Corvinus
Corvinus

Genetic modification optimization technique : A neural network multi-objective energy management approach

AlShafeey, Mutaz and Rashdan, Omar (2024) Genetic modification optimization technique : A neural network multi-objective energy management approach. Energy and AI, 18 . DOI 10.1016/j.egyai.2024.100417

[img] PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
6MB

Official URL: https://doi.org/10.1016/j.egyai.2024.100417


Abstract

In this study, a Neural Network-Enhanced Gene Modification Optimization Technique was introduced for multi- objective energy resource management. Addressing the need for sustainable energy solutions, this technique integrated neural network models as fitness functions, representing an advancement in artificial intelligence- driven optimization. Data collected in the European Union covered greenhouse gas emissions, energy consumption by sources, energy imports, and Levelized Cost of Energy. Since different configurations of energy consumption by sources lead to varying greenhouse gas emissions, costs, and imports, neural network prediction models were used to project the effect of new energy combinations on these variables. The projections were then fed into the gene modification optimization process to identify optimal configurations. Over 28 generations, simulations demonstrated a 46 percent reduction in energy costs and a 9 percent decrease in emissions. Human bias and subjectivity were mitigated by automating parameter settings, enhancing the objectivity of results. Benchmarking against traditional methods, such as Euclidean Distance, validated the superior performance of this approach. Furthermore, the technique’s ability to visualize chromosomes and gene values offered clarity in optimization processes. These results suggest significant advancements in the energy sector and potential applications in other industries, contributing to the global effort to combat climate change.

Item Type:Article
Uncontrolled Keywords:Multi-objective optimization ; Gene modification optimization technique ; Greenhouse gas emissions ; Energy management ; Machine learning
Divisions:Institute of Data Analytics and Information Systems
Subjects:Automatizálás, gépesítés
Genetics
Ecology
Environmental economics
Computer science
DOI:10.1016/j.egyai.2024.100417
ID Code:10305
Deposited By: MTMT SWORD
Deposited On:11 Sep 2024 07:38
Last Modified:11 Sep 2024 07:38

Repository Staff Only: item control page

Downloads

Downloads per month over past year

View more statistics