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a b s t r a c t

The lack of freely available (real-life or synthetic) high or ultra-high dimensional, multi-class datasets
may hamper the rapidly growing research on feature screening, especially in the field of biometrics,
where the usage of such datasets is common. This paper reports a Python package called Biomet-
ricBlender, which is an ultra-high dimensional, multi-class synthetic data generator to benchmark a
wide range of feature screening methods. During the data generation process, the overall usefulness
and the intercorrelations of blended features can be controlled by the user, thus the synthetic feature
space is able to imitate the key properties of a real biometric dataset.
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1. Motivation and significance

Analyzing ultra-high dimensional data that include hundreds
of thousands of features is becoming an increasingly common
problem in many fields of modern scientific research [1]. Since
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hese datasets typically contain only a relatively few relevant,
on-redundant predictors, a screening step that removes irrel-
vant features prior to the main analysis is often employed for
eaching a better prediction accuracy and much faster computa-
ion [2].

While numerous screening methods have been published in
ecent years (e.g., [3–9]), only a few high or ultra-high dimen-
ional datasets are available publicly that can be employed for
enchmarking purposes. Furthermore, these public datasets (see,
.g., high dimensional datasets related to classification tasks on
he UC Irvine Machine Learning Repository1) typically do not
contain ground truth side information on the usefulness of the
features. Besides, most of them have binary response variables,
so they cannot be used to benchmark methods developed for
solving multiple-class screening problems. While in biometrics
such problems are typically encountered, it is difficult to im-
itate the properties of these kinds of feature spaces by using
available data generators (e.g., the Madelon dataset [10] and
the associated data generation algorithm implemented by the
make_classification function of the scikit-learn Python pack-
age [11]).

To remedy this shortcoming, this paper reports a Python pack-
age called BiometricBlender, which is an ultra-high dimensional,
multi-class synthetic data generator to benchmark a wide range
of feature screening methods. During the data generation process,
the overall usefulness and the intercorrelations of features can
be controlled by the user. Accordingly, the key properties of a
biometric dataset can be imitated by the blended synthetic fea-
ture space. This dataset provides an alternative to real biometric
datasets, which are typically not freely available. Therefore, it
enables the publishing of results achieved on such data.

The paper is organized as follows. Section 2 contains the
detailed description of the data generator software. As illustrative
examples, Section 3 presents three synthetic feature spaces gen-
erated to imitate real-life datasets. Finally, Section 4 summarizes
the impact of the software and provides the conclusions.

2. Software description

This section describes the full generator pipeline of Biomet-
ricBlender in detail. The output of the pipeline is a high dimen-
sional, multi-class S × F visible feature matrix Vvisible

=
[
vvisible
ij

]
,

here:

• F visible is the desired number of observable, visible features;
• Fvisible

=
{
f visible
j |1 ≤ j ≤ F visible

}
is the set of visible fea-

tures;
• C = |C| is the number of classes;
• SC is the number of samples per class2; and
• S = |S| = C · SC is the total number of samples.

Visible features are derived from a set of hidden features,
hich are significantly fewer than their visible counterparts. In
his context:

• F hidden
≪ F visible is the desired number of hidden features;

• Fhidden
=

{
f hiddenj |1 ≤ j ≤ F hidden

}
is the set of hidden fea-

tures;
• F true is the set of hidden features which are created to be

significant and distinguishing, and

1 Available at: https://archive.ics.uci.edu (retrieved: 22 January 2023).
2 Note that, for simplicity, scalar SC was used. Further development could
rovide a more realistic feature space by employing classes with different sample
izes.

• F fake is the set of hidden features which are just pure noise,
and do not contribute useful information to the classification
of samples. Moreover:

F true
∪ F fake

= Fhidden,

F true
∩ F fake

= ∅.

With an analogy taken from genetics, hidden features are the
genotypes, visible features are the phenotypes of samples. ‘‘True
feature’’ genes have an effect on the behavior being observed,
while ‘‘fake feature’’ genes do not.

If hidden features were directly observable and ideally dis-
tributed, sample classification would be a trivial task. The blender
components in the second half of the pipeline (see below) ensure
that this information is more concealed in the visible features.
The full pipeline performs the following steps:

1. A suitable distribution type and a set of distribution pa-
rameters are selected per ck ∈ C class and f hiddenj ∈ Fhidden

hidden feature;
2. F hidden hidden feature values are drawn from these distri-

butions per sample:

∀si ∈ S, f hiddenj ∈ Fhidden
: vhidden

ij = v(si, f hiddenj );

3. Hidden features are combined with each other through
polynomial, linear and/or logarithmic combinations to pro-
duce F visible visible features per sample;

4. A certain amount of random noise is added to the visible
feature values.

2.1. Software architecture

Fig. 1 shows an overview of the pipeline, with the data flow
between the components. The number in parentheses after the
name of each component indicates which of the above steps the
given component participates in. Each component has a number
of parameters that control the usefulness and signal-to-noise
ratio of the individual features. The components and their param-
eters are described in Sections 2.1.1 to 2.1.5.

2.1.1. Location factory
This component is responsible for determining the location3 of

the distributions per class and hidden feature: L =[
lkj = l(ck, f hiddenj )

]
. Locations are randomly chosen under an en-

velope. The envelope is either a normal distribution or a uniform
distribution, specified by the user. The parameters of the Location
Factory are:

• Number of features (true and fake): F true, F fake.
• Number of classes: C .
• Ordering extent

(
∈ Z[0,C]

)
: controls whether the lkj : k ∈

Z[1,C] sequence of locations of any particular f hiddenj feature
are randomly, partially or fully ordered, thus controls the
correlations between features. Its value specifies the average
number of locations in every ordered subsequence. This is
relevant when not just one, but several features come into
play: the more ordered locations are, the less detail a new
feature adds to the overall amount of information.
Example: height and foot size are ordered similarly, therefore
knowing both does not carry twice as much information as
knowing only one of them. IQ, on the other hand, is ordered
randomly relative to these two features, so knowing both IQ
and height doubles the amount of information.

3 Location defines the translation of a distribution, e.g., it is the mean of
normal distributions, and the smallest value, i.e., the start of the range of values
for uniform distributions.
2

https://archive.ics.uci.edu
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Fig. 1. Main components of the generator pipeline of BiometricBlender.

• Sharing extent
(
∈ Z[0,C]

)
: controls how many classes share

the exact same location on average. With zero sharing
extent, all classes have separate, distinguishable locations.
With sharing extent C , applied to all fake features, all classes
share a single location: ∀k ∈ Z[1,C] : lkj = lj, rendering the
feature completely useless. A sharing extent in between cre-
ates distinguishable groups of classes, within which groups
the individual classes appear identical.
Example: The sharing extent of the Social Security Number
(SSN) is zero, since all SSNs are unique. The sharing extent
of first names, on the other hand, is significantly higher.

• Usefulness
(
∈ R[0,1]

)
intuitively controls how spread out

are the sampling distributions of Feature Sampler. The larger
the usefulness and the less spread out distributions are,
the easier it is to separate feature values generated around
these locations. Rather than specifying the usefulness of all
hidden features manually, the Location Factory expects a
usefulness scheme, with which it generates the usefulness of
all features. The scheme can be linear, exponential or long-
tailed. The usefulness of pure noise features is fixed at zero.
Fig. 2 shows different usefulness parameter settings through
the example of two hidden features.
The interpretation of the sampling differences highly de-
pends on the data to be imitated.
Example 1: When identifying people, the usefulness of SSN
is 1, because it never changes, and it is unambiguous. The
respiratory rate has much lower, but still non-zero use-
fulness because while it cannot identify individuals, it can
separate some age groups, people doing certain activities, or
people with some medical condition that affects breathing.
Example 2: When measured at short time scales, body
weight has very little uncertainty. Finding a difference in
body weight implies loss or gain usually achieved over a
longer period of time. In contrast, a signature cannot be
exactly replicated even under the same conditions, within
the same minute.
The reproducibility of features across different sessions is
called persistence in the literature [12,13]. The instanta-
neous discriminative power is the ability of a feature to
distinguish a class from the rest of the population at a given
point in time, it can be measured, e.g., by the intraclass
correlation coefficient [14]. More generally, the usefulness
of a feature depends on both components: persistence and
instantaneous discriminative power. In our software, they
are modeled via the usefulness parameter, and the number
of sessions is defined by the number of samples per class.

Fig. 2. An example of two hidden features A and B for ten classes with ordering
extent 2 and sharing extent 2.

2.1.2. Feature sampler
This component takes the lkj locations and usefulness values

of the previous step and draws hidden feature values for the re-
quired number of samples from normal distribution around these
locations. As an option, the uniform distribution is also available
at the command line interface.

During sampling, the usefulness is converted to the scale4 of
the sampling distributions:

• for true features, the converted scale is multiplied by a
number drawn from a small uniform distribution around 1,
in order to add some variance; and

• for fake features, a fixed scale value is used.

For every class ck ∈ C, SC samples are created, resulting in a
S × F hidden matrix Vhidden

=
[
vhidden
ij

]
of hidden feature values. Due

to the conversion of usefulness to scale, less useful features have
larger magnitudes. The magnitudes get normalized just before
blending.

2.1.3. Polynomial blender
This component takes all possible combinations of at least

one, at most d non-unique hidden features, and multiplies them

4 Scale defines the spread of a distribution, e.g., it is the standard deviation
for normal distributions, and the length of the range of values for uniform
distributions.
3
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√
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The output is an F trans set of F trans
= |F trans

| =
(Fhidden+d

d

)
− 1

(non-unique) transitional features.6 The degenerate case of d = 1
results in F trans

= Fhidden.

2.1.4. Feature blender
This component takes the transitional features, constructs a

random, F visible
× F trans dimensional sparse weight matrix W =

wij
]
, and produces F visible blended features using those weights.

The number of blended transitional features per visible feature
i.e., the number of non-zero items in each column of W) is
andomly chosen from a discrete uniform distribution of small
alues. The weights themselves are chosen from a Dirichlet dis-
ribution, such that their sum per visible feature is always 1:
i :

∑F trans
j=1 wij = 1. Thus, the overall magnitude of the features

s preserved during blending. Even so, for classification methods
perating with distances, a normalization of visible features may
e necessary [15], while other methods, such as the Decision Tree
nd the Random Forest Classifier, are insensitive to differently
caled features.
The Feature Blender can operate in two modes:

• in linear mode, the visible features are weighted sums of the
transitional features:

Vvisible
=

[
vvisible
ij

]
= VtransW⊺ where vvisible

ij =

F trans∑
t=1

vtrans
it wjt;

• in logarithmic mode, the visible features are products of the
weighted powers of the transitional features:

Vvisible
=

[
vvisible
ij

]
where vvisible

ij =

F trans∏
t=1

(
vtrans
it

)wjt .

The linear mode results in feature distributions close to the
Gaussian, while logarithmic mode generates long-tailed feature
distributions close to the lognormal distribution.7 In both modes,
the features are expressed as a function of originally uncorre-
lated mixture distributions (hidden features) consisting of nor-
mally distributed components.8 The correlation of visible features
mimics the challenge of redundancy in large feature spaces.

2.1.5. Noise blender
Finally, optional random noise is added to the visible features,

taking the following steps per feature:

1. noise is drawn randomly from a normal distribution;

5 Note that by taking the roots we end up with some repeated values.
6 F trans is equal to the number of combinations of taking exactly d items of

hidden
+ 1 items—all the hidden features plus the constant 1—at a time, with

eplacement; minus the sole case of taking 1 d times.
7 The linear blending mode (optionally with the noise blending, see below)

conforms to the generative model of the Factor Analysis (FA), thus, in theory,
the hidden features may be reconstructed up to a multidimensional rotation
and some noise. The logarithmic blending mode is different, but the FA still
produced reasonable reconstructions.
8 All correlation between them is due to the realization of individual class

means. Although it is tempting to handle the problem of a large number of
visible features by decorrelating them, e.g., by using the Cholesky transforma-
tion [13], the algebraic solution can be unstable due to a large number of
visible features in the linear case. Moreover, for the logarithmic case, such a
transformation does not return the original independent features, just some
dependent variables with diagonal variance.

2. an α relative usefulness is drawn randomly from a uniform
distribution, by default, between 0 − 1;

3. the feature and the random noise are blended with either
linear or logarithmic interpolation, with α, 1 − α weights,
respectively.

Thus, if α is 1, zero noise is added, and when α is 0, the random
noise completely blocks out the feature values.

2.2. Software functionalities

The sole functionality of BiometricBlender is to generate an
ultra-high dimensional, multi-class dataset to benchmark a wide
range of feature screening methods. The output is generated as
an HDF5 file9 with the following structure:

• created_at (string): timestamp of data generation;
• features (dimensions: S×F visible, dimension labels: [‘‘sam-

ple’’, ‘‘feature’’], attributes map to command line user input
or default parameter values as strings): generated visible
feature values, i.e., Vvisible;

• id (string): unique identifier (UUID4) created at the data
generation;

• hash (string): hash of the data or the text ‘‘unavailable’’;
• labels (dimension: S, dimension label: ‘‘sample’’): gener-

ated sample labels;
• names (dimension: F visible, dimension label: ‘‘feature’’): fea-

ture names, i.e., Fvisible;
• usefulness (dimension: F visible, dimension label:

‘‘feature’’): usefulness of features;
• optional hidden_features and hidden_usefulness de-

scribe hidden features similarly to features and useful-
ness, respectively.

Given a fixed seed, the output is reproducible up to rounding
errors. Note that language-specific implementations and wrap-
pers may present you with different dimensions, e.g., some R
libraries and Matlab expand all arrays to have at least two
dimensions.

3. Illustrative examples

3.1. Signature feature space

As the first illustrative example, a synthetic dataset is gen-
erated to imitate the private signature feature space of Cursor
Insight.10

The following custom command line parameters were set:

• n-classes = 100;
• n-samples-per-class = 16;
• n-true-features = 40;
• n-fake-features = 160;
• location-ordering-extent = 2;
• location-sharing-extent = 3;
• n-features-out = 10000;
• blending-mode = ’logarithmic’.

9 Detailed information about the HDF5 format can be found at: https://
hdfgroup.org/solutions/hdf5 (retrieved: 22 January 2023).
10 Cursor Insight won the ICDAR competition on signature verification
and writer identification in 2015 [16]. For further information, see: https:
//cursorinsight.com/e-signatures.html (retrieved: 22 January 2023). Note that, to
demonstrate the potential in screening, the dataset generated here is somewhat
noisier than the imitated data.
4
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Table 1
Classification results on the 1600 × 10000 dataset for three basic classifiers and various reduction algorithms. (a) Only the best accuracy among all parameters is
eported. (b) Fit times are the wall time after the reduction step and correspond to the accuracy shown above.
(a) Classification performance (b) Fit time of the classifier

Reduction None PCA FA k-best F true Reduction None PCA FA k-best

Class.
kNN 0.131 0.218 0.214 0.641 0.632

Class.
kNN 0.153 s 0.003 s 0.001 s 0.006 s

SVC 0.471 0.466 0.548 0.686 0.656 SVC 24 s 0.37 s 0.42 s 0.46 s
RF 0.609 0.371 0.716 0.692 0.860 RF 300 s 22 s 21 s 29 s

The resulting dataset has 1600 samples and 10000 features.
ote that in this feature set one must adjust the parameters of
he generative model to approximate the statistics (e.g., eigen-
pectrum) of the output rather than prescribing the statistics
hemselves. We tested it for classification in the following ways.
e trained the scikit-learn [11] (version: 0.24.2) implementation
f three basic classifiers on the original data and on the re-
uced/decomposed version of the data. We characterized the best
ross-validated accuracy that can be attained for each classifier
sing a full grid search over crucial parameters. These parameters
ere:

• weights = ’uniform’, ’distance’ for k-nearest neigh-
bors (kNN);

• C = 0.5, 1.0, 2.0; tol = 1e-4, 1e-3, 1e-2 for the support
vector classifier (SVC); and

• n_estimators = 1000; min_samples_leaf = 1, 2, 4;
max_depth = None, 8, 10; min_impurity_decrease =

0.0, 0.01, 0.05 for the Random Forest Classifier (RF).

The reduction step allowed the classifiers to work on a more
ocused dataset. We executed each reduction/decomposition al-
orithm to produce a reduced feature space of 10, 25, 50, 100,
00, 400, and 800 features and reported the best accuracy only,
ee Table 1. The Principal Component Analysis (PCA) kept its
efault settings. To Factor Analysis (FA) we applied the varimax
otation. The k-best SelectKBest method increasingly selected
he best features using the f_classif score. F true used the true
idden features.

.2. FaceNet feature space

The deep neural network FaceNet [17] provides 128 features
or each portrait presented. Those features are approximately
ormal with little redundancy (low average correlations) and
nsensitive to irrelevant features, such as lighting (low noise). On
he MORPH-II dataset [18], PCA has been reported to explain the
eature variance with half of the total features [19]. Therefore, we
ssume that 64 true and no fake features are required for produc-
ng the dataset. We can expose the true features by decreasing the
umber of true features blended in each visible feature and at the
ame time reducing the observation noise.
The following custom command line parameters are recom-

ended:

• n-true-features = 64;
• n-fake-features = 0;
• n-features-out = 128;
• min-count = 2;
• max-count = 3;
• max-noise = 0.2.

The expectations are met, see Fig. 3.

.3. Vocalization database

For the purpose of studying Parkinson’s Disease markers, vocal
amples were collected from 252 subjects [20]. PCA indicates
hat 168 features can explain 95% of the variance. Unlike in the

Fig. 3. Variance explained by PCA components of the feature space generated
to mimic the FaceNet dataset.

previous case, due to the shape of the feature space (756 samples,
753 features), one cannot tell how many of the features are
true without actually solving the classification problem. But our
framework is capable of simulating such situations.

Sakar et al. [20] demonstrated that 50 non-redundant features
are required for solving the classification task with 86% accuracy.
Based on their scenario, we hypothesize 50 true and 118 fake
features, thus the following custom command line parameters are
recommended:

• n-classes = 252;
• n-samples-per-class = 3;
• n-true-features = 50;
• n-fake-features = 118;
• n-features-out = 753;
• min-count = 2;
• max-count = 4;
• max-noise = 0.3.

3.4. Gallery size

To test the effect of gallery size, one usually wants to generate
a large number of classes, then feed the filtered output to the al-
gorithm being investigated. Note that the data must be generated
in one step. Due to implementation details, generating a smaller
number of classes, i.e., 1000 classes does not result in a subset of
the synthetic data generated requesting 10 000 features, even if
the seed is the same.

The testing shall go on as described in the literature. This
example shows only, the parameters of generating a dataset with
many classes as follows:

• n-classes = 10000;
• n-samples-per-class = 4;
• n-true-features = 50;
• n-features-out = 2000.

In addition, one can experiment with setting more parame-
ters, such as min-usefulness, max-usefulness, location-
ordering-extent or location-sharing-extent, see the pro-
gram usage on GitHub [21].
5
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. Impact and conclusion

The ultra-high dimensional, multi-class data generator called
iometricBlender supports the rapidly growing research on fea-
ure screening in two ways. On the one hand, it facilitates the
enchmark of a wide range of feature screening methods (see
able 1) by providing an alternative to real (typically non-free)
iometric datasets. On the other hand, it enables the publishing of
esults achieved on such data. To this end, the overall usefulness
nd the intercorrelations of blended features can be controlled
y the user during data generation. In addition, it is possible
o study how the classification performance changes with the
umber of classes (gallery size) [19], with the ratio of true and
ake features, their overall number, or with their mixing (blending
arameters). Thus, the synthetic feature space is able to imitate
he key properties of a real biometric dataset.

We wish to draw the attention of the reader to the following
acts, which may be considered as potential conflicts of interest,
nd to significant financial contributions to this work. The nature
f the potential conflict of interest is described below: some of
he authors work for Cursor Insight, an IT company targeting
uman motion analysis, person classification, and identification
ased on large-scale biometric data in particular. In order to
andle such real-life, multi-class, ultra-high dimension datasets
fficiently, we came up with our own feature screening algorithm,
ecause we found industry-standard solutions insufficient. We
ave then decided to share our solution publicly. The demand
or a synthetic data generator arose when, in order to prove the
erformance of our screening algorithm against standard solu-
ions, we started looking for publicly available reference datasets
f such dimensions, or generators of such, and found none.
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