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A B S T R A C T

Social choice rules can be defined or derived by minimizing distance-based objective functions. One problem
with this approach is that any social choice rule can be derived by selecting an appropriate distance function.
Another problem comes from the computational difficulty of determining the solution of some social choice
rules. We provide a general positive indifference result when looking at expected average distances by showing
that on ‘average’ each social choice rule performs equally well with respect to a very large class of distance
functions if the number of voters is large. Our result applies also to the frequently employed Kendall 𝜏,
Spearman rank correlation and Spearman footrule ‘distance functions’.
1. Introduction

The debate between Borda and Condorcet at the end of the 18th
century demonstrated well the challenge in choosing a widely accepted
social choice rule or more restrictively a voting rule, where the for-
mer one selects an ordering of the alternatives, while the latter one
only a winning alternative (or a set of winning alternatives). From
an axiomatic point of view (Arrow, 1951) settled the problem by
terminating the search for an ‘ideal’ social choice rule (SCR). In his
famous impossibility theorem he showed that if there are at least three
alternatives (or candidates), there does not exist a SCR fulfilling four
natural requirements.

In this paper we follow an alternative route to the axiomatic one,
the ‘operations research approach’, which strives for selecting SCRs
as solutions to appropriately defined distance minimization problems.
The latter approach is either employed to define certain rules, like the
Kemény–Young method (Kemény, 1959), or results in known SCRs, like
the Borda count (Dwork et al., 2002). Other SCRs defined directly as
solutions of optimization problems are Slater’s and Dogson’s rules both
using the Kendall 𝜏 distance (see Eckert and Klamler (2011)).

If there is no natural distance function related to the given prefer-
ence aggregation problem, then we can choose from plenty of distance
functions. The problem was underlined by Lehrer and Nitzan (1985)
and by Campbell and Nitzan (1986) who showed that basically any
voting rule can be distance rationalized. This result can be regarded as
a negative result like Arrow’s impossibility theorem. The approach of
minimizing the distance from a set of profiles with a clear winner such
as the unanimous winner, the majoritarian winner, or the Condorcet
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winner has been developed further by Elkind et al. (2015) among
others, and a survey of these results is given by Elkind and Slinko
(2015). Bednay et al. (2017) offered a ‘dual’ approach based on distance
maximization from the closest dictator in which the dictatorial rules
are taken as the benchmark. The extension of Hadjibeyli and Wilson
(2019) covered both voting rules and SCRs as two extreme cases in
their framework, which allows as a social outcome a linear ordering
of a subset of all alternatives. Kadziński et al. (2022) extended the
preference aggregation problem to stochastic preferences.

From a more general point of view, a SCR provides a solution to
the problem of finding a common ranking for a group, also known as
the rank aggregation problem. Cook (2006) gave a general overview of
the axiomatic and distance based preference aggregation problem. In
addition, he established a ‘crossover’ link between rank aggregation and
multi-criteria decision making. The main point is that preferences can
be represented by pairwise comparison matrices (PCM), and then the
bridge to methods in operations research relying on PCMs is evident.
For instance, Saaty (1980) introduced his method of analytic hierarchy
process and provided methods for weight assignments to alternatives
based on PCMs, which can be used to derive a social ranking of
alternatives. For example, Bozóki et al. (2016) determine a ranking of
number one ranked male tennis players in the open era by employing
incomplete PCMs.

Besides the axiomatic and distance based comparison of SCRs and
voting rules there are other meaningful approaches. Burka et al. (2022)
followed a quasi-experimental approach by teaching neural networks
on a set of selected profiles. By finding the right and credible incentives
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for the participants (Ambuehl & Bernheim, 2024) compared voting
rules in an experiment. Both works found that the Borda count is the
most salient voting rule. Montes et al. (2020) established a link between
voting rules and stochastic orderings.

In this paper we address the expected average performance of SCRs
in case of a large number of voters. We find that for a large class
of a combination of distance functions and probability distributions
over the set of profiles the expected objective function value of any
anonymous SCR tends to the same value. Hence, in contrast to the result
in the deterministic setting stating that different distance functions lead
to different SCRs we arrive at the conclusion that under appropriate
conditions considering the expected average asymptotic performance
all SCRs are equally good. We give a necessary and sufficient condition
for our ‘indifference result’, where by indifference we mean that the
selection of the SCR does not really matter if the number of voters
is sufficiently large. We can interpret this result in favor of the very
simple plurality rule, which is the most frequently employed one in
elections, while based on its axiomatic properties it is one of the most
widely criticized rules. The negative opinion of social choice theorists
about the plurality rule are highlighted in ‘And the looser is ... plurality
voting’, by Laslier (2011).

Even if our indifference result does not hold we can bound the ex-
pected performances of anonymous SCRs by the expected performances
of two appropriately selected constant rules, where a SCR is a constant
rule if it selects the same linear ordering for any profile.

From the computational point of view the approximation results
of SCRs by each other are related to the worst case analysis. This
question is also important since some rules are difficult to calculate,
like the Kemény–Young method, and therefore the best approximat-
ing polynomial time rule can serve as a replacement. Fagin et al.
(2016) showed in their elaborate contribution that the Borda count,
the median rank based SCR, the Copeland method and the Kemény–
Young method are constant factor approximations of each other, while
this is not the case for the plurality rule, the single transferable vote
rule and the Simpson–Kramer minmax method. In their work they
considered the Kendall 𝜏, the Spearman footrule and the Spearman rank
orrelation distances as many other studies (e.g. Diaconis & Graham,
977; Monjardet, 1997). These three distance functions are included
n the large class of distance functions for which our result holds.
n contrast to the worst case analysis in this paper we carry out an
verage case analysis. Theorem 2 provides an implicit necessary and
ufficient condition for our indifference result to hold, which requires
hat the expected average distances to all constant SCRs have to be
he same. Two sufficient conditions for our indifference result to hold
re given in Corollaries 1 and 2. The first one works for the impartial
ulture (IC) case in which each preference profile is equally likely and
he Kendall 𝜏 distance among other distances, while the second one
orks for any culture in which the distribution of alternatives is (at

east asymptotically) uniform and the distance function is a function
f the rank differences of alternatives. Note that among many other
istributions and distance functions Corollary 2 is applicable for the
wo most frequently applied cultures, the IC case and the impartial
nonymous culture (IAC) case in which each anonymous preference
rofile is equally likely, and also for both the Spearman footrule and
he Spearman rank correlation distances.

We would like to emphasize that SCRs are used, far more widely
han in the traditional social choice context, especially in areas in which
ankings have to be produced based on various inputs. In general,
ggregating rankings can be also regarded as combining inputs from
ultiple sources like in automated decision making, machine learning

e.g. Volkovs & Zemel, 2014) or database middleware (e.g. Masthoff,
004), or in the determination of the results in sport competitions
e.g. Csató, 2023, and Ausloos, 2024). The problem also arises in coding
heory since the alternatives can be regarded as letters and the rankings
s strings, and the distance function can be utilized in error detec-

ion (Bortolussi et al., 2012). Nowadays, the problem of aggregating 𝑑

2 
rankings also emerges in the link analysis in networks like the world
wide web, which lie at the heart of web search algorithms (Borodin
et al., 2005). Therefore, a partially parallel literature emerged, which
sometimes uses similar procedures without referring to the procedures
already known in social choice (e.g. the MedRank algorithm and the
Bucklin rule) and that, more importantly, in a pragmatic way the
problem at hand determines the appropriate choice of a distance, while
the social choice literature is more focused on general principles.

From another point of view in the social choice context the number
of voters is usually significantly larger than the number of candidates,
while in the applications in computer science and operations research
the number of alternatives is frequently larger than the number of
experts (or voters).

The structure of the paper is as follows. Section 2 introduces the
basic notations, Section 3 presents our main asymptotic result and Sec-
tion 4 contains some relevant examples. Finally, Section 5 concludes.

2. The framework

Let 𝐴 = {𝑎1,… , 𝑎𝑚} be the set of alternatives, where 𝑚 ≥ 2, and
𝑁 = {1,… , 𝑛} be the set of voters. We shall denote by  the set of all
linear (or strict preference) orderings (irreflexive, transitive and total
binary relations) on 𝐴 and by 𝑛 the set of all preference profiles. If

= (≻1,… , ≻𝑛) ∈ 𝑛 and 𝑖 ∈ 𝑁 , then ≻𝑖 is the preference ordering of
voter 𝑖 over 𝐴.

Definition 1. A mapping 𝐹 ∶ 𝑛 →  that selects a linear ordering is
called a social choice rule, henceforth, SCR.

At this point we introduce the Borda count and the constant rule to
illustrate the notions of SCRs. The Borda count, briefly denoted by 𝐵𝐶,
orders the alternatives based on the sum of their ranks. In particular, an
alternative with a lower sum of ranks is preferred over an alternative
with a higher sum of ranks. We shall denote by 𝑟𝑘[𝑎, ≻] the rank of
alternative 𝑎 in the ordering ≻∈  (i.e. 𝑟𝑘[𝑎, ≻] = 1 if 𝑎 is the top
alternative in the ranking ≻, 𝑟𝑘[𝑎, ≻] = 2 if 𝑎 is second-best, and so
on). Clearly, there exists profiles for which some alternatives have the
same sums of ranks. Therefore, the essential part in the definition of
the Borda count does not determine a strict preference for all profiles.
Hence, to arrive at a Borda count type SCR we employ for simplicity
a so-called lexicographic tie-breaking rule that orders alternatives with
the same sum of ranks following an exogenously given linear ordering
of alternatives 𝜏. Of course, ties can be broken in many other ways.
Then the SCR 𝐵𝐶 is the Borda count if for all 𝛱 ∈ 𝑛 and all pairs of
distinct alternatives 𝑎 and 𝑏 we have

𝑎 𝐵𝐶𝜏 (𝛱) 𝑏 ⇔
𝑛
∑

𝑖=1
𝑟𝑘[𝑎, ≻𝑖] <

𝑛
∑

𝑖=1
𝑟𝑘[𝑏, ≻𝑖] or

𝑛
∑

𝑖=1
𝑟𝑘[𝑎, ≻𝑖] =

𝑛
∑

𝑖=1
𝑟𝑘[𝑏, ≻𝑖] and 𝑎𝜏 𝑏.

The trivial constant rule, denoted by 𝐶𝑅, assigns to each profile the
same fixed preference relation. Formally, let ≻∗∈  be a fixed linear
ordering and we define the constant rule by 𝐶𝑅(𝛱) =≻∗ for all 𝛱 ∈ 𝑛.

Let  = 𝑛 be the set of SCRs and 𝑎𝑛 ⊂  be the set of anonymous
SCRs. Since for anonymous SCRs only the numbers 𝑛1, 𝑛2,… , 𝑛𝑚! ∈ N of
occurrences of the respective enumeration of the orderings 𝑜1, 𝑜2,… , 𝑜𝑚!
n a preference profile matter, where 𝑛1+𝑛2+⋯+𝑛𝑚! = 𝑛, the necessary

information of an anonymous preference profile 𝛱 ∈ 𝑛 to determine
𝐹 (𝛱) is contained in the anonymous profile 𝜋 = (𝑛1, 𝑛2,… , 𝑛𝑚!) ∈ N𝑚!

𝑛 ,
hich we briefly also call a profile and we write 𝐹 (𝜋) = 𝐹 (𝛱) with
slight abuse of notation. We shall denote by 𝑛 = N𝑚!

𝑛 the set of
nonymous preference profiles.

We shall denote by 𝑑 ∶  ×  → R+ a quasidistance function
r quasimetric on the set of preferences, henceforth briefly a distance
unction, which satisfies (i) 𝑑(≻,≻′) = 0 if and only if ≻=≻′, (ii)

′ ′ ′ ′ ′′
(≻,≻ ) = 𝑑(≻ ,≻) for any ≻,≻ ∈  , and (iii) 𝑑(≻,≻ ) ≤ 𝑐(𝑑(≻,≻
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) + 𝑑(≻′′, ≻′)) for any ≻,≻′≻′′∈  for a given 𝑐 > 0 (also called
a 𝑐-relaxed triangle inequality). The three most frequently employed
distance functions in the preference aggregation framework are

𝑑𝐾 (≻,≻′) = #{(𝑎𝑖, 𝑎𝑗 ) ∈ 𝐴2 ∣ 𝑎𝑖 ≻ 𝑎𝑗 and 𝑎𝑗 ≻′ 𝑎𝑖}, (2.1)

𝑑1(≻,≻′) =
𝑚
∑

𝑖=1
|𝑟𝑘[𝑎𝑖, ≻] − 𝑟𝑘[𝑎𝑖, ≻′]|, (2.2)

𝑑2(≻,≻′) =
𝑚
∑

𝑖=1
(𝑟𝑘[𝑎𝑖, ≻] − 𝑟𝑘[𝑎𝑖, ≻′])2, (2.3)

where 𝑑𝐾 and 𝑑1 are metrics (𝑐 = 1) and 𝑑2 is just a quasimetric with
𝑐 = 2. The distance functions defined by (2.1), (2.2) and (2.3) are
known in the literature as the Kendall 𝜏 (or Kemény), the Spearman
footrule and the Spearman rank correlation distances.

We extend 𝑑 to distances between profiles and preferences in an
additive way:

𝑑(𝛱,≻) = 1
𝑛

𝑛
∑

𝑖=1
𝑑(≻𝑖, ≻),

where 𝛱 = (≻1,… , ≻𝑛). The average distance between an anonymous
profile 𝜋 ∈ 𝑛 and a preference relation 𝑜𝑘 equals

𝑑(𝜋, 𝑜𝑘) =
𝑚!
∑

𝑗=1

𝑛𝑗
𝑛
𝑑(𝑜𝑗 , 𝑜𝑘).

We shall denote by 𝑝𝑖𝑗 the probability that voter 𝑖 ∈ 𝑁 chooses
ordering 𝑜𝑗 . We assume that the probability distributions of the voters
are independent. Let

𝑝𝑗 =
1
𝑛

𝑛
∑

𝑖=1
𝑝𝑖𝑗

e the probability of the occurrence of ordering 𝑜𝑗 . Note that
𝑛
𝑖=1

∑𝑚!
𝑗=1 𝑝𝑖𝑗 = 𝑛, and therefore (𝑝𝑗 )𝑚!𝑗=1 specifies a probability distri-

bution.

3. Limits for general distance functions

In this Section we prove our main theorem about the limit of
expected average distances of anonymous SCRs.

Let random variable 𝑋(𝑛)
𝑗 ∶ 𝑛 → [0, 1] stand for the proportion

f voters with ordering 𝑜𝑗 in a profile. The vector of these random
ariables will be denoted by 𝐗(𝑛) for a given 𝑛. For notational con-
enience we assume that the probability distribution of the orderings
𝑜𝑗 )𝑚!𝑗=1 is the same for any 𝑛, and therefore we do not need superscripts
or denoting 𝑝𝑗 .1

roposition 1. Let 𝜀 > 0 be given. Then for any 𝛿 > 0 there exists an 𝑛0
uch that for any 𝑛 ≥ 𝑛0 we have
(

|𝑋(𝑛)
1 − 𝑝1| < 𝜀 and |𝑋(𝑛)

2 − 𝑝2| < 𝜀 and … and |𝑋(𝑛)
𝑚! − 𝑝𝑚!| < 𝜀

)

≥ 1 − 𝛿.

Proof. We show that the probability of the complementary event is
close to zero. Since

𝑃
(

|𝑋(𝑛)
1 − 𝑝1| ≥ 𝜀 or |𝑋(𝑛)

2 − 𝑝2| ≥ 𝜀 or … or |𝑋(𝑛)
𝑚! − 𝑝𝑚!| ≥ 𝜀

)

≤
𝑚!
∑

𝑗=1
𝑃
(

|𝑋(𝑛)
𝑗 − 𝑝𝑗 | ≥ 𝜀

)

it is sufficient to show that 𝑃
(

|𝑋(𝑛)
𝑗 − 𝑝𝑗 | ≥ 𝜀

)

is close to zero since 𝑚
nd 𝑚! are fixed.

1 It would be sufficient to assume that the sequence of probability
istributions of 𝐗(𝐧) has a limit distribution.
3 
We shall denote by 𝑋(𝑛)
𝑖𝑗 the indicator random variable showing

whether voter 𝑖 chooses ordering 𝑜𝑗 or not. Then 𝑋(𝑛)
𝑗 = (

∑𝑛
𝑖=1 𝑋

(𝑛)
𝑖𝑗 )∕𝑛,

where we are taking the sum of independent random variables since
the voters are selecting their orderings independently. Clearly,

𝐸𝑋(𝑛)
𝑗 = 𝑝𝑗 and 𝑉 𝑎𝑟𝑋(𝑛)

𝑗 =
∑𝑛

𝑖=1 𝑝𝑖𝑗 (1 − 𝑝𝑖𝑗 )

𝑛2
≤ 1

4𝑛
,

which in turn establishes that 𝑃
(

|𝑋(𝑛)
𝑗 − 𝑝𝑗 | ≥ 𝜀

)

is close to zero for
sufficiently large 𝑛 by Chebyshev’s inequality. In particular,

𝑃
(

|𝑋(𝑛)
𝑗 − 𝑝𝑗 | ≥ 𝜀

)

≤ 1
4𝑛𝜀2

. □

Proposition 1 implies that if the number of voters is large, we only
have to care about the ‘average’ distribution of orderings because only
a few distributions deviate from it.

The expected average distance for a SCR 𝐹 ∈  equals

𝐸(𝑑(𝐗(𝑛), 𝐹 (𝐗(𝑛)))) =
∑

(𝑜𝑗1 ,…,𝑜𝑗𝑛 )∈
𝑛
𝑝1𝑗1 ⋯ 𝑝𝑛𝑗𝑛

× 𝑑((𝑜𝑗1 ,… , 𝑜𝑗𝑛 ), 𝐹 ((𝑜𝑗1 ,… , 𝑜𝑗𝑛 ))).

Let 𝑑max be the maximum distance between two orderings associated
with distance 𝑑. Since the constant functions play a special role we
define the expected distance of the constant SCR 𝐹 (𝛱) = 𝑜𝑘 for all
𝛱 ∈ 𝑛 from the set of all profiles in the limit by

𝑑(𝑜𝑘) = lim
𝑛→∞

∑

𝛱∈𝑛
𝑝1𝑗1 ⋯ 𝑝𝑛𝑗𝑛𝑑(𝛱, 𝑜𝑘), (3.4)

which, as the following derivation shows, can be determined more
concisely without requiring the evaluation of a limit:

𝑑(𝑜𝑘) = lim
𝑛→∞

∑

𝛱∈𝑛
𝑝1𝑗1 ⋯ 𝑝𝑛𝑗𝑛𝑑(𝛱, 𝑜𝑘)

= lim
𝜀→0

lim
𝑛→∞

∑

𝛱∈𝐴(𝑛)
𝜀

𝑝1𝑗1 ⋯ 𝑝𝑛𝑗𝑛𝑑(𝛱, 𝑜𝑘)

= lim
𝜀→0

lim
𝑛→∞

∑

𝛱∈𝐴(𝑛)
𝜀

𝑝1𝑗1 ⋯ 𝑝𝑛𝑗𝑛

𝑚!
∑

𝑖=1

𝑛𝑗
𝑛
𝑑(𝑜𝑗 , 𝑜𝑘)

= lim
𝜀→0

lim
𝑛→∞

∑

𝛱∈𝐴(𝑛)
𝜀

𝑝1𝑗1 ⋯ 𝑝𝑛𝑗𝑛

𝑚!
∑

𝑖=1
(𝑝𝑗 ± 𝜀)𝑑(𝑜𝑗 , 𝑜𝑘)

= lim
𝜀→0

lim
𝑛→∞

∑

𝛱∈𝐴(𝑛)
𝜀

𝑝1𝑗1 ⋯ 𝑝𝑛𝑗𝑛

𝑚!
∑

𝑖=1
𝑝𝑗𝑑(𝑜𝑗 , 𝑜𝑘) ±

lim
𝜀→0

lim
𝑛→∞

∑

𝛱∈𝐴(𝑛)
𝜀

𝑝1𝑗1 ⋯ 𝑝𝑛𝑗𝑛

𝑚!
∑

𝑖=1
𝜀𝑑(𝑜𝑗 , 𝑜𝑘)

= lim
𝜀→0

lim
𝑛→∞

∑

𝛱∈𝐴(𝑛)
𝜀

𝑝1𝑗1 ⋯ 𝑝𝑛𝑗𝑛

𝑚!
∑

𝑖=1
𝑝𝑗𝑑(𝑜𝑗 , 𝑜𝑘) ± lim

𝜀→0
1 ⋅ 𝜀 ⋅ 𝑚! ⋅ 𝑑𝑚𝑎𝑥

=
𝑚!
∑

𝑖=1
𝑝𝑗𝑑(𝑜𝑗 , 𝑜𝑘) ⋅ lim𝜀→0

lim
𝑛→∞

∑

𝛱∈𝐴(𝑛)
𝜀

𝑝1𝑗1 ⋯ 𝑝𝑛𝑗𝑛 =
𝑚!
∑

𝑗=1
𝑝𝑗𝑑(𝑜𝑗 , 𝑜𝑘), (3.5)

where the second equality follows from Proposition 1 and the introduc-
tion of ± means that the initial sequence can be bounded from below
and above, which implies that the limit defining 𝑑(𝑜𝑘) exists since the
two bounding sequences tend to the same limit. To summarize, we can
also write

𝑑(𝑜𝑘) =
𝑚!
∑

𝑗=1
𝑝𝑗𝑑(𝑜𝑗 , 𝑜𝑘). (3.6)

We shall denote by ≻∗ and ≻∗∗ the preferences (or the respective
onstant functions) with the smallest and largest expected distances
rom the set of all profiles in the limit. More formally,

= min
≻∈

𝑚!
∑

𝑝𝑗𝑑(𝑜𝑗 , ≻) and 𝑑 = max
≻∈

𝑚!
∑

𝑝𝑗𝑑(𝑜𝑗 , ≻),

𝑗=1 𝑗=1
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where these distances are minimized and maximized at ≻∗ and ≻∗∗,
respectively.

Strictly speaking, we have for each 𝑛 different distance functions
and SCRs. At least in case of distance functions for the sequence 𝑛

f domains we are obtaining the sequence of distance functions in
n additive way from a fixed distance function defined on the set of
references. For the case of anonymous SCRs we have in mind that for
ifferent 𝑛 we are employing the same type of formula. For instance, we
an take for all 𝑛 in the sequence the Borda count. However, the next
roposition does not even require a ‘consistent selection’ of anonymous
CRs for different numbers of voters.

heorem 1. The distance between an arbitrary family of anonymous SCRs
𝐹 ∶ 𝑛 → )∞𝑛=1 is bounded by the constant SCRs ≻∗ and ≻∗∗ as 𝑛 tends

to infinity in the following way:

𝑑 ≤ lim inf
𝑛→∞

𝐸(𝑑(𝐗(𝑛), 𝐹 (𝐗(𝑛)))) ≤ lim sup
𝑛→∞

𝐸(𝑑(𝐗(𝑛), 𝐹 (𝐗(𝑛)))) ≤ 𝑑, (3.7)

where the inequalities are tight.

Proof. For a given 𝑛 let

(𝑛)
𝜀 =

{

𝛱 ∈ 𝑛 ∣ max
𝑙=1,…,𝑚!

|

|

|

𝑋(𝑛)
𝑙 (𝛱) − 𝑝𝑙

|

|

|

< 𝜀
}

e the set of those profiles for which the frequency of any ordering in
he profile just differs from its probability (proportion) in 𝐗(𝑛) by less

than 𝜀 > 0. From Proposition 1 it follows that 𝑃 (𝐴(𝑛)
𝜀 ) → 1 as 𝑛 → ∞. In

ddition, let 𝐴(𝑛)
𝜀,𝑘 = {𝛱 ∈ 𝐴(𝑛)

𝜀 ∣ 𝐹 (𝛱) = 𝑜𝑘}, where 𝑘 = 1,… , 𝑚!.
We show that if 𝐴(𝑛)

𝜀,𝑘 ≠ ∅ for infinitely many 𝑛, then 𝑑(𝑜𝑘) can be
determined in an alternative way. Informally, if 𝑛 is large enough, then
the ratios of the ordering 𝑜𝑘 remain roughly the same within a profile
n 𝐴(𝑛)

𝜀 as within a profile in 𝐴(𝑛)
𝜀,𝑘. Let

(𝑛)
𝜀,𝑘 =

∑

𝛱∈𝐴(𝑛)
𝜀,𝑘

𝑝1𝑗1 ⋯ 𝑝𝑛𝑗𝑛 .

learly, 𝐪(𝑛)𝜀 = (𝑞(𝑛)𝜀,1,… , 𝑞(𝑛)𝜀,𝑚!) is a bounded sequence for any given 𝜀 > 0.
ick an arbitrary convergent subsequence of 𝐪(𝑛)𝜀 and for notational
onvenience let us assume that 𝐪(𝑛)𝜀 is already convergent, which tends
o 𝐪𝜀. Note that by Proposition 1 its limit specifies a probability
istribution. Then through similar calculations as in (3.5) we get

lim
→0

lim
𝑛→∞

∑

𝛱∈𝐴(𝑛)
𝜀,𝑘

𝑝1𝑗1 ⋯ 𝑝𝑛𝑗𝑛𝑑(𝛱, 𝑜𝑘) = lim
𝜀→0

lim
𝑛→∞

∑

𝛱∈𝐴(𝑛)
𝜀,𝑘

𝑝1𝑗1 ⋯ 𝑝𝑛𝑗𝑛

𝑚!
∑

𝑖=1

𝑛𝑗
𝑛
𝑑(𝑜𝑗 , 𝑜𝑘)

= lim
𝜀→0

lim
𝑛→∞

∑

𝛱∈𝐴(𝑛)
𝜀,𝑘

𝑝1𝑗1 ⋯ 𝑝𝑛𝑗𝑛

𝑚!
∑

𝑖=1
(𝑝𝑗 ± 𝜀)𝑑(𝑜𝑗 , 𝑜𝑘)

= lim
𝜀→0

lim
𝑛→∞

∑

𝛱∈𝐴(𝑛)
𝜀,𝑘

𝑝1𝑗1 ⋯ 𝑝𝑛𝑗𝑛

𝑚!
∑

𝑖=1
𝑝𝑗𝑑(𝑜𝑗 , 𝑜𝑘) ±

lim
𝜀→0

lim
𝑛→∞

∑

𝛱∈𝐴(𝑛)
𝜀,𝑘

𝑝1𝑗1 ⋯ 𝑝𝑛𝑗𝑛

𝑚!
∑

𝑖=1
𝜀𝑑(𝑜𝑗 , 𝑜𝑘)

= lim
𝜀→0

lim
𝑛→∞

∑

𝛱∈𝐴(𝑛)
𝜀,𝑘

𝑝1𝑗1 ⋯ 𝑝𝑛𝑗𝑛

𝑚!
∑

𝑖=1
𝑝𝑗𝑑(𝑜𝑗 , 𝑜𝑘) ±

lim
𝜀→0

1 ⋅ 𝜀 ⋅ 𝑚! ⋅ 𝑑𝑚𝑎𝑥

=
𝑚!
∑

𝑖=1
𝑝𝑗𝑑(𝑜𝑗 , 𝑜𝑘) ⋅ lim𝜀→0

lim
𝑛→∞

∑

𝛱∈𝐴(𝑛)
𝜀,𝑘

𝑝1𝑗1 ⋯ 𝑝𝑛𝑗𝑛

= 𝑞𝑘
𝑚!
∑

𝑗=1
𝑝𝑗𝑑(𝑜𝑗 , 𝑜𝑘) = 𝑞𝑘𝑑(𝑜𝑘), (3.8)

where 𝑞𝑘 = lim𝜀→0 𝑞𝜀,𝑘, which exists since 𝑞𝜀,𝑘 is decreasing in 𝜀.
Furthermore, 𝑞1,… , 𝑞𝑚! specifies a probability distribution.

From the law of total expectation we have

𝐸(𝑑(𝐗(𝑛), 𝐹 (𝐗(𝑛)))) = 𝑃 (𝐴(𝑛))𝐸(𝑑(𝐗(𝑛), 𝐹 (𝐗(𝑛))) ∣ 𝐗(𝑛) ∈ 𝐴(𝑛)) +
𝜀 𝜀

4 
𝑃 (𝐴
(𝑛)
𝜀 )𝐸(𝑑(𝐗(𝑛), 𝐹 (𝐗(𝑛))) ∣ 𝐗(𝑛) ∈ 𝐴

(𝑛)
𝜀 ). (3.9)

y Proposition 1 𝑃 (𝐴(𝑛)
𝜀 ) and 𝑃 (𝐴

(𝑛)
𝜀 ) tend to 1 and 0, respectively, as 𝑛

tends to infinity. Since the second conditional expected value in (3.9)
is bounded the second summand is zero. We turn to the evaluation of
the first conditional expected value in (3.9). Then

𝐸(𝑑(𝐗(𝑛), 𝐹 (𝐗(𝑛))) ∣ 𝐗(𝑛) ∈ 𝐴(𝑛)
𝜀 ) =

∑

𝛱∈𝐴(𝑛)
𝜀

𝑝1𝑗1 ⋯ 𝑝𝑛𝑗𝑛𝑑(𝛱,𝐹 (𝛱))
∑

𝛱∈𝐴(𝑛)
𝜀

𝑝1𝑗1 ⋯ 𝑝𝑛𝑗𝑛

=

∑𝑚!
𝑘=1

∑

𝛱∈𝐴(𝑛)
𝜀,𝑘

𝑝1𝑗1 ⋯ 𝑝𝑛𝑗𝑛𝑑(𝛱, 𝑜𝑘)
∑

𝛱∈𝐴(𝑛)
𝜀

𝑝1𝑗1 ⋯ 𝑝𝑛𝑗𝑛

=

∑𝑚!
𝑘=1 𝑞

(𝑛)
𝜀,𝑘

∑𝑚!
𝑙=1

𝑛𝑘
𝑛 𝑑(𝑜𝑙 , 𝑜𝑘)

∑𝑚!
𝑘=1 𝑞

(𝑛)
𝜀,𝑘

(3.10)

rom which we can see that the conditional expected value in (3.10)
ends to the weighted average of the expected distances from the 𝑚!

constant functions. Therefore, the limit points of the sequence in (3.9)
cannot be smaller than 𝑑 and cannot be larger than 𝑑. □

From Theorem 1 we can see that in general the limits of the
expected distances of different anonymous SCRs may differ. Though
our next statement is a simple corollary of Theorem 1 we formulate
it as a theorem since it is our main indifference result.

Theorem 2. The limits of the expected distances between any arbitrary
family of anonymous SCRs (𝐹 ∶ 𝑛 → )∞𝑛=1 and any constant SCR tend
to zero if and only if 𝑑 = 𝑑.

Since 𝑑 = 𝑑 is an implicit condition we present two important
settings under which it is satisfied.

Corollary 1. If (𝑝𝑗 )𝑚!𝑗=1 is uniformly distributed and the distance function
is symmetric in the alternatives (i.e., the relabeling of the alternatives would
not change the distances), then 𝑑 = 𝑑.

For instance, Corollary 1 assures for the Kendal 𝜏 distance under an
IC that the expected distances of all anonymous SCRs tend to the same
limit.

The next corollary admits generalizations of the Spearman footrule
and the Spearman rank correlation.

Corollary 2. Assume that the distance between a profile and a preference
relation equals the sum of a function of rank differences, i.e.

𝑑(𝛱,≻) =
𝑛
∑

𝑖=1

𝑚
∑

𝑗=1
𝑓 (𝑟𝑘[𝑎𝑗 , ≻𝑖] − 𝑟𝑘[𝑎𝑗 , ≻]),

and that for each alternative the probability that an alternative is ranked 𝑙th
equals 1∕𝑚 (that is we have uniform distributions above the set of ranks).
Then the expected distances of all anonymous SCRs tend to the same limit.

Proof. The statement follows from the observation that each rank
difference occurs with the same probability for each alternative, and
that therefore the functional form of 𝑓 does not play a role. □

Note that the IC and the IAC assumptions both imply a uniform
distribution over the set of alternatives, and therefore Corollary 2
covers both cultures.

Finally, we conclude this section with an example showing that
we can have 𝑑 = 𝑑 even in case of a non-uniform distribution. Let
𝑛 = 3, the probability of the occurrence of ordering 𝑜1 be 1∕4 and the
probabilities of the occurrences of the remaining five orderings be 3∕20.
Furthermore, let 𝑑(𝑜1, 𝑜𝑘) = 6∕5 for all 𝑘 = 2,… , 6 and 𝑑(𝑜𝑙 , 𝑜𝑘) = 1 for
all 𝑙 ≠ 𝑘 and 𝑙, 𝑘 = 2,… , 6. Then

𝑑(𝑜1) = 5 ⋅ 3
20

⋅
6
5
= 0.9 and

𝑑(𝑜𝑘) = 1 ⋅ 1
4
⋅
6
5
+ 4 ⋅ 3

20
⋅ 1 = 0.9

for all 𝑘 = 2,… , 6.
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4. Examples

Considering the Kendall 𝜏, the Spearman rank correlation and the
pearman footrule distances, we determine the expected normalized
verage distances for the constant rule. In our examples we assume the
C case.

It will be helpful for us that Diaconis and Graham (1977) provide
he maximum values for the Kendall 𝜏, the Spearman footrule and

the Spearman rank correlation distances between two linear order-
ings, which equal (𝑚 − 1)𝑚, ⌊𝑚2∕2⌋ and (𝑚3 − 𝑚)∕3, respectively. For
normalization purposes we let

𝐶𝐾 = (𝑚 − 1)𝑚,𝐶1 = ⌊𝑚2∕2⌋ and 𝐶2 = (𝑚3 − 𝑚)∕3.

First, considering the Kendall 𝜏 distance under the assumption that
all preference profiles are equally likely, it can be easily verified that
the normalized expected average distance of any constant rule equals
1∕2 since for any given preference relation ≻, when determining its
expected Kendall 𝜏 distance, in exactly half of the cases we have that
two distinct alternatives are ordered in the same way by ≻ as by the
preferences in all profiles.

Second, turning to Spearman’s rank correlation under the assump-
tion of uniformly distributed ranks for each alternative as required in
Corollary 2, we determine the normalized expected average distance
for the constant rule when employing the distance 𝑑2. Note that any
alternative 𝑎𝑗 is ranked 𝑙th with probability 1∕𝑚 by any voter 𝑖. Without
loss of generality we can assume that the constant rule is given by
𝑎1 ≻∗ 𝑎2 ≻∗ ⋯ ≻∗ 𝑎𝑚. The possible rank distances from alternative
𝑎𝑙 are 𝑙 − 1, 𝑙 − 2,… , 1, 0, 1,… , 𝑚 − 𝑙. If we take all alternatives into
consideration, then there are 2(𝑚− 1), 2(𝑚− 2),… , 2(𝑚− 𝑙),… , 2 ⋅ 2, 2 ⋅ 1
ways such that the rank distances of an alternative in ≻∗ and ≻𝑖 equal
1, 2,… , 𝑙,… , 𝑚 − 2, 𝑚 − 1, respectively. Therefore,

𝑑
𝐶2

= 1
𝑛
∑

𝑖∈𝑁

1
(𝑚!)𝑛𝐶2

𝑚
∑

𝑗=1

∑

≻∈𝑛
(𝑟𝑘[𝑎𝑗 , ≻∗] − 𝑟𝑘[𝑎𝑗 , ≻𝑖])2

= 1
𝑛
∑

𝑖∈𝑁

1
(𝑚!)𝐶2

𝑚
∑

𝑗=1

∑

≻𝑖∈
(𝑗 − 𝑟𝑘[𝑎𝑗 , ≻𝑖])2

= 1
𝑚𝐶2

2
(

(𝑚 − 1)12 +⋯ + (𝑚 − 𝑙)𝑙2 +⋯ + 1(𝑚 − 1)2
)

= 1
𝑚𝐶2

2
(

𝑚 − 1 + 𝑚22 − 23 +⋯ + 𝑚𝑙2 − 𝑙3 +⋯

+ 𝑚(𝑚 − 1)2 − (𝑚 − 1)3
)

= 1
𝑚𝐶2

2
(

𝑚(12 + 22 +⋯ + (𝑚 − 1)2) − (13 + 23 +⋯ + (𝑚 − 1)3)
)

= 1
𝑚𝐶2

2
(

𝑚
(𝑚 − 1)𝑚(2𝑚 − 1)

6
−

(𝑚 − 1)2𝑚2

4

)

= 3
𝑚 + 1

(2𝑚 − 1
3

− 𝑚 − 1
2

)

= 1
2
. (4.11)

Finally, we determine the normalized expected average distance of
he constant rule for the distance 𝑑1 under the assumption of uniformly

distributed ranks for each alternative as required in Corollary 2. With-
out loss of generality we can assume that 𝑎1 ≻∗ 𝑎2 ≻∗ ⋯ ≻∗ 𝑎𝑚. The
possible rank distances from alternative 𝑎𝑙 are 𝑙−1, 𝑙−2,… , 1, 0, 1,… , 𝑚−
𝑙. If we take all alternatives into consideration, then there are 2(𝑚 −
1), 2(𝑚−2),… , 2(𝑚− 𝑙),… , 2 ⋅2, 2 ⋅1 ways such that the rank distances of
an alternative in ≻∗ and ≻𝑖 equal 1, 2,… , 𝑙,… , 𝑚−2, 𝑚−1, respectively.
Moreover, ≻∗ is fixed, while ≻𝑖 are drawn independently. Furthermore,
each alternative is ranked 𝑙th with probability 1∕𝑚 in ≻𝑖.

𝑑
𝐶1

= 1
𝐶1

1
𝑚
2 ((𝑚 − 1) + (𝑚 − 2)2 +⋯ + (𝑚 − 𝑙)𝑙 +⋯ + 1(𝑚 − 1))

= 1
𝐶1𝑚

2
(

𝑚 − 1 + 𝑚2 − 22 +⋯ + 𝑚𝑙 − 𝑙2 +⋯ + 𝑚(𝑚 − 1) − (𝑚 − 1)2
)

= 1
𝐶1𝑚

2
(

𝑚(1 + 2 +⋯ + (𝑚 − 1)) − (12 + 22 +⋯ + (𝑚 − 1)2)
)

= 1 2
(

𝑚 1𝑚(𝑚 − 1) −
(𝑚 − 1)𝑚(2𝑚 − 1)

)

𝐶1𝑚 2 6

5 
= 𝑚 − 1
𝐶1

(

𝑚 − 2𝑚 − 1
3

)

= 𝑚2 − 1
3⌊𝑚2∕2⌋

, (4.12)

hich equals 2∕3 if 𝑚 is odd and 2∕3(1 − 1∕𝑚2) if 𝑚 is even.

5. Concluding remarks

In this paper we followed the distance based approach to SCRs.
Through our analysis we contributed, besides the mentioned approach,
to the selection of a SCR in case of many voters. In general we provided
an upper and a lower bound for the expected average distance of an
anonymous SCR by appropriately chosen constant rules. Under further
assumptions on the distribution of profiles we found an ‘indifference
result’ by which we mean that in the limit all anonymous SCRs tend to
the same expected average distance. We gave two sufficient conditions
for our indifference result to hold. First, a symmetric distance function
and the IC case is a sufficient condition. Second, assuming distance
functions obtained through the sum of a function of rank differences
under cultures which result in a uniform distribution over the set of
alternatives is also sufficient. The second sufficient condition covers
both the IC and IAC cases.

We outline possible further research directions. In our analysis we
presented our results for a given number of alternatives 𝑚 and let the
number of voters 𝑛 vary. Clearly, this is the more interesting case in the
social choice context. However, in computer science applications the
other case in which we fix 𝑛 and let 𝑚 vary can be equally interesting.
Since 𝑚 alternatives imply 𝑚! rankings, this analysis is far less tractable.
Already determining the Kemény–Young ranking is NP-hard (Bartholdi
et al., 1989). Therefore, we expect fewer results from this research
direction. Furthermore, additional limits, in which we tend only with
𝑚 to infinity or with both 𝑚 and 𝑛, may be determined.
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