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al. 2018; Lionello and Scarascia 2018). This region, which 
includes a semi-enclosed sea and its surrounding lands, 
has experienced significant changes in climate patterns in 
the last few decades. These changes are supported by evi-
dence in the Mediterranean region, manifested in altered 
temperature trends, shifting precipitation regimes, and an 
uptick in the frequency and severity of extreme weather 
events (Insua-Costa et al. 2022; Androulidakis et al. 2023). 
The consequences of these climate changes go far beyond 
meteorological issues, severely affecting crucial socioeco-
nomic sectors. Agriculture, water resource management, 
coastal zone planning, and the protection of fragile eco-
systems all face considerable issues due to these changes 
(Raihan 2023; Noto et al. 2023). As a result, there is an 
urgent need to understand the intricate patterns of climatic 

Introduction

In the realm of climate science, the Mediterranean region is 
a very well-known area due to its combination of subtropical 
arid and temperate environments, stemming from its unique 
location. However, this positioning makes it especially 
vulnerable to the effects of climate change, emphasizing 
its importance as a key climate change hotspot (Cramer et 
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Abstract
This study presents a comprehensive spatiotemporal analysis of sea surface temperatures (SST) and surface air tempera-
tures (TAS) across 15 Mediterranean coastal stations, leveraging centennial-scale data to analyze regional climate dynam-
ics. The modeling framework integrates three sequential phases: data preprocessing, statistical analysis, and advanced 
machine learning techniques, creating a robust analytical pipeline. The data preprocessing phase harmonizes diverse 
datasets, addresses missing values, and applies transformations to ensure analytical consistency. The statistical modeling 
employs the Pettitt test for change point detection and linear trend analysis to unveil underlying patterns. The machine 
learning phase utilizes K-means clustering for climate regime classification and implements tailored Convolutional Neural 
Networks (CNNs) for cluster-specific future climate anomaly projections. Results unveil a marked anthropogenic climate 
signal, with contemporary observations consistently surpassing historical baselines. Breakpoint analyses and linear trend 
assessments reveal heterogeneous climatic shifts, with pronounced warming in the northern Mediterranean. Notably, Nice 
and Ajaccio exhibit the highest SST increases (0.0119 and 0.0113 °C/decade, respectively), contrasting with more mod-
est trends in Alexandria (0.0052 °C/decade) and Antalya (0.0047 °C/decade) in the eastern Mediterranean. The applica-
tion of clustering and CNN projections provides granular insights into differential warming trajectories. By 2050, cooler 
northwestern Mediterranean zones are projected to experience dramatic SST anomalies of approximately 3 °C above the 
average, with corresponding TAS increases of 2.5 °C. In contrast, warmer eastern and southern regions display more sub-
dued warming patterns, with projected SST and TAS increases of 1.5–2.5 °C by mid-century. This research’s importance 
is highlighted by its potential to inform tailored adaptation strategies and contribute to the theoretical understanding of 
climate dynamics, advancing climate modeling and analysis efforts.
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variability and predict their future trajectories. This under-
standing is critical for creating strong adaptation strategies 
and making informed policy decisions to limit the effects of 
climate change in this highly reactive region (Mastrorillo et 
al. 2024).

Recent data and investigations add a new engine to the 
urgency of addressing climate change in this region, reveal-
ing an alarming trend of accelerated warming. As a shred 
of evidence, many studies indicate that the temperature 
rise in this area surpasses the global average by approxi-
mately 20% (Lionello and Scarascia 2018), highlighting a 
critical issue demanding immediate attention. This acceler-
ated warming stems from a complex interplay of factors, 
including anthropogenic activities such as deforestation and 
industrial emissions, as well as natural fluctuations in atmo-
spheric and oceanic circulation patterns (Urdiales-Flores 
et al. 2023; Longobardi et al. 2016). The consequences of 
this rapid warming are particularly significant for two cru-
cial climatic indices: Sea Surface Temperature (SST) and 
Temperature at Surface Air (TAS). These metrics serve as 
vital indicators of terrestrial and marine ecosystem health 
and play key roles in climate modeling and adaptation 
strategies (Karmalkar and Bradley 2017; Tanaka and Van 
Houtan 2022). Changes in SST can have a cascade effect on 
marine biodiversity, including coral bleaching and shifts in 
fish populations (Duvat et al. 2021). Concurrently, changes 
in TAS might cause more frequent and severe heat waves, 
affecting human health, agriculture, and natural ecosystems 
(Celik 2020). Furthermore, SST and TAS are fundamentally 
connected to the hydrological cycle, impacting precipita-
tion patterns and hence freshwater availability (Benestad et 
al. 2022). This interrelationship highlights the far-reaching 
consequences of temperature fluctuations for numerous 
areas of the Mediterranean ecosystem and its inhabitants.

The precise monitoring and analysis of temperature 
patterns is the foundation of climate science and policy 
development. Quantifying changes in SST and TAS is criti-
cal for understanding and mitigating the effects of climate 
change, both globally and in specific regions such as the 
Mediterranean (Guinaldo et al. 2023; Pisano et al. 2020). 
Precise monitoring of SST changes is critical for forecast-
ing shifts in marine ecosystems, sea level rise, and extreme 
weather events (O’carroll et al. 2019). Correspondingly, 
TAS measurements offer critical insights into terrestrial 
climate dynamics, including the frequency and intensity 
of heat waves, drought patterns, and biodiversity changes 
(Alomar et al. 2022). The integration of both SST and TAS 
data enables researchers to develop a comprehensive under-
standing of the complex feedback mechanisms between 
oceanic and atmospheric systems. This holistic approach 
facilitates more accurate climate modeling and supports 
informed decision-making processes. By analyzing these 

interconnected temperature trends, scientists and policy-
makers can better assess the full scope of climate change 
impacts and devise more effective mitigation and adaptation 
strategies for vulnerable regions like the Mediterranean.

In the Mediterranean context, quantifying SST and TAS 
changes is particularly critical due to the region’s high 
responsiveness to climate change consequences (Patti et 
al. 2022). The Mediterranean Sea’s semi-enclosed nature, 
along with its complex bathymetry and intricate coastline, 
make it particularly vulnerable to localized temperature 
changes and marine heatwaves. These phenomena pro-
foundly impact marine ecosystems, tourism industries, and 
coastal communities (Martínez et al. 2023). Furthermore, 
the Mediterranean region’s diverse topography, encompass-
ing coastal zones, inland areas, and mountainous terrain, 
necessitates comprehensive monitoring of TAS changes. 
This wide-ranging analysis is crucial for assessing poten-
tial risks to key sectors such as agriculture and water 
resources, as well as evaluating threats to public health. By 
accurately quantifying and analyzing SST and TAS trends, 
policymakers and stakeholders can develop tailored adap-
tation strategies and targeted mitigation measures. These 
evidence-based approaches are essential for protecting the 
Mediterranean’s unique ecosystems and safeguarding its 
diverse economic sectors (Bonaldo et al. 2023). The precise 
measurement of these temperature indicators thus serves as 
a fundamental tool in crafting resilient and sustainable poli-
cies for this climatically sensitive region.

Climate change analysis requires sophisticated method-
ologies to accurately detect and interpret long-term environ-
mental shifts. The quantification of climate variable shifts 
typically involves a comprehensive analysis of long-term 
datasets (Duan et al. 2022). Historically, researchers utilized 
a variety of statistical methods to examine climate patterns 
(Chandler and Scott 2011). However, many studies have 
failed to identify breakpoints at which large changes in cli-
matic patterns become apparent. While global temperature 
trends have often been the focus of climate research, these 
analyses frequently report only on general increases in mean 
temperatures over defined historical periods. This approach 
neglects the nuanced examination of underlying trends and 
overlooks critical aspects such as the quasi-periodic hetero-
geneity in variance observed in temperature data (Duan et 
al. 2022). Nonetheless, employing breakpoint analysis is 
crucial as it identifies specific years or periods marking sig-
nificant changes in climatic trends. This methodology not 
only enhances our understanding of the timing and dynam-
ics of climate variability but also provides essential insights 
for predicting future climate conditions in the Mediterra-
nean region and beyond. This modified focus on temporal 
shifts is critical for various reasons. It promotes a better 
understanding of previous interactions within the climate 
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system, improves the accuracy of future climate forecasts, 
and gives a more comprehensive picture of climate develop-
ment, allowing for more focused mitigation and adaptation 
methods. This technique allows researchers to move beyond 
broad generalizations and establish a more detailed knowl-
edge of climate change patterns, boosting the effectiveness 
of climate models and policy recommendations.

The field of climate modeling is undergoing a transfor-
mative shift, driven by the integration of cutting-edge com-
putational methods. Advanced computational approaches, 
particularly machine learning, are becoming increasingly 
important in climate research (Huntingford et al. 2019; 
Beucler et al. 2024). Sophisticated algorithms like K-means 
clustering and Convolutional Neural Networks (CNNs) 
excel at modeling complex, non-linear patterns that tra-
ditional statistical methods fail to fully capture (Han et 
al. 2024). These powerful tools can process vast datasets 
to forecast future changes with high accuracy, providing 
researchers with invaluable means to simulate and compre-
hend potential climate scenarios under various models. This 
evolution in methodology represents a pivotal shift towards 
a more dynamic and predictive approach to climate science. 
By leveraging machine learning techniques, researchers 
can uncover subtle patterns in climate data, generate more 
accurate long-term predictions, and develop comprehensive 
simulations of future climate states. The integration of these 
advanced computational methods enables scientists to for-
mulate more precise adaptation and mitigation strategies, 
allowing policymakers and stakeholders to make better-
informed decisions to address the challenges posed by cli-
mate change.

The Mediterranean basin has been extensively studied 
for temperature trends and climate change impacts, with 
research employing diverse methodological approaches 
and data sources. Studies have varied in scope, focusing on 
specific sub-regions like the western Mediterranean (Schro-
eder et al. 2016; Méndez-Cea et al. 2023; Insua-Costa et al. 
2022), the eastern Mediterranean (Zittis et al. 2022; Hoch-
man et al. 2022), or the Adriatic Sea (Scarponi et al. 2022; 
Bonacci et al. 2021). Others have examined the entire basin 
but with a particular emphasis on SST trends (Pisano et al. 
2020; Pastor et al. 2020) or TAS patterns (García-Monteiro 
et al. 2022; Seker and Gumus 2022). Despite providing 
valuable insights, many of these studies rely on limited 
methodological approaches such as linear trend analyses 
or basic statistical techniques, which often fail to capture 
the full complexity of climatic processes and inherent non-
linearities (Corduas 1994). To address these limitations, 
a growing number of researchers have advocated for the 
use of machine learning algorithms in climate trend analy-
sis (Fahad et al. 2023; Zhu et al. 2023). These approaches 
have the potential to capture complex non-linear patterns, 

handle high-dimensional data, and provide more nuanced 
projections of future climate trajectories Climate-invariant 
machine learning (Beucler et al. 2024).

Addressing gaps in the existing literature, this study 
aims to provide a comprehensive modeling of SST and 
TAS trends and climate variability across the Mediterra-
nean region. By harmonizing observational data from the 
HadISST and CRUTEM5 datasets, spanning over a century 
of observations from 15 coastal stations, holistic modeling 
of the complex regional climate dynamics is offered. The 
comprehensive modeling and analysis accounts for spatial 
heterogeneity through clustering, addressing the limitations 
of previous studies. To achieve this, a three-phase modeling 
methodology is employed. The first phase involves data pre-
processing to establish a clean, structured dataset suitable 
for in-depth analysis. Statistical techniques in the second 
phase, including the Pettitt test and linear trend analysis, 
enable the detection of abrupt changes and the deciphering 
of underlying patterns in the data. The final phase leverages 
advanced machine learning methods, with K-Means cluster-
ing accounting for spatial heterogeneity and CCNs tailored 
for cluster-specific projections. This integrative approach 
combines machine learning capabilities with spatial con-
siderations, facilitating robust climate modeling within the 
Mediterranean context.

The novelty of this study is derived from three distinct 
aspects that set it apart from previous research efforts. 
Firstly, the study’s scope encompasses a network of 15 
coastal stations distributed throughout the Mediterranean 
basin, providing a holistic perspective on the spatial vari-
ability of climate dynamics within this region. Additionally, 
the integration of both sea SST and TAS datasets in the mod-
els offers an opportunity to explore the intricate relation-
ships between marine and terrestrial climate systems, a facet 
often overlooked in existing studies. Secondly, the model-
ing framework employed in this study is innovative, as it 
seamlessly integrates statistical techniques with advanced 
machine learning algorithms. While most studies typically 
employ either statistical or machine learning methods in 
isolation, the utilized approach represents an extremely rare 
hybrid, synergistically combining these two methodologies. 
The incorporation of CNNs alongside statistical modeling 
pushes the boundaries of climate trend analysis, enabling 
the capture of complex non-linear patterns and projections 
that traditional methods often fail to detect. Thirdly, the 
implementation of the Pettitt test addresses a critical gap 
in climate research. Many studies frequently report only on 
general increases in mean temperatures over defined histori-
cal periods, neglecting the nuanced examination of underly-
ing trends and the quasi-periodic heterogeneity in variance 
observed in temperature data. By explicitly employing the 
Pettitt test, this study aims to detect abrupt changes and 
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Methods

The methodology utilized in this study, as depicted in Fig. 1, 
is organized into three interconnected phases to comprehen-
sively model climate trends. The first phase involves data 
collection and preprocessing, where raw data from various 
sources is harmonized, missing values are addressed, and 
data is transformed to create a clean, structured dataset. In 
the second phase, this processed data undergoes statisti-
cal analysis using the Pettitt test to identify abrupt change 
points and linear trend analysis to uncover underlying pat-
terns. The final phase employs machine learning techniques, 
specifically K-means clustering to categorize the data into 
distinct climatic groups, and Convolutional Neural Net-
works (CNNs) to predict future climate anomalies for each 
cluster. This phased approach ensures a robust modeling 
process, with the CNNs providing precise, cluster-specific 

shifts in the SST and TAS data, providing a comprehensive 
understanding of climate dynamics that transcends the limi-
tations of conventional approaches.

The importance of this study is multifaceted, as it 
addresses a critical knowledge gap in understanding the 
heterogeneous nature of climate change impacts within the 
Mediterranean region. By elucidating the spatial and tem-
poral variability of temperature trends, the findings provide 
a solid foundation for developing tailored adaptation strate-
gies and informing decision-makers on region-specific cli-
mate challenges. Furthermore, the insights gained from this 
research contribute to advancing the theoretical understand-
ing of the complex interplay between local environmental 
factors and large-scale climatic processes, fostering further 
scientific inquiry and refinement of climate models.

Fig. 1 Schematic overview of the hybrid statistical-machine learning analysis methodology
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lack of reliable and continuous data from other stations. For 
these 15 stations, the nearest available SST data from the 
Mediterranean Sea grid were subsequently extracted from 
the HadISST dataset, ensuring consistency between the two 
types of climate observations. This approach ensured that 
the selected stations had the most reliable and continuous 
data.

Figure 2 shows the final fifteen coastal Mediterranean 
stations selected after the thorough evaluations of data 
availability. Although SST data is available from 1870, TAS 
data for most of these stations is available only from Janu-
ary 16, 1961, to April 16, 2023. Consequently, the dataset 
used for the statistical and machine learning phases aligns 
with the temporal range of the TAS data, starting from Janu-
ary 16, 1961.

Statistical analysis

After preprocessing, the data underwent a thorough explor-
atory statistical analysis. Initially, the Pettitt test, known for 
its robustness as a non-parametric method, was applied to 
identify change points within the time series data of TAS 
and SST. This test pinpointed the break years, marking sig-
nificant shifts in TAS and SST values. Subsequently, linear 
trend analysis was conducted to delineate potential linear 
relationships in the data. This step was crucial to discern the 
trends preceding and succeeding the detected breakpoints, 
thereby providing insights into long-term trends. Such a 
statistical approach is instrumental in revealing the data’s 
structural intricacies and in detecting shifts in both mean 
and variance over the timeline.

Pettitt test

The Pettitt test is a robust, non-parametric method designed 
to detect a significant shift in the mean of a time series 
when the precise timing of the change is unknown. For a 
series of observed data points x1, x2, x3, . . . ., xn , the test 
hypothesizes a change point at time t , such that the por-
tion of  x1, x2, x3, . . . ., xt  is characterized by a cumu-
lative distribution function F1 (x), distinct from F2 (x), 
which describes the distribution of the subsequent segment 
xt+1, xt+2, xt+3, . . . ., xn  (de Assis PAIVA and SÁFADI 
2021).

The core of Pettitt’s test lies in the computation of the 
non-parametric test statistic Ut  (critical value used to assess 
the presence and significance of the change point), which 
involves assessing the differences between all pairs of 
observations in the series. Specifically, for each position k  
in the series, the test calculates U (k), the sum of signs of 
differences between the k − th  observation and every other 
observation, as defined by the sgn function sgn(xi − xj) 

predictions. All methods, graphs, maps, and equations were 
implemented using the Python Jupyter environment, ensur-
ing clarity and reproducibility.

Data collection and preprocessing

The initial phase of the study involves systematic data col-
lection, where datasets are sourced and compiled based on 
predefined criteria relevant to the research objectives. Upon 
acquisition, the data undergoes rigorous preprocessing, 
which includes cleaning (removal of missing values), nor-
malization, and transformation operations to ensure consis-
tency and suitability for subsequent analysis.

In this paper, the utility and reliability of two datasets in 
the domain of climate research are explored: The Hadley 
Centre Sea Ice and Sea Surface Temperature (SST) data-
set (HadISST) and the Climatic Research Unit Temperature 
dataset (CRUTEM5) which provides surface air tempera-
ture (TAS). The HadISST dataset, compiled and maintained 
by the UK Met Office, provides an exhaustive monthly 
record of SST and sea ice concentrations dating back to the 
year 1870 (Rayner et al. 2003). It amalgamates in situ mea-
surements from the Met Office Marine Data Bank (MDB) 
with satellite observations, ensuring a detailed depiction of 
global oceanic conditions across a 1-degree latitude-longi-
tude grid.

Simultaneously, the CRUTEM5 dataset is a critical 
resource for analyzing near-surface air temperatures over 
land, with records spanning from 1850 to the present (Osborn 
et al. 2021). This dataset, a collaborative effort between the 
Climatic Research Unit at the University of East Anglia and 
the Met Office Hadley Centre, is distinguished by its robust 
spatial resolution and global coverage. It aggregates temper-
ature records from a multitude of meteorological stations, 
providing monthly mean temperatures with a spatial resolu-
tion refined to 5° by 5° latitude and longitude. The dataset 
facilitates a granular investigation into regional temperature 
fluctuations.

In this research, SST data for the entire Mediterranean 
Sea were initially collected using a 1°x1° latitude-longitude 
grid covering its surface area. Subsequently, TAS data were 
gathered for all available stations within the Mediterranean 
region to compile a comprehensive dataset from various 
coastal stations. The extraction process began with the iden-
tification of all relevant Mediterranean coastal stations from 
the CRUTEM5 dataset. However, the selection of stations 
was constrained by data availability. Many stations, particu-
larly in the southern and eastern Mediterranean, had signifi-
cant gaps or outdated records with more than 10 consecutive 
missing or outdated data points. After thoroughly evaluating 
data availability and the presence of missing values, only 
15 stations were deemed suitable for inclusion due to the 
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distribution of U (t) under the null hypothesis (no change) 
as in 5 (Zhang and Wu 2023):

p− value = 2 ∗
(
1− ϕ

(
Ut√
6n

))
 (5)

Where ϕ  signifies the standard normal cumulative distri-
bution function (CDF). This p− valuequantifies the likeli-
hood that the observed change at K  is not due to random 
variation, with lower values, indicating a higher statistical 
significance of the detected change point (Rybski and Neu-
mann 2011).

Linear trend analysis

Following the identification of significant change points 
within the time series data for SST and TAS via the Pettitt 
test, a detailed linear trend analysis was conducted to quan-
titatively assess the shifts in trends across these breakpoints, 
i.e. evaluate the changes in SST and TAS trends before and 
after the detected breakpoints.

For each interval and variable, a linear regression model 
was fitted to delineate the trend as in 6.

y = mx + b  (6)

Where y  represents the variable under consideration (in 
this study, SST or TAS), m  signifies the trend’s slope, and 

(Pettitt 1979). The sgn function is critical for this computa-
tion, returning:

sgn (x) =






−1 if x < 0,

0 if x = 0,

1 if x > 0,
 (1)

Which discerns the directionality of the difference between 
any two data points. The test statistic U (k) is formulated as 
in 2 (Pettitt 1979):

U (k) =
∑

k
i=1

∑
n
j =k+1sgn(xi − xj) (2)

The cumulative sums U (k) are evaluated (as in 3) to iden-
tify the maximum U (t), the value of which suggests a 
change point’s presence.

U (t) = max |U (k)| for k = 1, 2, 3, . . . , n  (3)

The location K of the potential change point is pinpointed 
by the indexk  at which this maximum U (t) is observed.

K = arg maxk | U (k)|  (4)

Here, argmax  represents the ‘argument of the maximum’, 
a mathematical operation used to identify the index k  at 
which the function | U (k) |  reaches its maximum value.

To ascertain the statistical significance of the change 
detected at K , a p-value is computed based on the 

Fig. 2 Selected coastal stations in the Mediterranean
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Where n  represents the number of observations in the data-
set, xi  is an individual observation, µ j  denotes the centroid 
of the cluster Cj , and ?xi − µ j?

2 is the squared Euclidean 
distance between xi  and µ j . For each candidate cluster 
number (f ), the K-Means algorithm partitions the dataset 
into f clusters. Following the computation of inertia for 
each clustering configuration, these inertia values are ana-
lyzed. The optimal number of clusters is inferred from the 
plot of inertia values against the number of clusters, apply-
ing the “elbow method”. The “elbow” point represents a 
threshold beyond which increases in the number of clusters 
result in diminishing reductions in inertia. This point signi-
fies an optimal balance, indicating that additional clusters 
do not substantially enhance the model’s ability to capture 
more detailed cluster structures. In this study, Fig. 3 pres-
ents the inertia graph from which the optimal number of 
clusters was identified. The analysis revealed an elbow at 4 
clusters, which led to determining that setting the number of 
clusters to 4 was most appropriate for the analysis.

In conducting the K-Means clustering analysis, variables 
obtained (for each location) from Phase 1: Data Collection 
and Processing, and Phase 2: Statistical Analysis, were inte-
grated. Variables from Phase 1 encompassed geographical 
coordinates, specifically Latitude and Longitude, provid-
ing the spatial context essential for the analysis. Phase 2 
contributed variables that encapsulate significant statistical 
insights into SST and TAS, including breakpoints and trends 
pre- and post-breakpoint, offering a temporal analysis lens. 
The precise variables incorporated, along with their phase 
of derivation, are cataloged in Table 1.

Upon defining the variables, the K-Means algorithm 
was tasked with partitioning the dataset into four clusters 
(see Fig. 3). The algorithm’s objective, minimizing the 
within-cluster sum of squares (WCSS), is mathematically 
encapsulated as in Eq. 8, which emphasizes the algorithm’s 
iterative refinement of cluster centroids (µ j ) to achieve a 
minimized WCSS, effectively grouping data points (x ) into 
cohesive clusters based on the specified variables (Ahmed 
et al. 2020).

WCSS =
∑

k
i=1

∑
x∈ Ci

(
‖x − µ j‖2

)
 (8)

In the analysis, for each identified cluster, the approach 
involved aggregating data across all locations within the 
cluster to calculate a collective average, effectively repre-
senting the cluster’s overall characteristics.

1-Dimensional convolutional neural networks (1D CNNs)

Initially, the series data (SST and TAS) was aggregated from 
a monthly to an annual scale by calculating the mean for 

b  denotes the intercept. For observations preceding the 
breakpoint, a linear regression was applied to calculate the 
slope (mbefore ) and intercept (bbefore ), thereby elucidating 
the trend preceding the change. Similarly, for observations 
after the breakpoint, another linear regression provided the 
slope (mafter ) and intercept (bafter ), highlighting the trend 
following the change.

Machine learning analysis

Upon establishing the foundational statistics of the datasets, 
the machine learning phase took place. The processed data 
is partitioned into distinct clusters using the K-Mean Clus-
tering algorithm. This unsupervised learning method groups 
the data into k clusters, each represented by the centroid 
of the points belonging to the cluster. The optimal number 
of clusters is determined based on the evaluation of clus-
ter validity indices such as the elbow method. Each cluster 
identified by the K-Mean algorithm is then independently 
analyzed using a CNN. The CNN architecture is designed 
to capture the complex patterns and features within each 
cluster. It comprises multiple layers, including convolu-
tional layers for feature extraction and fully connected lay-
ers for prediction. The CNN is trained, validated, and tested 
using cluster-specific datasets to ensure that the predictive 
model is attuned to the nuances of each cluster’s charac-
teristics. This approach allows for customized predictions 
that account for the unique properties identified within each 
cluster, thereby enhancing the predictive performance of the 
model.

K-Mean algorithm

In the preliminary phase of the clustering analysis, a critical 
step involved determining the optimal number of clusters 
that accurately reflects the underlying structure of our data-
set while maintaining a balance between model simplicity 
and clustering effectiveness.

The investigation commenced with the establishment 
of a candidate range for the number of clusters (2–7). This 
range was chosen to encompass a broad spectrum of poten-
tial cluster structures, from oversimplified to excessively 
granular groupings. The core of this method relies on the 
concept of inertia, a metric that quantifies the compactness 
of clusters formed by the K-Means algorithm. Inertia is 
defined as the total sum of squared distances between each 
point in a cluster and the cluster’s centroid (Nan et al. 2022). 
Mathematically, for each potential cluster numberf  within 
the predefined range, inertia (u) is calculated as in 7:

u =
∑

n
i=1minµ j

∈ C
(
‖xi − µ j‖2

)
 (7)
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These deviations were normalized using MinMaxScaler to 
ensure that the input values fit well into the neural network 
model:

Scaled x avr dev

=
x avr dev −min (x avr dev)

max (x avr dev)−min (x avr dev)

 (12)

The scaled TAS and SST deviations were organized into 
sequences of 10 years to facilitate the modeling of depen-
dencies over decades. The CNN model architecture was 
defined with the flexibility to test various configurations 
through hyperparameter tuning. The convolutional layer of 
the model is expressed as:

Cl (x) =ReLU

(Conv1D (x; filtersl , kernel sizel ))
 (13)

Where Cl (x)  is the convolution operation on layer l , 
filtersl are the number of filters in the convolution layer 
l , and kernel sizel is the size of the kernel in the convo-
lution layer l . ReLU (Rectified Linear Unit) serves as the 
activation function, providing non-linear capabilities to the 
model.

Following each convolution operation, a MaxPooling 
layer reduces the dimensionality of the data, summarizing 
the most significant features:

Pl (x) = MaxPooling1D (x) (14)

Where Pl  represents the max pooling operation applied in 
the l− th layer.

Models were compiled with the Adam optimizer, which 
is known for its efficiency in large datasets and sparse 

each year where x avr  is the average target variable (SST 
then TAS) for each year as in 9:

Annual datax avr =
1

12

∑
12
i=1xmonth i  (9)

Next, deviations from the average SST and TAS up to the 
year 2000 (as this study focuses on predicting the anomaly 
of these variables compared to 2000) were calculated. This 
baseline average is given by 10. Note that n is the number 
of years up to 2000:

Average till 2000 =
1

n

∑
x avr year≤ 2000 (10)

The objective of this study is to analyze the anomalies in 
SST and TAS, hence it is essential to calculate deviations 
from a historical baseline (2000). The deviations for each 
year were then calculated as:

x avr dev = x avr − Average till 2000 (11)

Table 1 Variables incorporated into K-means clustering analysis and 
their phase of derivation
Variable Derived From Phase
Latitude Phase 1. Data Collection 

and Processing
Longitude Phase 1. Data Collection 

and Processing
Breakpoint for SST Phase 2. Statistical Analysis
Breakpoint for TAS Phase 2. Statistical Analysis
SST trend before Breakpoint Phase 2. Statistical Analysis
SST trend after Breakpoint Phase 2. Statistical Analysis
TAS trend before Breakpoint Phase 2. Statistical Analysis
TAS trend after Breakpoint Phase 2. Statistical Analysis

Fig. 3 Inertia score
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Results

The results of this article systematically reflect the structured 
methodology delineated in Fig. 1, which is organized into 
three sequential phases. The initial findings begin with the 
“Dataset Overview and Temporal Trends” where the focus 
lies on examining the broad patterns and temporal varia-
tions observed in the SST and TAS data, spotting how these 
variables change over time. The analysis then progresses to 
“Statistical analyses findings”. In this phase, the Pettitt test 
identifies significant change points, while linear trend analy-
sis elucidates the underlying patterns and trends across the 
data. Finally, the “Machine learning findings” section pres-
ents the outcomes of employing advanced machine learning 
strategies. K-Mean clustering is used to segment the data 
into clusters, while CNN is deployed to make predictions 
specific to each cluster.

Dataset overview and temporal trends

The Mediterranean Sea has undergone significant changes 
in SST over the past century and a half. The analysis of SST 
data spanning from January 16, 1870, to April 16, 2023, 
reveals distinct spatial and temporal patterns across the 
basin. Figure 4 illustrates the spatial distribution of aver-
age SST across the Mediterranean region for this extended 
period. A clear temperature gradient is evident, with the 
coastal waters along southern France, the Alboran Sea, and 

gradients. The learning rate (η ) was tuned to optimize the 
convergence. Equation 15 was utilized aiming to minimize 
the mean squared error (MSE). where N  is the total number 
of samples, ŷi  are the predicted values, yi  and are the actual 
values.

MSE =
1

N

∑ N

i=1
(yi − ŷi)

2 (15)

Hyperparameter optimization was executed using the 
Hyperband algorithm, a method based on the multi-armed 
bandit problem that dynamically allocates resources to con-
figurations that show promise. This efficient strategy mini-
mizes the validation MSE, optimizing model parameters for 
best performance. Table 2 summarizes the key parameters 
of the CNN used in the study, providing explanations for 
each parameter and the range of values tested during hyper-
parameter tuning. Note that for the CNN models, the data 
was preprocessed by splitting it into training and test sets 
following an 80 − 20 scheme. This approach ensures that the 
models are trained on a substantial portion of the available 
data (80%). The remaining (20%) of the data is set aside as 
an independent test set, providing an unbiased evaluation of 
the model’s generalization capabilities on unseen data.

Parameter Explanation Tested 
Parameters

Number of 
layers

The number of 1D layers in the CNN. This affects the depth of the network, 
influencing the ability to learn and represent complex patterns in the data.

1 to 5 
layers

Filters The number of filters in each convolutional layer. Filters capture different 
features of the input data, with more filters allowing the network to capture a 
broader range of features.

32 to 264

Kernel size The size of the kernel in each convolutional layer. The kernel size determines 
the extent of the window over which the network aggregates information, 
affecting the granularity of the features extracted.

2 to 10, 
incre-
mented 
by 2

Learning rate The step size at each iteration while moving toward a minimum of a loss 
function. A suitable learning rate ensures convergence to a minimum during 
training.

0.0001 
to 0.01, 
logarithmic 
sampling

Activation The activation function used in the convolutional layers. ReLU is commonly 
used for its efficiency in non-linear transformations and avoiding the vanish-
ing gradient problem.

ReLU

Pooling type The type of pooling layer utilized after each convolutional layer, typically 
used to reduce the spatial dimensions of the input volume for the next layer.

Max-
Pooling1D, 
pool size 
of 2

Optimizer The method used to update weights in the network. Adam optimizer is 
utilized for its adaptive learning rate capabilities, which helps in converging 
faster.

Adam

Loss 
function

The function used to measure the model’s prediction error. MSE (Mean 
Squared Error) quantifies the difference between the predicted and actual 
values.

MSE

Table 2 Hyperparameters of 
the 1D Convolutional Neural 
Network and their ranges for 
optimization
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Gibraltar to a maximum of 15.5 °C in Messina, Italy. Skew-
ness values are predominantly positive, suggesting a slight 
bias towards warmer SSTs in most locations. Negative 
kurtosis values across all sites indicate flatter distributions 
compared to normal, implying fewer extreme SST events.

Surface air temperature (TAS) data for coastal Mediter-
ranean stations, presented in Table 4, further illustrates the 
region’s climatic diversity. Alexandria, Egypt, records the 
highest mean (20.5 °C), while Marseille, France, shows the 
lowest (15.0 °C). Extreme temperatures range from a maxi-
mum of 31.0 °C in Mersin, Turkey, to a minimum of 2.0 °C 
in Marseille. The greatest TAS range is observed in Mar-
seille (26.2 °C), indicating substantial seasonal variability, 
while Gibraltar exhibits the smallest range (14.2 °C), sug-
gesting a more moderate climate.

Statistical analyses findings

Statistical modeling was employed to discern and elucidate 
the Mediterranean’s climate trends, revealing specific tem-
poral and spatial variations in both SST and TAS. Table 5 
presents the key outputs of this modeling stage, providing 
an in-depth comparative analysis of the temporal shifts in 
SST and TAS across the studied stations.

The model identifies breakpoint years, where a notable 
change in the temperature trend is observed, and quantifies 

parts of the Balearic Sea exhibiting cooler SSTs (16–18 °C). 
In contrast, the eastern Mediterranean, including the Levan-
tine Basin and coasts of Egypt and southern Turkey, displays 
warmer SSTs (21–22 °C). This pattern aligns with known 
oceanographic characteristics: the eastern basin retains heat 
due to its enclosed nature and warm water inflows from the 
southeast, while the western basin is moderated by cooler 
Atlantic inflow through the Strait of Gibraltar.

The temporal evolution of SST is depicted in Fig. 5, 
which presents the historical progression of monthly SST 
from 1870 to 2023. A distinct long-term warming trend is 
evident, with recent observations frequently exceeding 
21 °C, a threshold rarely crossed in earlier records. Prior to 
the 1980s, monthly SSTs often fell below 12 °C, but such 
low temperatures have become increasingly rare in recent 
decades. This shift indicates a fundamental change in the 
Mediterranean Sea’s thermal regime, with warming acceler-
ating notably since the late 20th century.

Table 3 provides a detailed overview of SST data for 
specific coastal locations across the Mediterranean. Mersin, 
Turkey, exhibits the highest mean SST (22.4 °C) and maxi-
mum recorded SST (30.4 °C), indicative of the warmer con-
ditions in the eastern basin. Conversely, Marseille, France, 
in the western Mediterranean, shows one of the lower 
mean SSTs (17.3 °C). The range of SST variability differs 
markedly between locations, from a minimum of 8.9 °C in 

Fig. 4 Spatial distribution of average SST in the Mediterranean Sea and surrounding waters (1870–2023)

 

1 3



Modeling Earth Systems and Environment

Table 3 Summary of sea surface temperature (SST) data for Coastal Mediterranean cities (1961–2023)
City Latitude

Longitude
Country Mean Min Max Range Skewness Kurtosis Missing Values

Ajaccio 41.92
8.79

France 18.2 12.7 27.3 14.6 0.3 -1.3 0

Alexandria 31.18
29.95

Egypt 21.4 15.7 28.1 12.4 0.1 -1.5 0

Alicante 38.37
-0.49

Spain 19.2 13.3 27.7 14.4 0.3 -1.3 0

Antalya 36.9
30.8

Turkey 21.4 15.2 29.0 13.8 0.2 -1.4 0

Bellavista 39.93
9.71

Italy 18.7 12.6 27.8 15.2 0.3 -1.3 0

Gibraltar 36.15
-5.35

Gibraltar 18.7 14.9 23.8 8.9 0.3 -1.3 0

Heraklion 35.34
25.18

Greece 20.2 14.7 27.0 12.3 0.2 -1.5 0

Izmir 38.39
27.08

Turkey 19.0 13.2 26.0 12.8 0.2 -1.4 0

Malaga 36.67
-4.48

Spain 18.6 14.7 24.2 9.5 0.4 -1.2 0

Marseille 43.44
5.22

France 17.3 12.2 26.4 14.2 0.4 -1.2 0

Mersin 36.78
34.6

Turkey 22.4 15.1 30.4 15.3 0.2 -1.5 0

Messina 38.2
15.55

Italy 19.7 13.1 28.6 15.5 0.3 -1.4 0

Nice 43.65
7.21

France 17.7 12.7 26.9 14.2 0.4 -1.2 0

Tunis 36.83
10.23

Tunisia 19.5 13.2 28.1 14.9 0.3 -1.4 0

Valencia 39.48
-0.37

Spain 18.8 12.9 27.3 14.4 0.3 -1.4 0

Fig. 5 Historical trends and recent elevations in monthly SST of the Mediterranean Sea (1870–2023)
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Machine learning findings

To further elucidate the spatial patterns emerging from the 
initial statistical modeling, an unsupervised machine learn-
ing approach was employed. Specifically, K-means cluster-
ing was applied to the derived SST and TAS trends (both 
pre-and post-breakpoint), in conjunction with geographical 
coordinates. This multivariate clustering technique aimed to 
identify coherent thermal regimes across the Mediterranean 
basin, effectively synthesizing the complex spatio-temporal 
patterns revealed by the breakpoint analysis. Figure 6 pres-
ents the results of this advanced modeling, revealing four 
distinct clusters that capture the nuanced spatial variability 
of temperature patterns.

Cluster 0 is primarily identified along the coasts of France 
and Spain in the northwestern Mediterranean. In this clus-
ter, stations exhibit cooler SSTs, ranging from 17 to 19 °C 
(see Fig. 4). Cluster 1 is concentrated in the eastern Medi-
terranean, particularly in the Levantine Basin, and along the 
coasts of Turkey and Egypt. Corresponding to the warmest 
SSTs on the map, cities in this cluster often experience SSTs 
exceeding 20 °C, with some areas reaching up to around 

the rate of change both before and after these breakpoints (in 
°C/decade). For SST, the most pronounced post-breakpoint 
increase is recorded in Nice, with a trend shift of 0.0119 °C/
decade, signaling a significant uptick in temperature rise. 
In contrast, the lowest post-breakpoint SST trend is seen in 
Mersin, where the trend actually decreases by -0.0032 °C/
decade. As for TAS, the sharpest post-breakpoint rise occurs 
in Antalya, accelerating to an annual trend of 0.0126 °C/
decade, while Messina exhibits a post-breakpoint decelera-
tion in TAS trend, dropping − 0.0002 °C/decade.

These modeling results reveal that breakpoint years vary 
across the dataset, with the earliest SST breakpoint observed 
in Messina (1987) and the latest in Bellavista (2003). A 
similar temporal range is seen for TAS, with Messina again 
marking the earliest breakpoint in 1985. Notably, 1998 
stands out as the year when several stations concurrently 
observed changes in TAS, marking it as a notable period of 
climatic shift for the region.

Table 4 Summary of surface air temperature (TAS) data for Coastal Mediterranean cities
City Latitude

Longitude
Country Mean Min Max Range Skewness Kurtosis Missing Values

Ajaccio 41.92
8.79

France 15.2 5.9 26.5 20.6 0.2 -1.3 0

Alexandria 31.18
29.95

Egypt 20.5 12.1 29.3 17.2 0.0 -1.4 31

Alicante 38.37
-0.49

Spain 18.1 9.0 28.2 19.2 0.2 -1.3 0

Antalya 36.9
30.8

Turkey 18.8 6.7 30.8 24.1 0.1 -1.3 4

Bellavista 39.93
9.71

Italy 17.5 8.1 29.8 21.7 0.3 -1.3 14

Gibraltar 36.15
-5.35

Gibraltar 18.4 11.9 26.1 14.2 0.2 -1.3 10

Heraklion 35.34
25.18

Greece 18.9 9.6 28.6 19.0 0.1 -1.4 0

Izmir 38.39
27.08

Turkey 18.0 5.4 30.7 25.3 0.1 -1.4 2

Malaga 36.67
-4.48

Spain 18.6 10.2 28.3 18.1 0.3 -1.3 0

Marseille 43.44
5.22

France 15.0 2.0 28.2 26.2 0.1 -1.2 0

Mersin 36.78
34.6

Turkey 19.2 6.1 31.0 24.9 0.0 -1.3 26

Messina 38.2
15.55

Italy 18.6 8.4 29.5 21.1 0.2 -1.3 15

Nice 43.65
7.21

France 15.6 4.7 27.4 22.7 0.2 -1.2 0

Tunis 36.83
10.23

Tunisia 19.1 9.1 30.5 21.4 0.2 -1.3 17

Valencia 39.48
-0.37

Spain 17.0 4.7 27.7 23.0 0.1 -1.2 2
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each identified cluster was conducted. This analysis aimed 
to clarify the temporal dynamics of temperature changes 
before and after the climatic breakpoints identified in the 
initial statistical modeling. Figure 7 presents this compre-
hensive analysis through a series of four box plots (a-d), 
each corresponding to a distinct cluster and temporal phase.

Subplot (a) of Fig. 7 reveals the heterogeneity of SST 
trends before the breakpoint across clusters. Notably, Clus-
ter 0, primarily associated with the northwestern Mediter-
ranean (as shown in Fig. 6), exhibits the highest variability, 
including some negative trends. In contrast, Clusters 1 
and 3, representing the eastern and central Mediterranean 
respectively, show more constrained interquartile ranges, 
suggesting greater consistency in pre-breakpoint SST trends 
within these regions.

22 °C. Cluster 2 encompasses regions within the western 
Mediterranean, such as the Alboran Sea. This cluster’s SSTs 
have cooler temperatures than those seen in Cluster 1 yet 
slightly warmer than Cluster 0. Cluster 3 spans the cen-
tral Mediterranean, including parts of the Tyrrhenian Sea, 
Ionian Sea, and Strait of Sicily. This cluster’s SSTs, while 
slightly warmer than Cluster 0 and Cluster 2, are cooler than 
Cluster 1 SSTs. The map in Fig. 6 highlights the effective 
differentiation of temperature regimes across the Mediter-
ranean. It delineates a clear gradient from the cooler west-
ern Mediterranean (Clusters 0 and 2) to the warmer eastern 
regions (Cluster 1), punctuated by the transitionally moder-
ate temperatures of the central Mediterranean (Cluster 3).

Building upon the clustering analysis presented in Fig. 6, 
a more detailed examination of SST and TAS trends within 

Table 5 Comparative analysis of SST and TAS breakpoints and trends across Mediterranean cities
City Breakpoint for SST Breakpoint for 

TAS
SST trend before 
Breakpoint

SST trend after 
Breakpoint

TAS trend before 
Breakpoint

TAS trend 
after 
Breakpoint

Valencia 1994 1994 0.001 0.0026 0.0096 0.0114
Alicante 1994 1986 0.0013 0.0047 0 0.0057
Malaga 1994 1994 0.0002 0.0037 0.005 0.0063
Gibraltar 1994 1986 0.0013 0.0042 0.0036 0.0027
Marseille 1997 1989 -0.0001 0.0094 0.0042 0.0075
Nice 2000 1987 -0.0007 0.0119 0.0057 0.0073
Messina 1987 1985 -0.0054 0.0049 0.0043 -0.0002
Ajaccio 2000 1987 -0.0043 0.0113 -0.0024 0.0097
Bellavista 2003 1994 -0.0039 0.0063 -0.0046 0.0063
Heraklion 1998 1998 -0.0034 0.0024 -0.0071 0
Izmir 1998 1998 -0.0026 0.0002 -0.0003 0.0023
Antalya 1993 1998 -0.0085 0.0047 -0.0148 0.0126
Mersin 1998 1992 -0.0044 -0.0032 0.0098 0.0052
Alexandria 1993 1998 -0.0035 0.0052 -0.0017 0.0072
Tunis 1987 1994 -0.006 0.0051 0.003 0.0007

Fig. 6 K-Means climatic clustering of the studied locations across the Mediterranean
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Fig. 7 Decadal variations in SST and TAS across Mediterranean clusters (°C/decade) (a) SST trend before breakpoint. (b) SST trend after break-
point. (c) TAS trend before breakpoint. (d) TAS trend after breakpoint
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Figure 8 (a) illustrates the anticipated annual SST anomaly, 
displaying a gradual upward trend with the CNN model pre-
dicting the year 2034 as the point where the SST anomaly 
is closest to a 2 °C increase, signifying a significant warm-
ing milestone. A further escalation is projected, with the 
SST anomaly nearing a 2.5 °C increase by the year 2043, 
indicating an accelerated rate of change. Figure 8 (b) delin-
eates the predicted annual TAS anomaly, showing a similar 
progressive increase. The model forecasts the year 2031 as 
the juncture at which the TAS anomaly approaches a 2 °C 
increase. The TAS anomaly is expected to continue rising, 
approximating a 2.5 °C increase around 2047, mirroring the 
escalating trend observed in SST predictions.

For Cluster 1, the SST prediction model was streamlined 
with a single convolutional layer equipped with 64 filters 
and a kernel size of 4, fine-tuned with a learning rate of 
0.005167. This model achieved an MSE of 0.005808 on the 
test data. The TAS-optimized model incorporated two con-
volutional layers, the first with 96 filters and a kernel size 
of 8, followed by a second layer with 32 filters and a kernel 
size of 6. The learning rate for this model was optimized 
at 0.000723. On the test data, the TAS model reported an 
MSE of 0.005594. The two CNN models were employed to 
forecast annual SST and TAS anomalies for the period span-
ning from 2024 to 2050, benchmarked against the baseline 
year 2000. Figure 9 (a) presents the forecasted annual SST 
anomaly, indicating a steady upward trend. The CNN model 
pinpoints the year 2047 as the moment when the SST anom-
aly will approximate a 1.5 °C increase over the baseline, 
marking a critical threshold in warming trends. Figure 9 (b) 
showcases the projected annual TAS anomaly, revealing a 
higher pattern of escalation. The year 2029 is identified as 
the threshold year when the TAS anomaly is expected to be 
closest to a 2 °C increase, highlighting the rapid progression 
of warming. This upward trend in TAS is anticipated to con-
tinue, with a 2.5 °C increase likely by 2045, consistent with 
the increasing trajectory noted in SST projections.

For Cluster 2, the SST prediction model was refined with 
a two-layer setup. This model’s first and second convolu-
tional layers both feature 256 filters with kernel sizes of 8 
and 10, respectively. The model’s learning rate was finely 
tuned to 0.000846. This SST model reported an MSE of 
0.0081 on the test data. The TAS-optimized model imple-
mented a three-layer convolutional architecture. The first 
layer consists of 160 filters with a kernel size of 2, the sec-
ond layer has 96 filters with a kernel size of 10, and the 
third layer comprises 224 filters with a kernel size of 4. An 
optimal learning rate of 0.004071 was determined for the 
model. On the test dataset, the TAS model achieved an MSE 
of 0.008386. The two CNN models were employed to fore-
cast annual SST and TAS anomalies for the period span-
ning from 2024 to 2050, benchmarked against the baseline 

Post-breakpoint SST trends, illustrated in subplot (b), 
demonstrate a convergence across clusters, indicative of 
a more uniform warming pattern throughout the Mediter-
ranean basin after the identified breakpoints. This conver-
gence aligns with the accelerated warming trend observed 
in the long-term SST data. Interestingly, Cluster 0 exhibits 
the most pronounced post-breakpoint increase, despite its 
pre-breakpoint variability, suggesting a significant shift in 
the thermal regime of the northwestern Mediterranean.

TAS trends, depicted in subplots (c) and (d), reveal dis-
tinct patterns before and after the breakpoint. Pre-break-
point TAS trends (subplot c) show considerable variability 
in Clusters 0 and 1, while Clusters 2 and 3 exhibit more uni-
form, slightly positive trends. Post-breakpoint (subplot d), 
all clusters demonstrate positive TAS trends, with Cluster 
0 again showing the most substantial increase. This pattern 
corroborates the overall warming trend observed in the TAS 
data presented in Table 4.

The consistent upward trend in both SST and TAS across 
all clusters post-breakpoint, as evident in Fig. 7, provides 
strong evidence for a basin-wide warming trend in the Med-
iterranean. The analysis suggests that while pre-breakpoint 
trends were spatially heterogeneous, post-breakpoint warm-
ing has been more uniform across the basin, albeit with 
varying intensities among the identified clusters.

Building upon the insights gained from the linear trend 
analysis and clustering, a more sophisticated modeling 
approach was implemented to capture the complex, non-
linear patterns in SST and TAS anomalies. One-dimensional 
Convolutional Neural Networks (1D CNNs) were employed 
to complement the linear analysis, offering a nuanced explo-
ration of potential accelerations or deviations from the 
established linear trends identified earlier. For each clus-
ter delineated in Fig. 6, two distinct 1D CNN models were 
developed and optimized: one for SST and another for TAS 
anomaly predictions. These models were trained on histori-
cal data and subsequently used to forecast annual anomalies 
from 2024 to 2050. This approach allows for a more granu-
lar understanding of the temporal evolution within each spa-
tial cluster identified in our earlier modeling.

For Cluster 0, the SST-optimized model utilized a single-
layer setup with 128 filters and a kernel size of 10, with a 
learning rate of 0.000109. This model achieved an MSE of 
0.0185. The TAS prediction model was fine-tuned through 
two convolutional layers with optimized parameters: the 
first layer with 224 filters and a kernel size of 8, and the 
second layer with 64 filters and a kernel size of 4, supported 
by an optimal learning rate of 0.000841. This configura-
tion yielded an MSE of 0.0191 on the test dataset. The two 
CNN models were employed to forecast annual SST and 
TAS anomalies for the period spanning from 2024 to 2050, 
benchmarked against the baseline average till the year 2000. 
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critical juncture in the region’s warming pattern. The projec-
tions suggest a continued rise in SST. Figure 10 (b) depicts 
the anticipated annual TAS anomaly trends, which exhibit 
a more pronounced upward trajectory. The TAS anomaly 
is forecasted to approach a 2 °C increase as early as 2031, 

year 2000. Figure 10 (a) displays the predicted annual SST 
anomaly trends for Cluster 2, revealing a consistent increase 
over the forecasted period. The 1D CNN model estimates 
that by the year 2043, the SST anomaly is likely to reach a 
1.5 °C increase relative to the 2000 baseline, signifying a 

Fig. 8 CNN projected annual SST and TAS anomalies for cluster 0 (2024–2050). (a) Forecasted annual SST anomaly. (b) Forecasted annual TAS 
anomaly
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For Cluster 3, the SST-optimized model employed a 
complex four-layer convolutional structure, with the initial 
layer comprising 256 filters with a kernel size of 4, followed 
by subsequent layers featuring 64, 224, and again 64 filters, 
with kernel sizes of 6, 4, and 2, respectively. The learning 

indicating an expedited warming trend. The increase is 
projected to persist, with the TAS anomaly anticipated to 
approximate a 2.5 °C increase by 2039. Moreover, the pro-
jections suggest a continued rise in TAS with the anomaly 
expected to exceed a 3 °C increase by 2050.

Fig. 9 CNN projected annual SST and TAS anomalies for cluster 1 (2024–2050). (a) Forecasted annual SST anomaly. (b) Forecasted annual TAS 
anomaly

 

1 3



Modeling Earth Systems and Environment

TAS model demonstrated its effectiveness with an MSE of 
0.00507 on the test data. Figure 11 (a) displays the predicted 
yearly anomalies in SST, ascertained by a CNN model for 
Cluster 3. The projections show a horizontal trend, with the 
model forecasting the year 2050 as the turning point when 

rate was fine-tuned to an optimal value of 0.000499, with 
the model yielding an MSE of 0.00927 on the test data. Con-
currently, the TAS prediction model was configured with a 
single-layer architecture equipped with 128 filters of a ker-
nel size of 10, optimized for a learning rate of 0.00238. This 

Fig. 10 CNN projected annual SST and TAS anomalies for cluster 2 (2024–2050). (a) Forecasted annual SST anomaly. (b) Forecasted annual TAS 
anomaly
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suggesting a possible stabilization in the TAS anomaly trend 
for this cluster.

These CNN-based projections provide a nuanced view 
of potential future climate trajectories in the Mediterranean, 
building upon the spatial patterns identified in the cluster-
ing analysis and the temporal trends observed in the initial 

the SST anomaly is expected to reach a 1.5 °C increase 
compared to the baseline. On the contrary, Fig. 11 (b) illus-
trates the anticipated yearly anomalies in TAS, following a 
more stable pattern. In contrast to the SST forecast, no sig-
nificant increase is detected within the timespan considered, 

Fig. 11 CNN projected annual SST and TAS anomalies for cluster 3 (2024–2050). (a) Forecasted annual SST anomaly. (b) Forecasted annual TAS 
anomaly
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trends in SST, while eastern stations like Mersin, Izmir, and 
Heraklion exhibited more even trends. This underscores the 
localized nature of these changes and the need for region-
specific assessments. Regarding TAS, stations in the north-
ern Mediterranean, such as Nice, Ajaccio, and Marseille, 
also experienced the most pronounced post-breakpoint 
increasing trends. Only one station (Antalya) shared a simi-
lar high-increasing pattern with these northern stations. On 
the other hand, stations in the central Mediterranean, such 
as Messina and Tunis, exhibited stable temperature trends. 
These findings suggest that the colder water areas in the 
northern Mediterranean experienced more severe warming 
in both SST and TAS, contrasting with the warmer eastern 
Mediterranean region. While the eastern Mediterranean still 
experienced some warming, it was milder and more sub-
dued compared to the northern part, underscoring signifi-
cant spatial variability in the magnitude and rate of climatic 
changes across the Mediterranean basin. These results are 
corroborated by studies such as (Reynolds et al. 2007) and 
(Pisano et al. 2020), which confirm an overarching warming 
trend across the basin, documenting an annual temperature 
increase ranging from 0.007 to 0.006 °C/year, substantiat-
ing the pervasive nature of warming, albeit at a rate that is 
notably more accelerated than what has been observed here. 
Conversely, a contrasting spatial distribution of temperature 
increases is revealed when comparing with the findings of 
(Von Schuckmann et al. 2019), who identified the Eastern 
Mediterranean, particularly near Rhodes, Crete, and the 
northern Aegean Sea, as regions experiencing the highest 
warming rates of up to 0.055–0.06 °C/year, while the analy-
sis in this work indicates that the most pronounced warming 
is occurring in the colder northwestern waters near France, 
with lesser warming observed in the Eastern Mediterranean.

The integration of machine learning modeling, par-
ticularly the use of 1D CNNs, significantly enhances the 
understanding of climatic patterns by capturing non-lin-
earities and complex interactions that traditional statistical 
methods might overlook. The clustering algorithm initially 
segmented the Mediterranean into distinct climatic zones, 
allowing for tailored modeling approaches within each clus-
ter. This segmentation was crucial as it accounted for the 
spatial heterogeneity that characterizes the Mediterranean 
climate. The CNN models were then specifically trained for 
each cluster to predict SST and TAS anomalies. This cluster-
specific modeling is a notable advancement as it acknowl-
edges and incorporates the inherent variability within the 
Mediterranean basin, providing more accurate and localized 
modeling. This modeling approach revealed four distinct 
climatic clusters within the Mediterranean region, each 
characterized by unique SST and TAS patterns and projec-
tions. These projections suggest a steadier, yet significant 
warming trend that aligns with regional atmospheric and 

statistical modeling. The varied projections across clusters 
underscore the spatial heterogeneity of climate change 
impacts in the region. While all clusters indicate an overall 
warming trend, the differences in the magnitude and tim-
ing of SST and TAS anomalies highlight the complexity 
of regional climate dynamics. This detailed understanding 
is crucial for developing tailored adaptation strategies to 
mitigate the diverse impacts of climate change across the 
Mediterranean.

Discussion

The overarching goal of this study is to elucidate the intri-
cate patterns and dynamics directing climate trends within 
the Mediterranean region, a domain characterized by sig-
nificant spatial and temporal heterogeneity. By employing 
a synergistic approach that harmonizes observational data 
analysis, statistical modeling techniques, clustering algo-
rithms, and advanced machine learning models, this study 
aims to unravel the complexities inherent in this climatic 
system, offering a holistic perspective on the region’s cli-
matic evolution.

The spatial distribution of SSTs across the Mediterranean 
basin serves as a foundational observation, revealing distinct 
thermal regimes that align with well-established oceano-
graphic patterns. The eastern regions, encompassing the 
Levantine Basin and adjacent coastal areas, exhibit consis-
tently warmer temperatures compared to the cooler western 
and central Mediterranean zones, which are consistent with 
other works such as (Pastor et al. 2020) and (Aboelkhair et 
al. 2023). This spatial variability is rooted in the interplay 
of various factors, including water inflow characteristics, 
basin morphology, and regional atmospheric dynamics, col-
lectively shaping the unique thermal landscapes within the 
Mediterranean (Estournel et al. 2021). However, the histori-
cal progression of monthly SSTs unveils a striking upward 
shift, with recent observations frequently exceeding 21 °C, 
a range that was rarely recorded prior to the 1980s. This pro-
nounced warming trend, particularly evident since the late 
20th century, underscores the profound impact of global cli-
mate change on the Mediterranean’s thermal regime.

To delve into the temporal dynamics underpinning these 
observed changes, statistical modeling techniques were 
employed to identify breakpoint years when notable shifts 
in temperature trends occurred. The varying breakpoint 
years across monitoring stations highlight the spatial het-
erogeneity in climatic shifts within the region, reflecting 
the intricate interplay between local environmental factors 
and large-scale climatic processes. Stations in the northern 
Mediterranean, such as Nice, Ajaccio, and Marseille, expe-
rienced the most pronounced post-breakpoint increasing 
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Furthermore, the findings of this study are consistent 
with broader literature, reinforcing the validity of the mod-
eling approach. The projections for the eastern Mediterra-
nean align with those reported by (Zittis et al. 2022), who 
estimated anomalies of 2.5–3 °C above the average tem-
peratures recorded during 1986–2005. Similarly, the study’s 
results correspond with (Cos et al. 2022), noting higher 
temperature anomalies in the northwestern Mediterranean 
compared to the Levant. However, the projections from 
this analysis suggest even higher temperature increases, 
potentially reaching up to 3.5 °C in the northwestern Medi-
terranean and 1.5 °C in the eastern Mediterranean. This dis-
crepancy underscores the importance of continuous model 
refinement and regional assessments to accurately capture 
the nuances of climate change impacts, ensuring that adap-
tation strategies are based on the most precise and up-to-
date information.

Conclusions

This study provides a comprehensive analysis of historical 
trends in SST and TAS across 15 Mediterranean coastal sta-
tions, utilizing data spanning over a century. By integrat-
ing data preprocessing, statistical modeling, and advanced 
machine learning techniques, the research offers a robust 
modeling framework for understanding and projecting 
climate dynamics within the Mediterranean region. The 
findings underscore the profound impact of global climate 
change on the Mediterranean’s thermal regime, with recent 
observations frequently exceeding historical norms. The sta-
tistical modeling phase, employing the Pettitt test and linear 
trend analysis, revealed significant temporal shifts in SST 
and TAS across various stations. Stations in the northern 
Mediterranean, such as Nice, Ajaccio, and Marseille, dem-
onstrated the highest post-breakpoint increases in both SST 
and TAS, indicating pronounced localized warming. In con-
trast, central Mediterranean stations like Messina and Tunis 
exhibited more stable temperature trends, highlighting the 
region’s spatial heterogeneity. Machine learning insights 
further elucidated these spatial patterns. The K-means clus-
tering algorithm effectively segmented the Mediterranean 
into four distinct climatic clusters, each characterized by 
unique SST and TAS trends. This segmentation allowed 
for the tailored application of 1D CNNs to provide detailed 
projections of SST and TAS anomalies for each cluster. The 
CNN models offered nuanced insights, revealing significant 
regional differences in the rate and magnitude of warming. 
For instance, clusters encompassing the cooler northwest-
ern Mediterranean (Cluster 0) and transitional temperature 
zones (Cluster 2) are projected to experience rapid increases 
in SST and TAS anomalies, surpassing critical warming 

oceanic dynamics. For instance, in the western Mediterra-
nean (Cluster 2), the SST model projects anomalies reach-
ing 1.5 °C by 2043, while the TAS model predicts a more 
rapid increase, with anomalies reaching 3 °C by 2050. This 
differential warming rate between SST and TAS highlights 
the complex interaction between sea and air temperatures, 
indicating that land-based temperatures may be more sensi-
tive to climatic changes. This emphasizes the need for tar-
geted climate adaptation strategies that address both marine 
and terrestrial ecosystems to mitigate the impacts of such 
differential warming.

The central Mediterranean (Cluster 3) demonstrates the 
most stable projections. The SST model suggests a gradual 
increase, reaching 1.5 °C by 2050, while the TAS model 
indicates minimal change over the forecast period. This 
relative stability could be due to regional factors such as 
specific oceanic currents, local atmospheric conditions, or 
topographical features that buffer these areas from more 
extreme temperature changes. However, this stability under-
scores the importance of continuous monitoring to detect 
any emerging trends, as even regions with currently stable 
conditions could experience sudden changes due to shifting 
climatic dynamics.

Comparatively, the northwestern Mediterranean (Cluster 
0) is projected to experience significant warming trends. 
The SST-optimized CNN model forecasts anomalies 
approaching 3 °C above the 2000 average by 2050, and the 
TAS model predicts a similar trajectory, indicating a critical 
warming threshold around 2034 for SST and 2031 for TAS. 
This rapid increase in temperature anomalies highlights the 
severe impact of climate change on this region, necessitat-
ing urgent adaptation measures. The significant warming 
in this cluster contrasts sharply with the more moderate 
increases observed in the eastern Mediterranean (Cluster 1), 
where the SST model projects a 1.5 °C increase by 2047 and 
the TAS model indicates a 2 °C rise by 2029 and 2.5 °C by 
2045. The differences between these clusters underscore the 
spatial heterogeneity of climate impacts within the Mediter-
ranean basin.

The CNN-based projections provide a nuanced view of 
future climate trajectories, enhancing the spatial and tem-
poral resolution of our climate models. By predicting the 
timing and magnitude of critical warming thresholds, these 
models are particularly valuable for developing proactive 
and region-specific climate adaptation strategies. For exam-
ple, the identification of a 2 °C SST anomaly around 2034 in 
Cluster 0 and a similar TAS anomaly by 2031 underscores 
the urgent need for early intervention in these regions. Simi-
larly, the moderate but steady warming trend in Cluster 1 
suggests a need for ongoing adaptation measures that can 
accommodate gradual changes over time.
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adaptation, distribution and reproduction in any medium or format, 
as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons licence, and indicate 
if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.
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