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1. Introduction

Let S denote the vector space of self-adjoint operators equipped with the operator 
norm ‖ ·‖ on a Hilbert space H and let P ⊂ S denote the cone of invertible positive definite 
operators. On S the closure P of the cone generates the positive definite partial order ≤
also called the Loewner order. Means of elements of P and related ergodic theorems were 
studied in a large number of papers, see for example [2,5,6,16,21,19,20,25,26]. Arguably 
the natural metric on P is

d∞(a, b) := ‖ log(a−1/2ba−1/2)‖ = spr{log(a−1b)} (1)

called the Thompson metric, which turns (P , d∞) into a complete metric space such 
that the topology generated by d∞ agrees with the relative operator norm topology [33], 
where spr(X) denotes the spectral radius of X. Sturm’s law of large numbers [32] states 
the almost sure convergence proved in [23] of the stochastic inductive mean sequence 
{Sn}n∈N to Λ(μ), the unique solution of the Karcher equation

∫
P

logx a dμ(A) = 0,

with logx a := x−1/2 log(x1/2ax−1/2)x1/2. Here Sn is defined recursively as S1 := Y1,

Sn+1 := Sn# 1
n+1

Yn+1 (2)

for i.i.d. random variables {Yn}n∈N with L1-law μ. The function t ∈ [0, 1] �→ a#tb for 
a, b ∈ P is defined by

a#tb = Λ((1 − t)δa + tδb) = a1/2
(
a−1/2ba−1/2

)t
a1/2 = a

(
a−1b

)t
,

it is the weighted geometric mean of positive operators a, b ∈ P , which is monotone [5]
with respect to the partial order ≤ generated by the cone P . It is also known [24] that 
the geometric mean Λ is 1-Lipschitz with respect to the L1-Wasserstein distance W1. A 
deterministic, also called “nodice”, version of Sturm’s law that periodically recycles all 
the points ai was proved by Holbrook [15] for positive matrices and then in [23] for the 
operator case. This “nodice” theorem states that Sn converges to Λ(

∑k−1
i=0

1
k δai

) for the 
recycling deterministic version Yn := an in (2), where n denotes the residual of n modulo 
k. The proofs in [23] develop an ODE theory for the initial value problem

γ̇(t) =
∫

logγ(t) a dμ(a)

P
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and use resolvent iterates in the spirit of (2) to approximate ODE curves converging to 
the unique stationary point of the flow which is Λ(μ). It is rather natural to study more 
general operator equations of similar form

∫
P

fx(a) dμ(a) = 0, (3)

where fx(a) := x1/2f(x−1/2ax−1/2)x1/2 for f : (0, ∞) �→ R, f(1) = 0, f ′(1) = 1 an 
operator monotone function and this was initiated in [29] showing various properties 
and uniqueness of solution of (3) for probability measures with bounded support.

Our goal is to study the properties of solutions Λϕ(μ) of an even more general class 
of operator equations

∫
P

ϕ(x, y) dμ(y) = 0 (4)

such that the associated initial value problem

γ̇(t) =
∫
P

ϕ(γ(t), y) dμ(y) (5)

preserves the cone P and has an exponential contraction rate α ∈ R; that is

d∞(x(t), y(t)) ≤ e−αtd∞(x0, y0)

for any t ≥ 0 where x0, y0 ∈ P and x(t), y(t) denote the solutions to (5) with initial 
values x(0) := x0, y(0) := y0 respectively. In the special case when the generated flow of 
the Cauchy initial value problem

ẋ = ψ(x)

x(0) = x0

turns out to be (Loewner) order preserving, then Gaubert and Qu in [13] were able to 
determine the best exponential contraction rate by the simple formula

α(ψ) = sup{ α ∈ R : Dψ(x)(x) − ψ(x) ≤ −αx for all x ∈ P}. (6)

Using only the exponential contraction rate property combined with a newly defined 
resolvent map Jμ

λ (z) for λ > 0 that we introduce as the solution to the equation

λ

∫
ϕ(x, y) dμ(y) + logx z = 0
P
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suited for this setting, we prove Sturm-type of strong law of large numbers and “nodice”
theorems approximating unique solutions of (4) when the exponential contraction rate 
with α > 0 and the L1-integrability condition

∫
P

‖y−1/2ϕ(a, y)y−1/2‖ dμ(a) < ∞

for all y ∈ P are satisfied. This reproves and generalizes results in [29] to the unbounded 
probability measure setting, establishes a crucial Wasserstein-type continuity estimate

d∞(Λϕ(μ),Λϕ(ν)) ≤ 1
α

∥∥∥∥∥∥
∫
P

Λϕ(ν)−1/2ϕ(a,Λϕ(ν))Λϕ(ν)−1/2 d(μ− ν)(a)

∥∥∥∥∥∥
generalizing the one in [23,24] proved for the particular case Λ when α = 1 and ϕ(x, y) =
logx(y). This framework applies to the various generalized operator means spawned by 
(3) which turn out to have order preserving flows associated with them through (5)
with an exponential contraction rate α > 0; and also establishes a (nonlinear) strong 
law of large numbers for them through an appropriate generalization of (2). This family 
includes the geometric (also called Karcher) mean Λ, the arithmetic and the harmonic 
means and the matrix power means [25,19,20] to name a few. To achieve this, we also 
provide a powerful enough resolvent theory for the setting of Gaubert and Qu in [13], 
so that further studies can be made about ODEs and differential inclusion problems 
discussed there. Among others, we establish the resolvent estimate

d∞(Jμ
λ (x), Jν

λ (y)) ≤ 1
1 + αλ

d∞(x, y) + λK

1 + αλ
W1(μ, ν)

where K > 0 is a suitable Lipschitz constant for y �→ y−1/2ϕ(a, y)y−1/2. This, for 
example readily implies the contractivity of the resolvent when α > 0 and other estimates 
so that one can readily develop a nonlinear Crandall-Liggett theory such as in [17].

2. Preliminaries

Let S denote the bounded self-adjoint elements and P denote the cone of positive 
invertible elements of B(H) on a Hilbert space H. The Thompson part metric [33] on P
is defined by

d∞(x, y) = ‖ log(x−1/2yx−1/2)‖.

According to the spectral mapping theorem,

‖ log(x−1/2yx−1/2)‖ = spr(log(x−1/2yx−1/2)) = log(spr(x−1/2yx−1/2)) = log(spr(x−1y)),
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where spr stands for the spectral radius. Therefore, for any invertible z ∈ B(H), we have 
the conjugance invariance property

d∞(z−1xz−1, z−1yz−1) = d∞(x, y)

of the Thompson metric. The Exponential Metric Increasing (EMI) property [5,22] says 
that for any x, y ∈ P the inequality

‖ log x− log y‖ ≤ d∞(x, y)

holds.
Let us recall that the Lipschitz constant of a B(H)-valued function f : P → B(H) is 

defined by

Lip∞(f) = sup
x�=y

‖f(x) − f(y)‖/d∞(x, y).

The set of fully supported Borel probability measures over (P , d∞) is denoted by P(P ), 
where fully supported means that for μ ∈ P(P ) we have μ(supp(μ)) = 1. Note that 
supp(μ) is separable, thus all integrations with respect to such dμ can be restricted to 
the separable metric space (supp(μ), d∞). This essentially rules out any pathological 
probability measures, even though the whole space (P , d∞) is not separable. This also 
means that it is enough to consider Bochner integrals of vector-valued functions with 
respect to elements of P(P ). This approach is now the standard when dealing with 
probability measures over P , see for instance [18,23] and others.

The Kantorovich–Rubinstein duality theorem on a separable metric space (S, d) ([1]
and [10, Theorem 11.8.2]) states that for any two Borel probability measures μ and ν,

W1(μ, ν) = sup

⎧⎨
⎩
∣∣∣∣∣∣
∫
S

f dμ−
∫
S

f dν

∣∣∣∣∣∣ : f real-valued and Lip∞(f) ≤ 1

⎫⎬
⎭ .

Let ϕ : P �→ S be a local Lipschitz function, so that the flow generated by the ODE 
ẋ = ϕ(x) is Lipschitz. We can characterize the exponential contraction rate of this flow 
as follows:

Theorem 2.1. Let x0, y0 ∈ P and let x(t), y(t) denote the solutions to the two Cauchy 
initial value problems

ẋ = ϕ(x)

x(0) = x0

and



6 Z. Léka, M. Pálfia / Advances in Mathematics 457 (2024) 109933
ẏ = ϕ(y)

y(0) = y0.

Then we have the exponential contraction rate α for ϕ; that is

d∞(x(t), y(t)) ≤ e−αtd∞(x0, y0)

for any t ≥ 0, if and only if

j(D log(x−1/2
0 y0x

−1/2
0 )(D(x−1/2

0 y0x
−1/2
0 )(ẋ(0), ẏ(0)))) ≤ −αd∞(x0, y0) (7)

where j is a norming linear functional for log(x−1/2
0 y0x

−1/2
0 ).

Proof. “⇒”: In order to differentiate the inequality d∞(x(t), y(t)) ≤ e−αtd∞(x0, y0) from 
the right at t = 0 where it holds with equality, we apply the multivariate chain rule to 
the composition j(log(x(t)−1/2y(t)x(t)−1/2)). Let j be a norm-attaining linear functional 
such that

‖ log(x−1/2
0 y0x

−1/2
0 )‖ = j(log(x−1/2

0 y0x
−1/2
0 ))

and ‖j‖ = 1. Now we shall differentiate both sides of the inequality

j(log(x(t)−1/2y(t)x(t)−1/2)) ≤ d∞(x(t), y(t)) ≤ d∞(x0, y0)e−αt

at t = 0, since equality occurs when t = 0. Therefore, from the chain rule we obtain (7).
“⇐”: To reverse the above argument, we use (7) pointwise for each t > 0 along the 

curves x(t), y(t), that is

j(D log(x−1/2yx−1/2)(D(x−1/2yx−1/2)(ẋ(t), ẏ(t))))
∣∣∣
(x,y)=(x(t),y(t))

≤ −αd∞(x(t), y(t))

where j is a norming linear functional for log(x(t)−1/2y(t)x(t)−1/2). Notice that the 
function t �→ d∞(x(t), y(t)) is Lipschitz on bounded time intervals since the solution 
curves of the Cauchy problem are Lipschitz themselves. Thus t �→ d∞(x(t), y(t)) is 
differentiable for almost every t > 0 with integrable absolutely continuous differential. 
This implies that

lim
ε→0+

d∞(x(t + ε), y(t + ε)) − d∞(x(t), y(t))
ε

=

j(D log(x−1/2yx−1/2)(D(x−1/2yx−1/2)(ẋ(t), ẏ(t))))
∣∣∣
(x,y)=(x(t),y(t))

for almost every t > 0 by Clarke’s chain rule [7, Theorem 2.9.9], because d∞(x(t), y(t))
is a composition of a convex and Lipschitz-continuous thus regular (in the sense of 2.3.4 
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in [7]) function ‖ · ‖ and a Frechét-differentiable function t → log(x(t)−1/2y(t)x(t)−1/2). 
This further implies

lim
ε→0+

d∞(x(t + ε), y(t + ε)) − d∞(x(t), y(t))
ε

≤ −αd∞(x(t), y(t))

for almost every t > 0. Using Gronwall’s lemma we integrate this with respect to t ≥ 0
to get d∞(x(t), y(t)) ≤ e−αtd∞(x0, y0) as wanted. �
Corollary 2.2. If α(ϕ) ∈ R is such that d∞(x(t), y(t)) ≤ e−α(ϕ)td∞(x0, y0) for any solu-
tion curves x(t), y(t) as in Theorem 2.1, then α(·) is superadditive, that is

α(ϕ1 + ϕ2) ≥ α(ϕ1) + α(ϕ2). (8)

Proof. We add up (7) for ϕ1 and ϕ2 to notice that on the left-hand side it is additive in 
(ẋ(0), ẏ(0)) and on the right-hand side α(·) is also additive and use the “⇐” implication 
of Theorem 2.1. �

Under exponential contraction rate a flow is always extendable if the boundary of the 
set containing the dynamics is infinitely far. This, although might be known, is included 
in the following assertion with proof for the sake of completeness.

Proposition 2.3. Let α ∈ R be given. Let x0, y0 ∈ P and for 0 ≤ t ≤ Tx0,y0 let x(t), y(t)
denote the solutions to the two Cauchy initial value problems

ẋ = ϕ(x)

x(0) = x0

and

ẏ = ϕ(y)

y(0) = y0,

where the existence time Tx0,y0 may depend on the initial conditions x0, y0. Suppose 
further we have the exponential contraction rate

d∞(x(t), y(t)) ≤ e−αtd∞(x0, y0)

for any 0 ≤ t ≤ Tx0,y0 . Then x(t) exists for all t ∈ [0, ∞) independently of x0 ∈ P .

Proof. For x0 ∈ P , pick a solution x(t) ∈ P . Assume that the maximal interval of its 
existence is finite [0, Tmax). We show that limt→Tmax− x(t) does exist in d∞. For any 
0 ≤ t1 < t2 < Tmax we have

d∞(x(t1), x(t2)) = d∞(x(t1), x(t1 + (t2 − t1))) ≤ e−αt1d∞(x(0), x(t2 − t1)).
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Hence, if t1 < t2 and both approach Tmax from the left, we obtain a continuous extension 
of x(t) at t = Tmax. Note that the boundary of P in d∞ is infinitely far from any interior 
point, thus the continuous extension x(t) is still in P and thus it must be C1. By the 
Cauchy-Lipschitz theorem, there exists a unique solution to the initial value problem on 
the extended interval [Tmax − ε, Tmax + ε]. This implies that Tmax = ∞ must hold. �

The solutions of the general ordinary differential equation ẋ = ϕ(x) form an order-
preserving (or monotone) flow on the standard positive cone P if any two solutions x1
and x2 satisfy x1(t) ≤ x2(t) for all t ≥ 0 whenever x1(0) ≤ x2(0) holds on P . According 
to Redheffer and Walter [31, Theorem 3], and Gaubert and Qu [13, Proposition 3.3], 
the flow generated by ϕ is order preserving on P if and only if for any positive linear 
functional ω and 0 ≤ v ∈ S such that ω(v) = 0 the inequality

ω(Dϕ(x)(v)) ≥ 0 (9)

follows for any x ∈ P . Moreover, the least exponential contraction rate of general order-
preserving flows on positive cones has been characterized in [13]. The best contraction 
rate is given by [13, Theorem 3.5.]:

α(ϕ) = sup{ α ∈ R : Dϕ(x)(x) − ϕ(x) ≤ −αx for all x ∈ P}.

This formula implies (8) as well. We also note that

x−1/2Dϕ(x)(x)x−1/2 − x−1/2ϕ(x)x−1/2 = D(x−1/2ϕ(x)x−1/2)(x).

Hence the constant α(ϕ) can be defined as

α(ϕ) = sup{ α ∈ R : D(x−1/2ϕ(x)x−1/2)(x) ≤ −α for all x ∈ P}. (10)

More generally, if one needs the least exponential contraction rate of general order-
preserving flows on open subsets U of a positive cone, then [13, Remark 3.6.] gives an 
answer defining first λ0 := supx,y∈U ed∞(x,y) and then

α(U,ϕ) = sup{ α ∈ R : Dϕ(x)(x) − ϕ(x) ≤ −αx for all x ∈ λU, λ−1
0 ≤ λ ≤ 1}

and similarly

α(U,ϕ) = sup{ α ∈ R : D(x−1/2ϕ(x)x−1/2)(x) ≤ −α,∀x ∈ λU, λ−1
0 ≤ λ ≤ 1}. (11)

Let us recall that the logarithm function x �→ log x has the particular directional 
derivative D log(x)(x) = I for any x ∈ P . This is established through the well-known 
integral representation formula [4]
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log x =
∞∫
0

s

1 + s2 − 1
x + s

ds

for any x > 0. Therefore, we have the Fréchet derivative

d

dt
log(x + ty)|t=0 = D log(x)(y) =

∞∫
0

(x + s)−1y(x + s)−1 ds (12)

and D log(x)(x) = I follows by a simple computation. This integral formula also implies 
that the map y �→ D log(x)(y) is a positive linear map on B(H).

Now we can state the following theorem.

Theorem 2.4. Let us assume that the first-order system ẋ = ϕ(x) generates a contractive 
flow on P and let x∗ denote a fixed point of the system, and let

d∞(x∗, x(t)) ≤ e−αtd∞(x∗, x(0)),

for any t ≥ 0 and x(0) ∈ P . Then, for any y ∈ P , there exists a linear functional 
ωx∗,y ∈ S∗ such that ‖ωx∗,y‖ = 1 and

d∞(x∗, y) ≤
1
α
ωx∗,y(y−1/2ϕ(y)y−1/2) ≤ 1

α
‖y−1/2ϕ(y)y−1/2‖. (13)

Proof. Set the initial condition x(0) = y, and denote a corresponding solution curve by 
χ(t). Let j be a norm-attaining linear functional such that

‖ log(x−1/2
∗ χ(0)x−1/2

∗ )‖ = j(log(x−1/2
∗ yx

−1/2
∗ ))

and ‖j‖ = 1. Now we shall differentiate the inequality

j(log(x−1/2
∗ χ(t)x−1/2

∗ ) ≤ d∞(x∗, χ(t)) ≤ d∞(x∗, y)e−αt.

at t = 0. Notice that equality occurs when t = 0. Therefore, from the chain rule we 
obtain

j(D log(x−1/2
∗ χ(0)x−1/2

∗ )(x−1/2
∗ χ̇(0)x−1/2

∗ )) ≤ −αd∞(x∗, y). (14)

Moreover, the map

Φ: u �→ D log(x−1/2
∗ yx

−1/2
∗ )(x−1/2

∗ y1/2uy1/2x
−1/2
∗ )

is positive by (12), Φ(1) = 1 and thus ‖Φ‖ = 1 (see [30, Corollary 2.9.]). Clearly,

D log(x−1/2
∗ χ(0)x−1/2

∗ )(x−1/2
∗ χ̇(0)x−1/2

∗ ) = Φ(y−1/2ϕ(y)y−1/2).
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Hence the linear functional ωx∗,y := −j ◦ Φ is of norm 1. Moreover,

d∞(x∗, y) ≤
1
α
ωx∗,y(y−1/2ϕ(y)y−1/2) ≤ 1

α
‖y−1/2ϕ(y)y−1/2‖

holds. �
Here is our next proposition.

Proposition 2.5. Let z ∈ P . The first-order system

ẋ(t) = x(t)1/2 log(x(t)−1/2zx(t)−1/2)x(t)1/2

generates an exponentially contractive monotone flow on the positive cone P such that

d∞(z, x(t)) ≤ e−td∞(z, x(0))

for any t ≥ 0 and x(0) ∈ P .

Proof. Consider the function ϕ(x) = x1/2 log(x−1/2zx−1/2)x1/2, where x ∈ P . This 
function is locally Lipschitz; thus, on any bounded metric ball around z, it generates a 
unique flow. Consequently, the flow is also unique on the whole P . First, we prove its 
order-preserving property. We recall the integral formula

log x =
∞∫
0

s

1 + s2 − 1
x + s

ds

which holds for any x > 0.
Hence,

ϕ(x) =
∞∫
0

xs(1 + s2)−1 − x(z + sx)−1x ds =
∞∫
0

ls(x) ds,

where ls(x) = xs(1 + s2)−1 − x(z + sx)−1x. Now, we verify that

ω(Dls(x)(v)) ≥ 0

holds for any state ω and 0 ≤ v ∈ S such that ω(v) = 0. A simple computation shows 
that

Dls(x)(v) = vs(1 + s2)−1 − v(z + sx)−1x + x(z + sx)−1sv(z + sx)−1x− x(z + sx)−1v.

From the Cauchy–Schwartz inequality for positive functionals (see e.g. [3, p. 28.]), we 
get
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|ω(vr)| = |ω(v1/2v1/2r)| ≤ ω(v)1/2ω(r∗vr)1/2 = 0

for any r ∈ B(H); that is

ω(vr) = ω(rv) = 0.

Therefore,

ω(Dls(x)(v)) = ω(x(z + sx)−1sv(z + sx)−1x) ≥ 0

which clearly implies ω(Dϕ(x)(v)) ≥ 0 as well. Then the generated flow is order-
preserving from (9).

Next, we shall apply the Gaubert–Qu condition (10) to determine the least contraction 
rate of the flow. An easy calculation reveals

D(x−1/2ϕ(x)x−1/2)(x) = D(log(x−1/2zx−1/2))(x)

= D log(x−1/2zx−1/2)(D(x−1/2zx−1/2)(x))

= −D log(x−1/2zx−1/2)(x−1/2zx−1/2)

= −1,

from the result on the directional derivative (12). This finishes the proof. �
Corollary 2.6 (cf. Corollary 2.3. [11]). Any operator monotone function f : (0, ∞) → R

is operator concave and the non-commutative perspectives

fx(z) := x1/2f(x−1/2zx−1/2)x1/2 (15)

are jointly concave.

Proposition 2.7. Under the assumptions of the previous Corollary 2.6, the map

x �→
∫
P

fx(z) dμ(z)

where μ ∈ P(P ) such that 
∫
P ‖fy(z)‖ dμ(z) < ∞ for any y ∈ P , is also concave in x ∈ P

and locally Lipschitz with respect to ‖ · ‖.

Proof. Firstly when supp(μ) is bounded x �→
∫
P fx(z) dμ(z) is easily seen to be contin-

uous by the Banach space version of Lebesgue’s dominated convergence theorem. Then 
given a general μ ∈ P(P ) satisfying 

∫
P ‖fy(z)‖ dμ(z) < ∞ for each y ∈ P , we can ap-

proximate it weakly by a sequence μn ∈ P(P ) such that supp(μn) are all bounded and 
also
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∫
P

fx(z) dμn(z) →
∫
P

fx(z) dμ(z)

pointwisely for each x ∈ P . Then 
{∫

P fx(z) dμn(z)
}
n∈N is a pointwisely convergent 

family of concave continuous functions, thus by [8, Theorem 7.1.]
{∫

P fx(z) dμn(z)
}
n∈N

is a uniformly locally Lipschitz family. Then it follows that 
∫
P fx(z) dμ(z) is also locally 

Lipschitz and concave. �
Proposition 2.8. For any operator monotone function f : (0, ∞) → R, the perspectives 
x �→ fx(z) and their integrals

x �→
∫
P

x1/2f(x−1/2zx−1/2)x1/2 dμ(z),

where μ ∈ P(P ) such that 
∫
P ‖fy(z)‖ dμ(z) < ∞ for any y ∈ P , define monotone flows 

on P given by the first-order system

ẋ(t) =
∫
P

x(t)1/2f(x(t)−1/2zx(t)−1/2)x(t)1/2 dμ(z).

Proof. The local Lipschitz property of the previous Proposition 2.7 implies the existence 
and uniqueness of a solution to the ODE. Then the remaining part of the proof is 
essentially the same as that of the previous Proposition 2.5 and relies on the celebrated 
integral representation formula for operator monotone functions

f(x) = a + bx +
∞∫
0

s

1 + s2 − 1
x + s

dν(s), (16)

where a is real, b is non-negative and ν is a unique positive measure on (0, ∞) such that

∞∫
0

1
s2 + 1dν(s) < ∞,

see [4, p. 144]. �
3. Generalized resolvent estimates

Let us define the family of functions

C := {ϕ : P → S local Lipschitz and the flow of ẋ = ϕ(x)

has exponential contraction rate α ∈ R+}.
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Then by Proposition 2.3 the flow of any ϕ ∈ C exists for all time t ∈ [0, ∞) and thus 
leaves P invariant. It is then simple to check that C is a cone. Indeed, if ϕ1, ϕ2 ∈ C
generate exponentially contracting flows, then so do their sum ϕ1 + ϕ2 and λϕ1 for a 
positive λ by Corollary 2.2. We have the following existence and uniqueness result.

Proposition 3.1. Let ϕ ∈ C with α(ϕ) > 0. Then there exists a unique solution x0 to the 
equation

ϕ(x) = 0

over the domain P and it is the only fixed point of the ODE ẋ = ϕ(x).

Proof. For any ϕ ∈ C, the solutions of the ODE ẋ = ϕ(x) are exponentially strictly 
contractive in d∞, thus we have at most one stationary point which solves the fixed 
point equation. Indeed, let χx0(t) denote the solution of the ODE with the initial value 
condition χx0(0) = x0. Then the flow map x0 �→ χx0(1), x0 ∈ P , is a strict contraction 
in the metric space (P , d∞). Hence an application of the Banach fixed point theorem 
gives the existence of x∗ such that χx∗(1) = x∗. It is simple to see that x∗ belongs to 
a periodic orbit of the flow with period Δt = 1. Let x1 be any point of this periodic 
orbit. Then the function t �→ d∞(χx1(t), χx∗(t)) is periodic as well. On the other hand, 
since d∞(χx1(t), χx∗(t)) ≤ e−αtd∞(x1, x∗), we get that d∞(χx1(t), χx∗(t)) → 0. Thus we 
obtain that x1 = x∗ and χx∗(t) = x∗ for any t ≥ 0; that is, x∗ is a (unique) stationary 
point. �

For simplicity and later use, let us introduce the notation

logx z = x1/2 log(x−1/2zx−1/2)x1/2.

For any ϕ ∈ C, it is easy to see that the function ψz : x �→ λϕ(x) + logx z belongs to the 
cone C for any z ∈ P and λ > 0. In fact, from Proposition 2.5, we have that α(log(·) z) = 1
and then α(ψz) ≥ λα(ϕ) + 1. Relying on this and the previous Proposition 3.1, for any 
fixed z and λ > 0, the resolvent equation

λϕ(x) + logx z = 0

has a unique solution x =: Jϕ
λ (z) in P , because the flow generated by the ODE ẋ =

λϕ(x) + logx z is exponentially contractive in P , and thus possesses a unique fixed point 
denoted by Jϕ

λ (z).

Definition 3.2 (Generalized resolvent). For any ϕ ∈ C and λ > 0, the unique solution 
Jϕ
λ (z) of

λϕ(x) + logx z = 0
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in x ∈ P is called the generalized resolvent at z ∈ P associated with ϕ.

In the sequel, we shall prove several inequalities related to the generalized resolvent. 
Our first statement establishes its contractive property.

Proposition 3.3. Let ϕ ∈ C. For any λ > 0,

d∞(Jϕ
λ (x), Jϕ

λ (y)) ≤ 1
1 + αλ

d∞(x, y)

holds.

Proof. Fix x ∈ P . Let us consider the function ψx : z �→ λϕ(z) +logz x defined on P . We 
write z = Jϕ

λ (x) to the (unique) solution to the resolvent equation

ψx(z) = λϕ(z) + logz x = 0.

For any y ∈ P , we recall that Jϕ
λ (y) satisfies its own resolvent equation; that is,

λϕ(Jϕ
λ (y)) + logJϕ

λ (y) y = 0.

Thus,

ψx(Jϕ
λ (y)) = λϕ(Jϕ

λ (y)) + logJϕ
λ (y) y + logJϕ

λ (y) x− logJϕ
λ (y) y = logJϕ

λ (y) x− logJϕ
λ (y) y.

From Theorem 2.1 and Proposition 2.5, α(ψx) ≥ 1 + λα(ϕ). Applying (13) to ψx, we 
have

d∞(Jϕ
λ (x), Jϕ

λ (y)) ≤ 1
1 + αλ

‖Jϕ
λ (y)−1/2ψx(Jϕ

λ (y))Jϕ
λ (y)−1/2)‖

= 1
1 + αλ

‖ log(Jϕ
λ (y)−1/2xJϕ

λ (y)−1/2) − log(Jϕ
λ (y)−1/2yJϕ

λ (y)−1/2)‖.

Now, the EMI inequality and the conjugate invariance of d∞ complete the proof. �
Interestingly enough, one can apply the generalized resolvents to approximate the 

solutions of the ordinary differential equation ẋ = ϕ(x). In the spirit of the non-linear 
Crandall–Liggett theory [9], this approach has essentially been developed in the metric 
space (P , d∞) to study the (generalized) Karcher equation [24], and has been extended 
by Lawson in [17]. Now, by Theorem 4.11 of [17], for any x0 ∈ P ,

(Jϕ
t/n)nx0 → S(t)x0 n → ∞

in the Thompson metric for t ≥ 0, where (S(t))t≥0 is a non-linear operator semigroup.
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Corollary 3.4. Let ϕ ∈ C. For any x, y ∈ P ,

d∞(Jϕ
λ (x), y) ≤ 1

1 + αλ
d∞(x, y) + λ

1 + αλ
‖y−1/2ϕ(y)y−1/2‖.

Proof. We note that the inverse of Jϕ
λ on P is given by z = (Jϕ

λ )−1(y) = expy(−λϕ(y)). 
Thus there exists a unique z = (Jϕ

λ )−1(y) ∈ P such that Jϕ
λ (z) = y; i.e.

λϕ(y) + logy z = 0

holds. From Proposition 3.3 and the previous equation

d∞(Jϕ
λ (y), Jϕ

λ (z)) = d∞(Jϕ
λ (y), y) ≤ 1

1 + αλ
d∞(y, z)

= λ

1 + αλ
‖y−1/2ϕ(y)y−1/2‖.

Hence

d∞(Jϕ
λ (x), y) ≤ d∞(Jϕ

λ (x), Jϕ
λ (y)) + d∞(Jϕ

λ (y), Jϕ
λ (z))

≤ 1
1 + αλ

d∞(x, y) + λ

1 + αλ
‖y−1/2ϕ(y)y−1/2‖,

which proves the assertion. �
We shall introduce another notion for the resolvent if φ has an integral representation

φ(x) =
∫
P

ϕ(x, y) dμ(y)

with respect to a μ ∈ P(P ) and a measurable locally Lipschitz family ϕ(·, y) ∈ C for any 
y ∈ P provided that

∫
P

‖x−1/2ϕ(x, y)x−1/2‖dμ(y) < ∞

which assures the existence of the Bochner integral on the right-hand side above. For 
simplicity, let Jμ

λ (z) := Jφ
λ (z) denote a solution to the equation

λ

∫
P

ϕ(x, y) dμ(y) + logx z = 0.

Definition 3.5. If the equation φ(x) = 0 has a unique solution in P , we call it a (gener-
alized) barycenter and denote it by Λϕ(μ).
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In the remainder of this section, from this point onward, assume that φ generates a 
flow with an exponential contraction rate α > 0. By Proposition 3.1, this ensures the 
existence and uniqueness of the zero of φ.

Proposition 3.6. With the notations of Theorem 2.1

d∞(Λϕ(μ),Λϕ(ν)) ≤ 1
α

∥∥∥∥∥∥
∫
P

Λϕ(ν)−1/2ϕ(Λϕ(ν), y)Λϕ(ν)−1/2 d(μ− ν)(y)

∥∥∥∥∥∥ .
Proof. Let us introduce the function

ψm(x) =
∫
P

ϕ(x, y) dm(y)

for any m ∈ P(P ). Clearly, ψν(Λϕ(ν)) = 0. We also note that

ψμ(Λϕ(ν)) = ψμ(Λϕ(ν)) − ψν(Λϕ(ν)) =
∫
P

ϕ(Λϕ(ν), y) d(μ− ν)(y).

From inequality (13) applied to the function x �→ ψμ(x), we obtain that there is a 
functional ω of norm 1 such that

d∞(Λϕ(μ),Λϕ(ν)) ≤ 1
α

∫
P

ω(Λϕ(ν)−1/2ϕ(Λϕ(ν), y)Λϕ(ν)−1/2) d(μ− ν)(y),

which completes the proof. �
Let us note that the previous proposition implies the Wasserstein contraction result 

(17) below for barycenters as shown in [24, Proposition 2.6]. To see this, consider the 
function

ϕ(x, y) = x1/2 log(x−1/2yx−1/2)x1/2.

The exponential contraction rate of the generated flow on the cone P is α = 1, as 
indicated in Proposition 2.5. Moreover, there is a functional ω of norm 1 such that

∥∥∥∥∥∥
∫
P

Λ(ν)−1/2ϕ(Λ(ν), y)Λ(ν)−1/2) d(μ− ν)(y)

∥∥∥∥∥∥
=
∫

ω(Λ(ν)−1/2ϕ(Λ(ν), y)Λ(ν)−1/2) d(μ− ν)(y)

P
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=
∫
P

ω(log(Λ(ν)−1/2yΛ(ν)−1/2) dμ(y) −
∫
P

ω(log(Λ(ν)−1/2xΛ(ν)−1/2)dν(x)

=:
∫
P

ψ1(y) dμ(y) −
∫
P

ψ2(x) dν(x).

Notice that

ψ1(y) − ψ2(x) ≤ d∞(x, y).

Indeed,

ψ1(y) − ψ2(x) = ω(log(Λ(ν)−1/2yΛ(ν)−1/2) − log(Λ(ν)−1/2xΛ(ν)−1/2))

≤ ‖ log(Λ(ν)−1/2yΛ(ν)−1/2) − log(Λ(ν)−1/2xΛ(ν)−1/2)‖
≤ d∞(x, y),

from the EMI inequality and the invariance of the Thompson metric d∞; that is, the 
map x �→ ω(log(Λ(ν)−1/2xΛ(ν)−1/2)) is 1-Lipschitz on the metric cone (P , d∞). Hence, 
by the Kantorovich duality (see [34, Theorem 5.10]), we immediately obtain that

∥∥∥∥∥∥
∫
P

Λ(ν)−1/2ϕ(Λ(ν), y)Λ(ν)−1/2 d(μ− ν)(y)

∥∥∥∥∥∥ ≤ W1(μ, ν).

Thus, we obtain

d∞(Λ(μ),Λ(ν)) ≤ W1(μ, ν) (17)

as claimed.
Here is our general convergence result for barycenters.

Corollary 3.7. For a sequence {μn}n of probability measures, if μn → μ weakly and

lim
n→∞

∫
P

‖Λϕ(μ)−1/2ϕ(Λϕ(μ), y)Λϕ(μ)−1/2‖ dμn(y)

=
∫
P

‖Λϕ(μ)−1/2ϕ(Λϕ(μ), y)Λϕ(μ)−1/2‖ dμ(y)
(18)

holds for any x ∈ P , then d∞(Λϕ(μ), Λϕ(μn)) → 0.

Proof. For simplicity, let us use the notation

Λ(y) = Λϕ(μ)−1/2ϕ(Λϕ(μ), y)Λϕ(μ)−1/2.
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Set BM = {y ∈ P : ‖Λ(y)‖ < M}. Note that the convergence conditions give the ‘tight-
ness’ of the measures; that is, the uniform integrability condition

lim
M→∞

lim sup
n→∞

∫
P\BM

‖Λ(y)‖ dμn(y) = 0

holds.
From Proposition 3.6 we have the inequality

d∞(Λϕ(μ),Λϕ(μn)) ≤ 1
α

∥∥∥∥∥∥
∫
P

Λ(y) d(μ− μn)(y)

∥∥∥∥∥∥ .
For any Borel set BM ⊆ P , we have supy∈BM

‖Λ(y)‖ < ∞. Thus the weak convergence 
of probability measures also implies

∫
BM

Λ(y) dμn(y) →
∫

BM

Λ(y) dμ(y),

n → ∞, in norm (see [28, Theorem 2]). Hence, for any ε > 0,
∥∥∥∥∥∥
∫
P

Λ(y) d(μ− μn)(y)

∥∥∥∥∥∥ ≤
∥∥∥∥∥∥
∫

BM

Λ(y) d(μ− μn)(y)

∥∥∥∥∥∥+
∫

P\BM

‖Λ(y)‖ d(μ + μn)(y)

≤ 3ε

for any sufficiently large M and n, which completes the proof. �
It is known that a continuity result such as Corollary 3.7 implies uniqueness of the 

solution to the corresponding operator equation for probability measures, even with 
possibly unbounded support. This holds as long as an L1-integrability condition, as 
described below, is satisfied. See, for example, [23, Theorem 4.11].

Proposition 3.8. Let μ, ν ∈ P(P ) and {ϕ(·, y)}y∈P be a family of functions such that

α ≡ α

⎛
⎝∫

P

ϕ(x, y)dμ(y)

⎞
⎠ > 0.

Then, for any z ∈ P and λ > 0 we have

d∞(Jμ
λ (z), Jν

λ (z)) ≤ λ

1 + αλ

∥∥∥∥∥∥
∫

Jν
λ (z)−1/2ϕ(Jν

λ (z), y)Jν
λ (z)−1/2 d(μ− ν)(y)

∥∥∥∥∥∥ .

P
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Proof. Fix z ∈ P and λ > 0. Let us introduce the function

ψm(x) = λ

∫
P

ϕ(x, y) dm(y) + logx z

for any m ∈ P(P ). Clearly, ψν(Jν
λ (z)) = 0. Moreover, we note that

ψμ(Jν
λ (z)) = ψμ(Jν

λ (z)) − ψν(Jν
λ (z))

= λ

∫
P

ϕ(Jν
λ (z), y) d(μ− ν)(y).

Again, α(ψμ) ≥ 1 + αλ. From inequality (13) applied to the function x �→ ψμ(x), we 
obtain

d∞(Jμ
λ (z), Jν

λ (z)) ≤ 1
1 + αλ

‖Jν
λ (z)−1/2ψμ(Jν

λ (z))Jν
λ (z)−1/2‖

= λ

1 + αλ

∥∥∥∥∥∥
∫
P

Jν
λ (z)−1/2ϕ(Jν

λ (z), y)Jν
λ (z)−1/2 d(μ− ν)(y)

∥∥∥∥∥∥ . �

Corollary 3.9. Let μ, ν ∈ P(P ) and {ϕ(·, y)}y∈P be a family of functions such that

α ≡ α

⎛
⎝∫

P

ϕ(x, y)dμ(y)

⎞
⎠ > 0.

Then, for any x and z ∈ P and λ > 0 we have

d∞(Jμ
λ (x), Jν

λ (y)) ≤ d∞(Jμ
λ (x), Jμ

λ (y)) + d∞(Jμ
λ (y), Jν

λ (y))

≤ 1
1 + αλ

d∞(x, y)

+ λ

1 + αλ

∥∥∥∥∥∥
∫
P

Jν
λ (y)−1/2ϕ(Jν

λ (y), z)Jν
λ (y)−1/2 d(μ− ν)(z)

∥∥∥∥∥∥
≤ 1

1 + αλ
d∞(x, y) + λK

1 + αλ
W1(μ, ν)

where Lip∞(Jν
λ (y)−1/2ϕ(Jν

λ (y), ·)Jν
λ (y)−1/2) ≤ K.

Proof. We only show how to obtain the last inequality, the others are straightforward 
implications of the previous results. There exists a norming linear functional ω such that
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∥∥∥∥∥∥
∫
P

Jν
λ (y)−1/2ϕ(Jν

λ (y), z)Jν
λ (y)−1/2 d(μ− ν)(z)

∥∥∥∥∥∥
= ω

⎛
⎝∫

P

Jν
λ (y)−1/2ϕ(Jν

λ (y), z)Jν
λ (y)−1/2 d(μ− ν)(z)

⎞
⎠

=
∫
P

ω
(
Jν
λ (y)−1/2ϕ(Jν

λ (y), z)Jν
λ (y)−1/2

)
d(μ− ν)(z)

≤ KW1(μ, ν)

where to obtain the last inequality we used Kantorovich duality. �
4. Holbrook’s nodice theorem

In this section we shall prove a deterministic version of resolvent iteration theorems. 
Pick a y0 ∈ P . Let us define the sequence of resolvent iterations:

yk = Jϕ
1
k

(yk−1) ≡ J 1
k
(ϕ, yk−1), k = 1, 2, . . . .

Theorem 4.1. Let ϕ ∈ C. Let x∗ denote the unique solution to the equation ϕ(x) = 0. 
Then the resolvent sequence yn+1 = J 1

n+1
(ϕ, yn), n = 0, 1 . . ., converges to x∗ in the 

Thompson metric for any initial y0 ∈ P .

Proof. From the definition of the resolvent sequence, we have

1
k
ϕ(yk) + logyk

yk−1 = 0,

that is,

1
k
ϕ(yk) + logyk

x∗ = logyk
x∗ − logyk

yk−1.

Let us define the function ψ(x) = 1
kϕ(x) +logx x∗. Here the best contraction rate α(ψ) ≥

1 + α/k follows from (8). Since ψ(x∗) = 0, relying on inequality (13), we obtain

d∞(x∗, yk) ≤
(
1 + α

k

)−1 ∥∥∥log(y−1/2
k x∗y

−1/2
k ) − log(y−1/2

k yk−1y
−1/2
k )

∥∥∥
≤
(
1 + α

k

)−1
d∞(x∗, yk−1),

where in the last step we used the EMI inequality and the conjugate invariance property 
of the metric d∞.
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Hence, a straightforward computation shows that

d∞(x∗, yn) ≤ d∞(x∗, y0)
n∏

k=1

(
1 + α

k

)−1
= O

(
1
nα

)
;

the proof is done. �
Let us choose the functions ϕ1, ..., ϕk ∈ C. Let Λ ∈ P stand for the unique solution to 

the equation

1
k

k∑
i=1

ϕi(Λ) = 0.

Theorem 4.2 (Nodice Theorem). Let ϕ1, . . . , ϕk ∈ C be Lipschitz functions on any 
bounded d∞-metric ball. Let us define the cyclic resolvent iteration sequence

sn+1 = J 1
n+1

(ϕn+1, sn),

(n stands for the remainder class modulo k of n and ϕ0 := ϕk). Then the sequence sn
converges to Λ in the Thompson metric for any initial data s0 ∈ P .

First, we need to prove a preliminary lemma.

Lemma 4.3. Let us assume that x, y ∈ P and λ := d∞(x, y) ≤ log 3/2. Then

‖ logx y − (y − x)‖ ≤ 1
4 log2 3/2

λ2‖x‖.

Proof. First, we have

e−λx ≤ y ≤ eλx;

that is,

e−λ − 1 ≤ x−1/2yx−1/2 − 1 ≤ eλ − 1.

Thus ‖x−1/2yx−1/2 − 1‖ ≤ max(1 − e−λ, eλ − 1) = eλ − 1 < 1. Next, from the power 
series expansion of the function x �→ log(1 + x),

x1/2 log(x−1/2yx−1/2)x1/2 =
∞∑
j=1

(−1)j

j
x1/2(x−1/2yx−1/2 − 1)jx1/2

= y − x + x1/2(1 − x−1/2yx−1/2)2
∞∑
j=0

(−1)j

j + 2 (1 − x−1/2yx−1/2)jx1/2.
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Therefore,

‖ logx y − (y − x)‖ ≤ 1
2‖x‖(1 − eλ)2

∞∑
j=0

‖1 − x−1/2yx−1/2‖j

= 1
2(1 − eλ)2 ‖x‖

1 − ‖1 − x−1/2yx−1/2‖

≤ 1
2

(1 − eλ)2

2 − eλ
‖x‖

We note that (1 − eλ)2(2 − eλ)−1 ≤ (1/2 log2 3/2)λ2 for 0 ≤ λ ≤ log 3/2 by simple 
calculation, hence we are done. �

We shall also use the following lemma from [27, Lemma 2.1].

Lemma 4.4. Let {ak}k be a sequence of nonnegative real numbers satisfying

ak+1 ≤
(

1 − α

k + 1

)
ak + β

(k + 1)2 ,

where α, β > 0. Then

ak+1 ≤

⎧⎪⎪⎨
⎪⎪⎩

1
(k+2)α

(
a0 + 2αβ(2−α)

(1−α)

)
if 0 < α < 1

β 1+log(k+1)
k+1 if α = 1
1

(α−1)(k+2)

(
β + (α−1)a0−β

(k+2)α−1

)
if α > 1.

Now we are ready to present the proof of the main theorem of this section.

Proof of Theorem 4.2. Let α = 1
k

∑k
i=1 α(ϕi). We claim

d∞(Λ, s(n+1)k) ≤
1

1 + α
n

d∞(Λ, snk) + O

(
1
n2

)

holds for any sufficiently large n.
First, we prove the sequence {sn}n is bounded with respect to d∞. Indeed, Corol-

lary 3.4 implies that

d∞(sn+1,Λ) ≤ n + 1
n + 1 + α(ϕn+1)

d∞(sn,Λ) +
α(ϕn+1)

n + 1 + α(ϕn+1)
‖Λ−1/2ϕn+1(Λ)Λ−1/2‖

α(ϕn+1)
,

which by induction gives

d∞(sn+1,Λ) ≤ max
n+1

{
‖Λ−1/2ϕn+1(Λ)Λ−1/2‖

α(ϕ ) , d∞(s0,Λ)
}
.

n+1



Z. Léka, M. Pálfia / Advances in Mathematics 457 (2024) 109933 23
That is, sn is bounded in d∞.
Next, from the definition of the sequence {sn}n

1
nk + i

ϕi(snk+i) + logsnk+i
snk+i−1 = 0, i = 1, . . . , k.

Summing up these inequalities for all 1 ≤ i ≤ k, we obtain that

k∑
i=1

1
nk + i

ϕi(snk+i) +
k∑

i=1
logsnk+i

snk+i−1 = 0. (19)

For the first term, we have

k∑
i=1

1
nk + i

ϕi(snk+i) =
k∑

i=1

1
nk

ϕi(snk+i) +
k∑

i=1

(
1

nk + i
− 1

nk

)
ϕi(snk+i)

= 1
nk

k∑
i=1

ϕi(snk+i) + O

(
1
n2

)

due to local boundedness of ϕi-s. Then, for any index n, by the definition of the resolvent 
J1/n+1(ϕn+1, sn),

d∞(sn, sn+1) = ‖ log s−1/2
n+1 sns

−1/2
n+1 ‖ ≤ 1

n + 1‖s
−1
n+1‖‖ϕn+1(sn+1)‖ = O

(
1
n

)
,

since sn is bounded in d∞. Hence a simple argument also implies d∞(sn, sn+i) ≤ O(1/n)
for any 1 ≤ i ≤ k. Since ϕi-s are locally Lipschitzian in d∞, we have

d∞(ϕi(snk+i), ϕi(snk)) ≤ Ld∞(snk+i, snk) ≤ O

(
1
n

)
,

thus

k∑
i=1

1
nk + i

ϕi(snk+i) = 1
nk

k∑
i=1

ϕi(s(n+1)k) + O

(
1
n2

)

Furthermore, to handle the second term in (19) we apply Lemma 4.3 several times for 
any sufficiently large n, resulting in the following chain of equalities:

k∑
i=1

logsnk+i
snk+i−1 =

k∑
i=1

snk+i−1 − snk+i + O

(
1
n2

)

= snk − s(n+1)k + O

(
1
n2

)

= logs(n+1)k
snk + O

(
1
n2

)
.



24 Z. Léka, M. Pálfia / Advances in Mathematics 457 (2024) 109933
Therefore, equation (19) implies that

1
nk

k∑
i=1

ϕi(s(n+1)k) + logs(n+1)k
snk = O

(
1
n2

)
. (20)

Let us introduce the auxiliary function ψn on P :

ψn : x �→ 1
nk

k∑
i=1

ϕi(x) + logx Λ.

We shall apply the inequality (13) to ψn. We note hat ψn(x) = 0 if (and only if) x = Λ
and α(ψn) ≥ 1 + α

n by (8). Hence

ψn(s(n+1)k) = logs(n+1)k
Λ − logs(n+1)k

snk + O

(
1
n2

)

from (20).
We are now in a position to use (13):

d∞(Λ, s(n+1)k) ≤
1

1 + α
n

∥∥∥s−1/2
(n+1)kψn(s(n+1)k)s

−1/2
(n+1)k

∥∥∥
≤ 1

1 + α
n

∥∥∥s−1/2
(n+1)k(logs(n+1)k

Λ − logs(n+1)k
snk)s−1/2

(n+1)k

∥∥∥+ O

(
1
n2

)

≤ 1
1 + α

n

d∞(Λ, snk) + O

(
1
n2

)
,

where we applied the EMI inequality and the conjugate invariancy of d∞ in the last step. 
Hence our initial claim is proven.

We can obtain from these iterative inequalities and Lemma 4.4 that

d∞(Λ, snk) → 0

if n → ∞. A simple reasoning shows that d∞(snk, snk+i) = O(1/n) if 1 ≤ i ≤ k, hence 
the proof is done. �
5. Stochastic resolvent iterations

In this section, we shall prove a stochastic version of the Nodice Theorem. We consider 
the result as an L1 Strong Law of Large Numbers in the Thompson metric. Let us recall 
the following extension of the classical real-valued SLLN due to Etemadi [12, Theorem 
1]. Consider a sequence of positive weights {wi}i such that Wn =

∑n
i=1 wi → ∞. Assume 

that
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sup
n

nwn

Wn
< ∞ and sup

n

n∑
i=1

i|wi+1 − wi|
Wn

< ∞.

If X1, X2, . . . is a sequence of real random variables, then

1
n

n∑
i=1

Xi → X0 a.s. implies 1
Wn

n∑
i=1

wiXi → X0 a.s.

Additionally, if the sequence {wi}i is monotone, the second condition on the averages 
can be omitted.

Lemma 5.1. Given 0 < α < 1, 0 < s0 and a sequence {bn}n of real numbers, let us define 
the sequence

sn =
(
1 − α

n

)
sn−1 + α

n
bn−1, n ≥ 1.

Then sn = 1
Wn

(
s0 +

∑n−1
i=0 wibi

)
, where the sequence of weights {wi}i is monotone and 

Wn =
∑n

i=0 wi → ∞, n → ∞.

Proof. A straightforward computation gives that

wi = α

i + 1

i+1∏
j=1

(
1 − α

j

)−1

and Wn =
n∏

j=1

(
1 − α

j

)−1

= O(nα).

Hence, supn
nwn

Wn
< ∞ and

wi+1

wi
=

α
i+2

α
i+1 (1 − α

i+2 ) = i + 1
i + 2 − α

< 1,

which immediately gives the proof of the rest of the lemma. �
Let us consider

φ(x) =
∫
P

ϕ(x, y) dμ(y) ∈ C,

where μ ∈ P(P ) for some measurable locally Lipschitzian function family ϕ(·, y) ∈ C, 
for any y ∈ P . For any P -valued random variable Y with law μ, we recall that JδY

λ (z) ≡
Jλ(Y, z) denote the solution to the equation

λϕ(x, Y ) + logx z = 0.
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Theorem 5.2. Assume that ϕ : P × P → S is Lipschitz on any bounded d∞-metric ball 
and ∫

P

‖x−1/2ϕ(x, y)x−1/2‖ dμ(y) < ∞ (21)

holds for all x ∈ P . Additionally, α(ϕ(·, y)) ≥ α > 0 for any y ∈ P , and also, φ : P → S

is Lipschitz on any bounded d∞-metric ball. Let Y1, Y2, . . . be a sequence of i.i.d. random 
variables with law μ ∈ P(P ). Then the stochastic resolvent iteration S0 ∈ P and Sn+1 =
J 1

n+1
(Yn+1, Sn) almost surely converges to Λϕ(μ) with respect to the Thompson metric.

Proof. Let us define the empirical measure μk := 1
k

∑k
i=1 δYi

, where δYi
is the Dirac 

measure supported on Yi. Then by Varadarajan’s theorem [10, Theorem 11.4.1] the 
sequence μk converges weakly to μ on the support of μ. Since the norm-function is 
L1(μ)-integrable, we also have that

∫
P

‖Λϕ(μ)−1/2ϕ(Λϕ(μ), y)Λϕ(μ)−1/2‖ dμk(y)

→
∫
P

‖Λϕ(μ)−1/2ϕ(Λϕ(μ), y)Λϕ(μ)−1/2‖ dμ(y)

if k → ∞, almost surely. Hence,

C(Λ;μ, μk) :=

∥∥∥∥∥∥
∫
P

Λϕ(μ)−1/2ϕ(Λϕ(μ), y)Λϕ(μ)−1/2 d(μ− μk)(y)

∥∥∥∥∥∥→ 0

a.s. follows if k → ∞ (see the proof of Corollary 3.7). Since supk EC(Λ; μ, μk) < ∞, from 
the Dominated Convergence Theorem, for any positive constant ε, we have

EC(Λ;μ, μk) < εα

for any sufficiently large k. Pick such a k. Let us introduce a random sequence of empirical 
measures νn := 1

k

∑k
i=1 δYnk+i

. Then, for any Ŝ1 ∈ P , we can define the resolvent sequence

Ŝn+1 = Jνn

1/n(Ŝn) n ≥ 1.

Notice that Λϕ(μ) = Jμ
1/n(Λϕ(μ)) holds for any n. Hence, from Corollary 2.2 and Corol-

lary 3.9, we obtain that

d∞(Λϕ(μ), Ŝn+1) ≤
1

α d∞(Λϕ(μ), Ŝn) +
α
n

α

C(Λ;μ, νn) a.s.
1 + n 1 + n α
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Let us define an auxiliary sequence of random variables: D1 := d∞(Λϕ(μ), Ŝ1) and

Dn+1 := 1
1 + α

n

Dn +
α
n

1 + α
n

C(Λ;μ, νn)
α

n ≥ 1.

A simple induction shows that d∞(Λϕ(μ), Ŝn) ≤ Dn a.s. for any n. Notice that 
C(Λ; μ, νn) are real-valued i.i.d. random variables. By applying Etemadi’s extension to 
the Strong Law of Large Numbers and Lemma 5.1 to these variables, we have that

Dn → E
C(Λ;μ, νn)

α
= ε

almost surely. This also implies that

lim sup
n→∞

d∞(Λϕ(μ), Ŝn) ≤ lim sup
n→∞

Dn = ε a.s. (22)

To complete the proof, we claim that

d∞(Snk, Ŝn) → 0 a.s.

In fact, we can closely follow the steps of the proof of the deterministic Nodice Theo-
rem 4.2. Let an auxiliary random function Ψn be defined on P as follows:

Ψn : x �→ 1
nk

k∑
i=1

ϕ(x, Ynk+i) + logx Ŝn.

Let us recall that the sequence {Sn}n is almost surely bounded with respect to d∞. 
Indeed, Corollary 3.4 shows

d∞(Sn+1,Λϕ(μ)) ≤ n + 1
n + 1 + α

d∞(Sn,Λϕ(μ))

+ α

n + 1 + α

‖Λϕ(μ)−1/2ϕ(Λϕ(μ), Yn+1)Λϕ(μ)−1/2‖
α

.

From the Strong Law of Large Numbers, it follows

1
n

n∑
i=1

‖Λϕ(μ)−1/2ϕ(Λϕ(μ), Yi)Λϕ(μ)−1/2‖

→
∫
P

‖Λϕ(μ)−1/2ϕ(Λϕ(μ), y)Λϕ(μ)−1/2‖ dμ(y)

a.s. Again, Etemadi’s extension to the Strong Law [12, Theorem 1] implies that
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lim sup
n→∞

d∞(Sn,Λϕ(μ)) ≤
∫
P

‖Λϕ(μ)−1/2ϕ(Λϕ(μ), y)Λϕ(μ)−1/2‖ dμ(y)

a.s.; that is, Sn is bounded a.s.
We now use a stochastic version of (20)

1
nk

k∑
i=1

ϕ(S(n+1)k, Ynk+i) + logS(n+1)k
Snk = O

(
1
n2

)
a.s. .

Hence

Ψn(S(n+1)k) = logS(n+1)k
Ŝn − logS(n+1)k

Snk + O

(
1
n2

)
.

Clearly, Ψn(Ŝn+1) = 0 holds and α(Ψn) ≥ 1 + (nk)−1∑k
i=1 α = 1 + n−1α. Again, 

inequality (13) implies

d∞(Ŝn+1, S(n+1)k) ≤
1

1 + α
n

∥∥∥S−1/2
(n+1)kΨn(S(n+1)k)S

−1/2
(n+1)k

∥∥∥
≤ 1

1 + α
n

∥∥∥S−1/2
(n+1)k(logS(n+1)k

Ŝn − logS(n+1)k
Snk)S−1/2

(n+1)k

∥∥∥+ O

(
1
n2

)

≤ 1
1 + α

n

d∞(Ŝn, Snk) + O

(
1
n2

)
,

where we used the EMI property and the conjugate invariancy of d∞ in the last step. 
Thus, we get d∞(Ŝn+1, S(n+1)k) → 0 if n → ∞. Additionaly, it is easy to see that 
d∞(Snk, Snk+i) → 0 holds for any 0 ≤ i ≤ k as n → ∞. Combined with (22), it follows 
that

lim sup
n→∞

d∞(Sn,Λϕ(μ)) ≤ ε

almost surely. Since ε > 0 was arbitrary, the proof is complete. �
6. Applications to operator means

In this section we shall present some applications of the previous results related to 
operator means and operator monotone functions. Let us recall the celebrated Loewner 
integral representation formula of operator monotone functions is (16). The (non-
commutative) perspectives of f are given by the maps

x �→ fx(z) := x1/2f(x−1/2zx−1/2)x1/2.
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By Proposition 2.8, for any operator monotone function f : (0, ∞) → R with f(1) =
0, f ′(1) = 1, the perspectives x ∈ P �→ fx(z) := x1/2f(x−1/2zx−1/2)x1/2 and their 
integrals

x �→ ϕ(x) :=
∫
P

fx(z) dμ(z),

where μ ∈ P(P ) such that
∫
P

‖fy(z)‖ dμ(z) < ∞ (23)

for any y ∈ P , define monotone flows on P through the first-order system

ẋ(t) = ϕ(x(t)) =
∫
P

fx(t)(z) dμ(z)

for t ≥ 0. This is indeed the case, since it is a straightforward exercise to see that the 
f·(·) are locally Lipschitz, thus ϕ as well by Proposition 2.7. If

0 = ϕ(x) =
∫
P

fx(z) dμ(z)

has a (unique) solution, we denote it by Λf (μ).
It is also well known that

I − x−1 ≤ f(x) ≤ x− I (24)

for x ∈ P where the upper bound follows from the concavity of f and the normalizations 
f(1) = 0, f ′(1) = 1; the lower bound is implied by this and by the fact that −f(x−1) is 
also operator monotone with the same normalizations.

Theorem 6.1. Let f be an operator monotone function as above with f(1) = 0, f ′(1) = 1
and assume that μ ∈ P(P ) such that (23) holds. Then the first-order system

ẋ(t) =
∫
P

fx(t)(z) dμ(z)

generates an order-preserving flow. Furthermore, it has an exponential contraction rate 
α > 0 on any closed ball B(I, c) = {y ∈ P : d∞(I, y) ≤ c}.

Proof. Firstly, the flow is order-preserving, as established in Proposition 2.8. We rely on 
the Gauber-Qu condition (11) and the integral representation (16) to obtain
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D(x−1/2fx(z)x−1/2)(x) = D(f(x−1/2zx−1/2))(x)

= Df(x−1/2zx−1/2)(D(x−1/2zx−1/2)(x))

= −Df(x−1/2zx−1/2)(x−1/2zx−1/2)

= −x−1/2zx−1/2f ′(x−1/2zx−1/2) ≤ −αz.

Note that x−1/2zx−1/2 ∈ P for z ∈ supp(μ). Now let us choose any order interval [ 1c I, cI]
with c > 0. Then f being non-constant and the representation (16) ensure f ′ > 0, f ′′ ≤ 0
on (0, ∞), and it is easy to find some measurable positive lower bound on [ 1c I, cI] for αz

for z ∈ P . Then choosing α :=
∫
P αz dμ(z) provides a suitable positive lower bound on 

the exponential contraction rate of ϕ on [ 1c I, cI]. �
Lemma 6.2. Let f be an operator monotone function as above with f(1) = 0, f ′(1) = 1
and let z ∈ P . Then the first-order system

ẋ(t) = fx(t)(z)

leaves the half-open order intervals [z, ∞) and (0, z] invariant.

Proof. First note that fz(z) = 0, thus the orbit starting at x(0) := z is stationary. The 
generated flow is order preserving by Theorem 6.1, thus any orbit with starting point 
x(0) ≥ z has x(t) ≥ z and similarly x(0) ≤ z implies x(t) ≤ z for all t ≥ 0. This ensures 
the flow invariance of the order intervals [z, ∞) and (0, z]. �

By [13, Remark 2.4.] the flow invariance of a closed convex set S is equivalent to

∫
P

fx(y) dμ(y) ∈ TS(x),∀x ∈ S,

where TS(x) is the tangent cone of S which by [13, Proposition 2.5.] can be calculated 
as

TS(x) := {v : ∃λ > 0, x + λv ∈ S},∀x ∈ S. (25)

Proposition 6.3. Under the assumptions of the previous Theorem 6.1 if

∫
P

‖z±1‖ dμ(z) ≤
∫
P

ed∞(z,I) dμ(z) < ∞, (26)

then the flow leaves the order-interval 
[
(
∫

z−1 dμ(z))−1,
∫

z dμ(z)
]

invariant.
P P
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Proof. For any x ∈ P by (24) we have the following

I −
∫
P

(x−1/2yx−1/2)−1 dμ(y) ≤
∫
P

f(x−1/2yx−1/2) dμ(y) ≤
∫
P

x−1/2yx−1/2 dμ(y) − I

which is equivalent to

I −

⎛
⎜⎝x−1/2

⎛
⎝∫

P

y−1 dμ(y)

⎞
⎠

−1

x−1/2

⎞
⎟⎠

−1

≤
∫
P

f(x−1/2yx−1/2) dμ(y)

≤ x−1/2
∫
P

y dμ(y)x−1/2 − I

and by conjugation with x1/2 this further implies

x− x1/2

⎛
⎜⎝x−1/2

⎛
⎝∫

P

y−1 dμ(y)

⎞
⎠

−1

x−1/2

⎞
⎟⎠

−1

x1/2 ≤
∫
P

fx(y) dμ(y) ≤
∫
P

y dμ(y) − x.

(27)
Note that the left hand side above vanishes when x =

(∫
P y−1 dμ(y)

)−1 and simi-
larly the right hand side vanishes if x =

∫
P y dμ(y). Then by Lemma 6.2 the flow 

generated by the function on the left hand side of (27) leaves the half-open order in-
terval 

[(∫
P y−1 dμ(y)

)−1
,∞
)

invariant, while the flow generated by the function on 

the right hand side of (27) leaves the half-open order interval 
(
0,
∫
P y dμ(y)

]
invariant. 

This yields that the left hand side of (27) is an element of T[(∫
P y−1 dμ(y)

)−1,∞
)(x), thus ∫

P fx(y) dμ(y) is also an element by (27). Similarly the right hand side of (27) is an 
element of T(0,∫P y dμ(y)

](x), thus 
∫
P fx(y) dμ(y) is by (27). When combined, these yield 

that

∫
P

fx(y)dμ(y) ∈ T[(∫
P y−1 dμ(y)

)−1,
∫
P y dμ(y)

](x), ∀x ∈

⎡
⎢⎣
⎛
⎝∫

P

y−1 dμ(y)

⎞
⎠

−1

,

∫
P

y dμ(y)

⎤
⎥⎦ .

This proves that the flow generated by 
∫
P fx(y) dμ(y) leaves the closed convex order 

interval 
[(∫

P y−1 dμ(y)
)−1

,
∫
P y dμ(y)

]
invariant. �

What follows is a more general version of the above with a different proof.

Proposition 6.4. Under the assumptions of Theorem 6.1, there exists an 1 < R ∈ R such 
that the flow leaves 

[ 1 I,RI
]

invariant.
R
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Proof. First of all note that f : (0, ∞) �→ R is operator monotone, so it holds that

∫
A

f

(
1
K

y

)
dμ(y) ≤

∫
A

f (y) dμ(y) ≤
∫
A

f (Ky) dμ(y) (28)

for any 1 < K ∈ R and Borel set A ⊆ P . By the integrability assumption (23) for any 
ε > 0 there exists 0 < Rε ∈ R large enough such that

∫
P\B(I,Rε)

‖f (y)‖ dμ(y) < ε. (29)

Moreover, the left hand side of (29) is a decreasing function in Rε > 0. By (28) this also 
implies that

∫
P\B(I,Rε)

f
(
e−Ky

)
dμ(y) < εI

for any K > 0. For y ∈ B(I, Rε) and K > Rε we have that e−Ky < I which by (24)
implies f(e−Ky) ≤ e−Ky − I < 0 and then

∫
B(I,Rε)

f(e−Ky) dμ(y) ≤ e−K

∫
B(I,Rε)

y dμ(y) − I < −2εI

for all large enough K > Rε. Thus we have
∫
P

f
(
e−Ky

)
dμ(y) < −εI.

for all large enough K > Rε > 0. This shows
∫
P

fKI(y) dμ(y) < −δ1I

for a δ1 > 0.
In a similar way, but now using the right hand side of (28) and the left hand side of 

(24) for any ε > 0 we have

∫
P

f
(
eky
)
dμ(y) > εI.

for all large enough k > 0, yielding that for all small enough 1 > k ∈ R we have
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∫
P

fkI(y) dμ(y) > δ2I.

At this point we define R := max{K, 1/k} and note that still

∫
P

fRI(y) dμ(y) < −δ1I,

∫
P

f 1
R I(y) dμ(y) > δ2I.

By Proposition 2.7 x �→
∫
P fx(y) is locally Lipschitz, thus in a neighborhood of x = RI

we have ∫
P

fx(y) dμ(y) < −δ1
2 I, (30)

and in a neighborhood of x = 1
RI we have

∫
P

fx(y) dμ(y) > δ2
2 I. (31)

Then (30) and (31) imply that

∫
P

fx(y) dμ(y) ∈ T[ 1
R I,RI

](x)

for x in a neighborhood of x = 1
RI and x = RI. Since the generated flow is monotone, 

this further implies that

∫
P

fx(y) dμ(y) ∈ T[ 1
R I,RI

](x),∀x ∈
[

1
R
I,RI

]

proving the flow invariance. �
Theorem 6.5. Under the assumptions of the previous Proposition 6.4, Λf (μ) exists and 
is unique.

Proof. Theorem 6.1 and Proposition 6.4 yields the uniqueness of Λf in 
[ 1
RI,RI

]
by 

Proposition 3.1, because the orbits γ of the flow do not leave the order interval 
[ 1
RI,RI

]
as long as γ(0) ∈

[ 1
RI,RI

]
and on 

[ 1
RI,RI

]
the flow has an exponential contraction 

rate α > 0, so we can apply the same reasoning as in Proposition 3.1. Furthermore, the 
existence of another stationary point of the flow in 

[ 1
RI,RI

]
would lead to the existence 

of two distinct stationary orbits, contradicting the exponential contractivity established 
in Theorem 6.1. �
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The following order preserving property was proved in [29] in the case of bounded 
supp(μ). We can reprove this using our tools.

Proposition 6.6. For any operator monotone function fi : (0, ∞) → R with fi(1) =
0, f ′

i(1) = 1, i ∈ {1, 2}, if f1(x) ≤ f2(x) for all x ∈ P , then Λf1(μ) ≤ Λf2(μ).

Proof. The flow generated by f1 leaves Λf1(μ) invariant and by the order preserving 
property [Λf1(μ),∞) is also invariant. Then by the assumptions we have

0 =
∫
P

f1(Λf1(μ)−1/2yΛf1(μ)−1/2) dμ(y) ≤
∫
P

f2(Λf1(μ)−1/2yΛf1(μ)−1/2) dμ(y),

thus the order preserving flow generated by f2 leaves the order interval [Λf1(μ),∞)
invariant as well by a similar containment argument for the tangent cone of [Λf1(μ),∞)
as in the proof of Proposition 6.3, implying Λf2(μ) ∈ [Λf1(μ),∞). �
Corollary 6.7. Under the assumptions of Proposition 6.3 we have

⎛
⎝∫

P

y−1 dμ(y)

⎞
⎠

−1

≤ Λf (μ) ≤
∫
P

y dμ(y). (32)

Proof. The result follows from Proposition 6.6 and (27) along with the direct implications 
of the latter. �

The stochastic order of probability measures over partially ordered spaces were studied 
in detail for example in [14,18]. It is denoted as μ ≤ ν which means that μ(U) ≤ ν(U)
for any open upper set U , that is U is open and x ∈ U with x ≤ y implies y ∈ U . Then 
for instance μ ≤ ν implies 

∫
P fx(z) dμ(z) ≤

∫
P fx(z) dν(z) for all x ∈ P and then in turn 

this implies Λf (μ) ≤ Λf (ν), i.e. Λf is monotone which has been first shown in [29] for 
measures with bounded support. We need a variant of Corollary 3.7 that applies to the 
above in the case of probability measures with unbounded support.

Corollary 6.8. For a sequence {μn}n of probability measures if μn → μ weakly and (23), 
(18) hold with respect to dμn(y) and dμ(y), then d∞(Λf (μ), Λf (μn)) → 0.

Proof. The proof of Theorem 6.5 yields an exponential contraction rate α > 0 on the 
flow invariant 

[ 1
RI,RI

]
, so Corollary 3.7 applies. �

It is desirable to look at Mf
t (a, b) := Λf ((1 − t)δa + tδb) for t ∈ [0, 1] and a, b ∈ P

providing a more “symmetric” resolvent. The motivation for this is to recover the (Sturm-
type of) strong law for the arithmetic, harmonic and Karcher means in their known forms. 
The form of the last one is discussed above in the Introduction.
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Theorem 6.9 (Strong Law of Large Numbers). Let Y1, Y2, . . . be a sequence of i.i.d. random 
variables with the probability law μ on P satisfying (23) and (26). Then the stochastic 
iteration S0 ∈ P and Sn+1 = Mf

1
n+1

(Yn+1, Sn) almost surely converges to Λf (μ) with 

respect to the Thompson metric.

Proof. First, we prove that the stochastic iteration S0 ∈ P and

1
n + 1fSn+1(Yn+1) + fSn+1(Sn) = 0 n ≥ 0,

defines a bounded sequence in d∞ a.s. Indeed, since f is concave, we have

f

(
Sn+1

−1/2
(

1
n + 2Yn+1 + n + 1

n + 2Sn

)
S
−1/2
n+1

)
≥ 0 = f(I).

Thus

Sn+1 ≤ 1
n + 2Yn+1 + n + 1

n + 2Sn

holds and

Sn+1 ≤ 1
n + 2

(
S0 +

n+1∑
i=1

Yi

)

follows for any n ≥ 1. Since E(Yi) is finite, the average is weakly bounded above and then 
strongly in norm as well. A similar argument with g(x) = −f(1/x), which is operator 
monotone, shows that S−1

n bounded above in norm. This implies that Sn is bounded in 
d∞ almost surely.

From the Taylor series expansions, we have

f(x) = x− 1 + O((x− 1)2) and log x = x− 1 + O((x− 1)2)

on bounded sets. Therefore, the stochastic resolvent iteration S̃0 = S0 and S̃n+1 =
J 1

n+1
(Yn+1, S̃n), n ≥ 0, and the iteration Sn above are close in metric; that is,

d∞(Sn, S̃n) = O

(
1
n2

)
. (33)

Obviously, S̃n is also bounded in d∞ a.s.
Next, let us recall that the first-order system

ẋ =
∫

fx(s) dμ(s)

P
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leaves any sufficiently large order-interval Q = [c−1I, cI] invariant, where the exponen-
tial contraction rate of the flow is positive, see Theorem 6.1 and Proposition 6.4. We 
also note that α(Q, fx(s)) > 0 holds for any s ∈ P (see the proof of Theorem 6.1). 
Moreover, E(α(Q, fx(Y )) < ∞, because without loss of generality we may assume that 
α(Q, fx(s)) ≤ 1 for any s ∈ P . Hence, the SLLN implies

1
k

k∑
i=1

α(Q, fx(Yi)) → E(α(Q, fx(Y ))) > 0.

Choosing a large invariant set Q that contains the bounded resolvent iteration S̃n, we 
can utilize the proof of Theorem 5.2 on the set Q to obtain that d∞(S̃n, Λf (μ)) → 0
almost surely. With the approximation (33) above at hand, the proof is complete. �

A similar modified version of Holbrook’s Nodice Theorem 4.2 follows in the same vein 
as well.

Remark 6.10. These results imply the ones in [24] for the geometric also called Karcher 
mean Λ of positive operators by choosing f(x) = log(x). In fact in this case we can apply 
Theorem 5.2 directly, since α = 1 globally by Proposition 2.5.

Furthermore, the usual strong law for the arithmetic mean (1 − t)a + tb with its 
multivariable version 

∫
P a dμ(a) follows when f(x) = x − 1; and for its cousin, the 

harmonic mean [(1 − t)a−1 + tb−1]−1 with its multivariable version [
∫
P a−1 dμ(a)]−1 as 

well when f(x) = 1 − 1
x .

More generally, the non-commutative power means defined and studied in [25,19,
20] are generated by the one-parameter family ft(x) = xt−1

t of normalized operator 
monotone functions for t ∈ [−1, 1]. Then Λft gives a non-commutative extension of the 
one-parameter family of t-power means of positive numbers that varies continuously, and 
interpolates monotonically in t ∈ [−1, 1] between the harmonic for t = −1, the Karcher 
for t = 0 and the arithmetic means for t = 1.

Even more generally our results reprove most of the results of [29] and extend them 
to the case of unbounded supp(μ).
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