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A B S T R A C T

Accurately valuing storage in the electricity market recognizes its role in enhancing grid flexibility, integrating
renewable energy, managing peak loads, providing ancillary services and improving market efficiency. In this
paper we outline an optimal trading problem for an Energy Storage Device trading on the electricity balancing
(or regulating) market. To capture the features of the balancing (or regulating) market price we combine
stochastic differential equations with Markov regime switching to create a novel model, and outline how this
can be calibrated to real market data available from NordPool. By modelling a battery that can be filled
or emptied instantaneously, this simplifying assumption allows us to generate numerical and quasi analytic
solutions.

We implement a case study to investigate the behaviour of the optimal strategy, how it is affected by
price and underlying model parameters. Using numerical (finite-difference) techniques to solve the dynamic
programming problem, we can estimate the value of operating an Energy Storage Device in the market given
fixed costs to charge or discharge. Finally we use properties of the numerical solution to propose a simple
quasi-analytic approximation to the problem. We find that analytic techniques can be used to give a benchmark
value for the storage price when price variations during the day are relatively small.
1. Introduction

In order to tackle climate change, energy markets around the globe
are being incentivized to transfer to clean energy. The share of energy
produced by renewable sources in the EU is expected to rise to more
than 60% by 2030 (European Commission, 2023). This transition en-
tails new challenges as renewable sources are more unpredictable in
their generation compared to fossil-based sources. That is, renewable
energy sources, such as biomass, geothermal resources, sunlight, wind
and water are prone to be seasonable and/or intermittent. Therefore,
due to the ongoing shift in energy markets, in order to supply energy
in potential shortage periods, energy storage facilities are increasingly
being utilized to address the issue of unpredictability and variability.
In order to supply energy in potential shortage periods, it is of utmost
importance to deploy energy storage at scale.

Besides high seasonal variability, the variability of price within a
day can also be significant, and this high intra-day variability can
threaten the transmission network security, necessitating the more
widespread usage of ancilliary reserves as discussed by Chattopadhyay
(2014). Modelling this variability and the opportunities that may arise
is a popular topic for academics, and one way to consider this is
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through regime switching. A stochastic process is regime switching if its
dynamics is determined by different regimes under different periods. In
fact, intra-day and regime-switching dynamics have been considered in
several papers addressing various energy markets including Bierbrauer
et al. (2004), Karakatsani and Bunn (2008), Mount et al. (2006), Tiwari
and Menegaki (2019), Weron et al. (2004). Recently in the Danish
renewable electricity sector Shah et al. (2021) described a Markov
switching model has been employed by distinguishing a low and a high
volatility regime.

Supported by the aforementioned articles and on the empirical
analysis we conduct in this paper, we will also incorporate regime
switching into our energy price modelling. In this paper we seek the
fair value of optimally operating a storage facility, and we claim that
the inclusion of a regime switching feature bolsters the framework.
Modelling with a single regime has the potential to underestimate the
potentially huge but infrequent profits available when things go wrong
on the market and spikes associated with high volatility regimes occur,
and at the same time overestimate the profits available under normal
circumstances when the underlying volatility is lower. The cost of
storage facilities inevitably has a significant influence on the strategy of
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balancing market participants. The recent study Rahman et al. (2020)
provides an overview of different energy storage technologies. Due
to technological advances it is reasonable to assume that the most
influential technical parameters affecting (adding to) the cost and
environmental performances such as lifetime, round-trip efficiency, and
cycle length are expected to decrease in the future.

In the present paper we will focus on a battery storage operator
who makes transactions on the Nordic power market, where a number
of closely linked markets are maintained (Nord Pool AS, 2022). In
particular, there is a standalone NordPool Day-Ahead market, NordPool
Intraday market and NordPool Regulating market.

The NordPool Day-Ahead market is the so called spot market (Elspot),
in which the price of energy is determined by supply and demand. On
this spot market, bidding closes at noon for deliveries from midnight
and 24 h ahead. The NordPool Regulating market operates as a real-
time market and its main function is to counteract imbalances related
to planned day-ahead operation. As quite a long time period remains
between close of bidding in the day-ahead market, and the regulating
market, the NordPool Intraday market is introduced as an ‘in between
market’, where participants in the day-ahead market can trade bilat-
erally. On this intraday market, the product traded is the one-hour
long power contract. The intraday market thus works together with the
day-ahead market to help secure the necessary balance between supply
and demand, as one trades closer to the physical delivery within the
intraday markets.

In this study, we will focus on trading on the regulating market.
First, this is supposed to be the ultimate resort to counteract imbal-
ances, second the mathematical framework, described in Section 2,
would not be applicable to the day-ahead or intraday markets due to a
sizeable delay between bids and deliveries. As outlined, the regulating
market is maintained to level out imbalances in the physical trade on
the spot and intraday markets in order to ensure a balance between pro-
duction and consumption, and to provide power grid stability. Totalling
the deviations from bid volumes at the spot and intraday markets gives
a net imbalance for that hour in the system that needs to be settled.
If the grid is congested, the market breaks up into area markets, and
equilibrium must be established in each area. The regulating market is
therefore the ultimate resource for correcting such imbalances, and it
provides the necessary physical trade and accounting in the liberalized
Nordic electricity system.

Stylized facts of the electricity market include mean reversion,
seasonality, extreme volatility and spikes as discussed by Gudkov and
Ignatieva (2021). We discussed above that several papers have mod-
elled energy markets with switching processes that can successfully
incorporate the effects of seasonality, extreme volatility and spikes.
Moreover, mean-reverting phenomena on energy prices is also ob-
served. Periodic shifts in demands push prices up, which entails the
entering of more expensive generators on the supply side that pushes
back the price to its former level. Studies such as Weron (2007)
and Escribano et al. (2011) included this additional stylized fact, more-
over Janczura and Weron (2012) considered the parameter estimation
of mean-reverting processes combined with Markov regime-switching
using energy prices.

We have recently seen several papers considering stochastic optimal
controls within an energy business context. For a detailed summary
we refer the reader to Nadarajah and Secomandi (2023) and also Dai
et al. (2021). A real options approach for natural gas storage optimiza-
tion by controlling the stored amount of gas in the storage facility
has been implemented in Thompson et al. (2009) and a solution has
been achieved via the Hamilton–Jacobi–Bellman equations. The opti-
mal timing of reserve electricity reserve facilities has been considered
in Moriarty and Palczewski (2017) who obtained analytical results
assuming the dynamics of the spot energy price is a Wiener process. A
paper concerning optimal switching with an energy storage facility in
a setting where the spot price dynamics is a mean-reverting Ornstein–
612

Uhlenbeck process, Szabó et al. (2020) obtained numerical results as 𝑑
a solution of the corresponding Hamilton–Jacobi–Bellman equations.
Allowing for negative energy prices, Zhou et al. (2016) considered a
Markovian decision problem for fast storage facilities by controlling the
stored energy in the inventory and achieved analytical and numerical
results for the corresponding Bellman equation via backward dynamic
programming. Regarding Markovian regime switching processes, Wa-
hab and Lee (2011) provided numerical methods to value swing options
and presented numerical examples for gasoline prices. Considering oil
markets and allowing for jump diffusions, regime switches and mean
reversions, Harikae et al. (2021) valued projects via a real options
approach. They approximated the underlying stochastic process de-
picting the project value with a generalized implied binomial tree. In
our understanding, there is a lack of articles considering stochastic
control problems on energy markets with Markovian regime switching
underlying processes.

Therefore, we contribute to the literature by examining optimal
switching problems corresponding to the operation of energy storage
facilities on a market where the energy price goes through regime
switches and in both regimes they exhibit mean-reverting phenom-
ena. In our model, we derive the optimal control for the timing of
charges/discharges, where the energy storage facility is assumed to be
always full or empty. We are able to show that the derived optimal con-
trol strategies depend primarily on the dynamics of the current regime,
with only small adjustments made to account for regime switching.
This means we can solve each regime independently with analytic
approximations and then recombine them to provide an estimate of the
value. When applying the models to real data through calibration and
testing, we find that our regime switching model is a good fit to the
data, and so the optimal strategies that we produce will perform better
and provide more realistic estimates for the value of an investment. Our
quasi analytic approximations can be solved efficiently and used to pro-
vide the optimal strategies for operation as well as rough estimates of
the value, although more detailed time varying models (and numerical
solutions) could be required in some cases. This technique in which we
solve regimes independently and recombine them, could then be used
to solve other optimal control problems with regime switching.

2. The regime switching optimal trading problem

2.1. Regime-switching diffusion processes

In line with the Nord-Pool data study to be detailed in Section 3,
we introduce a regime-switching diffusion process, which will be used
to model the difference between regulating and day-ahead market
prices. The stability and optimal control of regime-switching diffusion
processes are of great interest and there are numerous studies in the
literature, for example Korn et al. (2017), Mao and Yuan (2006), Shao
(2015), Shao and Xi (2013) among others. Regime-switching diffusion
processes comprise a number of diffusion processes modulated by a
random switching process. To provide a precise definition, we follow
the methodology of Shao and Xi (2013). The regime-switching diffusion
process is a two-component process (𝑋(𝑡), 𝛬(𝑡)), where 𝑋(𝑡) describes
he dynamics of the diffusion process itself and 𝛬(𝑡) describes the
andom switching process. We will work on a complete probability
pace (𝛺,A,P), where 𝛺 is the sample space, the 𝜎-algebra A denotes
he event space and P is the corresponding probability measure. This
𝛺,A,P) carries a standard Wiener process 𝑊 and 𝑁𝐼 and 𝑁𝐼𝐼 Poisson
rocesses. We set
0
𝑡 ≜ 𝜎(𝑊𝑠, 𝑁

𝐼
𝑠 , 𝑁

𝐼𝐼
𝑠 ∶ 𝑠 ∈ [0, 𝑡]) (1)

nd denote by 𝑡 the completion of 0
𝑡 . According to Korn et al.

2017) we know that  = {𝑡}𝑡≥0 is right continuous, thus the filtered
robability space (𝛺,A, ,P) satisfies the usual conditions.

Our model for electricity prices follows the general regime-switching
iffusion process framework, where the 𝑋(𝑡) component satisfies the
ollowing stochastic differential equation (SDE):
𝑋(𝑡) = 𝜎(𝑋(𝑡), 𝛬(𝑡))𝑑𝑊 (𝑡) + 𝑏(𝑋(𝑡), 𝛬(𝑡))𝑑𝑡, 𝑋(0) = 𝑥0, (2)
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and 𝑏 and 𝜎 are Lipschitz continuous functions of linear growth in the
first component for all 𝑖 ∈ S, and S denotes the finite state space of the
𝛬(𝑡) second component. In this particular study, the Markov chain will
contain two elements– S ∶= {𝐼, 𝐼𝐼}, such that

{𝛬(𝑡 + 𝛿) = 𝑙|𝛬(𝑡) = 𝑘} =

{

𝑝𝑘,𝑙𝛿 + 𝑜(𝛿) 𝑖𝑓 𝑘 ≠ 𝑙
1 + 𝑝𝑘,𝑘𝛿 + 𝑜(𝛿) 𝑖𝑓 𝑘 = 𝑙

(3)

provided 𝛿 ↓ 0. The P-matrix is irreducible and conservative meaning
that 𝑝𝑘,𝑘 = −

∑

𝑗≠𝑘 𝑝𝑘,𝑗 , 𝑘 ∈ S. Based on Shao and Xi (2014) the existence
of a nonexplosive solution (𝑋(𝑡), 𝛬(𝑡)) of (2)–(3) is ensured.

In light of the above, the continuous-time Markov chain 𝛬 alternates
between regimes 𝐼 and 𝐼𝐼 according to events in the Poisson processes
𝑁𝐼 and 𝑁𝐼𝐼 with intensities 𝑝𝐼,𝐼𝐼 and 𝑝𝐼𝐼,𝐼 . That said, if 𝛬(𝑡) = 𝐼 then
inf 𝑠≥𝑡{𝑁𝐼 (𝑠) > 𝑁𝐼 (𝑡)} corresponds to the time point when 𝛬 will change
to state 𝐼𝐼 , and if 𝛬(𝑡) = 𝐼𝐼 then inf 𝑠≥𝑡{𝑁𝐼𝐼 (𝑠) > 𝑁𝐼𝐼 (𝑡)} corresponds
to the time point when 𝛬 will change to state 𝐼 . Thus, the 𝑋 diffusion
process is only affected by exogenous forces, meaning that whenever
the random environment jumps from one state to the other one, the
diffusion process starts to behave according to the dynamics of the new
environment.

In particular, we consider a regime-switching Ornstein–Uhlenbeck
process, meaning that 𝑋(𝑡) satisfies the mean-reverting SDE:

𝑑𝑋(𝑡) = 𝜅𝛬(𝑡)(𝜃𝛬(𝑡) −𝑋(𝑡))𝑑𝑡 + 𝜎𝛬(𝑡)𝑑𝑊 (𝑡), 𝑋(0) = 𝑥0 (4)

We also assume that both 𝛬(𝑡) and 𝑊 (𝑡) are observable, so the battery
operator will know all the subsets of the 𝑡 𝜎-algebra at time 𝑡. The goal
of the battery operator will be to maximize the expected values of total
net profits. Even though they have no control over the 𝑋 process, they
are aware of its dynamics, and so they are bidding to exploit expected
future price movements. They will alternate between buying and selling
energy on the regulating market, to completely empty or fully charge
the storage facility, therefore their adjoining transactions will be of
different signs.

2.2. Impulse control problem

In order to mathematically express the optimization problem asso-
ciated with the actions of the battery operator, we consider an impulse
control problem and so introduce additional variables by following the
study of Korn et al. (2017). First, we denote by 𝐸̂ = {𝐸, 𝐹 } whether the
current state of the battery is empty or full, which can be controlled
by the operator through buy/sell transactions. Since we assume that
the battery storage operator is trading on the regulating market, we
consider the day ahead market price of electricity 𝑃 (𝑡) as a deterministic
function of 𝑡 known for the next 24 h trading period. It is the regulating
price 𝑅 that we treat as stochastic, and the time variable 𝑡 ∈ R+ affects
the regulating price though the equation

𝑅(𝑋, 𝑡) = 𝑋(𝑡) + 𝑃 (𝑡). (5)

By taking the Cartesian product of 𝐸̂, S and R+, let  = 𝐸̂ × S ×
R+ = {(𝐸, 𝐼, 𝑡), (𝐸, 𝐼𝐼, 𝑡), (𝐹 , 𝐼, 𝑡), (𝐹 , 𝐼𝐼, 𝑡)} represent the space of pos-
sible regimes of the impulse control problem, containing four distinct
regimes for a fixed 𝑡.  is a vector-valued stochastic process, and its
second component is the 𝛬 Markov-chain process. The vector valued 𝐼𝑘𝑡
process, defined as 𝐼𝑘𝑡 (𝑡) ≜ (𝑘,𝛬(𝑡), 𝑡), runs uncontrolled for 𝑘 = {𝐸, 𝐹 }.
As the state of the variable 𝑘 does not have an impact on the 𝑋
difference1 process, so we can also write that the difference process
has the uncontrolled 𝑋𝐼𝑘𝑡 (𝑡) ≜ 𝑋𝛬(𝑡)(𝑡) dynamics, and it is the unique
solution of

𝑋(𝑡) = 𝑥0 + ∫

𝑡

0
𝜅𝐼𝑠 (𝜃𝐼𝑠 −𝑋(𝑠))𝑑𝑡 + ∫

𝑡

0
𝜎𝐼𝑠𝑑𝑊 (𝑠) (6)

1 We can rewrite (5) as 𝑋(𝑡) = 𝑅(𝑋, 𝑡) − 𝑃 (𝑡), indeed being a difference
process. We only directly model 𝑋 stochastically, thus 𝑅 the regulating price
is the sum of a stochastic and a deterministic component.
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where 𝑋(0) = 𝑥0.
Within the optimization strategy, the operator controls the timing of

the buy/sell transactions and thus has control to decide when to charge
and discharge the battery and therefore when to switch between the
values of  . Nonetheless, the operator has no control over the 𝑋(𝑡) and
𝛬(𝑡) process values, which have uncontrolled switching dynamics.

That said, the state-dependent constraints on interventions are mod-
elled with the help of a set-valued function:

 ∶  → 2 such that 𝑖 ∈ (𝑖) for all 𝑖 ∈  (7)

here (𝑖) represents the set of regimes that are attainable by an
ntervention in regime 𝑖 ∈  .

Since at each regime only one possible intervention is available, the
ntervention function only contains one element, and we define it as
ollows:

(𝐸̂,S, 𝑡) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

{(𝐹 , 𝐼, 𝑡)} 𝐸̂ = 𝐸 and S = 𝐼
{(𝐹 , 𝐼𝐼, 𝑡)} 𝐸̂ = 𝐸 and S = 𝐼𝐼
{(𝐸, 𝐼, 𝑡)} 𝐸̂ = 𝐹 and S = 𝐼
{(𝐸, 𝐼𝐼, 𝑡)} 𝐸̂ = 𝐹 and S = 𝐼𝐼

(8)

and hence  here reflects that the battery operator can only control
how they charge and discharge the battery.

Next, we discuss the intervention costs of the admissible regime
switches. Note that there is no instantaneous running cost or profit,
meaning that staying at the same battery state does not generate or
incur any value. The intervention costs are determined by the energy
price on the regulating market at the time of the transaction, as well as
some financial penalty incurred at the time of trading. The operator
always pays or is paid the regulating price 𝑅(𝑥, 𝑡) whenever market
trade occurs, and an additional penalty function 𝐶(𝑥, 𝑡) should be
included to take account of any market transaction fees or marginal
losses incurred by the battery degrading/maintenance. Thus, for each
admissible regime switch, 𝑅(𝑥, 𝑡)−𝐶(𝑥, 𝑡) or −𝑅(𝑥, 𝑡)−𝐶(𝑥, 𝑡) is the cash-
flow for the storage operator. Nonetheless, a buy/sale restriction is also
affected by the sign of the difference process 𝑋, meaning that sign(𝑋(𝑡))
determines which side of the transaction is viable for traders on the
regulating market at time 𝑡.2 We can describe how to incorporate this
restriction to the impulse control problem once costs for switches have
been introduced.

The cost function is defined as

𝐾 ∶ 2 × R → R, (9)

where the last component represents the value of the price process 𝑋
modelling the difference between the regulating and spot markets. Note
that for a given (𝑖, 𝑗, 𝑥) realization of ( ,  , 𝑋(𝑡)), the 𝐾(𝑖, 𝑗, 𝑥) values are
finite in cases where 𝑗 ∈ (𝑖). For all other 𝑗 ≠ 𝑖 values, the intervention
costs are infinitely large implying that an optimal trader would never
choose to switch from 𝑖 to 𝑗. This allows us to neatly capture physical or
market constraints such as only being able to place bids when 𝑋(𝑡) < 0
and asks for 𝑋(𝑡) > 0. Clearly, staying at a particular regime or in other
words not making an intervention is always feasible and there is no
associated cost to it.

Having outlined the possible regime switches we proceed by ex-
pressing the associated intervention costs. Intervention costs are fully
determined by the current state of the battery, the time and the
regulating price process, thus we can disregard other components of  .

2 The sign of 𝑋(𝑡) expresses whether the power gets regulated upwards or
ownwards. In case 𝑋 < 0, market participants are incentivized to sell energy
n the regulating market for a price higher than the spot price; and in case
> 0, market participants are incentivized to buy energy on the regulating

arket for a price lower than the spot price.
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Now we can write the cost (negative cash-flow) 𝐾 𝑡
𝑥 ∶ 𝐸̂2 → R functional

under 𝑥 and at time 𝑡, as a matrix:

𝐾 𝑡
𝑥(⋅, ⋅) =

(

∞ ∞
𝑅(𝑥, 𝑡) + 𝐶(𝑥, 𝑡) ∞

)

for 𝑥 ≥ 0 (10)

and

𝐾 𝑡
𝑥(⋅, ⋅) =

(

∞ −𝑅(𝑥, 𝑡) + 𝐶(𝑥, 𝑡)
∞ ∞

)

for 𝑥 ≤ 0. (11)

Note that in the above matrices the order of the elements of set 𝐸̂
follows 𝐸̂ = {𝐸, 𝐹 } and the infinite cost ensures that such a strategy
will never be chosen. Of course, when solving such a problem numer-
ically we can simply build those constraints into the algorithm by not
considering those switches that would result in infinite costs.

Remark. As a simplification, we assume that the battery is always
empty or full, thus only two states are considered. As further discussed
in Section 4, we consider a battery with a capacity of 1 MWh. Besides
this, there is a minimum bid size restriction to trade on the Nordic
regulating market. The minimum granularity will be 1 MW in the
Nordic market after the European implementation project for the cre-
ation of the European mFRR platform is conducted (Nordic Balancing
Model, 2021). Thus, due to the minimum size restriction, we rule out
trades with a fraction of energy. Note, that more frequent trading with
less than full capacity would also entail more frequent penalties and
overcharges associated with the 𝐶(𝑥, 𝑡) penalty function.

Next we must define the intervention operators. For a given 𝑥 ∈ R
and for a given bounded continuous function 𝜙 ∶  × R → R, the
intervention operator  is defined via

𝜙(𝑖, 𝑥) ≜ sup
𝑖′∈(𝑖)

{𝜙(𝑖′, 𝑥) −𝐾(𝑖, 𝑖′, 𝑥)}. (12)

Let the initial regime 𝑖 ∈  , the initial value of the regime-switching
process 𝑋(0) = 𝑥0 and the initial Markov chain value 𝛬(0) be given.

An impulse control strategy  consists of a non-decreasing se-
quence of (𝜏𝓁)𝓁≥1 stopping times, and a sequence of actions (𝜄𝓁)𝓁≥1
where (𝜄𝓁) is an 𝐸̂ valued 𝜏𝓁 - measurable random variable for each 𝓁 ≥
1. Given a strategy  = {𝜏𝓁 , 𝜄𝓁}𝓁≥1 we can construct the corresponding
controlled regime process 𝐼 iteratively by setting 𝜏0 = 0, 𝜄0 = 𝑖 and
by defining 𝐼 for 𝑡 ∈ [𝜏𝓁 , 𝜏𝓁+1) as:

𝐼𝑡 ≜ 𝐼 𝜄𝓁𝑡

The above construction is feasible provided that the strategy  =
{𝜏𝓁 , 𝜄𝓁}𝓁≥1 is admissible, i.e. the following two conditions are satisfied:

1. 0 ≤ 𝜏𝓁 ≤ 𝜏𝓁+1 → ∞ a.s. as 𝓁 → ∞
2. {𝜄𝓁 , 𝛬(𝜏𝓁), 𝜏𝓁} ∈ (𝐼 𝜄𝓁−1𝜏𝓁 ) for 𝓁 ≥ 1

In this study since our defined 𝛬 runs uncontrolled, and the operator
has no influence over its value, we can define the expanded impulse
control strategy as 𝐸𝑋𝑃 ≜ {𝜄𝓁 , 𝛬(𝜏𝓁), 𝜏𝓁}𝓁≥1. In this way we can
rewrite condition 2. as

2′. 𝐸𝑋𝑃
𝜏𝓁

∈ (𝐼 𝜄𝓁−1𝜏𝓁 ) for 𝓁 ≥ 1

We are now ready to define the impulse control problem as:

𝑉 (𝑖, 𝑥0) ≜ sup
𝐸𝑋𝑃

(𝐸𝑋𝑃 ; 𝑖, 𝑥0) (13)

where

(𝐸𝑋𝑃 ; 𝑖, 𝑥0) ≜ E
[

−
∞
∑

𝓁=1
𝑒−𝑟𝜏𝓁𝐾𝑋(𝜏𝓁 )(𝐼

𝜄𝓁−1
𝜏𝓁 ,𝐸𝑋𝑃

𝜏𝓁
)
]

(14)

given initial regime 𝑖 = {𝜄0, 𝛬(0), 0} and 𝑋(0) = 𝑥0, which enables us to
invoke the findings of Korn et al. (2017).

Theorem (Theorem 3.1 of Korn et al., 2017). Assume that the value
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function 𝑉 ∶  × R → R satisfies:
1. 𝑉 is non-negative, bounded and continuous
2. 𝑉 ≥ 𝑉 on R
3. 𝑉 satisfies the Dynamic Programming Principle

Then 𝑉 is the value function of the impulse control problem of Eq. (13).
he optimal control strategy ̂ can be constructed as follows:

• 𝜏0 ≜ 0 and 𝜄0 ≜ 𝜄0
• Given the optimal controlled regime process 𝐼 ̂ , and the process 𝑋
on [0, 𝜏𝑘) and an intervention 𝜄𝑘 at 𝜏𝑘 we set

̂𝜏𝑘+1 ≜ inf{𝑡 ≥ 𝜏𝑘 ∶ 𝑉 (𝐼𝜏𝑘 , ̂𝜄𝑘𝑡 , 𝑋(𝑡)) = 𝑉 (𝐼𝜏𝑘 , ̂𝜄𝑘𝑡 , 𝑋(𝑡))} (15)

Then the optimal controlled regime process 𝐼 ̂ for [𝜏𝑘, 𝜏𝑘+1) is defined
as 𝐼𝜏𝑘 , ̂𝜄𝑘𝑡 .

emark. Even though lim𝑥→∞ 𝑅(𝑥, 𝑡) = ∞, we will confirm with the
elp of the numerical results that 𝑉 𝑖(𝑥) is bounded for all 𝑥 ∈ R and
∈  . Global boundedness of 𝑉 in the proof of Theorem 3.1 of Korn
t al. (2017) is solely used to claim that the maximizer of 𝑉 is always
easurable. This property trivially holds for the problem of this paper

s only a maximum of one regime switch is attainable for each 𝑖 ∈  .

We now turn to discussing the dynamic programming principle. This
s satisfied for all bounded functions 𝑉 ∈ 2 with bounded derivatives
hat satisfy the quasi-variational inequalities:

max

(

L𝑖𝑉 𝑖 − 𝑟𝑉 𝑖 −
∑

𝑗∈
𝑝𝑖,𝑗 (𝑉 𝑗 − 𝑉 𝑖) , 𝑉 𝑖 − 𝑉 𝑖

)

= 0 𝑖 ∈  (16)

ere 𝑝𝑖,𝑗 ≠ 0 only in case 𝑖 = (⋅, 𝐼, ⋅) and 𝑗 = (⋅, 𝐼𝐼, ⋅); or in case 𝑗 = (⋅, 𝐼, ⋅)
nd 𝑖 = (⋅, 𝐼𝐼, ⋅), meaning that sum reduces to just one element. We
an trivially identify 𝑝𝑖,𝑗 values, when the three dimensional 𝑖, 𝑗 ∈ 
alues are given by only considering the second entries. In general we
o not expect to have 2 functions as strong solutions of impulse control
roblems. Therefore we assume that there exists a unique viscosity
olution of the quasi-variational inequalities, and we seek the viscosity
olution to this problem (see Chapter 9 of Øksendal & Sulem, 2005,
or a discussion of viscosity solutions).

.3. Numerical scheme

We now discuss the numerical scheme used to solve this dynamic
rogramming principle. The infinitesimal operator of 𝑋 is determined
y the state of the Markov chain, thus for an 𝑖 = (⋅, 𝑆, ⋅) we can
quivalently write L𝑖 = L𝑆 . As for a fixed 𝑡 time point, there are four
istinct regimes (𝐸, 𝐼, 𝑡), (𝐸, 𝐼𝐼, 𝑡), (𝐹 , 𝐼, 𝑡), and (𝐹 , 𝐼𝐼, 𝑡) leading to four
uasi-variational inequalities, one for each regime. Given a point in the
omain (𝑥, 𝑆, 𝑘, 𝑡), the function 𝑉 𝑘

𝑆 (𝑥, 𝑡) denotes the value of the problem
or a battery in state 𝑘, 𝑆 Markov chain state, 𝑥 and 𝑡 time point. Then
e can write a general form for the variational inequality as:

max
(

L𝑆𝑉 𝑘
𝑆 − 𝑟𝑉 𝑘

𝑆 − 𝑝𝑆,𝑆′ (𝑉 𝑘
𝑆′ − 𝑉 𝑘

𝑆 ),𝑉 𝑘
𝑆 − 𝑉 𝑘

𝑆
)

= 0, (17)

here the infinitesimal operators of the Ornstein–Uhlenbeck processes
or state 𝑆 is given as

𝑆𝑉 𝑘
𝑆 = 𝜕

𝜕𝑡
𝑉 𝑘
𝑆 +

𝜎2𝑆
2

𝜕2

𝜕𝑥2
𝑉 𝑘
𝑆 − 𝜅𝑆𝑥

𝜕
𝜕𝑥

𝑉 𝑘
𝑆 (18)

to generate the four equation problem to solve when 𝑘 = 𝐸, 𝐹 and
𝑆 = 𝐼, 𝐼𝐼 . Note that 𝑆′ = 𝐼𝐼 if 𝑆 = 𝐼 and 𝑆′ = 𝐼 if 𝑆 = 𝐼𝐼 .

To obtain a representative value for trading over a single day, we
solve the above problem with a terminal condition

𝑉 𝑘
𝑆 (𝑥, 𝑡 = 𝑇 ; 𝑇 ) = 0

for large 𝑇 and repeat the daily cycle of the Elspot price according to
the relation
𝑃 (𝑡 + 24) = 𝑃 (𝑡).
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In the limit as 𝑇 → ∞, we should expect to find that a time-periodic
olution emerges in all states such that

lim
→∞

[

𝑉 𝑘
𝑆 (𝑥, 𝑡 + 24; 𝑇 ) − 𝑉 𝑘

𝑆 (𝑥, 𝑡; 𝑇 )
]

= 0.

To discretize the problem, we choose a sufficiently large domain
(−𝑥max, 𝑥max), and divide into 2𝑖𝑀𝑎𝑥 + 1 equally spaced grid points so

𝑖 = 𝑖𝛥𝑥 where − 𝑖𝑀𝑎𝑥 ≤ 𝑖 ≤ 𝑖𝑀𝑎𝑥 and 𝛥𝑥 =
𝑥max
𝑖𝑀𝑎𝑥

.

or the time variable, we discretize the repeating period [0, 24] so

𝑗 = 𝑗𝛥𝑡 where 0 ≤ 𝑗 ≤ 𝑗𝑀𝑎𝑥 and 𝛥𝑡 = 24
𝑗𝑀𝑎𝑥

.

y writing the value function at a particular grid point as
𝑘
𝑆,𝑖,𝑗 = 𝑉 𝑘

𝑆 (𝑥𝑖, 𝑡𝑗 )

he Ornstein–Uhlenbeck operator with a Crank–Nicolson style approx-
mation at (𝑥𝑖, 𝑡𝑗 + 1∕2𝛥𝑡) becomes

L𝑆𝑣𝑘𝑆,𝑖,𝑗 =
𝑣𝑘𝑆,𝑖,𝑗+1 − 𝑣𝑘𝑆,𝑖,𝑗

𝛥𝑡

+
𝜎2
𝑆

2

𝑣𝑘𝑆,𝑖−1,𝑗+1 − 2𝑣𝑘𝑆,𝑖,𝑗+1 + 𝑣𝑘𝑆,𝑖+1,𝑗+1 + 𝑣𝑘𝑆,𝑖−1,𝑗 − 2𝑣𝑘𝑆,𝑖,𝑗 + 𝑣𝑘𝑆,𝑖+1,𝑗
2(𝛥𝑥)2

− 𝜅𝑆𝑥𝑖
𝑣𝑘𝑆,𝑖+1,𝑗+1 − 𝑣𝑘𝑆,𝑖−1,𝑗+1 + 𝑣𝑘𝑆,𝑖+1,𝑗 − 𝑣𝑘𝑆,𝑖−1,𝑗

4𝛥𝑥
(19)

for 𝑘 = 𝐸, 𝐹 and 𝑆 = 𝐼, 𝐼𝐼 . Now we use a combined explicit/implicit
rocedure to capture regime/optimal switching respectively, so that the
inal scheme may be written

ax

(

L𝑆𝑣𝑘𝑆,𝑖,𝑗 − 𝑟 1
2
(𝑣𝑘𝑆,𝑖,𝑗 + 𝑣𝑘𝑆,𝑖,𝑗+1) − 𝑝𝑆,𝑆′ (𝑣𝑘𝑆′ ,𝑖,𝑗+1 − 𝑣𝑘𝑆,𝑖,𝑗+1),𝑣𝑘𝑆,𝑖,𝑗 − 𝑣𝑘𝑆,𝑖,𝑗

)

= 0.

(20)

For large positive and large negative 𝑥, we solve

ax

(

𝑣𝑘𝑆,𝑖,𝑗+1 − 𝑣𝑘𝑆,𝑖,𝑗
𝛥𝑡

− 𝜅𝑆𝑥𝑖
𝑣𝑘𝑆,𝑖+1,𝑗+1 − 𝑣𝑘𝑆,𝑖−1,𝑗+1 + 𝑣𝑘𝑆,𝑖+1,𝑗 − 𝑣𝑘𝑆,𝑖−1,𝑗

4𝛥𝑥

− 𝑟 1
2
(𝑣𝑘𝑆,𝑖,𝑗 + 𝑣𝑘𝑆,𝑖,𝑗+1) − 𝑝𝑆,𝑆′ (𝑣𝑘𝑆′ ,𝑖,𝑗+1 − 𝑉 𝑘

𝑆,𝑖,𝑗+1),𝑉 𝑘
𝑆,𝑖,𝑗 − 𝑉 𝑘

𝑆,𝑖,𝑗

)

= 0.

(21)

This boundary condition is well known to work well on these types of
problems (see Szabó et al., 2020, for example). Essentially it assumes
that
|

|

|

|

|

𝜎2𝑆
2

𝜕2𝑉
𝜕𝑥2

|

|

|

|

|

≪ 𝜕𝑉
𝜕𝑡

− 𝜅𝑆𝑥
𝜕𝑉
𝜕𝑥

− 𝑟𝑉

holds for either large and positive 𝑥 or large and negative 𝑥. In this case
he second order term can be ignored leading to the reduced PDE (21)
nd what we have in essence is a Robin-type condition implemented at
he boundary.

Numerous grid checks, convergence analysis and verification against
nalytic solutions in special cases have been carried out to ensure the
alidity and integrity of the numerical results.

. Calibrating from NORD pool data

We now detail our methods concerning the parameter estimation for
ordPool markets. Provided by Nord Pool AS (2022) we have access to
istorical data for the following Nordic areas: NO1, NO2, NO3, NO4,
O5, SE1, SE2, SE3, SE4, FI, DK1, DK2; where NO abbreviates Norway,
E abbreviates Sweden, FI abbreviates Finland and DK abbreviates
enmark. We downloaded hourly spot prices and regulating prices for

he time period 2018–2021.
The day-ahead market is the less volatile market, and it contains

eak (09:00 to 20:00) and off peak (21:00 to 08:00) periods, indicating
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the presence of daily seasonality. Nord-Pool day-ahead prices have been
previously studied (Kristiansen, 2012; Weron & Misiorek, 2008), where
price forecast models have been proposed applying daily and weekly
seasonality effects. Fig. 1 illustrates Elspot and Regulating prices for FI
and SE4 areas. The range of the regulating price is much wider than the
range of the Elspot price for both areas, besides we occasionally observe
spikes in the regulating price process, when the level reaches extreme
outliers. As the Elspot price is more confined than the regulating price,
we will model the Elspot price as a deterministic periodic function with
the help of Fourier series. This choice still captures the observed sea-
sonality effect, but simplifies the model by avoiding stochastic terms.
Nonetheless, as Fig. 1 indicates, there is significant deviation in the
Elspot prices between different days. Energy prices indeed tend to have
weekly and monthly seasonality effects, moreover the levels of supply
and demand depend on additional unpredictable factors. That said,
we approximate the Elspot price with a Fourier series fit separately
for each day. Denoting the Elspot price by 𝑃 , we use the following
approximation:

𝑃 (𝑡) =
𝑎0
2

+
2
∑

𝑗=1
𝑎𝑗 cos(𝜔𝑗𝑡) + 𝑏𝑗 sin(𝜔𝑗𝑡) (22)

where 𝜔 = 2𝜋
24 .

We illustrate the goodness of the Fourier series approximation in
Fig. 2, where for a randomly chosen week we plot the historical Elspot
price values along with the approximated values for both the FI and
SE4 areas.

As noted earlier, we can examine the 𝑋 difference process by
simply calculating 𝑋 = 𝑅 − 𝑃 . The 𝑋 difference process for both
I and SE4 areas is shown at the bottom of Fig. 1. We can see 0-
eversion on the bottom two graphs, meaning although the difference
f actual regulating and Elspot prices can be quite large at times, this
ifference often crosses level 0. In addition, by inspecting the graphs
e can also see periods – in the vicinity of spikes – when the volatility
nd so the actual values increase. This can be contrasted with calm
eriods when the difference level stays much closer to 0. These high
nd low volatility periods are clustered. Whenever the process takes
nusually large values, it usually remains hectic for a quite long period
f time, whilst in contrast the process also remains quiet for many
onsecutive settlement hours. This suggests that process 𝑋 switches
etween states, and whenever a state change happens, the process
ollows new dynamics. Allied with these observations, the regime-
witching diffusion process we introduced in Section 2.1 seems an
ppropriate way to model the price difference between the regulating
nd day-ahead price (𝑋). This choice is supported by the corresponding
iterature, as several recent studies observed regime-switching energy
rices on various commodity markets including Alizadeh et al. (2008)
nd Scarcioffolo and Etienne (2021). Moreover, not restricted to energy
arkets, De Grauwe and Vansteenkiste (2007), Frömmel et al. (2005),

challer and Norden (1997) found evidence of switching behaviour
etween low and high volatility regimes driven by a two-state Markov
rocess. Therefore, we consider the case scenario in which the energy
conomy follows a two-regime model (‘calm and turbulent’ periods).
e continue by using regime-switching Ornstein–Uhlenbeck process,
eaning that 𝑋(𝑡) satisfies the SDE outlined in (4):

𝑋(𝑡) = 𝜅𝛬(𝑡)(−𝑋(𝑡))𝑑𝑡 + 𝜎𝛬(𝑡)𝑑𝑊 (𝑡), 𝑋(0) = 𝑥0 (23)

here 𝛬(𝑡) is a continuous time Markov chain. 𝛬 = 𝐼 indicates low
olatility regimes and 𝛬 = 𝐼𝐼 high volatility regimes. In line with the
iscussion above, we assumed 0-reversion for both regimes 𝐼 and 𝐼𝐼 ,
hus we set 𝜃𝐼 = 𝜃𝐼𝐼 = 0. In order to distinguish points corresponding
o regime 𝐼 and regime 𝐼𝐼 , we use a change-point analysis technique.
etecting changes in time series is of interest in different research
reas, including finance (Lenardon & Amirdjanova, 2006; Thies &
olnár, 2018; Ye et al., 2012). In particular, to conduct this task, we

se the changepoint 𝑅 package (see Killick & Eckley, 2014) and its
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Fig. 1. Historical prices for FI and SE4 areas. On the top row we can see 𝑃 Elspot prices, on the middle row we can see 𝑅 Regulating prices, while on the bottom row we can
see 𝑋 = 𝑅 − 𝑃 price difference values.
Fig. 2. Historical Elspot prices for FI and SE4 areas with the corresponding daily Fourier Series fits described by Eq. (22).
cpt.meanvar R function, which detects regime switches based on the
changes in the means and variances of a given time series.3 As an output
we obtain a set of intervals.

Next, we classify all the intervals into low and high volatility
regimes by calculating the standard deviations of the observations in
each obtained interval and make a decision based on these calculated
standard deviations. In case the standard deviation of the particular
interval is greater than 𝑇 𝑛 times the mean of the standard deviations
of all intervals, the interval is part of regime 𝐼𝐼 . Otherwise, the interval
is part of regime 𝐼 (𝑇 𝑛 is the chosen threshold number). Fig. 1 shows
the result of this classification for both FI and SE4 areas for 𝑇 𝑛 = 1.

3 As for calibrating the cpt.meanvar R function, Bayesian information
criterion was specified for the penalty input. We checked and the output value
is not substantially impacted by the choice of this penalty input. As indicated,
we used binary segmentation method. Moreover, changepoints can distinguish
regimes and thus might ultimately be associated with the event of external
shocks in the economy. Therefore, we constrained the frequency and number
of the changes by setting the minimal segment length input to 12 and the
maximum number of changepoints input to 200.
616
This figure indicates the goodness of the separation as red and green
lines show different characteristics in terms of volatility and range.
The periods associated with spikes are almost exclusively observed in
regime 𝐼𝐼 , while difference values stay in a confined region in regime
𝐼 . It should also be noted that both regimes exhibit mean reversion
behaviour. Once our data points have successfully been separated into
different regions, we can discuss the estimation of the parameters of
the Ornstein–Uhlenbeck process within a region. We used ‘the ‘fitsde’’
built in R function with its Euler pseudo-likelihood estimator and
‘‘Nelder–Mead’’ optimization method specification. Numerous varia-
tions of specifications have been conducted to ensure the robustness
of this choice. Table 2 shows all the estimated parameters for both
Finland and Sweden 4 areas using three different scenarios associated
with three threshold numbers (𝑇 𝑛 = 0.5, 𝑇 𝑛 = 1 or 𝑇 𝑛 = 2). The three
scenarios show substantial differences within the estimated parameters,
but as a common trait for each fixed scenario there is a significant
difference between 𝜎𝐼 and 𝜎𝐼𝐼 and moderate difference between 𝜅𝐼
and 𝜅𝐼𝐼 . For the sake of this case study we will use just 𝑇 𝑛 = 1, which
according to Fig. 1 shows a good representation of the point separation.
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Table 1
This table presents the 𝐚 = (𝑎0 , 𝑎1 , 𝑎2) and 𝐛 = (𝑏0 , 𝑏1 , 𝑏2) estimated parameters for the four representative days and for both regions.
Market Date

20 Jan 16 May 8 Aug 25 Oct

𝐚 𝐛 𝐚 𝐛 𝐚 𝐛 𝐚 𝐛

FI 27.53 0 23.61 0 28.21 0 20.18 0
FI −5.46 −2.6 1.56 −6.68 −10.05 −6.17 −4.31 −6.13
FI 0.61 −1.63 −9.66 2.39 −16.09 −1.97 −9.7 −4.01

SE4 27.53 0 22.87 0 19.46 0 16.92 0
SE4 −5.46 −2.6 0.69 −5.94 −1.43 −2.35 −2.44 −3.56
SE4 0.61 −1.63 −7.41 1.76 −0.87 0.76 −4.62 −0.53
Table 2
Here we present the estimated parameters to both Finland and Sweden 4 areas. The last two columns show the number of occurrences in
Regime 𝐼 and Regime 𝐼𝐼 for the given area and based on the applied threshold number used for classification.
Market 𝑇 𝑛 𝜅𝐼 𝜎𝐼 𝜅𝐼𝐼 𝜎𝐼𝐼 𝑝𝐼,𝐼𝐼 𝑝𝐼𝐼,𝐼 # I # II

FI 0.5 0.332 13.669 0.383 202.602 0.0016 0.0143 31 524 3540
SE4 0.5 0.283 4.487 0.371 29.721 0.0024 0.0036 20 949 14 115
FI 1 0.326 17.733 0.414 365.592 0.0008 0.0250 33 982 1082
SE4 1 0.354 7.902 0.360 43.838 0.0015 0.0076 29 385 5679
FI 2 0.343 22.037 0.404 611.698 0.0004 0.0380 34 722 342
SE4 2 0.386 12.125 0.350 64.926 0.0009 0.0155 33 198 1866
Table 3
Here we present the estimated parameters to
both Finland and Sweden 4 areas by not clas-
sifying the sample into two regimes and using
all 35 064 observations for the estimation of
both countries, respectively.
Area 𝜅 𝜎

FI 0.38 64.994
SE 4 0.37 19.179

For four particular days representing each season in 2019, we
resent the Fourier series estimated parameters for both areas in Ta-
le 1. We can see that in Finland 𝑃 (𝑡) over the 24 h period of 20th

January will have the smallest range whilst 8th August has the largest
(indicated by the larger magnitudes of 𝑎1, 𝑎2, 𝑏1 and 𝑏2). In Sweden
SE4, the largest range is on 16th May and the smallest on 8th August.
In Table 3 we show the fitted parameters if we assume that there is
only one regime (and so no switching) and we can see the values sit
somewhere in between the values we obtain for regime 𝐼 and 𝐼𝐼 .

Note that throughout this section we discussed the stochastic mod-
elling of 𝑋 and deterministic modelling of 𝑃 . However, as also clarified
in Section 2, the trader interacts on the regulating market and makes
transactions linked with the regulating price 𝑅. As 𝑅 = 𝑋 + 𝑃 , the pre-
dictability of the 𝑃 day-ahead price is already implicitly incorporated
into process 𝑅.

4. Numerical results for storage trading on the regulating market

We remind the reader that implicit to this model is that the operator
is a price taker and does not influence prices by bidding or not bidding
on the market. The result of this is that our solutions would trivially
scale with battery size, at least in the mathematical sense rather than
physical or economical, that according to the equations we write down
the revenue generated by a battery that is twice the size (with suitably
scaled discharge/charge rates) will generate twice the revenue. As a
result all the valuations presented here are in Euros for a battery with
a capacity of 1 MWh, and the strategies we derive should work well for
smaller scale battery operators but not for larger grid-scale operators.
We also make the assumption that the charge rate does not influence
the strategy of the operator, and this would only be valid if the battery
characteristics are such that the charge/discharge rates are of similar
order to the capacity given the time scales of delivery. So for example,
given the typical hourly or half hourly timescales in the market, we
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are restricted to 1 MWh batteries that can charge/discharge at a rate
between 1 MW to 2 MW. This way the battery can be completely
emptied or filled during the delivery period and our assumption of
instantaneous empty or fill of the battery should not have too much
impact.

Now we present numerical results when solving the set of PDEs (16)
as outlined in Section 2.3. We consider two cases, that of FI and SE4,
and in both cases we choose the 𝑇 𝑛 = 1 threshold parameter fits for the
OU process in each regime. Starting our calculations with a terminal
condition

𝑉 𝑘
𝑆 (𝑥, 𝑇 ) = 0, (24)

we search for the periodic solution as 𝑇 → ∞ by iterating through 24 h
periods until

‖𝑣𝑘𝑆,𝑖,0 − 𝑣𝑘𝑆,𝑖,𝑗𝑀𝑎𝑥‖ < tol.

Now since we use a repeating 24 h set of electricity prices, the periodic
solution can be interpreted as the net present value of all revenues
for operating the battery in perpetuity. As we see later, the resulting
solution does not vary significantly according to the states 𝐼 , 𝐼𝐼 , 𝐸,
𝐹 or the variables 𝑥 and 𝑡 at least over the solution domain we have
defined. This is because of the mean reverting property of the under-
lying stochastic process, and the fact that the initial starting point has
little influence when valuing over an infinite time horizon. This leads
us to define the equivalent fixed continuous yearly revenue rate for the
revenue generated on this particular day by selecting a particular point
in the grid and multiplying by the corresponding annual interest rate:

𝐴 = 𝑟 ⋅ 𝑣𝐼𝐸,0,0. (25)

This gives us a result that is almost independent of the discount rate,
given the time scale over which revenues are generated (hours) versus
the time scale of the discount rate (years). Now using a representative
set of example days from the year, such as those outlined in Table 1, we
can estimate the expected yearly revenue rate by running our perpetual
solution for all of those days and simply taking the average.

4.1. The effect of cost on the yearly revenue rates

We now demonstrate annuity calculations for our two case studies
with a variety of different penalty functions. We choose the penalty
function to be a fixed payment on using the battery (i.e. charging or
discharging) so that 𝐶(𝑥, 𝑡) = 𝐶0, and we do not consider any other

operating costs or subsidies. The focus of this study is on the numerical
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Table 4
In this table the estimated 𝐴 equivalent fixed continuous yearly revenue rates are shown according to the formula (25). These 𝐴 rates
are shown for the 𝑃 (𝑡) ≡ 0 simplified case and for the cases when 𝑃 (𝑡) reflects the choice of the four particular days, respectively.
Finally the last column shows the average of 𝐴 rates over those four days. The 𝐴 rates are shown separately for FI and SE4 areas
and with different 𝐶0 penalty values. Valuations are in Euros for a battery with capacity of 1 MWh and 𝑟 = 0.1 is assumed for all
calculations.
Penalty Market 𝑃 (𝑡) ≡ 0 𝑃 (𝑡) from date: Average

𝐶0 20 Jan 16 May 8 Aug 25 Oct

1 FI 39 345 39 793 42 922 47 770 43 322 43 452
5 FI 33 294 33 807 37 030 42 176 37 469 37 621
10 FI 28 562 29 082 31 616 36 309 32 007 32 253
20 FI 22 436 22 825 24 202 27 404 24 452 24 721

1 SE4 17 543 18 431 21 455 17 782 19 294 19 241
5 SE4 12 729 13 721 16 150 12 975 14 207 14 263
10 SE4 9395 10 123 11 585 9563 10 286 10 389
20 SE4 5967 6190 6664 6016 6236 6277
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and analytical techniques to value the option, so practitioners or other
interested parties would need to add this in at a later stage. To give an
outline of how one might provide an estimate of such a cost to put in
the model, we present the following ideas. The penalty should take into
account any costs related to the act of trading since this penalty is only
incurred when a trade is executed. Typically we might imagine that this
would include some accounting for the degradation and maintenance of
the battery and any market fees related to trading. For the degradation,
we could assume that this should be money set aside from revenues to
replace the battery after it gets close to the maximum number of cycles.
Therefore, the cost in this model could be roughly estimated as

𝐶(𝑥, 𝑡) ≈
Capital Cost of Battery Replacement

Estimated number of cycles + Transaction fees .

We show results for 𝐶0 = 1, 5, 10, 20, with the idea that those penalties
will transition from scenarios where trading against the daily cycle
in forward prices is possible, to scenarios where only trading on the
regulating prices is possible. Our expectation will be that increasing
costs should lower the revenues generated, and the effects might be
different when considering that the different regions have different
underlying parameters.

First consider the results for Finland in Table 4. As expected, in-
creasing penalties will vastly reduce the revenues generated on each
simulated day. Given that there is an optimal balance between the
number of trades versus the profit on each trade, we see that the effect
of increasing cost does not have a linear effect on the value, as greater
costs can be offset by looking for more profitable but infrequent trades.
This can be done by submitting higher ask prices when the battery is
full and lower bid prices when the battery is empty. You will also notice
this effect under inspection of the results for Sweden. Here, the main
difference in values generated in different markets will be caused by the
parameters of the SDE for the regulating price. This is born out in the
fitted parameters as we calibrate Sweden’s market with a much lower
variance in region II giving much less scope to exploit those profitable
but infrequent trades. In particular, on 20th Jan 2019 when the fitted
spot price 𝑃 (𝑡) is the same in both markets, we can see that the revenues
in Sweden will be much lower than those we might generate in Finland.

Looking horizontally across Table 4 for fixed penalty and different
days, the amplitude of the cycles have an influence on the valuations
for that particular day. In Finland, we see that 20th Jan has the smallest
valuation and 8th August has the largest corresponding to the days with
smaller or larger ranges in 𝑃 (𝑡) respectively, and similarly in Sweden
16th May has the highest valuation and biggest range in 𝑃 (𝑡). We would
expect this as larger ranges allow the battery operator to take advantage
of so called time arbitrage in the market.

In fact in both regions we can see that the fitted parameters in
region 𝐼 and 𝐼𝐼 have a much greater effect on the valuation than
the different daily cycles. This means that a method (such as the one
outlined in the next section) that can quickly capture the strategy and
valuation when 𝑃 is fixed should be able to replicate most of the
618
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important features of the optimal strategy and the resulting valuation.
We have included a column headed 𝑃 (𝑡) ≡ 0 where we rerun our
calculations based on zero underlying price, and we see that the values
generated are just 5% to 10% lower than when there is a variation in
the time profile of price. The difference between the results reduces
when penalties on charging are increased as the optimal strategy veers
away from time arbitrage.

4.2. The effect of cost on the optimal strategy

In Fig. 3 we show how the optimal strategy changes during the day
in the two different markets of Finland and Sweden, and with different
penalties on charge/discharge. In general, although the magnitude of
the spread may change, the features of the optimal strategy look to be
quite similar across the different markets and penalty scenarios. For
the low penalty scenarios of (a) and (c), the strategy in regime 𝐼 is to
follow the price (light blue line) with a small margin either side, and in
regime 𝐼𝐼 that margin is increased. The optimal price we offer to sell at
is raised in advance of the peak (at around 15:00) to ensure we do not
sell before the peak, and similarly drops lower in advance of the dips
to ensure we buy at the lowest price. This has the effect of suggesting
that the phase of the sine waves for the bid/ask prices are shifted by
one or two hours compared to the price 𝑃 (𝑡). In Figs. 3(b) and (d) there
s a much higher penalty, so the amplitude chasing the peak and dip
n the price process is much less pronounced, simply because the profit
argin we seek to make back after penalties is much larger.

.3. The effect of regime switching

First in Fig. 4 we demonstrate the effect regime switching has on the
trategy for optimal trading. Inspecting the four figures, we see that the
id/ask strategies in (a) and (b) are almost identical to the strategies
btained in (c) and (d) when regime switching is turned off. In other
ords, the primary concern when setting the bid/ask spread is what

he current underlying stochastic process might do, rather than what it
ight do if a regime change happens. This is a result of the fact that the

egime changes are Markovian and therefore completely random and
annot be predicted. So our optimal strategy is only really concerned
ith what might happen in the current regime when making a decision
ver the next short time period. We use this observation to motivate the
pproximation later on where the solution for each regime is derived
ndependently and then merged in a simplistic fashion to derive the
ombined result.

Now since one of the main contributions of this paper is to outline
ow to calibrate and solve for regime switching models, it seems
ppropriate to outline what would happen if we were to simply assume
hat there is just a single regime. In Table 5 we repeat the results
rom Table 4 but now we only model a single regime with parameters
efined by Table 3. Looking just at Table 5, the effect of increasing

enalty is similar, however there is one big difference between the
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Fig. 3. In these figures we show the optimal bid𝑆/ask𝑆 prices for regime 𝑆 as a function of time over the 24 h time period. In (a) and (b) we show the optimal strategy in
weden on 16th May 2019, and (c) and (d) the optimal strategy in Finland on the same date.
Table 5
In this table we compare the results from a single regime (Table 3) with the regime switching model (Table 2).
Estimated 𝐴 equivalent fixed continuous yearly revenue rate with 𝑃 (𝑡) ≡ 0, and the corresponding average over the
four considered days are both displayed. Fixed revenue rates are generated from the periodic solution according to
the formula (25). Valuations are in Euros for a battery with capacity of 1 MWh. The interest rate 𝑟 = 0.1 is assumed
for all calculations, thus the rate used for calculating the 𝐴 fixed revenue rate is 𝑟 = 0.1 as well.
Penalty Market Single regime Regime switching

yearly revenue rates yearly revenue rates

𝐶0 𝑃 (𝑡) ≡ 0 𝑃 (𝑡) seasonal 𝑃 (𝑡) ≡ 0 𝑃 (𝑡) seasonal

1 FI 93 248 94 453 39 345 43 452
5 FI 82 674 83 990 33 294 37 621
10 FI 73 750 75 124 28 562 32 253
20 FI 60 609 61 970 22 436 24 721

1 SE4 25 154 26 017 17 543 19 241
5 SE4 18 773 19 714 12 729 14 263
10 SE4 13 860 14 707 9395 10 389
20 SE4 7651 8211 5967 6277
b
z

H
i

results here and those in Table 4, and that is that modelling with a
single regime leads to much higher valuations across all cases. In the
results for Finland we see the values increase from around e40,000
when penalties are 𝐶0 = 1 to over e90,000 in the same case for a
single regime. This should not be seen as a good result, as we believe it
to be much less accurate. Implementing this strategy in a real market
would not lead to better outcomes, since the model wrongly attaches a
higher variance of 𝜎 = 64.994 at all times when the real data has long
eriods of low volatility followed by short periods of high volatility. So,
or example the strategy it delivers would set the ask prices too high
uring low volatility periods and too low ask prices when the volatility
s high.

.4. Strategies in the real world

The results from Table 5 leads us nicely onto a comparison of how
he strategies perform when applied to the real data. To capture ‘real
ata’, we simply run through the hourly recorded data of regulating
rices for the last 90 days of 2021, and keep track of a trading account
n which:

• if the battery is full and the regulating price 𝑅(𝑡) is above our ask
price, we sell electricity at the ask price and empty the battery —
619

t

updating the trading account by adding ask price and minus the
penalty cost;

• if the battery is empty and the regulating price 𝑅(𝑡) is below our
bid price, we buy electricity at the bid price and fill the battery —
updating the trading account with minus the bid price and minus
the penalty cost.

To give some benchmark values to compare against, as well as taking
prices directly from the recorded observations, we also simulate the
values of the regulating price 𝑅(𝑡) using our regime switching model.

Now, to keep things simple, we apply the bid/ask strategies found
by solving (17) with either a single regime or regime switching for the
underlying dynamics and 𝑃 (𝑡) ≡ 0. In this case, the optimal regulating
id/ask prices can be expressed in terms of 𝑋 and are symmetric around
ero, so if the optimal ask price is 𝑋∗, the optimal bid price is −𝑋∗.

When using simulated regulating prices with 𝑃 ≡ 0, they correspond
directly to

Ask(𝑡) = 𝑋∗, Bid(𝑡) = −𝑋∗. (26)

owever, when using ‘real data’ or the observed values of the regulat-
ng price in the trading algorithm, clearly 𝑃 is not zero and varies with
ime, so we must convert back 𝑋∗ back into real pricing strategies by
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Fig. 4. Comparison of the optimal bid/ask strategy when regime switching enabled as in Table 2 in (a) and (b), and then using the same OU parameters but setting 𝑝𝐼,𝐼𝐼 = 𝑝𝐼𝐼,𝐼 = 0
in (c) and (d), and finally running with a single regime from Table 3.
Table 6
Here we present the simulated revenue generated (𝑉 ) during 90 days of trading in the FI regulating market, when
implementing different optimal trading strategies. For the top rows, we assume 𝑃 ≡ 0 and so the regulating price
𝑅(𝑡) = 𝑋(𝑡) is simulated using SDEs (2)–(4) for a single regime (Table 3) or regime switching (Table 2) as appropriate,
whilst the bottom rows use the actual regulating price 𝑅(𝑡) observed on that date. The ask/bid thresholds are set in
accordance with (26)–(27), where the different 𝑋∗ values are calculated as part of the numerical solution to (17)
with 𝑃 ≡ 0.
Penalty Market Single regime Regime switching

90 days trading 90 days trading

𝐶0 Strategy 𝑉 Strategy 𝑉

10 FI (simulated) 𝑋∗ = 55.5 11 565 𝑋∗
𝐼 = 25.6 3626

𝑋∗
𝐼𝐼 = 162.2

20 FI (simulated) 𝑋∗ = 72.2 9932 𝑋∗
𝐼 = 35.7 3449

𝑋∗
𝐼𝐼 = 208.4

10 FI (real data) 𝑋∗ = 55.5 2363 𝑋∗
𝐼 = 25.6 2551

𝑋∗
𝐼𝐼 = 162.2

20 FI (real data) 𝑋∗ = 72.2 1669 𝑋∗
𝐼 = 35.7 2410

𝑋∗
𝐼𝐼 = 208.4
adding in the spot price. For our purposes, we assume

Ask(𝑡) = 𝑃 (𝑡) +𝑋∗, Bid(𝑡) = 𝑃 (𝑡) −𝑋∗ (27)

where 𝑃 (𝑡) is the daily moving average of the last 24 h of prices.
The results for this trading account are shown in Table 6, using the

real data from Finland and calibrated parameters from Tables 2 and 3.
In the top half of the table, we run a 90 day simulation of 𝑋(𝑡) using
4) to generate the regulating prices 𝑅(𝑡). In this case we see the single
egime simulations appear to give greater 𝑉 values, due to the high
alue of variance used as input to (4). This is similar to the results
escribed in Section 4.3, where the single regime gives higher values.
620

owever, given the results in the bottom half of the table when the
real regulating prices are used in the trading account, we can see that
the values from the simulation with a single regime model significantly
over estimates the real 𝑉 by an order of magnitude. The strategy
from the regime switching model does better, although even then our
simplified model is still missing some important features of the real
world, such as periods when the regulating market is not called upon
(and we do not allow trading during these periods in the real world
simulation). When the trading account uses the real regulating prices as
input, and compares the bid/ask strategy derived from a single regime
or regime switching model, we see that the regime switching strategy
is the best strategy, with an 8% increase compared to a single regime
strategy when the penalty is 𝐶0 = 10 and over 40% when 𝐶0 = 20.
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So clearly there are two reasons to favour the regime switching
model over the single regime model:

i The strategies perform better in the real world;
ii The estimated values inside the model are closer to the perfor-

mance in the real world.

4.5. Summary

We demonstrate in this section how the solution to the PDE switch-
ing problem delivers an optimal bid and ask price strategy if we know
which regime we are in (high or low volatility). These outputs could be
used by storage operators on the market to build their own strategy, but
importantly it also allows them to generate the value of trading on a
particular day. With a sufficient variety of trading days, and a model
for the penalties on a charge/discharge cycle, the value of investing in
more storage or new technology could be calculated.

The key results from this section are that:

• the optimal strategies are affected more by time varying prices
when the penalties are low, and less when penalties are high,

• the bid/ask spread in the optimal strategy appears to be primarily
driven by the stochastic dynamics of the current regime,

• single regime dynamics over estimate the value and perform
poorly on real world data,

• regime switching dynamics do better at estimating values and the
strategies perform better on real data.

In particular, the way the optimal strategy appears to be independent
of the regime switching leads us to believe that a quick analytical
approximation could be used to generate annuities when trading on
the regulating market. In the next section we show how by making
the simplifying assumption of fixed prices we can generate approximate
valuations for the full time varying problem that match values within
5%–10% given realistic scenarios.

5. Quasi-analytic approximations

In this section we provide a quasi-analytic approximation by ap-
plying simplifying assumptions. We note that the results of Section 4
indicate that optimal strategy is closely associated with the first hitting
time of the underlying process at some fixed levels and the time varying
feature of the optimal strategy only appears due to time dependent
𝑃 (𝑡) values. Therefore, we assume that 𝑃 (𝑡) ≡ 0. Besides, as indicated
n Fig. 4, turning off regime switching has negligible effect on the
eigning optimal bid/ask strategy. Thus, in order to successfully apply
esults corresponding to the theory of first hitting time, we also assume
𝐼,𝐼𝐼 = 𝑝𝐼𝐼,𝐼 = 0, and so we initially consider the problem separately
y being in regime 𝐼 or in regime 𝐼𝐼 .

Hence, we first consider a single regime Ornstein–Uhlenbeck pro-
ess with zero reversion:

𝑋(𝑡) = −𝜅𝑋(𝑡)𝑑𝑡 + 𝜎𝑑𝑊 (𝑡), 𝑋(0) = 𝑢. (28)

The discounted first hitting time problem is naturally related to
the problem of expressing corresponding Laplace transforms and so we
recall results of Alili et al. (2005) who considered the problem with a
one unit volatility process as:

𝑑𝑈 (𝑡) = −𝜅𝑈 (𝑡)𝑑𝑡 + 𝑑𝑊 (𝑡), 𝑈 (0) = 𝑢 (29)

and accordingly we introduce 𝜏𝑎 = inf{𝑠 > 0 ∶ 𝑈 (𝑠) = 𝑎}. Based on Alili
et al. (2005), we know that for 𝑟 > 0 and 𝑢 < 𝑎, the Laplace transform
𝐵𝑟,𝜅
𝑎 (𝑢) = E𝜅

𝑢 [ 𝑒
−𝑟𝜏𝑎 ] is given by the following formula:

𝐵𝑟,𝜅
𝑎 (𝑢) =

𝑒𝜅𝑢2∕2𝐷−𝑟∕𝜅 (−𝑢
√

2𝜅)

𝜅𝑎2∕2
√

(30)
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𝑒 𝐷−𝑟∕𝜅 (−𝑎 2𝜅)
here 𝐷𝜈 (⋅) is the parabolic cylinder function and E𝜅
𝑢 corresponds to

𝜅
𝑢 that denotes the law of 𝑈 (𝑡) given that 𝑈 (0) = 𝑢.

By virtue of change of variables we express the solution to the
roblem with arbitrary volatility. This means that we also introduce
𝜎
𝑎 = inf{𝑠 > 0 ∶ 𝑋(𝑠) = 𝑎}

nd a transformed process as 𝑋̂(𝑡) = 𝑋( 𝑡
𝜎2
) for 𝑡 ≥ 0. Note that 𝑑 𝑡

𝜎2
= 𝑑𝑡

𝜎2

nd 𝑑𝑊 ( 𝑡
𝜎2
) = 𝑑𝑊̂ (𝑡)

𝜎 , for a given 𝑊̂ Wiener process, and so we obtain:

𝑑𝑋̂(𝑡) = −𝜅̂𝑋̂(𝑡)𝑑𝑡 + 𝑑𝑊̂ (𝑡), 𝑋̂(0) = 𝑢 (31)

̂ = 𝜅
𝜎2

, inf{𝑡 > 0 ∶ 𝑋̂(𝑡) = 𝑎} = 𝜏𝜎𝑎 𝜎
2

Having established the relations in (31), we can also derive the
xpected discounted value of the first passage time problem for the
rocess given by (28) with the help of parabolic cylinder functions as:

𝜅
𝑢 [ 𝑒

−𝑟𝜏𝜎𝑎 ] = E
𝜅
𝜎2
𝑢 [ 𝑒

−𝑟
𝜎2

𝜏𝑎 ] = 𝐵
𝑟
𝜎2

, 𝜅
𝜎2

𝑎 (𝑢).

Theorem 1. Assume that the underlying process is given by (28) and
assume that 𝑥 < 𝑎. Consider a battery storage operator that perpetually
trades by repeatedly making transactions when the underlying process first
hits level 𝑎 from below and subsequently when it first hits −𝑎 from above,
and at each transaction they receive𝑀 = 𝑎−𝐶0 in cash. Their total expected
discounted profit can be expressed as:

𝑀 ⋅ 𝑒𝑥 ⋅ (1 + 𝑒−𝑎 + (𝑒−𝑎)2 +…) =
(𝑎 − 𝐶0)𝑒𝑥
1 − 𝑒−𝑎

,

where 𝑒𝑎𝑥
𝛥
= 𝐵

𝑟
𝜎2

, 𝜅
𝜎2

𝑎 (𝑥).
The perpetual value 𝑉𝐹 (𝑥; 𝑎) is given by

𝑉𝐹 (𝑥; 𝑎) =

⎧

⎪

⎨

⎪

⎩

(𝑎−𝐶0)𝑒𝑎𝑥
1−𝑒𝑎−𝑎

if 𝑥 < 𝑎
(𝑎−𝐶0)𝑒𝑎−𝑥
1−𝑒𝑎−𝑎

+ 𝑥 − 𝐶0 if 𝑥 ≥ 𝑎.
(32)

Proof. See Appendix. □

Given that 𝑉𝐹 (0; 𝑎) = 𝑉𝐸 (0; 𝑎) we can now express the value of
operating the battery according to a strategy of bids and asks at 𝑥 = −𝑎
and 𝑥 = 𝑎 as a function of 𝑎. Assuming the parameters 𝐶0 > 0, 𝑟 > 0,
> 0 and 𝜎 > 0, it is trivial to show that the optimal strategy can be

erived by solving the convex optimization problem

ax
𝑎

(𝑎 − 𝐶0)𝑒𝑎0
1 − 𝑒𝑎−𝑎

s.t. 𝑎 ≥ 0. (33)

Since the parabolic cylinder functions are already implemented in the
majority of programming languages (for example Python), the values
of 𝑒𝑎𝑥 in (33) can be quickly computed and the optimization problem
an be easily solved in a matter of seconds using standard routines.

.1. Multiple regime case

Having outlined the valuation problem for the single regime case,
e now provide an approximation method for the first hitting time
roblem with two different regimes. We do so by seeking the 𝜙 =

(𝜙𝐼 , 𝜙𝐼𝐼 ) stationary distribution of the Markov chain, and calculating
𝑉 = 𝑉𝐼 ⋅𝜙𝐼 +𝑉𝐼𝐼 ⋅𝜙𝐼𝐼 , where 𝑉𝐼 and 𝑉𝐼𝐼 are the separate lifetime values
obtained from Theorem 1 with strictly regime 𝐼 and 𝐼𝐼 , respectively.

The Markov chain introduced in (3) is irreducible and aperiodic,
therefore due to the Fundamental Theorem of Markov chains a unique
stationary distribution exists. Given the transition matrix 𝑃 , this unique
stationary distribution satisfies the following matrix equation: 𝜙 = 𝜙𝑃 .
This means that 𝜙 is a left eigenvector of 𝑃 with an eigenvalue of 1, or
equivalently 𝜙𝑇 is a right eigenvector of 𝑃 𝑇 with an eigenvalue of 1.
This 𝜙 can be readily computed as 𝑃 is given with the help of transition

probabilities in Table 2.
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Table 7
This table compares the equivalent 𝐴 fixed continuous yearly revenues of numerical solutions of the variational inequalities with quasi-analytic
approximations, according to the formula (25), and assuming zero Elspot price values; 𝑃 ≡ 0. For both numerical and analytical approaches,
values are presented with the underlying process following strictly Regime I; Regime II and allowing regime switches between the two of
them. As for the quasi-analytic approximation, we maximized 𝐴 over potential values of 𝑎 hitting levels. Regarding the regime switching case,
numerical values are obtained as solutions of variational inequalities, whereas quasi-analytic approximations are obtained with the help of
stationary distribution as discussed in Section 5.1. Valuations are in Euros for a battery with capacity of 1 MWh and 𝑟 = 0.1 is assumed for all
calculations.
Penalty Market Numerical Quasi-analytic

𝐶0 Regime I Regime II Switching Regime I Regime II Switching

1 FI 21 803 570 067 39 345 21 806 570 248 38 812
5 FI 16 217 549 086 33 294 16 219 549 257 32 747
10 FI 11 921 530 666 28 562 11 926 530 832 28 016
20 FI 6518 502 038 22 436 6521 502 197 21 891

1 SE4 9051 60 195 17 543 9054 60 211 17 486
5 SE4 5005 51 473 12 729 5007 51 488 12 669
10 SE4 2440 44 246 9395 2441 44 259 9334
20 SE4 390 33 887 5967 390 33 899 5913
s
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5.2. Comparison of results

In Table 7 we compare the fixed continuous yearly 𝐴 revenues ob-
tained by the numerical solution of the variational inequalities against
the quasi-analytic approach outlined previously in this section. We can
make a one-to-one comparison between the corresponding results of the
two approaches, to obtain that for regimes 𝐼 and 𝐼𝐼 all the differences
are less than 0.1% of the actual values. This is reassuring about the im-
plementation of the two methods, and the difference can be attributed
solely to the error in the numerical computations. Regarding the regime
switching case, the numerical solution is still obtained as solution of
the variational inequalities, whereas the quasi-analytic approach used
the approximation technique by calculating the weighted average of
the single regime values multiplied by the stationary probabilities.
Indeed, this approximation technique does not examine a process in
which regime switches do happen, it rather averages out the values
of two optimal stopping problems. Therefore, one would intuitively
expect that the corresponding value of the optimal switching problem,
in which the user is aware of regime switches is higher. This is because
they could exploit the information that future regime switches are to
happen, and the dynamics of the process is to change. Comparing the
last column of both approaches in Table 7 reveals that the numerical
value is a few percent higher for the numerical solution for all different
cases. Nonetheless, the quasi-analytic approach is computationally less
time consuming and provides a rather accurate estimation.

6. Conclusions

We find that the regime switching model captures more realistic
valuations and trading strategies that can take advantage of the nature
of the real data, without over-predicting what might be possible. The
single regime model gives valuations over twice the size of the two
regime switching model, indicating a large overshoot. We are also able
to observe that the way spot price 𝑃 varies during the day only has
econd order effects on the valuation, with fixed price model 𝑃 (𝑡) = 0
aluations coming to within 5 to 10% of the full model.

After observing the symmetries and behaviour of the optimal strat-
gy, we believe that analytic approximations might deliver good bench-
ark results in a fraction of the time that full numerical schemes take.
hen comparing single regime models, the full numerical solution and

uasi analytic agree to 0.01%, which is comparable to the grid errors
n the numerical scheme. Once the simplified model to generate the
ull regime switching value is used, the difference is around 1% to
%. Combining this with the difference between fixed price and the
ull model, we should expect the quasi-analytic solution to deliver
pproximations within 10% of the full numerical solutions for the
ajority of realistic scenarios. This can be delivered in a few seconds
622

ompared to 10 s of seconds to solve the full numerical finite difference
cheme with sufficient accuracy. This technique could prove useful in a
ariety of scenarios where solving the full model is too complex or too
ime consuming, and a fairly accurate analytic approximation is good
nough. The analytic approximation should work on any Markovian
egime switching model with optimal control, as long as the rate of
witching happens on a slower timescale than the optimal controls. In
world where investment in renewable energies is vital, being able to
uickly assess the potential benefits of installing battery capacity on the
arket is extremely important. Our model assumes that the battery is

mall enough to not impact prices on the market, so it cannot directly
e used to value large projects, but as it takes costs and prices as input
o produce an optimal strategy for the operator, it could be used as part
f an agent based model to simulate larger market behaviours.

There are numerous assumptions in this model, but it is worth
entioning that implementing such strategies in the real world is

omplicated by the fact that one cannot simply observe whether you
re in regime 𝐼 or regime 𝐼𝐼 . If the operator spots high volatility
eriods too late, they may already have executed the trade and lost
n opportunity. How running volatility is calculated or how reliable
hange point analysis can be on live data will influence how well this
ethod works. Trying to bring this uncertainty into the model using
ayesian learning, or simple testing strategies on real data, are both

nteresting topics that could motivate further research. It is also worth
onsidering different stochastic processes, especially non Markovian
nes, to assess the accuracy of the analytic approximation.
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ppendix. Analytical approximation

We now present the proof to Theorem 1.

roof. Define the following stopping times iteratively:

1 = inf{𝑠 > 0 ∶ 𝑋(𝑠) ≥ 𝑎} (A.1)

2 = inf{𝑠 > T1 ∶ 𝑋(𝑠) ≤ −𝑎}

3 = inf{𝑠 > T2 ∶ 𝑋(𝑠) ≥ 𝑎}

…
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for 𝑛 odd

T𝑛 = inf{𝑠 > T𝑛−1 ∶ 𝑋(𝑠) ≥ 𝑎} (A.2)
T𝑛+1 = inf{𝑠 > T𝑛 ∶ 𝑋(𝑠) ≤ −𝑎}

for 𝑛 even

T𝑛 = inf{𝑠 > T𝑛−1 ∶ 𝑋(𝑠) ≤ −𝑎} (A.3)
T𝑛+1 = inf{𝑠 > T𝑛 ∶ 𝑋(𝑠) ≥ 𝑎}.

The expected discounted profit after reaching two hitting times is
given as: 𝑀 ⋅ E𝜅

𝑢 [ 𝑒
−𝑟T1 ] +𝑀 ⋅ E𝜅

𝑢 [ 𝑒
−𝑟T2 ]. We further express the second

term as:

𝑀 ⋅ E𝜅
𝑢 [ 𝑒

−𝑟T2 ] = 𝑀 ⋅ E𝜅
𝑢 [E

𝜅
𝑢 [ 𝑒

−𝑟T2
|T1]] (A.4)

= 𝑀 ⋅ E𝜅
𝑢 [E

𝜅
𝑢 [ 𝑒

−𝑟(T1+T̂−𝑎𝑎 )
|T1]] = 𝑀 ⋅ E𝜅

𝑢 [𝑒
−𝑟T1 ⋅ E𝜅

𝑢 [ 𝑒
−𝑟T̂−𝑎𝑎

|T1]]

where T̂−𝑎
𝑎 = inf{𝑠 > 0 ∶ 𝑋1(𝑠) ≤ −𝑎;𝑋1(0) = 𝑎} and 𝑋1 follows the

same dynamic as 𝑋. As the underlying process is symmetric, T̂−𝑎
𝑎 and

T̂𝑎
−𝑎 have the same distribution. Thus E𝜅

𝑢 [ 𝑒
−𝑟T̂−𝑎𝑎

|T1] = E𝜅
𝑢 [ 𝑒

−𝑟T̂−𝑎𝑎 ] =

𝐵
𝑟
𝜎2

, 𝜅
𝜎2

𝑎 (−𝑎) and so

⋅E𝜅
𝑢 [ 𝑒

−𝑟T1 ]+𝑀 ⋅E𝜅
𝑢 [ 𝑒

−𝑟T̂−𝑎𝑎 ] = 𝑀 ⋅𝐵
𝑟
𝜎2

, 𝜅
𝜎2

𝑎 (𝑥)+𝑀 ⋅𝐵
𝑟
𝜎2

, 𝜅
𝜎2

𝑎 (𝑥)⋅𝐵
𝑟
𝜎2

, 𝜅
𝜎2

𝑎 (−𝑎).

In an analogous way we can assess for 𝑛 even:

𝑀 ⋅ E𝜅
𝑢 [ 𝑒

−𝑟T𝑛 ] = 𝑀 ⋅ E𝜅
𝑢 [E

𝜅
𝑢 [ 𝑒

−𝑟T𝑛
|T𝑛−1]] (A.5)

= 𝑀 ⋅ E𝜅
𝑢 [E

𝜅
𝑢 [ 𝑒

−𝑟(T𝑛−1+T̂−𝑎𝑎 )
|T𝑛−1]] = 𝑀 ⋅ E𝜅

𝑢 [𝑒
−𝑟T𝑛−1 E𝜅

𝑢 [ 𝑒
−𝑟T̂−𝑎𝑎 ]]

and for 𝑛 odd:

𝑀 ⋅ E𝜅
𝑢 [ 𝑒

−𝑟T𝑛 ] = 𝑀 ⋅ E𝜅
𝑢 [E

𝜅
𝑢 [ 𝑒

−𝑟T𝑛
|T𝑛−1]] (A.6)

= 𝑀 ⋅ E𝜅
𝑢 [E

𝜅
𝑢 [ 𝑒

−𝑟(T𝑛−1+T̂𝑎−𝑎)
|T𝑛−1]] = 𝑀 ⋅ E𝜅

𝑢 [𝑒
−𝑟T𝑛−1 E𝜅

𝑢 [ 𝑒
−𝑟T̂𝑎−𝑎 ]].

We solve the problem recursively, and so the expected discounted
value by assuming that the trader executed 𝑛 transactions following
their strategy, then stops:

𝑀 ⋅ 𝑒𝑎𝑢 +𝑀 ⋅ 𝑒𝑎𝑢 ⋅ 𝑒
𝑎
−𝑎 +𝑀 ⋅ 𝑒𝑎𝑢 ⋅ (𝑒

𝑎
−𝑎)

2 +⋯ +𝑀 ⋅ 𝑒𝑎𝑢 ⋅ (𝑒
𝑎
−𝑎)

𝑛−1

where 𝑒𝑎𝑥
𝛥
= 𝐵

𝑟
𝜎2

, 𝜅
𝜎2

𝑎 (𝑥).
Finally, the lifetime value as a limit is given as:

𝑀 ⋅ 𝑒𝑎𝑢(1 + 𝑒𝑎−𝑎 + (𝑒𝑎−𝑎)
2 +…) =

𝑀 ⋅ 𝑒𝑎𝑢
1 − 𝑒𝑎−𝑎

.

Now if we write the perpetual value function of this single regime
roblem when using a strategy to sell at 𝑥 = 𝑎 and buy at 𝑥 = −𝑎, as
𝑆 (𝑥; 𝑎). Consider that initially the battery is full, if 𝑥 ≥ 𝑎, the operator
ells immediately at 𝑝 = 𝑥 to derive the value

𝐹 (𝑥; 𝑎) = 𝑉𝐸 (𝑥; 𝑎) + 𝑥 − 𝐶0 for 𝑥 ≥ 𝑎.

sing the symmetry in 𝑥 we can say

𝐸 (𝑥; 𝑎) = 𝑉𝐹 (−𝑥; 𝑎)

nd therefore

𝐹 (𝑥; 𝑎) =

⎧

⎪

⎨

⎪

⎩

(𝑎−𝐶0)𝑒𝑎𝑥
1−𝑒𝑎−𝑎

if 𝑥 < 𝑎
(𝑎−𝐶0)𝑒𝑎−𝑥
1−𝑒𝑎−𝑎

+ 𝑥 − 𝐶0 if 𝑥 ≥ 𝑎.
□
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