4) for the precise definition. If π∗ ({(z,−z) : z ∈ Sn}) > 0 and α = 1

2 , then 

ρ
(α)
π∗ = ρ

( 1
2 )

π∗ is not well-defined and Qμ,ν
α = Qμ,ν

1
2

has infinitely many minimizers.

Proof. We proceed by establishing a lower bound for (4.5) and taking care of the case of equality. Let 
ρ ∈ W2 (Sn, ‖ · ‖) be arbitrary, and let πμ,ρ and πρ,ν be optimal transport plans (w.r.t. the quadratic 
distance) between μ and ρ, and ρ and ν, respectively. Let πμ,ρ,ν ∈ P (Sn × Sn × Sn) be the gluing of πμ,ρ

and πρ,ν — see [25, Lemma 7.6] for the precise definition. Then πμ,ν := (πμ,ρ,ν)1,3 ∈ P (Sn × Sn) is a 
coupling of μ and ν. Now

Qμ,ν
α (ρ) = (1 − α)d2

W2
(μ, ρ) + αd2

W2
(ν, ρ)

= (1 − α)
¨

Sn×Sn

‖x− z‖2 dπμ,ρ(x, z) + α

¨

Sn×Sn

‖z − y‖2 dπρ,ν(z, y)

=
˚

Sn×Sn×Sn

(1 − α)‖x− z‖2 + α‖z − y‖2 dπμ,ρ,ν(x, z, y)

≥
˚

Sn×Sn×Sn

cα(x, y) dπμ,ρ,ν(x, z, y) =
¨

Sn×Sn

cα(x, y) dπμ,ν(x, y).

(4.6)

The inequality (4.6) is saturated if and only if z = pα(x, y) for πμ,ρ,ν-a.e. (x, z, y) ∈ (Sn)3, that is, if 
ρ = ρ

(α)
πμ,ν . Moreover, the right-hand side of (4.6) is minimal if and only if πμ,ν = π∗. Consequently,
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Qμ,ν
α (ρ) ≥ min

π∈Π(μ,ν)

⎧⎨⎩
¨

Sn×Sn

cα(x, y) dπ(x, y)

⎫⎬⎭ =
¨

Sn×Sn

cα(x, y) dπ∗(x, y)

and the only ρ realizing this minimum is ρ(α)
π∗ . On the other hand, if π∗ puts weight on antipodal points, 

that is, π∗ ({(z,−z) : z ∈ Sn}) > 0, and α = 1
2 , then we have an infinite collection of minimizing measures 

by the theorems of Thales and Pythagoras — or by a simple direct computation. �
In the next proposition, we consider the case when the first argument of pα is fixed and clarify injectivity 

and surjectivity properties of pα as α varies from 0 to 1.

Proposition 4.3. Let α ∈
(
0, 1

2
)
∪
( 1

2 , 1
]

and let N ∈ Sn be arbitrary but fixed — it may be considered as the 
“north pole”. Let pα(N, ·) : Sn → Sn be the map sending u to

pα(N,u) = (1 − α)N + αu

‖(1 − α)N + αu‖ .

Then for α ∈
( 1

2 , 1
]
, pα(N, ·) is bijective. For α ∈

(
0, 1

2
)
, pα(N, ·) is neither surjective nor injective: it is 

2-to-1 for almost all points of Sn. Finally, p 1
2
(N, ·) : Sn \ {−N} → Sn \ {−N} is injective, and its range is 

the open “upper” hemisphere {z ∈ Sn | 〈z,N〉 > 0}.

Proof. When considering pα(N, u), we can assume without loss of generality that N = (0, 0, . . . , 0, 1) and 
u = (cos θ, 0, . . . , 0, sin θ) for some θ ∈ (−π, π]. Let c(α)

u be the normalising constant ‖(1 −α)N +αu‖. Note 
that c(α)

u > 0 if and only if (α, u) �=
( 1

2 ,−N
)
. Whenever (α, u) �=

( 1
2 ,−N

)
, we have that

c(α)
u pu(N,u) = (α cos θ, 0, . . . , 0, (1 − α) + α sin θ),

and so for a fixed α �= 1
2 , setting

xθ := α cos θ

yθ := (1 − α) + α sin θ,

we see that (xθ, yθ) satisfy x2
θ +(yθ− (1 −α))2 = α2, i.e., they lie on the circle of radius α with the centre at 

(0, 1 −α). For any point u = (cos θ, 0, . . . , 0, sin θ), its image pα(N, u) is the projection of (xθ, 0, . . . , 0, yθ) onto 
Sn, i.e., the point obtained as the intersection of Sn and the half-line from (0, . . . , 0) through (xθ, 0, . . . , 0, yθ). 
Now the statements of this proposition are easy to see from Fig. 1. �

Now we turn to the proof of Theorem 1.1 which, for the sake of clarity, we divide into six steps.

Step 1. Similarly as in the proof of Theorem 3.1, we first understand the action of Ψ on the set of Dirac 
measures. The maximal distance in W2 (Sn, ‖ · ‖) is 2, and is attained only on pairs of Dirac measures that 
are concentrated on antipodal points. Since

2 = dW2(μ, ν) = dW2(Ψ(μ),Ψ(ν)),

we get that Ψ(δx) is a Dirac measure for all x ∈ Sn. Since Ψ and Ψ−1 are both isometries, the map 
ψ : Sn → Sn defined by Ψ(δx) = δψ(x) is a bijection, and furthermore, since

‖ψ(x) − ψ(y)‖ = dW2

(
δψ(x), δψ(y)

)
= dW2 (Ψ(δx),Ψ(δy)) = dW2 (δx, δy) = ‖x− y‖,
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Fig. 1. pα(N, u) lies on the S1 spanned by N and u, at the spherical projection of c(α)
u pα(N, u). The bigger circle displayed in each 

of the cases is S1, the smaller one is c(α)
· pα(N, ·).

it is in fact an isometry. Just as before, we will be done once we prove that an isometry of W2 (Sn, ‖ · ‖) which 
fixes all Dirac measures is necessarily the identity, because then in particular, 

(
ψ−1)

# ◦ Ψ = idW2(Sn,‖·‖), 
and so Ψ = ψ# as claimed. From now on, we assume that Φ is an isometry of W2 (Sn, ‖ · ‖) such that 
Φ(δx) = δx, and our aim is to show that Φ(μ) = μ for all μ ∈ W2 (Sn, ‖ · ‖).

Step 2. Next we claim that Φ preserves the barycenter of measures.
For any μ ∈ W2 (Sn, ‖ · ‖) and x ∈ Sn, we have

d2
W2

(μ, δx) =
ˆ

Sn

‖y − x‖2dμ(y) = 2 − 2
〈
x,

ˆ

Sn

y dμ(y)
〉

= 2(1 − 〈x,m(μ)〉). (4.7)

This implies that

2(1 − 〈x,m(μ)〉) = d2
W2

(μ, δx) = d2
W2

(Φ(μ),Φ(δx)) = d2
W2

(Φ(μ), δx) = 2 (1 − 〈x,m(Φ(μ))〉) .

But then

〈x,m(Φ(μ))〉 = 〈x,m(μ)〉

and hence

〈x,m(Φ(μ)) −m(μ)〉 = 0. (4.8)

Since for a fixed μ, equation (4.8) holds for every x ∈ Sn, we conclude that m (Φ (μ)) = m (μ).

Step 3. Now we prove that measures supported on two points are mapped to measures supported on two 
points. We first show that for all μ, ν ∈ W2 (Sn, ‖ · ‖),

affspan
(
supp

(
Φ(μ)

))
⊥ affspan

(
supp

(
Φ(ν)

))
holds if and only if

affspan (supp(μ)) ⊥ affspan (supp(ν)) .
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Kloeckner proved in [18, Lemma 6.2] that orthogonality of supports can be characterized by the metric 
in the ambient space W2

(
Rn+1, ‖ · ‖

)
. Namely,

d2
W2(Rn+1)(μ, ν) = ‖m(μ) −m(ν)‖2 + d2

W2(Rn+1)
(
μ, δm(μ)

)
+ d2

W2(Rn+1)
(
ν, δm(ν)

)
holds if and only if there exist two orthogonal affine subspaces L, M ⊂ Rn+1 such that supp(μ) ⊆ L and 
supp(ν) ⊆ M . We proceed by showing that the isometries of W2 (Sn, ‖ · ‖) leave the W2(Rn+1)-distance of 
a measure from the Dirac mass concentrated on its barycenter invariant, that is,

dW2(Rn+1)
(
μ, δm(μ)

)
= dW2(Rn+1)

(
Φ(μ), δm(Φ(μ))

)
for any μ ∈ W2 (Sn, ‖ · ‖). Indeed, a direct computation very similar to (4.7) shows that

d2
W2(Rn+1)

(
μ, δm(μ)

)
= 1 − ‖m(μ)‖2 and d2

W2(Rn+1)
(
Φ(μ), δm(Φ(μ))

)
= 1 − ‖m(Φ(μ))‖2,

which implies our statement as we have shown m(Φ(μ)) = m(μ) in Step 2. Hence for any μ, ν ∈ W2 (Sn, ‖ · ‖),

‖m(μ) −m(ν)‖2 + d2
W2

(
μ, δm(μ)

)
+ d2

W2

(
ν, δm(ν)

)
= ‖m(Φ(μ)) −m(Φ(ν))‖2 + d2

W2

(
Φ(μ), δm(Φ(μ))

)
+ d2

W2

(
Φ(ν), δm(Φ(ν))

)
,

meaning that orthogonally supported measures must be mapped to orthogonally supported measures by Φ.
A maximal set of measures whose supports are one-dimensional and pairwise orthogonal must therefore be 

mapped to a set of measures whose supports are zero- or one-dimensional. But zero-dimensionally supported 
measures are exactly the Dirac masses, to which only Dirac masses can be mapped by Φ, and so one-
dimensionally supported measures must be mapped to one-dimensionally supported measures. Continuing 
similarly, we would see more generally that the affine dimension of the support is preserved by Φ, but since 
on the sphere, one-dimensionally supported measures are exactly the two-point supported measures, the 
one-dimensional case is enough to prove our statement.

Step 4. We proceed with showing that measures supported on two points are fixed by Φ. Let us introduce the 
notation Δ′

2(Sn) for the set of all elements in W2 (Sn, ‖ · ‖) with a two-point support, set μ̃ :=
(
t−m(μ)

)
# μ

for all μ ∈ Δ′
2(Sn), and Δ′

2,0(Sn) :=
{
μ̃ ∈ P(Rn+1) : μ ∈ Δ′

2(Sn)
}
. By Step 3, Φ|Δ′

2(Sn) : Δ′
2(Sn) → Δ′

2(Sn)
is an isometric embedding. By Proposition 4.1 we know that for all μ, ν ∈ Δ′

2(Sn),

d2
W2

(μ̃, ν̃) = d2
W2

(μ, ν) − ‖m(μ) −m(ν)‖2

= d2
W2

(Φ(μ),Φ(ν)) − ‖m(Φ(μ)) −m(Φ(ν))‖2 = d2
W2

(
˜Φ(μ),˜Φ(ν)

)
.

Consequently, μ̃ = ν̃ holds if and only if ˜Φ(μ) = ˜Φ(ν), in other words, Φ(ν) is a translate of Φ(μ) if and 
only if ν is a translate of μ.

Let a measure μ ∈ Δ′
2(Sn) be fixed. We can assume without loss of generality that

supp(μ) = {(cos θ, 0, . . . , 0, sin θ), (cos θ, 0, . . . , 0,− sin θ)}

for some θ ∈ (0, π/2]. In this case,

1
2

∑
x = (cos θ, 0, . . . , 0)
x∈supp(μ)
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and ⎛⎝affspan (supp(μ)) − 1
2

∑
x∈supp(μ)

x

⎞⎠⊥

= {(v1, . . . , vn, 0) : v1, . . . , vn ∈ R}.

Define μ :=
{
v ∈ Rn+1 : (tv)#μ ∈ P (Sn)

}
, and observe that μ is the set of those vectors (v1, . . . , vn+1) such 

that

‖(v1 + cos θ, v2, . . . , vn, vn+1 + sin θ)‖ = ‖(v1 + cos θ, v2, . . . , vn, vn+1 − sin θ)‖ = 1.

Then we get that v ∈ μ if and only if

(v1 + cos θ)2 + v2
2 + · · · + v2

n + v2
n+1 ± 2vn+1 sin θ = 1 − sin2 θ.

Since sin θ �= 0, this holds exactly when vn+1 = 0 and (v1 + cos θ)2 + v2
2 + · · · + v2

n = cos2 θ, i.e., the first n
coordinates span an n − 1-dimensional sphere with radius | cos θ| centred at (− cos θ, 0, . . . , 0), or they are 
just the singleton containing 0 ∈ Rn in the case cos θ = 0. In other words,

μ = −(cos θ, 0, . . . , 0) + | cos θ| · (Sn ∩ {(v1, . . . , vn, 0) : v1, . . . , vn ∈ R})

= −

⎛⎝1
2

∑
x∈supp(μ)

x

⎞⎠+ ‖1
2

∑
x∈supp(μ)

x‖ ·

⎛⎜⎝Sn ∩

⎛⎝affspan (supp(μ)) − 1
2

∑
x∈supp(μ)

x

⎞⎠⊥⎞⎟⎠ .

As Φ maps the translates of μ to the translates of Φ(μ), there is an η ∈ Δ′
2,0(Sn) ⊂ P

(
Rn+1) such that

Φ ((tv)#μ) = (tv+m(μ))#η (v ∈ μ). (4.9)

We emphasise that η does not depend on v. It follows that μ + m(μ) + supp(η) ⊂ Sn. But by plugging 
v = 0 ∈ Rn+1 to (4.9), we get that supp (Φ(μ)) = m(μ) + supp(η), and so the previous line becomes 
μ + supp (Φ(μ)) ⊂ Sn. By the definition of Φ(μ), this means that μ ⊆ Φ(μ).

For any μ with diam(supp(μ)) < 2, we have that cos θ �= 0, and so μ is an n − 1-dimensional sphere, 
implying that μ = Φ(μ) and supp(μ) = supp (Φ(μ)). Now μ and Φ(μ) are probability measures with the 
same 2-point support and the same barycenter, and so μ = Φ(μ). Finally, μ = Φ(μ) for all μ ∈ Δ′

2 (Sn) by 
continuity of Φ.

Step 5. Now assume that μ =
∑m

i=1 λiδxi
where xi �= −xj for all 1 ≤ i < j ≤ m. Such measures form a 

dense subset of W2 (Sn, ‖ · ‖). We claim that

supp
(
Φ(μ)

)
⊆ {x1, . . . , xm} ∪ {−x1, . . . ,−xm}

and 
(
Φ(μ)

)
({xi, −xi}) = μ({xi}) for all 1 ≤ i ≤ m.

The proof of this claim relies on preserving the mass of bisectors which are defined as follows: for u, v ∈ Sn, 
the corresponding bisector is

B(u, v) := {y ∈ Sn : ‖u− y‖ = ‖v − y‖} ∼= Sn−1.

To start, we apply Lemma 3.17 from [14] with E = Rn+1, p = 2, x ∈ Sn, a = 1 and b = −1 to obtain that

μ (B(x,−x)) = max {α : dW2 (μ, αδx + (1 − α)δ−x) = mμ} − min {α : dW2 (μ, αδx + (1 − α)δ−x) = mμ} ,
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where mμ := min {dW2 (μ, αδx + (1 − α)δ−x) : 0 ≤ α ≤ 1} and B(x, −x) ∼= Sn−1 is the bisector between 
x and −x, i.e., the set of all points equidistant from x and −x. But since Φ (αδx + (1 − α)δ−x) = αδx +
(1 − α)δ−x for all α ∈ [0, 1] by Steps 1 and 4, we get that mμ = mΦ(μ), and subsequently μ(B(x, −x)) =
(Φ(μ)) (B(x, −x)) for all x ∈ Sn. Since for every x ∈ Sn, B(x, −x) is an n − 1-dimensional subsphere of Sn, 
and every n −1-dimensional subsphere of Sn is of the form B(x, −x) for some x ∈ Sn, the previous sentence 
says that μ(S) = (Φ(μ))(S) for every subsphere S of codimension 1.

For every x̃ ∈ {x1, . . . , xm} = supp(μ), there exists a sequence (Sj)j∈N of n − 1-dimensional subspheres 
of Sn such that Sj ∩ supp(μ) = {x̃} for every j, and the intersection of any n subspheres is trivial, that is, ⋂n

k=1 Sjk = {x̃, −x̃} for any choice of j1 < j2 < · · · < jn. Therefore,

μ({x̃}) = μ (Sj) =
(
Φ(μ)

)
(Sj) (j ∈ N) ,

and we are in the right position to prove that

Φ(μ) ({x̃,−x̃}) = μ ({x̃}) .

The inequality Φ(μ) ({x̃,−x̃}) ≤
(
Φ(μ)

)
(Sj) = μ({x̃}) holds because {x̃,−x̃} ⊆ Sj . If n = 1, then in fact 

{x̃,−x̃} = Sj , and we are done. If n ≥ 2, assume indirectly that Φ(μ) ({x̃,−x̃}) < μ ({x̃}), and let ε > 0
denote the gap between the two sides of this strict inequality. Now we have(

Φ(μ)
)
(Sj \ {x̃,−x̃}) =

(
Φ(μ)

)
(Sj) − Φ(μ) ({x̃,−x̃}) = ε

for every j ∈ N. The fact that 
⋂n

k=1 Sjk = {x̃, −x̃} for every j1 < j2 < · · · < jn implies that the family of 
sets (Sj \ {x̃,−x̃})∞j=1 covers any point of Sn at most n times. This means that 

∑∞
j=1
(
Φ(μ)

)
(Sj \ {x̃,−x̃})

is bounded from above by n ·
(
Φ(μ)

)
(Sn) = n, which is a contradiction as 

(
Φ(μ)

)
(Sj \ {x̃,−x̃}) = ε for 

every j ∈ N and 
∑∞

j=1 ε = ∞.

Step 6. A crucial consequence of the claim made in Step 5 is that the isometry Φ fixes all measures that are 
supported within an open hemisphere of Sn. Indeed, we learned from Step 2 that Φ preserves the barycenter 
of measures, and from Step 5 that the only possible action Φ can do is to send some mass from a point to 
its antipodal point. But if a measure is supported on an open hemisphere, then the transport of any mass 
to its antipodal point would change the barycenter.

Suppose that μ ({−N}) = 0. Then the spherical projection ρ
( 1
2 )

δN⊗μ of the displacement convex combination 

of δN and μ is well-defined, and since it is supported on the upper hemisphere, Φ 
(
ρ
( 1
2 )

δN⊗μ

)
= ρ

( 1
2 )

δN⊗μ. Let us 
now consider the sets

A : =
{
QδN ,μ

1
2

(ρ) : ρ ∈ P (Sn)
}

=
{
Q

Φ(δN ),Φ(μ)
1
2

(Φ(ρ)) : ρ ∈ P (Sn)
}

=
{
Q

δN ,Φ(μ)
1
2

(κ) : κ ∈ P (Sn)
}

=: B

where the last equality follows from the surjectivity of the isometry Φ. Since A = B, necessarily

minB = minA = QδN ,μ
1
2

(
ρ
( 1
2 )

δN⊗μ

)
= Q

Φ(δN ),Φ(μ)
1
2

(
Φ
(
ρ
( 1
2 )

δN⊗μ

))
= Q

δN ,Φ(μ)
1
2

(
Φ
(
ρ
( 1
2 )

δN⊗μ

))
.

The fact that B has a unique minimizer implies by the second statement of Proposition 4.2 that 
Φ(μ)({−N}) = 0. Consequently — let us now use the first statement of Proposition 4.2 —, the unique 

minimizer of QδN ,Φ(μ)
α is ρ( 1

2 ) , and hence
δN⊗Φ(μ)
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ρ
( 1
2 )

δN⊗Φ(μ) = Φ
(
ρ
( 1
2 )

δN⊗μ

)
= ρ

( 1
2 )

δN⊗μ. (4.10)

By injectivity of p 1
2
(N, ·) on Sn \{−N}, see Proposition 4.3, for every measure ν ∈ P (Sn) supported within 

the upper hemisphere, there is a unique measure κ ∈ P (Sn) such that ν is the spherical projection ρ
( 1
2 )

δN⊗κ of 
the displacement convex combination of δN and κ. Therefore, (4.10) implies that Φ(μ) = μ, which completes 
the proof.
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