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Parabolic Target-Space Interior-Point Algorithm for Weighted
Monotone Linear Complementarity Problem

Marianna E.-Nagy*, Tibor Illés†, Yurii Nesterov‡, Petra Renáta Rigó§

Abstract
In this paper, we revisit the main principles for constructing polynomial-time primal-dual interior-point algorithms
(IPAs). Starting from the break-through paper by Gonzaga (1989), their development was related to the barrier
methods, where the objective function was added to the barrier for the feasible set. With this construction, using
the theory of self-concordant functions proposed by Nesterov and Nemirovski (1994), it was possible to develop
different variants of IPAs for a large variety of convex problems. However, in order to solve the initial problem,
the most efficient primal-dual methods need to follow several central paths (up to three), which correspond
to different stages of the solution process. This multistage structure of the methods significantly reduces their
efficiency.
In this paper, we come back to the initial idea by Renegar (1988) of using the methods of centers. We implement
it for the weighted Linear Complementarity Problem (WLCP), by extending the framework of Parabolic Target
Space (PTS), proposed by Nesterov (2008) for primal-dual Linear Programming Problems. This approach has
several advantages. It starts from an arbitrary strictly feasible primal-dual pair and travels directly to the solution
of the problem in one stage. It has the best known worst-case complexity bound. Finally, it works in a large
neighborhood of the deviated central path, allowing very large steps. The latter ability results in a significant
acceleration in the end of the process, confirmed by our preliminary computational experiments.

Keywords: interior-point algorithm, parabolic target-space, monotone linear complementarity problems, bisymmetric
matrices, polynomial complexity

JEL code: C61

1 Introduction
In this paper we deal with the weighted linear complementarity problem (WLCP)

−Mu+v = q, u,v ≥ 0, uv = p, (WLCP)

where M ∈ Rn×n is a given matrix, q,p ∈ Rn and p ≥ 0 are given vectors, and n is a natural number.

If we consider (WLCP) with p = 0, then we get the class of linear complementarity problem (LCP). The
most important classical results about the theory, applications, and methods to solve LCPs are summarized in
the monographs written by Cottle et al. [4] and Kojima et al. [18]. The largest class of matrices, called sufficient
matrices that guarantees important properties of LCPs (e.g. the solution set of the LCP is convex) has been defined
by Cottle et al. [3]. Kojima et al. [18] showed that for a new class of matrices, called P∗(κ)-matrices (P∗-matrices),
IPA has polynomial iteration complexity in the size of the problem, in starting point’s duality gap, in the accuracy
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parameter and in the parameter κ . Later, Väliaho [33] showed that the sufficient matrix class and the class of
P∗-matrices coincide. Interestingly enough, finite pivot algorithms for sufficient LCPs have been introduced, for
details see [5, 6] and references there.

In the last few decades many IPAs have been introduced for P∗(κ)-LCPs, for details see [7, 8, 16]. Illés et al.
[15] introduced an IPA for (general) LCPs that in polynomial time either gives a solution of the original problem
or detects the lack of property P∗(κ̃), with arbitrary large, but apriori fixed κ̃ . In the latter case, the IPA gives a
polynomial size certificate depending on parameter κ̃ , the initial interior point and the input size of the LCP.

Moreover, for IPAs two interesting questions arise: (i) which property of the matrix M ensures the existence and
uniqueness of the central path, and (ii) what is needed to ensure to compute exact solutions instead of computing
ε-optimal solutions. Illés et al. [13] proved that for sufficient LCPs central path exists and it is unique. Illés et al.
[14] proved that for sufficient-LCPs from an ε-optimal solution, with small enough ε , an exact solution can be
computed with a strongly polynomial algorithm called rounding procedure.

Ye [34] for the weighted analytic center problem with nonnegative weights, derived the first order optimality
conditions that led to a special WLCP (see [34], problem (3) on page 319). Ye introduced a modified primal-
dual path-following algorithm for solving his WLCP and derived the polynomial complexity result for the WLCP
problem. During the same year, in 2008, starting from a different idea, Nesterov [25] derived exactly the same
WLCP (see [25] problem (2.1) on page 2081) and used it to introduce a new IPA for solving primal-dual pair of
linear programming problems.

Anstreicher [1] introduced a common generalization of the linear programming and the weighted analytic
center problem, called LPWC. The dual problem (DPWC) of LPWC has been derived and both weak and strong
duality results for problem pairs have been proved, as well. Anstreicher studied complexity results for several
different IPAs for LPWC and DPWC. As an application, Anstreicher studied Fischer equilibrium problem, with
linear utility functions, in the form of the Eisenberg-Gale formulation (for details see [34]) and using volumetric
and logarithmic barriers obtained an improved complexity result.

Potra [27] observed that both problems of Ye [34] and Anstreicher [1] related to the Eisenberg-Gale formu-
lation of the Fischer equilibrium problem, with linear utility functions led to WLCP 1. Potra pointed out that the
WLCPs of Anstreicher [1] and Ye [34] are monotone, since the matrices in the linear constraints are skew sym-
metric. This observation inspired him to introduce a more general class of convex optimization problems that
generalise the LPWC, called quadratic programming and weighted centering (QPWC) problem (see subsection
2.3 in [27]). Potra [27] defined the dual problem of QPWC and derived the duality theory for this special con-
vex programming problem class (Theorem 2.1, page 1640 in [27]). The optimality conditions of QPWC rise to a
monotone WLCP. Potra [27] proposed two IPAs with polynomial iteration complexity for solving these monotone
WLCPs.

Potra [28] introduced the sufficient WLCPs, studied the properties of this problem class. Most of these results
(Theorem 1-4 in [28]) generalize the similar statements known in the literature of sufficient LCPs. Potra defined a
predictor-corrector IPA for solving sufficient WLCPs. The complexity result depends on the initial, strictly feasible
solution, its distance to the weight parameter p, accuracy parameter and κ , the handicap of the problem’s matrix.

In this paper we consider WLCPs with positive semidefinite matrices (special cases: skew symmetric and
bisymmetric matrices). Such WLCPs are called monotone WLCPs and they can be derived from linear pro-
gramming problems, linearly constrained convex quadratic programming problems and some other optimization
problems, see [1, 27, 34].

We generalize the result of Nesterov [25], the primal–dual interior-point algorithm (IPA) for linear program-
ming problems, which are based on the concept of parabolic target space (PTS) for monotone WLCPs.

The concept of weighted central path (WCP) in the literature of sufficient LCPs, first occurs in a paper of Illés,
Roos, Terlaky [13]. Following the idea of Nesterov [25], first we introduce a relaxation of WCP, and show that
the solution set of the relaxed problem is convex. Later, an additional (convex) constraint on the duality gap of
the monotone WLCP has been added. Finally, we arrived at a convex feasibility problem (CFP) that has original
variables of the monotone WLCP, and those related to the relaxation and the additional constraint (Section 3). The
new variables, naturally satisfiy an extra condition leading to the observation of a PTS. The use of the PTS allows
us to discuss the new IPA for both the weighted and classical monotne WLCP at the same time.

The solution of a monotone WLCP reduces to the solution of a sequence of CFPs. The driving force of our new
IPA lies in the structure of CFPs and the assigned self-concordant barrier function F to he CFP, and its properties
(Section 4).

1Potra was the first, who talked about weighted complementarity problems.
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Nevertheless, the new, adaptive parabolic target-space interior-point algorithm (PTS IPA) for monotone
WLCPs possesses the best known complexity result (Section 5). The computational efficiency of the new method
has been illustrated on a test set problems (Section 6).

Throughout the paper we use the following notations. We use Rn
⊕ and Rn

+ for the positive orthant and its
interior. We denote by ei, i = 1, . . . ,n, the coordinate vectors in Rn, and e is the vector of all ones. In general,
with boldface small letters we denote finite dimensional vectors, while real numbers, coordinates of vectors are
denoted by small letters. All arithmetic operations and relations involving vectors, like xs, x/s for x,s ∈ Rn, are
understood in the component-wise sense. The scalar products and the norms are defined in the standard way:

sT x =
n
∑

i=1
xi si, ∥x∥2 = xT x, x,s ∈ Rn.

Let f :Rn →R be a function, denote by ∇ f (x)∈Rn its gradient, where x∈Rn. For the function F :Rn×Rm →
R, notations ∇1F(u, t) ∈ Rn and ∇2F(u, t) ∈ Rm are used for its partial gradients related to variables u ∈ Rn and
t ∈ Rm, respectively. A similar notation is applied to the partial Hessians, too

∇
2
11F(u, t) ∈ Rn×n, ∇

2
12F(u, t) = ∇

2
21F(u, t)T ∈ Rn×m, ∇

2
22F(u, t) ∈ Rm×m.

In this paper, we often use different facts from the general theory of self-concordant functions. For the reader’s
convenience, we summarize most of the important and useful notations and results in the Appendix.

2 Some optimization problems leading to monotone LCPs and WLCPs
In this section we introduce two, different forms of the linearly constrained convex quadratic programming prob-
lems. The first classical model contains only sign restricted variables, while the second one has free variables, as
well. Due to the fact that the objective function is quadratic, the elimination of free variables can not be done in
the similar way as in linear programming.

Let us consider the following linearly constrained, primal convex quadratic programming problem

min 1
2 xT Qx+ cT x

Ax ≤ b, x ≥ 0

}
(P−QP)

where Q ∈Rn̄×n̄ is a given positive semidefinite matrix, and A ∈Rm̄×n̄ is a given matrix. Furthermore, c ∈Rn̄ and
b ∈ Rm̄ are given vectors. Vector x ∈ Rn̄ is the vector of the (primal) decision variables.

Let us consider the Lagrange function, L : Rn̄+m̄+n̄
⊕ → R assigned to the (P−QP) problem as

L(x,y,s) =
1
2

xT Qx+ cT x+yT (Ax−b)− sT x.

The first order optimality conditions, the Karush-Kuhn-Tucker constraints [2, 19] can be derived as

Ax + z = b, x ≥ 0, z ≥ 0,
−AT y − Qx + s = c, y ≥ 0, s ≥ 0,

xT s + yT z = 0,
(1)

where z = Ax−b ∈ Rm̄
⊕. By introducing the following notations

M =

[
Q AT

−A O

]
∈ R(n̄+m̄)×(n̄+m̄), q =

(
c
b

)
, u =

(
x
y

)
, v =

(
s
z

)
∈ Rn̄+m̄,

and n = n̄+ m̄. We can define a special LCP, as the first order optimality criteria of the (P−QP) problem.

The second linearly constrained convex quadratic programming model was introduced by Klafszky and Terlaky
[17] as

min cT x + 1
2 xTCTC x + 1

2 zT z
Ax + Bz ≥ b

x ≥ 0

 (P−QPKT ),

max yT b − 1
2 yT BBT y − 1

2 wT w
yT A − wTC ≤ c

y ≥ 0

 (D−QPKT ),
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where A ∈ Rm̄×n̄, B ∈ Rm̄×k̄,C ∈ Rl̄×n̄ are given matrices, and c,x ∈ Rn̄, b,y ∈ Rm̄, z ∈ Rk̄, w ∈ Rl̄ are vectors
used in the problem description. It is easy to derive the weak duality theorem in the following form.
Proposition 2.1. Let (x,z) and (y,w) be arbitrary primal and dual feasible solution. Then

cT x+
1
2

xTCTC x+
1
2

zT z ≥ yT b− 1
2

yT BBT y− 1
2

wT w,

holds. The previous inequality is satisfied with equality, if and only if

w =Cx, z = BT y, and rT y = 0, sT x = 0,

are fulfilled, where r = Ax+Bz−b and s = c−yT A+wTC, are primal and dual slack variables.
Those primal- and dual feasible solutions that satisfies the weak duality inequality with equality are called

optimal primal- and dual solutions. From those constraints that ensure the equality of the previous inequality can
be derived the following linear complementarity problem, (BLCP)

−Py − Ax + ȳ = −b
AT y − Qx + x̄ = c

x, y, x̄, ȳ ≥ 0
xx̄ = 0, yȳ = 0

 (BLCP),

where P = BBT and Q = CTC positive semidefinite matrices. The (BLCP) is the corresponding Karush–Kuhn–
Tucker system to (P−QPKT ) and (D−QPKT ) problems [2, 17]. Let us denote by M the matrix of the linear system
of (BLCP), then the matrix M has the following structure

M =

[
P A

−AT Q

]

and introduce the following notations n := m̄+ n̄, q :=
(
−b

c

)
, u :=

(
x
y

)
and v :=

(
ȳ
x̄

)
. The (BLCP) problem with

the given bisymmetric matrix M2 is an (LCP) with a special structure.
Let us note here that we can define a corresponding (WLCP) problem by changing the right-hand side of the

last equations in (1) or in (BLCP) from 0 to a nonnegative vector p.

3 From weighted central path problem to a sequence of convex feasibility
problems

3.1 Central path and weighted central path

In this paper, we assume that the matrix M is positive semidefinite. It is easy to show that this matrix class coincides
with the class of P∗(0)-matrices, that is a subclass of P∗(κ)-matrices introduced by Kojima et al. [18], where κ ≥ 0.

We denote by F = {(u,v) ∈Rn
⊕×Rn

⊕ : −Mu+v = q} and F+ = {(u,v) ∈Rn
+×Rn

+ : −Mu+v = q} the set
of feasible and strictly feasible solutions of the WLCP. Note that these sets are the same for the LCP, namely when
p = 0. In contrast, the solution set of the WLCP depends on p, let us denote it by F ∗

p = {(u,v) ∈ F : uv = p}.
For any (u,v) ∈ F+ the complementarity condition of LCP could not be satisfied, since uv > 0. Thus, the

complementarity condition needs to be relaxed. Now, we are ready to introduce the corresponding central path
problem (CPP)

−Mu+v = q, u,v > 0, uv = µ e, (2)

for a given µ > 0 and to define the central path

C = {(u,v) ∈ F+ : uv = µ e for some µ > 0}

2The

M =

[
P A

−AT Q

]
=

[
P 0
0 Q

]
+

[
0 A

−AT 0

]
∈ Rn×n

is bisymmetric matrix, if P and Q are symmetric positive semidefinite matrices.
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that contains all strictly feasible solutions of the LCP, that solves CPP for some µ > 0. The central path for linear
optimization problem has been introduced by Sonnevend [32] and Megiddo [20] independently. Illés et al. [13]
gave an elementary proof for the following theorem:
Theorem 3.1. Let the matrix M of the LCP be a given P∗(κ)-matrix. Then the following statements are
equivalent:

i) F+ ̸= /0,
ii) ∀ w ∈ Rn

+, ∃!(u,v) ∈ F+ : uv = w,
iii) ∃!(u,v) ∈ F+ : uv = µ e.

Statement i) is called the interior point condition (IPC) of the LCP.
Statement ii) of the previous theorem defines a very important problem3:

−Mu+v = q, u,v > 0, uv = w, (WCPP)

that we call the weighted central path problem (WCPP) for a given w ∈ Rn
+. The unique solution of the (WCPP)

can be denoted by (u(w),v(w)) ∈ F+.
Statement iii) of the previous theorem says that the central path of an LCP with P∗(κ)-matrix is unique.4

In our case (M is P∗(0)-matrix), assuming that LCP satisfies the IPC, namely F+ ̸= /0, it can be proved that F ∗ ̸= /0
is a compact (see Corollary 3.4. in [21]) and convex set (see Theorem 5 in [3] or Corollary 3.3. in [14]).

In the classical IPAs we consider WCPPs with w = µ e, µ → 0+ . By solving these approximately we tend
to a solution of the LCP, namely we change the entries of w proportionally. This somehow restricts the possible
optimization strategies. Moreover, as we will see later, the limiting value w = 0 is not the only interesting target. In
this paper, we show that the general theory of self-concordant functions gives the opportunity to justify different
strategies for updating approximations to (u(w),v(w)) with unbalanced weights. However, for that, we need to
introduce the trajectory (u(w),v(w)) not by the weighted barriers, but by a kind of method of centers [10, 30] (as
it was done in [25] for the linear programming problems). This is the subject of the next section.

3.2 Building the model for parabolic target space IPA
Since we assume that the matrix M is positive semidefinite, the (WCPP) has a unique solution based on the
previous subsection. Now following the idea presented in [25], we are ready to define the relaxed weighted central
path problem (RWCPP) with slight modification of (WCPP) as follows

−Mu+v = q, u,v ≥ 0, uv ≥ w2, (RWCPP)

where w ∈Rn thus w2 ≥ 0 serves as a possible vector w in (WCPP). Clearly, the solution set of (RWCPP) contains
the solution of the corresponding (WCPP), and it is non-empty if the IPC holds. Furthermore, it is easy to show
that the nonlinear inequalities

ui vi −w2
i ≥ 0,

define a convex cone in R3 [25], thus the solution set of (RWCPP) is a convex set. Since M is a positive semidefinite
matrix, uT (Mu+q) is a convex function of u, thus the level set

Lw0 = {(u,v) ∈ F : uT v ≤ w0},

for all w0 ∈R is a convex set. Furthermore, if w0 ≥ 0, then it is nonempty and compact. Taking into consideration
the definition of (RWCPP) and the level set Lw0 , we can define the following convex feasibility problem (CFP)

−Mu+v = q, u,v ≥ 0, uv ≥ w2, and w0 ≥ uT v. (CFP)

The next statement follows from our construction and the unique solvability of (WCPP).
Proposition 3.1. Let us assume that F+ ̸= /0. For a given pair of (w0,w) (CFP) has feasible solution if and only
if w0 ≥ ∥w∥2.

From the linear constraint of the monotone WLCP, we can express the variable v as v = q+M u and we can
reformulate (CFP) in the following way

q+Mu ≥ 0, u ≥ 0, u(q+Mu)≥ w2, and w0 ≥ qT u+uT Mu. (3)

3This problem is a (WLCP) with w > 0.
4Since Illés et al. [13] did not publish their approach, the details of the proof can be found in the thesis of his former PhD student [21].
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When u is a solution of the (RWCPP), then w0 ≥ ∥w∥2 follows. The w0 ≥ ∥w∥2 is an important inequality defined
during our relaxation process for the new variables t = (w0,w), that we call the variables in the parabolic target
space

T = {t = (w0,w) ∈ R1+n : w0 ≥ ∥w∥2},
to distinguish from the original variables (u,v) of the LCP. Clearly, T is a convex set.

Now we shall define all those vectors that satisfy the system of convex inequalities (3) as

Fz = {z = (u, t) ∈ Rn ×R1+n : q+Mu ≥ 0, u ≥ 0, u(q+Mu)≥ w2, w0 ≥ qT u+uT Mu}.

Clearly, from F+ ̸= /0 follows that Fz, has an interior point solution, too. The convex set Fz admits a standard
self-concordant barrier (MF = 1)

F(z) = F(u, t) =− ln
(
w0 −uT (q+Mu)

)
−

n

∑
i=1

ln
(
ui (q+Mu)i −w2

i
)
,

with barrier parameter νF = 2n+1.
We will use the restriction of the function F on the u-space defined as Ft = F(., t) : Rn → R for a fixed vector

t ∈ R1+n. Since F is a self-concordant function with MF = 1, therefore using Theorem 8.1 the function Ft is a
self-concordant function, with MFt = 1, as well.

We can define now the control barrier function, φ : R1+n → R as follows

φ(t) = min
u:(u,t)∈Fz

F(u, t). (4)

In what follows, we use the notation z(t) = (u(t), t) for the optimal solution of (4), and v(t) =Mu(t)+q. Note that

∇φ(t) = ∇2F (u(t), t) , t ∈ domφ , (5)

∇
2
φ(t) = ∇

2
22F (u(t), t)−∇

2
21F (u(t), t)

[
∇

2
11F (u(t), t)

]−1
∇

2
12F (u(t), t) . (6)

As in [25], function φ(·) has a closed form representation.
Theorem 3.2. Let us assume that F+ ̸= /0, then domφ = int(T ) ̸= /0 and the optimization problem (4) has a
unique solution, and the corresponding optimal vector u(t) satisfies the following equation

u(t)(q+Mu(t)) = u(t)v(t) = w2 +
w0 −∥w∥2

n+1
e. (7)

Moreover, for all t ∈ domφ , we have

φ(w0,w) =−(n+1) ln
w0 −∥w∥2

n+1
. (8)

Proof. We follow the proof of Lemma 1 in [25]. Let t = (w0,w) ∈ intT , ε = 1
2n (w0 −∥w∥2) and w̄ = w2 + εe.

Using Theorem 3.1 there exists ū > 0 and v̄ = M ū+q > 0 such that ū v̄ = w̄. Note that for (ū, t) the function F is
well defined. Moreover, from the unique correspondence between ū and w̄, the optimization problem (4) gets the
form of

φ(t) = min
w̄>0

[
− ln

(
w0 −

n

∑
i=1

w̄i

)
−

n

∑
i=1

ln
(
w̄i −w2

i
)]

. (9)

Note that using the first order optimality condition for the previous optimization problem,

1

w0 −
n
∑

i=1
w̄i

− 1
w̄i −w2

i
= 0, i = 1,2, . . . ,n

hold, and the optimal vector w̄∗ can be found from the following equations

w0 −
n

∑
i=1

w̄∗
i = w̄∗

i −w2
i , i = 1,2, . . . ,n.

6



That is, w̄∗ = w2 + w0−∥w∥2

n+1 e, proving (7). Furthermore,

w̄∗
i −w2

i =
w0 −∥w∥2

n+1
, i = 1,2, . . . ,n,

and then using (9), we obtain (8).

It can be observed that in (7) and (8) the difference of w0 and ∥w∥2 appears. For this reason, let us introduce
the function ρ(t) = ρ(w0,w) = w0−∥w∥2, which in some sense could serve as a measure of the distance from the
boundary of the parabolic target space T .

Note that the relation (7) works in two ways. Indeed, for t ∈ domφ , we can easily compute the right-hand side
of this equality, which gives us the exact value of the product of unknown vectors u(t) and v(t) = q+Mu(t).

On the other hand, if we have u > 0 with v = M u+q > 0, that are (strictly) feasible solutions of the WLCP,
then it is always possible to find a vector t(u) ∈ domφ , such that u = u(t(u)) and v = v(t(u)). Indeed, define

ξ (u) = min
1≤i≤n

ui (q+Mu)i > 0.

Then we can define

w(u) =
[
u(q+Mu)−ξ (u)e

]1/2
, w0(u) = uT (q+Mu)+ξ (u). (10)

It is easy to see that

ξ (u) =
w0(u)−∥w(u)∥2

n+1
. (11)

Therefore, denoting t(u) = (w0(u),w(u)), we have u = u(t(u)) and v = v(t(u)).

4 Parabolic Target-Space Interior Point Algorithm
In this section, we are interested in tracing the surface u(t) for t ∈ T . In fact, we cannot compute the point u(t)
exactly. However, for our goals, it is sufficient to give the update strategies only for an approximation u to this
surface. The closeness of u to u(t) can be measured by the (dual) local norm of the partial gradient

λt(u) := ∥∇1F(u, t)∥∗u =
√

∇1F(u, t)T [∇2
11F(u, t)]−1∇1F(u, t)

based on the self-concordant property of function F . The (dual) local norm λt(u) is called the partial Newton
decrement of the function F . Observe that λt(u) is the Newton decrement of the function Ft = F(., t).5

Using λt(u) for a given solution z = (u, t) ∈ Fz, we can define a neighbourhood of u(t):

Nλ (β ) = {z = (u, t) ∈ Fz : λt(u)≤ β}

which is called the λ -neighbourhood of the point u(t), where 0 < β < 1.
However, since the exact value F(u(t), t) = φ(t) is known, it is possible to use a functional proximity measure

Ψ(z) = F(u, t)−φ(t)≥ 0, z = (u, t) ∈ Fz.

Based on the functional proximity measure Ψ(z) we define the following set:

W (γ1,γ2) = {z = (u, t) ∈ Fz : γ1 ≤ Ψ(z)≤ γ2},

where 0 ≤ γ1 ≤ γ2.
Lemma 4.1. Let 0 < β < 1 and z = (u, t) ∈ Nλ (β ) holds. Then

ω
(
λt(u)

)
≤ Ψ(z) ≤ ω∗

(
λt(u)

)
. (12)

5The dual norm is computed similarly to the local norm, except that the inverse Hessian is used instead of the Hessian, namely λt(u) := ∥∇1F(u, t)∥
[∇2

11F(u,t)]−1 .

For more details, see the Appendix.
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Proof. The function ω and its Fenchel conjugate ω∗ are defined in the Appendix. Feasible solutions z(t) = (u(t), t)
and z = (u, t) are given. Since z(t) = (u(t), t) is optimal solution of the problem (4) thus φ(t) = F(z(t)) =
F(u(t), t) and ∇1F(u(t), t) = 0.

Now let us apply Theorem 8.13 to the self-concordant function Ft at points u,u(t) ∈ domFt. From the
inequality (51), with MFt = 1, follows that

Ft(u)≥ Ft(u(t))+(u−u(t))T
∇Ft(u(t))+ω(∥∇Ft(u)−∇Ft(u(t))∥∗u).

Clearly, ∇Ft(u(t)) =∇1F(u(t), t) = 0, thus the second term on the right side of the inequality is 0. Rearranging
the inequality, we get

F(u, t)−F(u(t), t) = Ft(u)−Ft(u(t))≥ ω(∥∇Ft(u)−∇Ft(u(t))∥∗u) = ω(∥∇1F(u, t)∥∗z).

Therefore
Ψ(z) = F(u, t)−φ(t)≥ ω(∥∇1F(u, t)∥∗z) = ω

(
λt(u)

)
,

proving the lower bound in (12).
Taking into consideration that z= (u, t)∈Nλ (β ), we have λt(u)≤ β < 1, so the second inequality of Theorem

8.13 can be used with similar computations as before, getting the

Ψ(z)≤ ω∗
(
λt(u)

)
upper bound in (12).

Now we are ready to present our, new Adaptive Parabolic Target-Space Interior Point Algorithm (PTS IPA)
for monotone WLCPs.

4.1 PTS IPA for monotone WLCPs
We define a vector w∗ to the weight vector p of the WLCP such that p = (w∗)2. The vector (w∗)2 is called the
target vector. The algorithm starts with a given point z(0) = (u(0), t(0)) ∈ intFz, so it satisfies all inequalities in
(3) as strict inequalities. The algorithm consists of two different types of iterations. In the outer loop, the goal is
to use such a direction in the parabolic target space that ensures a large enough decrease in the stopping criteria,
namely the new iterates come closer to the target vector (w∗)2 ∈Rn

⊕ in some measure. Although, the result of such
computation achieves its goal of better approximating the target value, but it may end up in a vector that is not
well centered in the sense of the Newton decrement, λt(u). The goal of the inner iteration is to restore this “well
centered” property of the computed new solution, namely to ensure that the computed solution belongs to the λ -
neighbourhood Nλ (β ) of the current point u(t). During the inner loop the parameter vector t of the parabolic
target space does not change.

Adaptive Parabolic Target-Space Interior Point Algorithm for Monotone WLCPs

Input: the initial point z(0) = (u(0), t(0)) ∈ intFz, the target vector (w∗)2 ∈ Rn
⊕ such that (w∗)2 = p, the accuracy

parameter ε > 0, the margins δu ≥ δl , and the proximity level β ∈
(
0, 1

2

)
: 0 < 2β 2

1−2β
≤ δl .

Begin
z := z(0).
While ∥uv− (w∗)2∥> ε do

Choose a target direction ∆t ∈ Rn+1 \{0}.
Compute direction d = (∆u,∆t) ∈ R2n+1 as

d =

(
∆u
∆t

)
=

(
−[∇2

11F(z)]−1 ∇2
12F(z)∆t

∆t

)
.

Find the step length α > 0 such that ẑ := z+α d ∈ W (δl ,δu).
Set t̂ := t+α ∆t and û := u+α ∆u.
While λt̂(û)> β do
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∆û =−
[
∇2

11F(û, t̂)
]−1

∇1F(û, t̂) and α̂ = 1
1+λt̂(û)

.
û := û+ α̂ ∆û.

End While
z := (û, t̂).

End While
End

In the analysis of our predictor-corrector strategy, we use both measurements λt(u) and Ψ(z), as well. Let us
analyze the performance of this scheme, the PTS IPA for monotone WLCPs.

It is clear that after the inner loop of the PTS IPA the solution z = (u, t) ∈ Nλ (β ).
Analysing the step of the outer loop of the PTS IPA, we find that the solution ẑ = (û, t̂) ∈ W (δl ,δu), due to

the fact that the function F is a self-concordant barrier, thus the step length α > 0 can be chosen to satisfy the
inequality δl ≤ Ψ(ẑ)≤ δu.

4.2 Analysis of the corrector step
First of all, note that the process at the inner while loop (corrector step) is a standard Damped Newton Method
(DNM) (see Appendix or pages 348-349 in [26]).
Lemma 4.2. Let us assume that ẑ ∈ W (δl ,δu)\Nλ (β ), where β ∈ (0, 1

2 ): 0 < 2β 2

1−2β
≤ δl . Let k be the number of

steps in an inner loop. Then we need

k ≤
⌊

δu

ω(β )

⌋
+1

corrector steps in order to have z ∈ Nλ (β ).

Proof. In the inner while loop we minimizing the self-concordant function F̂t, where ẑ = (û, t̂) ∈ Fz.
Based on Theorem 8.14, the full Newton step is feasible. Since dom F̂t is convex, a damped Newton step also

gives a feasible solution. For two consecutive solutions of the inner loop z̄ = (ū, t̂) and z+ = (u+, t̂) from Theorem
8.15 and using the monotone increasing property of the function ω follows that

F̂t(ū)− F̂t(u
+) = F(ū, t̂)−F(u+, t̂)≥ ω

(
λt̂(ū)

)
≥ ω(β ), (13)

hence the decrease of the self-concordant function F after each step in the inner loop is at least ω(β ) > 0, until
we reach the neighborhood Nλ (β ), thus k is finite. Since k is the first index when ẑ(k) ∈ Nλ (β ), the iterates
ẑ = ẑ(0) = (û(0), t̂), ẑ(1) = (û(1), t̂), . . . , ẑ(k−1) = (û(k−1), t̂) /∈ Nλ (β ) and ẑ(k) = (û(k), t̂) ∈ Nλ (β ). On the other
hand, we know that the starting point of the inner loop ẑ(0) = (û(0), t̂) ∈ W (δl ,δu), thus

δu ≥ Ψ(ẑ(0)) = F(û(0), t̂)−φ(t̂)≥ F(û(0), t̂)−F(û(i), t̂), i = 1, . . . ,k−1, (14)

since φ(t̂)≤ F(û(i), t̂) for any ẑ(i) = (û(i), t̂) ∈ Fz (i = 1,2, . . . ,k−1). Using (13) and (14), we have

δu ≥ F(û(0), t̂)−F(û(k−1), t̂)≥ (k−1)ω(β ). (15)

Now the iteration bound of the inner loop follows.

4.3 Analysis of the predictor step
Let us show now that the step length αk > 0 computed at the kth predictor iteration is sufficiently big. For that, we
need to compare the size of the steps in z-space

(
R2n+1

)
with that in t-space

(
Rn+1

)
. The local norm in z-space is

defined using the self-concordant function F and the set intFz, while in t-space using φ and the set intT .
First, we show that if z is in the neighborhood Nλ (β ) then z(t) is close to z and it is also true for the gradient

vectors.
Lemma 4.3. Let z = (u, t) ∈ Nλ (β ), where β ∈ (0, 1

2 ). Then

∥z− z(t)∥
∇2F(z) ≤ λt(u)

1−λt(u)
≤ β

1−β
< 1, (16)
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∥∇F(z)−∇F(z(t))∥[∇2F(z)]−1 ≤ λt(u)
1−2λt(u)

≤ β

1−2β
. (17)

Proof. By definition, ∥z− z(t)∥
∇2F(z) = ∥u−u(t)∥

∇2Ft (u). Using Corollary 8.7 with self-concordant function Ft,
we get

∥u−u(t)∥
∇2Ft (u)

1+∥u−u(t)∥
∇2Ft (u)

≤ λt(u).

Since z ∈ Nλ (β ), λt(u) ≤ β < 1, therefore (16) is proved by rearranging the previous inequality and then
substituting the upper bound β on λt(u).

In a similar way, we can give an estimation for the gradient. Applying Corollary 8.11, we get

∥∇F(z)−∇F(z(t))∥[∇2F(z)]−1

1+∥∇F(z)−∇F(z(t))∥[∇2F(z)]−1
≤ ∥z− z(t)∥

∇2F(z).

Since ∥z− z(t)∥
∇2F(z) < 1, we can reformulate it as (17) and again substitute the upper bound β .

To give an estimation on the length of the predictor direction d by the length of ∆t (so considering only its
t-space part), we need one simple fact on the monotonicity of Schur complement.
Lemma 4.4 (Schur monotonicity lemma). Consider two symmetric matrices

Qi =

[
Ai Bi
BT

i Ci

]
∈ R(n+m)×(n+m), i = 1,2,

such that 0 ≺ Q1 ⪯ Q2. Then, C1 −BT
1 A−1

1 B1 ⪯
[
C2 −BT

2 A−1
2 B2

]
.

Proof. Let Xi = A−1
i Bi and Si =Ci −BT

i A−1
i Bi (i = 1,2), then the well-known identity says

Qi =

[
I O

XT
i I

][
Ai O
O Si

][
I Xi
O I

]
, i = 1,2,

where O is the zero matrix and I is the identity matrix with appropriate size. This means by Ai ≻ 0 that(
u
v

)T

Qi

(
u
v

)
= (u+Xiv)T Ai(u+Xiv)+vT Siv ≥ vT Siv, i = 1,2,

and the quadratic form is minimal in u =−Xiv. Therefore, for any v ∈ Rm,

vT [S2 −S1]v =

[
−X2v

v

]T

Q2

[
−X2v

v

]
−
[
−X1v

v

]T

Q1

[
−X1v

v

]
≥
[
−X2v

v

]T

(Q2 −Q1)

[
−X2v

v

]
≥ 0,

since Q2 −Q1 ⪰ 0.

Lemma 4.5. Let z = (u, t) ∈ Nλ (β ), where β ∈ (0, 1
2 ) and d be the predictor direction of PTS IPA. Then

∥d∥
∇2F(z) ≤

1−β

1−2β
∥∆t∥

∇2φ(t). (18)

Proof. We know that the Hessian ∇2F(z) is nondegenerate for any z ∈ intFz (see Theorem 8.3) and based on the
result of Theorem 8.5 and (16), we have

∇
2F(z)⪯ 1

(1−∥z− z(t)∥
∇2F(z))

2 ∇
2F(z(t))⪯

(
1−β

1−2β

)2

∇
2F(z(t)).

Therefore using the monotonicity of Schur complement (Lemma 4.4), we complete the proof:

∥d∥2
∇2F(z) = dT

∇
2F(z)d =

(
∆u
∆t

)T (
∇2

11F(z) ∇2
12F(z)

∇2
21F(z) ∇2

22F(z)

)(
∆u
∆t

)
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= ∆tT
(

∇
2
22F(z)−∇

2
21F(z) [∇2

11F(z)]−1
∇

2
12F(z)

)
∆t

≤
(

1−β

1−2β

)2

∆tT
(

∇
2
22F(z(t))−∇

2
21F(z(t)) [∇2

11F(z(t))]−1
∇

2
12F(z(t))

)
∆t

=

(
1−β

1−2β

)2

∆tT
∇

2
φ(t)∆t =

(
1−β

1−2β

)2

∥∆t∥2
∇2φ(t).

Now we are ready to give a lower bound on the displacement in the t-space.
Theorem 4.6. In the predictor step of the PTS IPA, if z = (u, t) ∈ Nλ (β ), with β ∈ (0, 1

2 ), and α > 0 is such that
z+α d ∈ W (δl ,δu) holds, then

α ∥∆t∥
∇2φ(t) ≥ 1−2β

1−β
ω

−1
∗

(
1
2

[
δl −

2β 2

1−2β

])
> 0, (19)

where ∆t is the chosen target direction.

Proof. On the contrary, assume that

α ∥∆t∥
∇2φ(t) <

1−2β

1−β
ω

−1
∗

(
1
2

[
δl −

2β 2

1−2β

])
.

Using that ω−1
∗ (x)< 1 for x > 0, it means that α ∥∆t∥

∇2φ(t) <
1−2β

1−β
. Hence, based on (18), this assumption means

that α ∥d∥
∇2F(z) < 1.

Now using this fact and that F is self-concordant function, from Theorem 8.12, inequality (50) (see the
Appendix) for solutions z and z+α d, we have the following inequality

F(z+α d)≤ F(z)+α dT
∇F(z)+ω∗

(
α ∥d∥

∇2F(z)
)
. (20)

Due to the fact that φ defined by (4) is a convex function,

φ(t+α ∆t)≥ φ(t)+α ∆tT
∇φ(t) = φ(t)+α dT

∇F(z(t)). (21)

After subtracting (21) from (20), we get

Ψ(z+α d) = F(z+α d)−φ(t+α ∆t)≤ Ψ(z)+α dT (
∇F(z)−∇F(z(t))

)
+ω∗

(
α ∥d∥

∇2F(z)
)
.

Remember that in the predictor step of PTS IPA the step length α has been chosen to satisfy the following condition
z+α d ∈ W (δl ,δu), namely δl ≤ Ψ(z+α d). On the other hand, z ∈ Nλ (β ). From Lemma 4.1, we have Ψ(z)≤
ω∗(λt)≤ ω∗(β ) using the monotone increasing property of ω∗. Combining these estimations, we have

δl ≤ ω∗(β )+α ∥d∥
∇2F(z) ∥∇F(z)−∇F(z(t))∥[∇2F(z)]−1 +ω∗

(
α ∥d∥

∇2F(z)

)
.

Now taking into consideration that α ∥d∥
∇2F(z) < 1, we can apply Theorem 8.4 and get

δl ≤ ω∗(β )+ω

(
∥∇F(z)−∇F(z(t))∥[∇2F(z)]−1

)
+2ω∗

(
α ∥d∥

∇2F(z)

)
.

Functions ω and ω∗ are monotone increasing, so we can use the upper bounds given in (17) and (18), which yields

δl ≤ ω∗(β )+ω

(
β

1−2β

)
+2ω∗

(
1−β

1−2β
α ∥∆t∥

∇2φ(t)

)
. (22)

We provide an upper bound on the first two terms in (22) using the nonnegativity of the logarithm,

ω∗(β )+ω

(
β

1−2β

)
= −β − ln(1−β )+

β

1−2β
− ln

(
1+

β

1−2β

)
≤ 2β 2

1−2β
.
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We conclude from (22), that

0 < δl −
2β 2

1−2β
≤ 2ω∗

(
1−β

1−2β
α ∥∆t∥

∇2φ(t)

)
, (23)

which contradicts our initial assumption.

Corollary 4.7. In the predictor step of the PTS IPA, if z = (u, t) ∈ Nλ (β ), with β ∈ (0, 1
2 ), and α > 0 is such that

z+α d ∈ W (δl ,δu), where δl = (2+κ2) β 2

1−2β
with some κ > 0, then

α ∥∆t∥
∇2φ(t) ≥ β (1−2β )κ

(1−β )(1−β +βκ)
, (24)

where ∆t is the chosen target direction.

Proof. Based on (19), with the given special value of δ and properties of the function ω∗, we have

1−β

1−2β
α ∥∆t∥

∇2φ(t) ≥ ω
−1
∗

(
κ2 β 2

2(1−2β )

)
≥ ω

−1
∗

(
κ2 β 2

2(1−β )2

)
≥ ω

−1
∗

(
κ2 β 2

2(1−β )(1−β +κβ )

)
. (25)

By Lemma 8.4, we get

κ2 β 2

2(1−β )(1−β +κβ )
=

κ2β 2

(1−β+κβ )2

2
(

1− κβ

1−β+κβ

) ≥ ω∗

(
κβ

1−β +κβ

)
.

Combining it with (25), we get (24).

Remark 4.1. If β = 1
4 ,δl =

2+κ2

8 , where κ ≥ 0, then in each predictor step of the PTS IPA for monotone WLCPs,
we have

α∥∆t∥
∇2φ(t) ≥

2κ

3(3+κ)
. (26)

5 Complexity analysis of a PTS-IPA for monotone WLCPs
The goal of this section is to bound the number of outer iterations. As we have seen in Lemma 4.2 after finite
number of corrector steps the solution satisfies z ∈ Nλ (β ). Thus the sequence of points z(0),z(1),z(2), . . . ,z(k)
computed by the algorithm starting from the initial, feasible solution z(0), all belongs to Nλ (β )⊂Fz. In particular,
this means that

u(k) ≥ 0, Mu(k)+q ≥ 0, u(k)(Mu(k)+q)≥
(

w(k)
)2

,
(

u(k)
)T
(Mu(k)+q)≤ w(k)

0 , k ≥ 0.

Thus, if we have a target point t∗ = (w∗
0,w

∗) ∈ domφ , it is enough to study the rate of convergence of w(k) → w∗.
For obtaining the complexity result we focus on a special type of updating strategy in the target space, T , namely
the Greedy Step:

t(α) = t+α (t∗− t) = α t∗+(1−α) t, (27)

where α ∈ (0,1] and t = (w0,w) is the current iterate, while ∆t := t∗− t.
Let w∗

0 := ∥w∗∥2, then ρ(t∗) = 0,
namely the target point t∗ is on the boundary of T . We introduce the function ℓ∗(t) := w0 −w∗

0 −2w∗T (w−
w∗). Simple computations show that

ℓ∗(t) = w0 −∥w∥2 +∥w−w∗∥2 = ρ(t)+∥w−w∗∥2.

Thus, we have

ℓ∗(t)≥ max{w0 −∥w∥2,∥w−w∗∥2}= max{ρ(t),∥w−w∗∥2}, t ∈ domφ ,
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and clearly ℓ∗(t∗) = 0. Hence, we can use ℓ∗(t(k)) as a natural measure for the quality of our approximate solutions,
since it gives an upper bound for the distance of the point from the boundary and the target point, as well.

Now we can measure the distance of vector t ∈ domφ from the boundary of domφ in the opposite direction
(to the greedy one) by defining

α(t) = max{α ≥ 0 : t(1−α) ∈ domφ}.
Note that the maximum is achieved when t(1−α) is on the boundary of domφ , so w0(1−α) = ∥w(1−α)∥2,
therefore

α(t) =
ℓ∗(t)

∥w−w∗∥2 =
ρ(t)

∥w−w∗∥2 +1 > 1. (28)

Using the function α , we can estimate the local norm of the search direction ∆t.
Lemma 5.1. Let t ∈ domΦ and ∆t be the target direction. Then, we have√

n+1
2

≤ α(t)−1
α(t)

∥∆t∥
∇2φ(t) ≤

√
n+1.

Proof. Consider the function ψ(t) := − lnρ(t). Let us compute its derivatives at point t ∈ intdomφ along the
direction ∆t = (w∗

0 −w0,w∗−w) = (∥w∗∥2 −w0,w∗−w), namely compute the directional derivatives of ψ(t+
α ∆t) =− ln(w0 +α ∆w0 −∥w+α ∆w∥2). Note that

Dψ(t)[∆t] = − 1
ρ(t)

(∆w0 −2wT
∆w) =− 1

ρ(t)
(
∥w−w∗∥2 − (w0 −∥w∥2)

)
= 1− ∥w−w∗∥2

ρ(t)
,

D2
ψ(t)[∆t]2 =

1
ρ2(t)

(
∥w−w∗∥2 −ρ(t)

)2
+

2
ρ(t)

∥w−w∗∥2 =
∥w−w∗∥4

ρ2(t)
+1 =

1
(α(t)−1)2 +1,

since the identity (28).
Using that D2ψ(t)[∆t]2 = ∥∆t∥2

∇2ψ(t) and the previous equation, we get

(
α(t)−1

α(t)

)2

∥∆t∥2
∇2ψ(t) =

1
α2(t)

+

(
1− 1

α(t)

)2

.

From the previous expression, we obtained the following bounds

1 ≥ α(t)−1
α(t)

∥∆t∥
∇2ψ(t) ≥

1√
2
. (29)

In Theorem 4.6 the bound is given on ∥∆t∥
∇2φ(t) = D2φ(t)[∆t]2, where the closed form of the function φ(t) =

−(n+1) ln ρ(t)
n+1 is stated at (8). Similarities between the functions ψ and φ are clear, thus we need to understand

the connections between ∥∆t∥
∇2ψ(t) and ∥∆t∥

∇2φ(t). It can be shown that

D2
φ(t)[∆t]2 = (n+1)D2

ψ(t)[∆t]2, so ∥∆t∥
∇2φ(t) =

√
n+1∥∆t∥

∇2ψ(t),

which combining with (29), we complete the proof.

The expression of the distance function α(t) appearing in Lemma 5.1 gives the idea to define the following
merit function as follows

µ
∗(t) :=

α(t)
α(t)−1

ℓ∗(t) =
ℓ∗(t)2

ℓ∗(t)−∥w−w∗∥2 ≥ ℓ∗(t). (30)

The following lemma plays an important role in the analysis of PTS IPAs. It shows that if the step-length is
big enough, then the decrease of the merit function value µ∗(t(α)) is large enough.
Lemma 5.2. Let α ∈ (0,1) be a feasible step length in the predictor step of the PTS IPA. If α ≥ γ

α(t)−1
α(t) , then

µ∗(t(α))≤ 1
1+γ

µ∗(t) with some γ ∈ (0,1).
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Proof. Note that ℓ∗(t(α)) = (1−α)ℓ∗(t) and ∥w(α)−w∗∥ = (1−α)∥w−w∗∥, thus α(t(α)) = α(t)
1−α

> α(t).
Using the definition of the merit function µ∗, we have

µ
∗(t(α)) =

α(t(α))

α(t(α))−1
ℓ∗(t(α)). (31)

We estimate the two factors from (31) separately. Using the lower bound on the step length α , we get

α(t(α))−1
α(t(α))

= 1− 1−α

α(t)
≥ 1− 1

α(t)
+ γ

α(t)−1
α2(t)

=

(
1− 1

α(t)

)(
1+

γ

α(t)

)
, (32)

and

ℓ∗(t(α)) = (1−α)ℓ∗(t)≤
(

1− γ
α(t)−1

α(t)

)
ℓ∗(t). (33)

Substituting the bound obtained in (32) and (33) into (31), we get

µ
∗(t(α)) ≤

1− γ
α(t)−1

α(t)(
1− 1

α(t)

)(
1+ γ

α(t)

) ℓ∗(t) =
α(t)− γ(α(t)−1)

α(t)+ γ
µ
∗(t)

=

(
1− α(t)γ

α(t)+ γ

)
µ
∗(t)≤ 1

1+ γ
µ
∗(t), (34)

since 1− xγ/(x+ γ) is a monotone decresing function for x ≥ 1.

Let us show now that the condition of Lemma 5.2 can be derived from the inequality (26). Indeed, we have

αk ≥
1

∥∆tk∥∇2φ(tk)

2κ

3(3+κ)
≥ α(t)−1

α(t)
γ, (35)

with γ = 2κ

3(3+κ)
√

n+1
.

In the following theorem, we give a bound on the number of iterations.
Theorem 5.3. Let β = 1

4 , δu = η δl , where δl =
2+κ2

8 and η ≥ 1, κ > 0, γ = 2κ

3(3+κ)
√

n+1
and let z(0) = (u(0), t(0))∈

Fz be the starting point. Then PTS IPA performs at most

1
γ

log2
µ∗(t(0))

ε
= O

(
√

n ln
µ∗(t(0))

ε

)

iterations using greedy step in T .

Proof. Using (35) and Lemma 5.2, we get that after each iteration µ∗(t(α))≤ 1
1+γ

µ∗(t). Hence, µ∗(t)≤ ε if

(
1

1+ γ

)k

µ
∗(t(0))≤ ε.

Rearranging the inequality, we obtain that µ∗(t)≤ ε holds if

k ≥ 1
ln(1+ γ)

ln

(
µ∗(t(0))

ε

)
.

Using ln(1+ γ)≥ γ ln2 for γ ∈ (0,1), we obtain the result.

14



6 Numerical results
We tested the presented PTS IPA on two sets of instances: in the first case, we used matrices given on the website
[31], while in the second case, we randomly generated the coefficient matrix of (WLCP). We considered β = 1

4 ,
δl = 0.9, δu = 1 and ε = 10−8.

The website [31] gives a detailed description of how the collected matrices were generated. All the matrices
are either bisymmetric or symmetric PSD. For these instances, we generated the vector q as −Me+e and used the
vector e as the initial solution.

A total of 66 problems (21 symmetric PSD and 45 bisymmetric) were considered, 47 of which were solved
by the algorithm with an accuracy of at least 10−6 (see Tables 1 and 2), while in case of 7 problems we got a
solution with accuracy worse than 10−3 (see Table 3). The required accuracy in all these runs was 10−8. The
earlier terminations are related with difficulties in Linear Algebra, which can be eliminated by a more accurate
programming. As we can see, the total number of solutions of Newton systems is always quite moderate.

Problem Dim Predictor Corrector Total
TR PSD 1 27 18 35 56
TR PSD 2 32 17 32 52
TR PSD 5 48 20 39 62
TR PSD 6 47 20 40 61
TR PSD 7 46 20 40 63
TR PSD 8 50 34 59 96
TR PSD 9 50 29 58 90
TR PSD 10 49 29 58 90
TR PSD 11 48 34 59 96
TR PSD 12 74 18 36 57
TR PSD 13 77 28 48 79
TR PSD 14 83 21 42 64
TR PSD 15 91 47 63 110
TR PSD 16 96 16 33 51
TR PSD 17 97 19 38 58
TR PSD 20 50 29 58 90

Table 1 Numerical results for symmetric PSD matrices with
reached accuracy at least 10−6.

Problem Dim Predictor Corrector Total
TR BS 1,2 59 19 38 60
TR BS 4 68 19 39 61
TR BS 5,6 73 17 34 54
TR BS 7,8 74 24 48 75
TR BS 9 75 20 84 106
TR BS 10 75 20 40 60
TR BS 11,12 80 25 49 77
TR BS 13,14 81 26 51 79
TR BS 15 84 16 34 50
TR BS 16 84 16 33 53
TR BS 17,18 88 24 46 73
TR BS 19 89 24 70 94
TR BS 20 89 19 39 59
TR BS 21 89 19 39 58
TR BS 22 95 23 45 71
TR BS 23 96 24 47 74
TR BS 24,25 95 23 46 72
TR BS 28,29 102 29 57 89
TR BS 30,31 103 24 47 75
TR BS 42 90 20 42 64
TR BS 43 90 19 38 70
TR BS 45 90 24 49 73

Table 2 Numerical results for bisymmetric matrices with
reached accuracy at least 10−6.
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Problem Dim Predictor Corrector Total
TR PSD 3 41 11 23 34
TR PSD 4 43 7 14 21
TR PSD 22 79 6 12 18
TR BS 3 68 14 28 42
TR BS 26 97 15 30 45
TR BS 27 97 17 35 52
TR BS 34 140 23 46 69

Table 3 Numerical results for difficult problems (reached
accuracy is worse than 10−3).

Now let us present the computational results for randomly generated problems. Recall that we considered the
following problem: Find u,v ∈ Rn

+ : uv = p with v = Mu+q, where p ∈ Rn
⊕ and M+MT ⪰ 0. A necessary

and sufficient condition for the solvability of this problem is the existence of the strictly feasible primal-dual pair
(û, v̂):

û, v̂ ∈ Rn
+ : v̂ = Mû+q.

Hence, this condition serves as a starting element for our random generator. It performs the following four steps.
1. Choose randomly û, v̂ ∈ Rn

+, which components are uniformly distributed in (0,1).
2. Form a random matrix A ∈ Rn×n and a lower triangular random matrix L ∈ Rn×n with elements uniformly

distributed in (−1,1).
3. Set M = AAT +ξ (L−LT ), where ξ ≥ 0 is a parameter. Define q = v̂−Mû.
4. With probability π ∈ [0,1], decide if the element pi is positive. Positive pi are chosen uniformly distributed

in (0,1].
Thus, our generator has three parameters: n, ξ ≥ 0, and π ∈ [0,1]. For our experiments, they are chosen as

follows:
π = 1

2 , ξ = 10.

In this way, we generated 100-100 problems of each size indicated in Table 4. In the table below, the columns
present the average number of predictor and corrector steps for different dimensions in the series of one hundred
random test problems.

Dimension 16 32 64 128 256 512
Predictions 11.3 12.5 14.7 18.5 22.9 29.0
Corrections 22.8 24.9 30.7 50.1 58.0 74.9

Table 4 Average iteration numbers for random problems

As we see, for one predictor step, we need approximately 2-2.5 corrector steps. The number of predictor
steps grows a little bit slower than

√
n (look at the pairs 64/256 and 128/512). With the growth of the dimension,

the Newton system inside the algorithm becomes more and more degenerate. Hence, for dimension n = 512 our
algorithm reached only the accuracy ε = 10−7.

The most interesting observation from our preliminary experiments is the significant acceleration of conver-
gence in the end of the process. We can see it from Table 2, which relates the progress in the proximity measure
µ∗(·), achieved at a random problem of dimension n = 512, with the number of predictor and corrector steps. In
the last line there, we can see the relative size of the predictor step as compared with the maximal step preserving
feasibility.

µ∗(t) 5 ·102 4 ·101 3 ·100 3 ·10−1 2 ·10−2 2 ·10−3 3 ·10−4 2 ·10−5 2 ·10−6 1 ·10−7

Npred 0 15 21 24 26 27 28 29 30 31
Ncor 0 32 45 51 55 57 59 61 63 65
αmax 0.84 0.87 0.92 0.95 0.96 0.97 0.97 0.97 0.96 0.96

Table 5 Acceleration of convergence for a random problem

In the end of the process, the algorithm often demonstrates a good linear rate. However, the possibility to
achieve a local super-linear rate of convergence for methods of this type remains an interesting open question.
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7 Conclusion
In this paper, we intorduced an IPA for monotone WLCPs by extending the PTS framework proposed by Nes-
terov (2008) in [25] for primal-dual linear programming problems. The method performs two types of steps. In the
predictor stage, the goal is to use a search direction in the PTS which ensures a large enough decrease in the stop-
ping criteria. The goal of the corrector stage is to ensure that the computed solution belongs to the neighbourhood
Nλ (β ) of the current point u(t). The algorithm works in a wide neighborhood, allowing very large steps. This
results in a significant acceleration in the end of the process, which was also illustrated in our preliminary numer-
ical experiments. Furthermore, we showed that the proposed PTS IPA has the best known worst-case complexity
bound. As further research, the algorithm could be extended to more general problems, such as P∗(κ)-WLCPs.
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8 Appendix: Self-concordant functions and some useful results

We need to introduce the definitions of the barrier function, self-concordant function and self-concordant barrier
function and some important related results that will be used in this paper. This part of the paper is based on the
unification of the approaches of self-concordant functions presented in [9, 11, 22, 26].
Definition 8.1. Let Q ⊆ Rn be a closed convex set with a nonempty interior and f : intQ → R be a continu-
ous function. The function f is a barrier function for the convex set Q if and only if it satisfies the following
assumptions:

1. f is a smooth function, for our purposes f is three times continuously differentiable,
2. f is convex function, i.e. ∇2 f (x) is positive semidefinite matrix, for all x ∈ intQ, and
3. lim

x→∂Q
f (x) = +∞, where ∂ Q is the boundary of Q.

By fixing a point x ∈ intQ and direction h ∈ Rn, we define a function ϕ : R→ R in the following way

ϕ(t) = f (x+ t h),

where the domain of ϕ is given as domϕ = {t ∈ R : x+ t h ∈ int Q}. It is obvious that ϕ is strictly convex, and
three times differentiable function. Furthermore, we can define the first, second and third order differentials of
function f taken at point x in the direction of h, computed at t = 0 as follows

D f (x)[h] = ϕ
′(0) =

n

∑
i=1

hi
∂ f (x)

∂xi
= hT

∇ f (x),

D2 f (x)[h,h] = ϕ
′′(0) =

n

∑
i=1

n

∑
j=1

hih j
∂ 2 f (x)
∂xi ∂x j

= hT
∇

2 f (x)h = ∥h∥2
∇2 f (x),

D3 f (x)[h,h,h] = ϕ
′′′(0) =

n

∑
i=1

n

∑
j=1

n

∑
k=1

hih jhk
∂ 3 f (x)

∂xi ∂x j ∂xk
= hT

∇
3 f (x)[h]h,

where ∇3 f (x)[h] ∈ Rn×n and ∥h∥
∇2 f (x) is a local norm induced by the positive definite matrix ∇2 f (x). If it does

not cause misunderstanding, then the local norm is denoted as ∥h∥x, referring only to the point where the Hessian
matrix of the function f has been computed.

Recall that the third degree Taylor polynomial of the function ϕ around 0 can be given as follows

ϕ(0)+ϕ
′(0) t +

1
2

ϕ
′′(0) t2 +

1
6

ϕ
′′′(0) t3.

Thus, it will be clear that the definition of self-concordance of function f specifies that the cubic term of the Taylor
polynomial of f can be bounded with the quadratic term. This property plays an important role in the complexity
analysis of the Newton-method.
Definition 8.2. A function f : Rn →R is called self-concordant if it is a closed convex function with open domain
and there exists a constant M f ≥ 0 such that the inequality

|D3 f (x)[h,h,h]| ≤ 2M f ∥h∥
3
2

∇2 f (x) (36)

holds for all x ∈ dom f and h ∈ Rn. If M f = 1, the function is called standard self-concordant.
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To complete developing the technical tools, we should investigate a specific subfamily of self-concordant
functions, the family of self-concordant barriers.
Definition 8.3. Let f be a standard self-concordant function. We call it a ν-self-concordant barrier for the set of
dom f , if

(D f (x)[h])2 = (hT
∇ f (x))2 ≤ ν ∥h∥2

∇2 f (x) = ν D2 f (x)[h,h] (37)

for all x ∈ dom f . The value ν is called the parameter of the barrier.
Let us now state that self-concordance is an affine-invariant property.

Theorem 8.1 ([26], Theorem 5.1.2). Let a function f be self-concordant with constant M f , and A : Rn → Rm be
a linear operator of the form A (x) := Ax+b, where A ∈ Rm×n and b ∈ Rm. Then the function

φ(x) = f (A (x))

is also self-concordant and Mφ = M f .
Let us consider the following ellipsoids:

W 0(x,r) = {y ∈ Rn : ∥y−x∥
∇2 f (x) < r},

W (x,r) = cl
(
W 0(x,r)

)
= {y ∈ Rn : ∥y−x∥

∇2 f (x) ≤ r}.

This set is called the Dikin ellipsoid of the function f at x.
Theorem 8.2 ([26], Theorem 5.1.5). 1. For any x ∈ dom f , we have W 0

(
x, 1

M f

)
⊆ dom f .

2. For all x,y ∈ dom f , the following inequality holds:

∥y−x∥
∇2 f (y) ≥

∥y−x∥
∇2 f (x)

1+M f ∥y−x∥
∇2 f (x)

(38)

3. If ∥y−x∥
∇2 f (x) <

1
M f

, then

∥y−x∥
∇2 f (y) ≤

∥y−x∥
∇2 f (x)

1−M f ∥y−x∥
∇2 f (x)

. (39)

Theorem 8.3 ([26], Theorem 5.1.6). Let a function f be self-concordant and dom f contains no straight lines.
Then the Hessian ∇2 f (x) is nondegenerate at all points x ∈ dom f .

Under the assumption that dom f contains no straight lines, we can define local dual norm for any x ∈ dom f ⊂
Rn and g ∈ Rn as follows

∥g∥∗x = ∥g∥[∇2 f (x)]−1 =
√

gT [∇2 f (x)]−1g.

It can be shown that for any g,h ∈ Rn : |hT g| ≤ ∥h∥x ∥g∥∗x holds.

Using the local dual norm we can introduce the Newton decrement of the function f at x ∈ dom f in the
following way

λ f (x) = ∥∇ f (x)∥∗x =
√

∇ f (x)T [∇2 f (x)]−1∇ f (x).

Let us define the Fenchel conjugate pair of the function

ω : R+ → R, ω(t) = t − ln(1+ t),

as
ω∗(τ) =−τ − ln(1− τ), τ ∈ [0,1).

Note that ω and ω∗ are monotone increasing convex functions.

Lemmas 5.1.4 and 5.1.5 from [26] are useful results, thus we summarize those.
Lemma 8.4. For any t ≥ 0 and τ ∈ [0,1), we have

ω
′(ω ′

∗(τ)) = τ, ω
′
∗(ω

′(t)) = t,

ω(t) = max
0≤ξ<1

[ξ t −ω∗(ξ )], ω∗(τ) = max
ξ≥0

[ξ τ −ω(ξ )],
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ω(t)+ω∗(τ)≥ t τ, (40)

ω∗(τ) = τ ω
′
∗(τ)−ω(ω ′

∗(τ)), ω(t) = t ω
′(t)−ω∗(ω

′(t)),

t2

2(1+ t)
≤ t2

2(1+ 2
3 t)

≤ ω(t)≤ t2

2+ t
,

τ2

2− τ
≤ ω∗(τ)≤

τ2

2(1− τ)
. (41)

Theorem 8.5 ([26], Theorem 5.1.7). Let x ∈ dom f . Then for any y ∈W 0
(

x, 1
M f

)
we have

(1−M f r)2
∇

2 f (x)⪯ ∇
2 f (y)⪯ 1

(1−M f r)2 ∇
2 f (x), (42)

where r = ∥y−x∥
∇2 f (x).

We need additional inequalities that characterize self-concordant functions.
Theorem 8.6 ([26], Theorem 5.1.8). Let a function f be self-concordant. For any x,y ∈ dom f , we have

(y−x)T (∇ f (y)−∇ f (x))≥
∥y−x∥2

∇2 f (x)

1+M f ∥y−x∥
∇2 f (x)

, (43)

f (y)≥ f (x)+(y−x)T
∇ f (x)+

1
M2

f
ω(M f ∥y−x∥

∇2 f (x)), (44)

where ω(t) = t − ln(1+ t).
An easy consequence of the previous theorem, especially the inequality (43) is the following statement.

Corollary 8.7. Let a function f be self-concordant. For any x,y ∈ dom f , we have

∥y−x∥
∇2 f (x)

1+M f ∥y−x∥
∇2 f (x)

≤ ∥∇ f (y)−∇ f (x)∥[∇2 f (x)]−1 . (45)

Define the Fenchel conjugate function (or Fenchel dual function) f∗ of the self-concordant function f for
s ∈ Rn, the value of this function is defined as follows:

f∗(s) = sup
x∈dom f

(
sT x− f (x)

)
. (46)

Clearly, dom f∗ = {s ∈ Rn : f (x)− sT x is bounded below on dom f}.

Now we are ready to list some results related to the Fenchel conjugate function f∗ of the self-concordant
function f .
Lemma 8.8 ([26], Lemma 5.1.6). Let a self-concordant function f be given and denote by f∗ its Fenchel conjugate
function. Then f∗ is a closed convex function with nonempty open domain. Moreover, dom f∗ = {∇ f (x) : x ∈
dom f}.

Using the previous lemma we can state the following corollary.
Corollary 8.9. Let a self-concordant function f be given and denote by f∗ its Fenchel conjugate function. If
s = ∇ f (x) ∈ dom f∗, then

∇
2 f∗(s) = [∇2 f (x)]−1, (47)

where x ∈ dom f .
The next theorem states that f∗ is a self-concordant function.

Theorem 8.10 ([26], Theorem 5.1.17 and ). Let a self-concordant function f be given and denote by f∗ its Fenchel
conjugate function. Then f∗ is self-concordant with M f∗ = M f .

Using Theorems 8.6 and 8.10, Lemma 8.8 and Corollary 8.9 we can obtain the following statement.
Corollary 8.11. Let a self-concordant function f be given and denote by f∗ its Fenchel conjugate function. For
any x,y ∈ dom f we have

∥∇ f (x)−∇ f (y)∥[∇2 f (x)]−1

1+M f ∥∇ f (x)−∇ f (y)∥[∇2 f (x)]−1
≤ ∥y−x∥

∇2 f (x). (48)
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Similarly to lower bounds (43) and (44), under mild, natural assumptions upper bounds can be provided for
the same expressions. Interestingly enough the function ω has been replaced by its Fenchel conjugate ω∗.
Theorem 8.12 ([26], Theorem 5.1.9). Let a function f be self-concordant. For any x,∈ dom f with ∥y−x∥

∇2 f (x) <
1

M f
, we have

(y−x)T (∇ f (y)−∇ f (x))≤
∥y−x∥2

∇2 f (x)

1−M f ∥y−x∥
∇2 f (x)

, (49)

f (y)≤ f (x)+(y−x)T
∇ f (x)+

1
M2

f
ω∗(M f ∥y−x∥

∇2 f (x)), (50)

where ω∗(t) =−t − ln(1− t), t ∈ [0,1).
Furthermore, the following important inequalities hold, as well.

Theorem 8.13 ([26], Theorem 5.1.12). Let a function f be self-concordant. For any x,y ∈ dom f , we have

f (y)≥ f (x)+(y−x)T
∇ f (x)+

1
M2

f
ω(M f ∥∇ f (y)−∇ f (x)∥∗y). (51)

If in addition ∥∇ f (y)−∇ f (x)∥∗y < 1
M f

, then

f (y)≤ f (x)+(y−x)T
∇ f (x)+

1
M2

f
ω∗(M f ∥∇ f (y)−∇ f (x)∥∗y). (52)

The following theorem estimates the local convergence of the standard Newton Method. (For details see pages
190-191, [24].)
Theorem 8.14 ([24], Theorem 4.1.14). Let a function f be self-concordant. Assume that dom f contains no
straight line, and x ∈ dom f with λ f (x)< 1. Then the point

x+ = x− [∇2 f (x)]−1
∇ f (x)

belongs to dom f and we have

λ f (x+)≤
(

λ f (x)
1−λ f (x)

)2

.

Let us consider now the scheme of the Damped Newton Method, namely the new iterate x+ is computed as
follows

x+ = x− 1
1+M f λ f (x)

[∇2 f (x)]−1
∇ f (x).

Theorem 8.15 ([26], Theorem 5.1.15). Let a function f be self-concordant and apply the Damped Newton’s
method for minimizing the function f . Then we have

f (x+)≤ f (x)− 1
M2

f
ω(M f λ f (x)).
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