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a b s t r a c t

In the field of data science, there are a variety of datasets that suffer from the high-dimensional,
low-sample-size (HDLSS) problem; however, only a few dimensionality reduction methods exist that
are applicable to address this type of problem, and there is no nonparametric solution to date. The
purpose of this work is to develop a novel network-based (nonparametric) dimensionality reduction
analysis (NDA) method, that can be effectively applied to HDLSS data. First, with the NDA method, the
correlation graph of variables is specified. With a modularity-based community detection method, the
set of modules is specified. Then, the linear combination of variables weighted by their eigenvector
centralities (EVCs), defined as LVs, is determined. In the optional phase of variable selection, variables
with low EVCs and low communality are ignored. Then, the set of LVs and the set of indicators
belonging to the LVs are specified using the NDA method. NDA is applied to publicly available databases
and compared with principal factoring with community analysis (PFA) methods. The results show that
NDA can be effectively applied to HDLSS datasets as it outperforms the existing methods in terms
of interpretability. In addition, the application of NDA is easier, since there is no need to specify the
number of latent variables due to its nonparametric nature.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

In high-dimensional data, the number of variables is usually
uch larger than the sample size. Since in such a dataset,1
any dimensions are irrelevant or redundant, dimensionality

eduction has become an essential element of the engineering
pproach to mathematical modeling [1,2]. Many model reduction
ethods have been developed and successfully implemented in
pplications, such as approximation by manifolds, graphs, and
omplexes [3,4]; low-rank tensor network decompositions [5,
]; deep generative models, such as the variational autoencoder
VAE) [7–9]; ensemble learning methods, such as boost [10], ran-
om forest [11], forest of extreme learning machines with rule-
ase transferring (FELM-RT) [12], ensemble of radial basis func-
ion neural networks in decision tree structure with knowledge
ransferring (ERDK) [13], and forest of decision trees with radial

∗ Corresponding author at: Department of Quantitative Methods, University
f Pannonia, Egyetem Street 10, Veszprém, H-8200, Hungary.

E-mail address: kosztyan.zsolt@gtk.uni-pannon.hu (Z.T. Kosztyán).
1 These are often termed high-dimensional, low-sample-size (HDLSS)
atasets.
 S

ttps://doi.org/10.1016/j.knosys.2022.109180
950-7051/© 2022 The Author(s). Published by Elsevier B.V. This is an open access a
basis function networks and knowledge transferring (FRDK) [14],
as well as various versions of factor analysis (FA) [15,16] and
principal component analysis (PCA) [17–20].2

Note that while both PCA and PFA are widely used methods
of dimensionality reduction, they have a major disadvantage. In
these methods, it is assumed that data are linearly separable.
However, the linear model is not always reliable in capturing
nonlinear relationships in real-world problems, especially with
limited samples [7,22]. To solve this problem, Schölkopf et al.
[23,24] proposed kernel PCA (KPCA), which is a non-linear exten-
sion of PCA that uses kernel methods. The application of KPCA
in the field of HDLSS data analysis is an active research area.
For instance, Liu et al. [25] and Reverter et al. [26] applied this
method for the analysis of HDLSS gene expression data, while
in their recent paper, Nakayama et al. [20] tested clustering
performance on HDLSS microarray datasets.

An additional difficulty in applying ordinary PCA is that prin-
cipal components are usually linear combinations of all input

2 Furthermore, the combination of multiple feature selection methods is a
idely used approach. The performance of various parallel and serial combi-
ation techniques using HDLSS data was examined and compared by Tsai and
ung [21].
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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ariables, which makes it difficult to interpret the results, espe-
ially in the case of HDLSS datasets (see, e.g., [27]). To address this
roblem, Zou et al. [28] proposed sparse PCA (SPCA), which aims
t producing easily interpreted models through sparse loadings;
.e., the principal components are linear combinations of a subset
f the original variables [29]. Moreover, Jiang et al. [30] proposed
he approximated gradient flow (AgFlow) method to lower the
omputation complexity of the aforementioned problem under
DLSS settings. In contrast to PCA, there is an iterative feature
i.e., variable) selection step in PFA called communality analysis,
n which irrelevant indicators (for which the square correlation3
etween an LV and the indicator is below a certain threshold),
nd after factor rotation, common indicators (where the commu-
ality values for different LVs are similar) can be ignored. The
nterpretation of a factor depends on which group of variables
s correlated with it. In other words, the interpretation of a
actor reveals which indicators belong to the factor. Therefore, it
ust be clearly determined to which factor a variable belongs.
therwise, the factors will be difficult to interpret [31]. For this
eason, common variables should also be ignored. In this study,
e show that this variable selection approach can be adapted
o the proposed network-based (nonparametric) dimensionality
eduction analysis (NDA).

Explanatory FA (EFA) [32] and PCA are statistical methods that
re widely applied to simplify complex sets of data and to de-
cribe the covariance relationships among variables. While both
he EFA and PCA methods seek to approximate the covariance
atrix, the EFA model is more complex, as its major question is
hether the data are consistent with a prescribed structure. The
wo methods are used to reduce a large number of variables to a
maller number of factors called latent variables (LVs). Common
A (CFA) [33], also called principal FA (PFA) [34] or principal
actoring, can be considered a combination of FA and PCA. PFA
lso seeks the fewest factors that can account for the common
ariance (correlation) of a set of variables. PCA can be defined
s follows: Z = FL, where Z is the standardized original data
atrix (denoted as D), F is the standardized factor score matrix,
nd L is a factor multiplied by the variable weight matrix (factor
variable weight matrix) [35]. The columns of L are multiplied

y the square root of the corresponding eigenvalues, that is, the
igenvectors are scaled up by the variances. It is assumed that
represents the variance of a variable, F represents a variance
f common factors (or a common variance among Z and other
ariables in the analysis), and L represents coefficients showing
ow F and Z are related [34]. The PFA equation is Z = FL + U.
he difference between the two equations is the last component
i.e., U). uj ∈ U is the unique variance of a variable j. U contains
oth the unreliable variance of the measurement error and the
eliable variance, which does not overlap with the common vari-
nce [36]. PCA assumes that the communality (h2

i =
∑k

j=1 p
2
ij),

.e., the common variance, becomes maximized and that there is
o unique variance in each variable. In contrast, PFA assumes that
here is a substantial amount of unique variance (ui = 1 − h2

i )
nd reliable common variance [34]. PCA condenses the original
ariables into a smaller number of components, thus performing
model or dimensionality reduction. PFA finds a factor model

factor structure) that best reproduces the observed correlation
nd thus is aimed at explaining the correlation between vari-
bles [34]. Since PFA specifies variables, this method usually
nvolves variable selection, where multicollinear and irrelevant
ariables must be ignored.
Despite the widespread use of PCA- and FA-related methods,

hey have several shortcomings, which have to be improved:

3 This is referred to as the communality value.
2

1. Both EFA and PFA assume that the number of observations
should be at least 10 times the number of variables [37]. It
has also been reported that the use of PCA in the analysis of
the HDLSS dataset did not yield satisfactory results [38,39].
Unlike SPCA, these methods cannot be used if the number
of observations is equal to or lower than the number of
variables.

2. PFA handles only scale variables. Despite the fact that sev-
eral methods, such as confirmatory FA (CoFA) [40], are
already able to handle nonscale variables such as ordinal
variables [41], arbitrary (e.g., nonlinear, ordinal-scale) in-
terdependencies between indicators cannot be addressed.

3. Although an explanation of the total variance of LVs and
eigenvalues can help us to determine the maximal num-
ber of LVs, there is no exact method to specify the num-
ber of LVs, which is problematic because the number of
LVs should be specified before performing FA. PCA and its
extensions are also typically parametric methods.

The proposed method fills these gaps.

1. First, the correlation graph between indicators is spec-
ified. A modularity-based community detection method,
such as the Louvain [42] or Leiden [43] method, specifies
modules in the correlation graph. These modules specify
the set of indicators, where the interdependencies within
a module are higher than those between modules. This
modularity-based community detection method can be ap-
plied to large-scale correlation graphs, where the nodes are
variables and the arcs between nodes are the correlations
between variables.

2. By specifying the correlation graph through communality
analysis to specify the factor loadings and factor scores,
instead of Pearson’s correlation, the Kendall and Spearman
correlations can be used if ordinal variables need to be
addressed. However, in the case of arbitrary detection, such
as the detection of nonlinear interdependencies, the dis-
tance correlation (DC) [44] can also be used in the proposed
method. The advantage of applying the DC is that its value
is zero if and only if there is no dependency between
variables.

3. After carrying out modularity-based community detection,
the number of modules specifies the number of LVs. The
linear combination of the eigenvector centrality (EVC) and
indicators specifies the LV in a module. The optional itera-
tive feature selection phase refines the LVs while ignoring
indicators with low EVC and/or low communality.

In other words, the contribution of this paper is the develop-
ment of an NDA method that can be applied to HDLSS data and
has the following properties:

1. Non-parametric;
2. Robust (scaleable);
3. Handles non-linear measures;
4. Supports geometric representations;
5. Includes embedded feature selection.

This paper is organized as follows. Section 2 introduces the
data utilized in this study and the methodology. Section 3 details
the calculation process. Section 4 presents and discusses the
results of the NDA method, and also compares the results of the
NDA method with the results of the PFA, PCA, and SPCA methods.
Finally, Section 5 provides the summary and conclusions of this
work and, proposes future research directions.



Z.T. Kosztyán, M.T. Kurbucz and A.I. Katona Knowledge-Based Systems 251 (2022) 109180

2

2

i
i
L
s
e
d
c
n
s
p
d
2
b
(
(
e
i
p
m
t
p
m
a
u
c
o
f
c

b
c

c

p

b
h

w
i

f
w
v

t
P
a
s
i
t
Y

d

a

c

. Materials and methods

.1. Data employed

Two publicly available data sources are employed. The first
s the CWTS Leiden Ranking 2020 database, which includes 42
ndicators and 1176 universities from all around the world.4 The
eiden Ranking offers a multidimensional perspective on univer-
ity performance. The Leiden Ranking provides indicators of sci-
ntific impact, collaboration, open-access publishing, and gender
iversity. Size matters when comparing universities: performance
an be viewed from an absolute or a relative perspective (e.g., the
umber versus the percentage of highly cited publications). Thus,
ize-dependent and size-independent indicators are consistently
resented together in the Leiden Ranking. Hence, both types of in-
icators need to be taken into account. The CWTS Leiden Ranking
020 provides statistics not only at the level of science as a whole
ut also at the level of the following five main fields of science:
1) Biomedical and health sciences, (2) Life and earth sciences,
3) Mathematics and computer science, (4) Physical sciences and
ngineering, (5) Social sciences and humanities. The Leiden Rank-
ng is based on publications in the Web of Science database
roduced by Clarivate Analytics. The most up-to-date statistics
ade available in the Leiden Ranking are based on publications in

he period 2015–2018, but statistics are also provided for earlier
eriods. Since, the number of observations (i.e., universities) is
ore than ten times greater than the number of variables, PFA
nd the proposed NDA can be compared. The CWTS Leiden 2020
niversity ranking database (herein, the CWTS’2020 database)
ontains several time periods and scientific fields. We consider
nly the latest (2015–2018) time period and include all scientific
ields. To calculate the impact indicators, we perform fractional
ounting.5 The list of applied indicators are in Appendix A.
The second database is a joint dataset of official COVID-19 re-

ports and the governance, trade and competitiveness indicators of
World Bank Group platforms [45]. This cross-section includes the
governmental, trade, and competitiveness relationships among
official COVID-19 reports. It contains 18 COVID-19 variables gen-
erated based on the official reports of 138 countries, as well as
an additional 2160 governance, trade, and competitiveness indi-
cators from the World Bank Group’s GovData360 and TCdata360
platforms.6 With the exception of the 18 COVID-19 indicators, all
indicators are used from this database. The list of indicators can
be found in Appendix B. In both cases, the original values of the
given indicators of these two datasets are used without any data
cleaning or data manipulation. This database includes 2160 gov-
ernance, trade, and competitiveness indicators (herein, GovDB’20)
are used for the 138 countries, the number of indicators is ten
times greater than the number of observations. Therefore, PCA
and PFA cannot be used.

2.2. Methods employed

2.2.1. Applied correlation coefficients
The first step of the proposed NDA method is to specify the

ivariate correlation graph between indicators. Several bivariate
orrelation coefficients exists. One of the most widely used is

4 The database can be downloaded for free from https://www.leidenranking.
om/ranking/2020/list (retrieved: May 14, 2021).
5 The fractional counting method gives less weight to collaborative
ublications than to noncollaborative ones.
6 More information about the GovData360 and TCdata360 platforms can
e found at https://govdata360.worldbank.org/ (retrieved: May 14, 2021) and
ttps://tcdata360.worldbank.org/ (retrieved: May 14, 2021).
3

Pearson’s correlation coefficient (see Eq. (1)), which measures the
linear correlation between two variables (vi, vj).

ρvi,vj =
E[(vi − µvi )(vj − µvj )]

σviσvj

, (1)

where E(vi) = µvi is the mean value and σvi is the standard
deviation of variable vi.

Pearson’s correlation coefficient measures only the linear cor-
relation between metric (i.e., continuous) variables. The Spear-
man correlation coefficient is defined as the Pearson correlation
coefficient between ordinal variables. The Kendall correlation is
defined as:

τvi,vj =
2

n(n − 1)
[nc(vi, vj), nd(vi, vj)], (2)

here nc(vi, vj) is the number of concordant pairs and nd(vi, vj)
s the number of discordant pairs.7

The Spearman and Kendall correlation coefficients are suitable
or ordinal values but can also be used on metric values; in this
ay, not only linear but also monotonic relationships between
ariables can be measured.
The distance correlation [44,46] is a measure of the associa-

ion strength between nonlinear random variables. It surpasses
earson’s correlation because it can be used to discern other
ssociations in addition to linear ones and can work multidimen-
ionally. The distance correlation ranges from 0 to 1, where 0
mplies independence between variables vi and vj and 1 implies
hat the linear subspaces of vi and vj are equal. Define X = vi and
= vj. The distance correlation is specified as:

Cor(vi, vj) = dCor(X, Y ) =
dCov(X, Y )

√
dVar(X) · dVar(Y )

, (3)

where dVar(X) = dCov(X, X), and

dCov2(X, Y ) =
1
N2

N∑
J=1

N∑
K=1

AJ,KBJ,K , (4)

where N is the number of observations. Here,

AJ,K = aJ,K − āJ· − ā·K − ¯̄a·· (5)

BJ,K = bJ,K − b̄J· − b̄·K −
¯̄b··, (6)

where aJ,K = ∥XJ −XK∥, bJ,K = ∥YJ −YK∥, J, K = 1, 2, . . . ,N; ∥.∥ is
the distance measure; and āJ· =

1
n

∑N
K=1 aJ,K , ā·K =

1
n

∑N
J=1 aK ,J ,

nd ¯̄a·· =
1
n2

∑N
J,K=1 aJ,K .

The distance correlation is also an extension of Pearson’s cor-
relation and the Spearman correlation; however, Székely and
Rizzo [46] stated that the distance correlation is 0 if and only if
X = vi and Y = vj are independent.

NDA can apply all the above correlation coefficients; however,
when analyzing the nonlinear relationship between variables, the
distance correlation is recommended. Furthermore, the square
correlation between variable vi and variable vj is denoted as ri,j.

2.2.2. Modularity-based community detection
After the correlation graph is determined from the variables,

a modularity-based community detection method can be used to
specify the group of highly intercorrelated variables.

In this study, we use the modularity measure introduced
by Newman [47], represented in Eq. (7), to uncover modules and

7 Any pair of observations (xi, yi) and (xj, yj), where i < j, are said to be
oncordant if the sort order of (xi, xj) and (yi, yj) agrees, that is, if either both
xi > xj and yi > yj hold or both xi < xj and yi < yj hold; otherwise, they are
said to be discordant.

https://www.leidenranking.com/ranking/2020/list
https://www.leidenranking.com/ranking/2020/list
https://govdata360.worldbank.org/
https://tcdata360.worldbank.org/
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o set up the modular structure of the network. A network mod-
le is a subgraph whose vertices are more likely to be connected
i.e., variables are more likely to be correlated) than those outside
he subgraph.

=
1
2L

∑
ij

(
ri,j − γ r̂i,j

)
δ(Ci, Cj), (7)

where M is the modularity value; ri,j is the edge weight between
node i and node j; r̂i,j is the expected weight between node i and
node j (the so-called null model); L is the total number of weights
in the network; γ is a constant (default value is 1); and the
Kronecker δ is 1 if the community of variable i and the community
of variable j are the same and 0 otherwise. In the correlation
graph, the nodes represent variables and the edges represent the
bivariate square correlations between variables. As a null model,
we use Newman’s [47] configuration model, which here is ˆri,j =
rirj
2R , where ri and rj are the outdegree and indegree of nodes i
and j, respectively. In addition, r̂i,j =

2
n(n−1)

∑n−1
i:=1

∑n
j:=i+1 ri,j and

r̂i,j = rmin are allowed.
Modularity reflects the extent of expected edge weights rela-

tive to the random configuration network (where the edge weight
is r̂i,j). The modularity maximization algorithm organizes the ver-
tices into groups such that the edge weights within the modules
are as large as possible compared to the configuration model. We
used both the Louvain [42] and Leiden [43] algorithms. The Leiden
algorithm takes more time but outperforms the popular Louvain
algorithm [43].

2.2.3. Calculating the latent variables with eigenvector centralities
In network science, EVC is a measure of the influence of a node

in a network [48]. Relative scores are assigned to all nodes in the
network based on the concept that connections to high-scoring
nodes contribute more to the score of the node in question than
equal connections to low-scoring nodes. A high eigenvector score
means that a node is connected to many nodes who themselves
have high scores. The EVC for variable vi (i.e., for node i) can be
alculated as follows:

i =
1
R

∑
j

ri,jcj, (8)

where R is a constant and ri,j is the edge weight (i.e., square cor-
relation) between nodes (i.e., variables). The centrality measure
has several important properties: the score value is independent
from the node properties, and it depends only on the network
structure. Nodes with low centrality values are called peripheral
nodes, while nodes with high centrality values are called core
nodes.

The EVC has additional important properties, e.g., anonymity,8

symmetry,9 positive homogeneity,10 and robustness.11

The LV for the module CI is calculated as follows:

LVI =

∑
i∈CI

cizi∑
i∈CI

ci
, (9)

where LVI is the LV for module CI ; ci is the EVC of variable vi and
i = (vi − µvi )/σvi is the standardized variable of variable vi.

8 The scores of nodes are unaffected by the way in which they are labeled.
9 Symmetric nodes receive the same score.

10 This means homogeneity for all positive values.
11 This indicates invariance after adding an average node.
4

3. Calculation

The calculation is performed as follows. Steps 1–3 of the cal-
culation specify the LVs. These steps are mandatory. In contrast,
steps 4–5 are supplementary steps. These steps are good for the
variable selection process and the refinement of the LV. While
steps 4–5 are optional, they help us to satisfy the following
assumptions:

Assumption 1. The minimal centrality value or minimal commu-
nality value of variables must be greater than a certain threshold.

This assumption ensures that the LV describes the variables in
a module and that indicators in a module belong to its LV.

Assumption 2. There are no common variables.

This assumption ensures that there is no indicator that belongs
to more than one LV.

Denote the set of variables as {v1, . . . , vn} = V. v1, . . . , vn ∈

Rm, where m is the number of observations and n is the number
of variables.

Step 1: Specification of the correlation graph
Denote G(N ,A,W) as the undirected weighted graph of the

orrelation graph, where N is the set of nodes. The node i repre-
sents the variable i, i = 1, 2, . . . , n. A is the set of arcs, and W is
the set of arc weights. The weight of an arc is a square correlation
(denoted as ri,j = wi,j ∈ W) between two variables. The minimal
square correlation rmin can be specified to make the graph sparse
and to ignore low correlations. Formally, ai,j ∈ A ⇐⇒ i, j ∈ N
and wi,j = ri,j ≥ rmin, i ̸= j. In this graph, we neglect loops
(ai,i ̸∈ A).

The layout applied for visualization of the correlation graph
was the Force Atlas II (FA2) algorithm [40]. This algorithm has
a force-directed layout: it simulates a physical system to spa-
tialize a network. Noack [49] showed that force-directed lay-
outs optimize the modularity measure. Communities appear as
groups of nodes. FA2 implementation of the adaptive local and
global speeds gives good performances for networks of fewer
than 100,000 nodes [49].

Step 2: Community detection
Modularity-based community detection algorithms minimize

Eq. (7). The result of community detection is a partition of the
graph. Isolated nodes and variables with low correlation are clas-
sified in a small community; therefore, the minimal number of a
variables within a community (nc

min) is specified. The result of the
modularity-based community detection is N modules. Modules
are subgraphs of the correlation graph. Formally, C1, C2, . . . , CN ∈

G, CI ∩ CJ = ∅, I, J ∈ {1, . . . ,N}, ∪N
I:=1CI ⊆ G, which is true for all

CI (NI ,AI ,WI ) ∈ G ⇒ |NI | ≥ nc
min.

Step 3: Specification of the latent variables
LVI is specified within module I as a linear combination of the

centrality variable and the standardized variable vi (see Eq. (9)).
The authors suggested the EVC because of its beneficial prop-
erty (see Section 2.2.3), but any other centrality measure can be
applied.

Step 4 (optional and iterative): Ignore variables with low cen-
trality values

This iterative step involves multiple feature selections. Vari-
ables with low centrality values have low weights for specifying
the LV; therefore, they can be ignored if their centrality value is
lower than a specified cmin value. Ignoring low-centrality-value
variables is an iterative process because, in every step, the LV will
be modified. Therefore, in one iteration, only the variable with
the lowest centrality is ignored. This iterative process ends if the
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inimal centrality value for variables within a module is greater
han cmin.

tep 5 (optional and iterative): Communality analysis
The alternative step of variable selection is to ignore variables

ased on communality analysis. This communality analysis fol-
ows that of PFA [31]. Similar to PCA, EFA and PFA, the factor
oading Li,I is the correlation between the LV LVI and the variable
i (Li,I = cor(LVI , vi)). The communality value of variable vi is
i := maxI L2i,I . Similar to step 4, a variable can be ignored if
ts communality value is lower than a threshold (hmin). However,
he elimination process is an iterative process, which means that
nly the variable with the minimal communality value is ignored
ecause, in every cycle, the LV should be recalculated for the
emaining variables. This iteration ends if hi ≥ hmin is satisfied
or all remaining variables.

Modularity-based community detection methods define dis-
inct communities, where the correlation between communities
s much more lower than the correlation within a community; as
result, the correlation between LVs has to be low, and common

ndicators can exist. To ensure completeness, for the variable (vi),
suppose that |Li,1| ≥ |Li,2| ≥ · · · ≥ |Li,N | is satisfied. vi is not a
common indicator if either |Li,1| > |Li,2|+Cmin or |Li,1| > 2|Li,2|12;
otherwise, it is a common indicator. In an iteration, that common
indicator, which has the lowest communality value, is ignored.
This iteration ends if there are no more common indicators.

While the assumptions are not satisfied, the iteration returns
to step 3 to recalculate the LVs.

At the end of these steps, N LVs are specified (see steps 1–3).
Moreover, the assumptions are satisfied. Similar to PFA, the factor
loading, factor scores, and communality values can be calculated.
These LVs can also be rotated via different kinds of rotation
techniques.

Additional applied measures

The sets of indicators were compared by using Jaccard’s dis-
tance, which is defined as follows:

dJ (A, B) =
A ∩ B
A ∪ B

, (10)

here A, B are the sets of indicators.13

. Results and discussion

.1. Comparison of NDA with PCA and PFA on non-HDLSS data

The proposed NDA is compared to PFA and PCA on the
WTS’2020 database. Fig. 1(a) shows a scree plot of the indicators.
he scree plot suggests that the first two components explain
he most indicators; however, in the case of PCA, there are 6
omponents, while in the case of FA, there are 4 LVs.
The biplots and 3D plots show the correlations between the

ndicators and the components. The indicators are expected to be
rouped and/or fitted into a latent variable. Common indicators
orrelate more than one LV, and therefore, they do not fit any
V. The biplot of PCA (Fig. 1(b)) shows that in the case of 2
Vs, 2 kinds of groups can be distinguished; however, these
omponents are very mixed. For example, all the open-access
e.g., gold, bronze, hybrid and green) indicators, gender issues,

12 Cmin ≤ 0.25 is a constant.
13 In this paper, dJ (A, B) ∈ [0, 1] was used only for the comparison of the sets
f indicators; however, this measure can also be used instead of the correlations
f it is more interpretable than the correlations between indicators.
5

collaborations (collab) and publication output indicators are dif-
fused into these two components. In addition, there are several
common indicators, which do not fit with any component (LV).

Similar to PCA, when specifying two latent factors with PFA
(see Fig. 2(a)), the set of indicators is diffused within the two
factors. The LVs are very difficult to interpret.

In the case of gender issues (PA_F, PA_F_MF, PA_M_MF)14
ppendix A., the absolute indicators and relative indicators are
ostly divided into separate LVs (see Fig. 2(b)). Nevertheless, the
bsolute and relative indicators are moderately correlated with
ach other; therefore, several indicators, such as proportional and
bsolute open-access indicators, belong to the same LV.
In contrast to PFA and PCA, the proposed NDA specifies the

umber of LVs, which is three in this case. LV1 corresponds to
elative and normalized values, while LV2 corresponds to abso-
ute values of the publication and collaboration performances of
he universities. LV3 specifies the authorship gender rate (see
ig. 3). The relative or proportional and the absolute indicators
re clearly separated into different LVs.

.2. Comparison of NDA with SPCA on HDLSS data

The real benefit of the proposed algorithm appears when the
umber of observations is lower than the number of indicators.
ince the number of indicators in GovDB’20 is 2160 and the
umber of observations (i.e., countries) is only 138, PCA and
FA cannot be used. Therefore, in the analysis of the GovDB’20
ataset, NDA is compared to SPCA. Note that although KPCA
s also a popular method for analyzing HDLSS datasets, due to
he kernel trick it applies, interpretation of the latent variables
principal components) determined by this method is almost
mpossible.

In the case of SPCA, the number of extracted components
latent variables) was set to four as the input parameter. Fig. 4
hows the 3D representation of the variable loadings.
As Fig. 4 shows, due to the sparse structure of the result-

ng loadings, the original variables are separated well by the
atent variables. Interpretation becomes difficult in the case of
ore than one hundred variables. Therefore, to interpret the
Vs, text mining is applied to the variable names within each
V. The text-mining process involves lowercase transformation,
pecial character removal, part-of-speech (POS) tagging, lemma-
ization, stop-word removal and tokenization. To visualize the
ost frequent terms per factor, word clouds are drawn.
In the applied database, each variable is assigned to a specific

ataset. To achieve better interpretation, we also analyze the
omposition of the factors from the dataset perspective. For each
erm in the word clouds, the relative number of occurrences of
he word within the variables of each dataset is calculated. Each
erm is assigned to the dataset in which its relative occurrence is
aximal. Fig. 5 shows the most frequent words and the dataset
ontribution for each latent variable.
As Fig. 5(a) shows, LV1 contains infrastructure and business-

elated variables, LV2 corresponds to freedom and democracy
ndicators, and LV3 is associated with trade and development. LV4
s associated with indicators from mixed topics. Based on the
ataset ratios (Fig. 5(b)), LV2 and LV3 have dominance that can
e interpreted well in terms of contributing datasets, but LV1 and
V4 show small differences, as is also reflected by the wordclouds.
n what follows, NDA is tested on the GovDB’20 dataset.

As a first step of NDA, the (square) correlation graph15 is
pecified (step 1), where the minimal correlation is specified to
e between 0.4 and 0.9 (see Fig. 6). The FA2 layout also shows
he potential communities.

14 The definitions of these variables can be found in.
15 The correlation graph of Leiden’s CWTS indicators can be found in
Appendix C in Fig. 12.



Z.T. Kosztyán, M.T. Kurbucz and A.I. Katona Knowledge-Based Systems 251 (2022) 109180

e
v
p
c
t
t

Fig. 1. Scree plot and biplot of PCA.
Fig. 2. Indicators of PFA (hmin := 0.2, Cmin := 0.1).
Fig. 3. Biplots of NDA (hmin := 0.2, Cmin := 0.1, cmin := 0.05, nc
min := 2, rmin := 0).
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Fig. 6 shows a comparison of correlation graphs with differ-
nt thresholds (rmin). These thresholds are applied only for the
isualization because a higher threshold produces more isolated
oints in the correlation graph. In addition, the increase of the
orrelation threshold rmin can produce more communities. Since
he distance correlation between two indicators is 0 if and only if
hey are independent of each other, we applied the DC; however,
 e

6

his required more than one hundred times the computational
ime required to calculate Pearson’s or Spearman’s correlation.
herefore, applying the Spearman correlation may be more prac-
icable for a large-scale dataset. The Spearman correlation can
lso handle nonlinear and monotonous relationships between in-
icators. Fig. 7 shows the modules for the correlation graphs. For
very correlation graph, both the Leiden and Louvain algorithms
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Fig. 4. 3D plots of the selected GovDB’20 variables given by the SPCA.
Fig. 5. Representation of the latent GovDB’20 variables given by the SPCA.
pecify 4 communities. For a better interpretation, only those
orrelations that exceed the threshold (rmin) are represented (see
ig. 7).
The results of Leiden’s and Louvain’s modularities are very

imilar (compare Fig. 7(a–b) and (c–d)). The mean Jaccard dis-
ance between the adequate Leiden and Louvain modules is 0.98,
hile the mean Jaccard distance of adequate modules on the
pearman and distance correlation graphs is still 0.85. Because
f the beneficial properties of the distance correlation and Lei-
en’s modularity algorithm, in this example, these algorithms are
pplied.
The remaining hyperparameters (cmin, hmin, Cmin) do not in-

luence the number of communities (i.e., the number of latent
ariables), but they increase interpretability by satisfying As-
umptions 1–2. Fig. 8 shows the effects of feature selection.
By increasing the minimum EVC (cmin), peripheral indicators

re excluded (see Fig. 8(a-e)). Nevertheless, this feature selection
7

alone does not ensure better interpretability of the LVs. Table 1
shows that an increase in the minimal centrality value (cmin
does not affect the minimal communality value (min(h)). The low
communality value indicates that there are indicators that are not
correlated with any LV.

Table 2 shows the effect of increasing the minimal communal-
ity constraints. Increasing the minimal communality constraint
ensures that all indicators correlate with at least one LV. Never-
theless, in this case, both core and peripheral indicators may be
excluded (see Fig. 8(f-j)). Therefore, the minimal EVC is low (see
Table 2).

An increase in both the minimal communality and minimal
centrality constraint can ensure the satisfaction of Assumption 1.
Hence, LVs are the core indicators, which are correlated to the
adequate LV. The correlation of LVs can be high (see maxij |rLVij |
columns in Tables 1–2). Therefore, the common communality
constraint (C ) must be increased to improve the separation of
min
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Fig. 6. Correlation graphs (FA2 layout).
Table 1
The effect of the centrality constraint (cmin).
cmin hmin n1 n2 n3 n4 min(c) min(h) maxij |rLVij |

0.00 0 592 680 328 558 0.0002 0.0016 0.9961
0.01 0 578 662 312 390 0.0099 0.0021 0.9981
0.02 0 529 558 266 250 0.0197 0.0015 0.9270
0.03 0 458 410 234 205 0.0298 0.0008 0.9984
0.04 0 351 257 197 187 0.0401 0.0010 0.9885
0.05 0 110 146 155 154 0.0501 0.0025 0.9980

Notations: cmin: minimal centrality constraint; hmin: minimal communality con-
traint; ni: number of indicators in module i; min(c): minimal centrality value;
min(h): minimal communality value; maxij(rLVij ): maximal absolute correlation
alue between latent variables.

Vs. The orthogonal rotation methods can also be used to separate
actors; however, if the unrotated LV matrix is highly correlated,
he variables cannot be separated, and as a result, the LVs will
e difficult to interpret. Therefore, all constraints, such as the
inimal centrality constraint (cmin), the minimal communality
onstraint (hmin) and the common communality constraint (Cmin),
hould be specified to decrease the maximal correlation values
etween LVs maxij |rLVij | and increase the minimal communality
alue min(h) and minimal centrality value min(c). Fig. 9 shows
8

Table 2
The effect of the communality constraint (hmin).
cmin hmin n1 n2 n3 n4 min(c) min(h) maxij |rLVij |

0 0.00 592 680 328 558 0.0002 0.0016 0.9961
0 0.05 283 307 187 241 0.0047 0.0501 0.9967
0 0.10 148 141 137 123 0.0116 0.1008 0.9964
0 0.15 72 61 101 77 0.0054 0.1702 0.9942
0 0.20 51 43 74 63 0.0035 0.1994 0.9938
0 0.25 32 33 53 55 0.0028 0.2468 0.9936

Notations: cmin: minimal centrality constraint; hmin: minimal communality con-
straint; ni: number of indicators in module i; min(c): minimal centrality value;
min(h): minimal communality value; maxij(rLVij ): maximal absolute correlation
value between latent variables.

a 3D plot of the selected variables, the minimal centrality (com-
munality) of the variables and the maximal correlation between
LVs.

The results show that all assumptions are satisfied. In addition,
the indicators can be separated. However, Fig. 9 involves only four
group indicators; the already introduced text-mining approach is
applied (see also Fig. 5) to interpret the LVs. Fig. 10 presents the
results of NDA without performing feature selection.
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Fig. 7. Correlation graphs obtained with modularity-based community detection algorithms (rmin := 0.6).

Fig. 8. Characteristics of feature selection.

9
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Fig. 9. 3D plots of selected variables, with n1 = 146, n2 = 190, n3 = 36, n4 = 51,min(c) = 0.1031,min(h) = 0.0661,maxij |rLVij | = 0.1205.
Fig. 10. Representation of the latent variables without selection.
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Table 3
Correlation matrix of the latent variables (LVs)

LV1 LV2 LV3 LV4

LV1 1.0000 0.0024 −0.0236 −0.0548
LV2 0.0024 1.0000 −0.0106 0.1107
LV3 −0.0236 0.0106 1.0000 0.1205
LV4 −0.0548 0.1107 0.1205 1.0000

Fig. 10 shows that the four groups are very mixed. Several
ords, such as import, trade, etc., are included in every group. De-
pite the variables being different, variable selection is required
o filter out any irrelevant and common variables.

The variable selection saves the most relevant variables (n1 =

46, n2 = 190, n3 = 36, n4 = 51); nevertheless, it increases
the communality and centrality values while keeping the LVs as
uncorrelated as possible (min(c) = 0.1031,min(h) = 0.0661,
axij |rLVij | = 0.1205). Table 3 shows the correlation factor matrix
f the LVs.
10
Similar to Fig. 10, the results obtained after variable selection
are shown in Fig. 11.

Fig. 11 helps us to interpret the LVs. Starting the interpretation
from the last LV, LV4 corresponds to the freedom and democracy
indicators. Most of these indicators come from the Global State of
Democracy database. The third LV (LV3) corresponds to the global
trade and development indicators, such as the import, export,
GDP and trade indicators. Most of these variables come from the
World Development Indicators and United Conference on Trade
and Development statistics. The second LV (LV2) corresponds
mainly to indicators related to business and investment. Most of
these indicators come from the World Economic Forum, Global
Innovation Index and Doing Business datasets. The first LV (LV1)
orresponds mainly to the research and economy indicators. These
ndicators come mostly from the World Economic Forum dataset.
wo out of the four resulting topics are also observable in the re-
ults of SPCA; however, the latent variables are easier to interpret,
nd NDA reveals two additional distinguishable topics, research
nd economy and business and investment (see Figs. 5 and 11).
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Fig. 11. Representation of the resulting latent variables after variable selection. LV1 = Research & Economy, LV2 = Business & Investment, LV3 = Trade & Development,
V4 = Freedom & Democracy.
ettings of NDA. The NDA is a nonparametric data reduction
ethod. The term nonparametric means that the number of LVs

s the result of dimensionality reduction; however, it can be
ontrolled by several constraints, such as the minimal variables in
community and the minimal variable correlation. The increase

n the minimal correlation (rmin) separates the communities in
he correlation graphs; therefore, it can increase the number of
Vs (see Fig. 6). However, after community detection, none of the
yperparameters influence the number of LVs, only their contents
ia feature selection. The applied modularity-based community
etection methods group highly correlated variables into a mod-
le, and within a module, an LV can be specified as a linear
ombination of the variables and their EVCs. If constraints are
eglected (formally: cmin = hmin = Cmin = 0), feature selection is

not provided. However, the increase in the centrality (cmin) and
ommunality constraints (hmin) can reduce irrelevant indicators,
while the increase in the common communality constraint (Cmin)
can reduce the set of common indicators; in this way, it can
reduce the correlations between LVs to promote the interpretabil-
ity of LVs. After variable selection, independent LVs and their
indicators can be specified even if there are few observations.
As we introduced the usage of NDA, at first, it should be used
without feature selection (cmin = hmin = Cmin = 0) in order
to specify the number of communities. If the modules are stable,
similarly to any clustering algorithm, the hyperparameters should
be increased one by one to achieve the specified thresholds to
satisfy Assumptions 1–2.

5. Summary and conclusions

This study proposes a nonparametric network-based dimen-
sionality reduction method (NDA). The proposed NDA method
is ideal for HDLSS datasets, where the number of variables is
much larger than the number of observations, and furthermore
its application shows several advantages compared to the existing
methods.

First, it can be effectively applied to any datasets due to the
built-in feature selection module. Second, NDA shows better in-
terpretability then the results given by SPCA. Third, its application
is easier since there is no need to specify the expected number of
latent variables due to its nonparametric characteristics.
11
The NDA is implemented in both R and MATLAB. The authors
will provide freely available packages for both R and MATLAB. In
the next paper, we will show how to extend this algorithm to
handle topic mining problems. In the case of topic mining when
segmenting the so-called document term matrix, we have to face
a similar problem. The number of topics also has to be predefined,
and NDA provides the number of topics. In addition to feature
selection, the frequency of common terms can be reduced. This
method will be described in the next paper.
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Table 4
Indicators of the CWTS Leiden Ranking 2020 database.

Variable Definition

Sc
ie
nt
ifi
c
im

pa
ct

P Total number of publications of a university.
P(top 1%) The number of a university’s publications that, compared with other publications in the same field and in the

same year, belong to the top 1% most frequently cited.
P(top 5%) The number of a university’s publications that, compared with other publications in the same field and in the

same year, belong to the top 5% most frequently cited.
P(top 10%) The number of a university’s publications that, compared with other publications in the same field and in the

same year, belong to the top 10% most frequently cited.
P(top 50%) The number of a university’s publications that, compared with other publications in the same field and in the

same year, belong to the top 50% most frequently cited.
PP(top 1%) The proportion of a university’s publications that, compared with other publications in the same field and in the

same year, belong to the top 1% most frequently cited.
PP(top 5%) The proportion of a university’s publications that, compared with other publications in the same field and in the

same year, belong to the top 5% most frequently cited.
PP(top 10%) The proportion of a university’s publications that, compared with other publications in the same field and in the

same year, belong to the top 10% most frequently cited.
PP(top 50%) The proportion of a university’s publications that, compared with other publications in the same field and in the

same year, belong to the top 5% most frequently cited.
TCS The total number of citations of the publications of a university.
MCS The average number of citations of the publications of a university.
TNCS The total number of citations of the publications of a university, normalized for field and publication year.
MNCS The average number of citations of the publications of a university, normalized for field and publication year.

Co
lla

bo
ra
tio

n

P(collab) The number of a university’s publications that have been coauthored with one or more other organizations.
PP(collab) The proportion of a university’s publications that have been coauthored with one or more other organizations.
P(int collab) The number of a university’s publications that have been coauthored by two or more countries.
PP(int collab) The proportion of a university’s publications that have been coauthored by two or more countries.
P(industry) The number of a university’s publications that have been coauthored with one or more industrial organizations.
PP(industry) The proportion of a university’s publications that have been coauthored with one or more industrial

organizations.
P(100 km) The number of a university’s publications with a geographical collaboration distance of less than 100 km.
PP(100 km) The proportion of a university’s publications with a geographical collaboration distance of less than 100 km.
P(5000 km) The number of a university’s publications with a geographical collaboration distance of more than 5000 km.
PP(5000 km) The proportion of a university’s publications with a geographical collaboration distance of more than 5000 km.

O
pe

n
ac
ce

ss

P(OA) The number of open-access publications of a university.
PP(OA) The proportion of open-access publications of a university.
P(gold OA) The number of gold open-access publications of a university.
PP(gold OA) The proportion of gold open-access publications of a university.
P(hybrid OA) The number of hybrid open-access publications of a university.
PP(hybrid OA) The proportion of hybrid open-access publications of a university.
P(bronze OA) The number of bronze open-access publications of a university.
PP(bronze OA) The proportion of bronze open-access publications of a university.
P(green OA) The number of green open-access publications of a university.
PP(green OA) The proportion of green open-access publications of a university.
P(unknown OA) The number of a university’s publications for which the open-access status is unknown.
PP(unknown OA) The proportion of a university’s publications for which the open-access status is unknown.

G
en

de
r

A The total number of authorships of a university.
A(MF) The number of male and female authorships of a university, that is, a university’s number of authorships for

which the gender is known.
A(unknown) The number of authorships of a university for which the gender is unknown.
PA(unknown) The number of authorships for which the gender is unknown as a proportion of a university’s total number of

authorships.
A(M) The number of male authorships of a university.
PA(M) The number of male authorships as a proportion of a university’s total number of authorships.
PA(M|MF) The number of male authorships as a proportion of a university’s number of male and female authorships.
A(F) The number of female authorships of a university.
PA(F) The number of female authorships as a proportion of a university’s total number of authorships.
PA(F|MF) The number of female authorships as a proportion of a university’s number of male and female authorships.
12
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Table 5
GovDB’20 dataset.
Source dataset Source platform Number of variables

Africa Development Indicators TCdata360 1
Corruption Perceptions Index GovData360 2
Doing Business GovData360, TCdata360 164, 5
Education Statistics TCdata360 1
ESCAP TCdata360 3
Failed States Index GovData360 7
Freedom House GovData360 4
Global Innovation Index TCdata360 274
Global State of Democracy GovData360 121
Heritage Index of Economic Freedom TCdata360 13
Inter-Parliamentary Union - Parline Database, Women in Politics Database GovData360 3
I-TIP Goods TCdata360 4
Polity IV GovData360 13
Poverty and Equity Data GovData360 1
Press Freedom Index by Reporters without Borders GovData360 2
Statistical Capacity GovData360 26
United Nations Conference on Trade and Development TCdata360 2
United Nations Conference on Trade and Development Statistics TCdata360 153
Universal Postal Union TCdata360 1
WEF GCI Most Problematic Factors TCdata360 15
WEF: Global Information Technology Report TCdata360 132
World Bank Group’s Fragile, Conflict and Violence Group Harmonized TCdata360 4
List of Fragile Situations TCdata360 132
World Development Indicators GovData360, TCdata360 1, 267
World Economic Forum Global Competitiveness Index GovData360, TCdata360 648, 76
World Economic Forum Global Gender Gap Report TCdata360 10
World Economic Outlook TCdata360 16
World Integrated Trade Solution TCdata360 21
World Justice Project - Rule of Law GovData360 33
World Travel & Tourism Council TCdata360 66
Worldwide Exclusion Indicators GovData360 38
Worldwide Governance Indicators GovData360 36

The whole dataset is publicly available at [50]. Details of the GovDB’20 variables employed in this paper can be found at
data.mendeley.com/datasets/hzdnxph8vg/6 (retrieved: May 14, 2021).
Fig. 12. Modules of the correlation graph of the CWTS indicators and their modification after the feature selection (rmin = 0.5).
ppendix B. GovDB’20 dataset

See Table 5.

ppendix C. Correlation graphs of CWTS indicators

See Fig. 12.

eferences

[1] Alexander N. Gorban, Nikolaos K. Kazantzis, Ioannis G. Kevrekidis,
Hans Christian Öttinger, Constantinos Theodoropoulos, Model Reduction
and Coarse-Graining Approaches for Multiscale Phenomena, Springer, 2006,
http://dx.doi.org/10.1007/3-540-35888-9.

[2] Alexander N. Gorban, Valery A. Makarov, Ivan Y. Tyukin, High-dimensional
brain in a high-dimensional world: Blessing of dimensionality, Entropy 22
(1) (2020) 82, http://dx.doi.org/10.3390/e22010082.
13
[3] Alexander N. Gorban, Balázs Kégl, Donald C. Wunsch, Andrei Y. Zinovyev,
et al., Principal Manifolds for Data Visualization and Dimension Reduction,
Vol. 58, Springer, 2008, http://dx.doi.org/10.1007/978-3-540-73750-6.

[4] Alexander N. Gorban, Andrei Zinovyev, Principal manifolds and graphs in
practice: from molecular biology to dynamical systems, Int. J. Neural Syst.
20 (03) (2010) 219–232, http://dx.doi.org/10.1142/S0129065710002383.

[5] Andrzej Cichocki, Namgil Lee, Ivan Oseledets, Anh-Huy Phan, Qibin Zhao,
Danilo P. Mandic, Tensor networks for dimensionality reduction and
large-scale optimization: Part 1 low-rank tensor decompositions, Found.
Trends

®
Mach. Learn. 9 (4–5) (2016) 249–429, http://dx.doi.org/10.1561/

2200000059.
[6] Andrzej Cichocki, Anh-Huy Phan, Qibin Zhao, Namgil Lee, Ivan Oseledets,

Masashi Sugiyama, Danilo P. Mandic, Tensor networks for dimensionality
reduction and large-scale optimization: Part 2 applications and future
perspectives, Found. Trends

®
Mach. Learn. (ISSN: 1935-8237) 9 (6) (2017)

431–673, http://dx.doi.org/10.1561/2200000067.
[7] Mohammad Sultan Mahmud, Xianghua Fu, Joshua Zhexue Huang, Md Ab-

dul Masud, High-dimensional limited-sample biomedical data classification

https://data.mendeley.com/datasets/hzdnxph8vg/6
http://dx.doi.org/10.1007/3-540-35888-9
http://dx.doi.org/10.3390/e22010082
http://dx.doi.org/10.1007/978-3-540-73750-6
http://dx.doi.org/10.1142/S0129065710002383
http://dx.doi.org/10.1561/2200000059
http://dx.doi.org/10.1561/2200000059
http://dx.doi.org/10.1561/2200000059
http://dx.doi.org/10.1561/2200000067


Z.T. Kosztyán, M.T. Kurbucz and A.I. Katona Knowledge-Based Systems 251 (2022) 109180
using variational autoencoder, in: Australasian Conference on Data Mining,
Springer, 2018, pp. 30–42, http://dx.doi.org/10.1007/978-981-13-6661-1_
3.

[8] Mohammad Sultan Mahmud, Xianghua Fu, Unsupervised classification of
high-dimension and low-sample data with variational autoencoder based
dimensionality reduction, in: 2019 IEEE 4th International Conference on
Advanced Robotics and Mechatronics (ICARM), IEEE, 2019, pp. 498–503,
http://dx.doi.org/10.1109/ICARM.2019.8834333.

[9] Mohammad Sultan Mahmud, Joshua Zhexue Huang, Xianghua Fu,
Rukhsana Ruby, Kaishun Wu, Unsupervised adaptation for high-
dimensional with limited-sample data classification using variational
autoencoder, Comput. Inform. 40 (1) (2021) 1–28, http://dx.doi.org/10.
31577/cai_2021_1_1.

[10] Marcel Dettling, Peter Bühlmann, Boosting for tumor classification with
gene expression data, Bioinformatics 19 (9) (2003) 1061–1069.

[11] Le Zhang, Ponnuthurai Nagaratnam Suganthan, Random forests with en-
semble of feature spaces, Pattern Recognit. 47 (10) (2014) 3429–3437,
http://dx.doi.org/10.1016/j.patcog.2014.04.001.

[12] Shadi Abpeykar, Mehdi Ghatee, Neural trees with peer-to-peer and
server-to-client knowledge transferring models for high-dimensional data
classification, Expert Syst. Appl. 137 (2019) 281–291, http://dx.doi.org/10.
1016/j.eswa.2019.07.003.

[13] Shadi Abpeykar, Mehdi Ghatee, An ensemble of RBF neural networks in
decision tree structure with knowledge transferring to accelerate multi-
classification, Neural Comput. Appl. 31 (11) (2019) 7131–7151, http://dx.
doi.org/10.1007/s00521-018-3543-9.

[14] Shadi Abpeykar, Mehdi Ghatee, Hadi Zare, Ensemble decision forest of
RBF networks via hybrid feature clustering approach for high-dimensional
data classification, Comput. Statist. Data Anal. 131 (2019) 12–36, http:
//dx.doi.org/10.1016/j.csda.2018.08.015.

[15] Nitin Khosla, Dimensionality Reduction Using Factor Analysis, Griffith
University, Australia, 2004, http://dx.doi.org/10.25904/1912/3890.

[16] M. Usman Ali, Shahzad Ahmed, Javed Ferzund, Atif Mehmood, Abbas
Rehman, Using PCA and factor analysis for dimensionality reduction of
bio-informatics data, 2017, arXiv preprint arXiv:1707.07189.

[17] I.T. Jolliffe, Springer-Verlag, Principal Component Analysis, in: Springer
Series in Statistics, Springer, ISBN: 9780387954424, 2002, URL https://
books.google.hu/books?id=_olByCrhjwIC.

[18] Hervé Abdi, Lynne J. Williams, Principal component analysis, WIREs Com-
put. Statist. 2 (4) (2010) 433–459, http://dx.doi.org/10.1002/wics.101, URL
https://onlinelibrary.wiley.com/doi/abs/10.1002/wics.101.

[19] Gianmarco Aversano, Zhiyi Li, Olivier Gicquel, Alessandro Parente,
Model reduction by PCA and kriging, in: International Conference of
Computational Methods in Sciences and Engineering, 2018.

[20] Yugo Nakayama, Kazuyoshi Yata, Makoto Aoshima, Clustering by principal
component analysis with Gaussian kernel in high-dimension, low-sample-
size settings, J. Multivariate Anal. (2021) 104779, http://dx.doi.org/10.1016/
j.jmva.2021.104779.

[21] Chih-Fong Tsai, Ya-Ting Sung, Ensemble feature selection in high dimen-
sion, low sample size datasets: Parallel and serial combination approaches,
Knowl.-Based Syst. 203 (2020) 106097, http://dx.doi.org/10.1016/j.knosys.
2020.106097.

[22] Aman Gupta, Haohan Wang, Madhavi Ganapathiraju, Learning structure in
gene expression data using deep architectures, with an application to gene
clustering, in: 2015 IEEE International Conference on Bioinformatics and
Biomedicine (BIBM), IEEE, 2015, pp. 1328–1335, http://dx.doi.org/10.1109/
BIBM.2015.7359871.

[23] Bernhard Schölkopf, Alexander Smola, Klaus-Robert Müller, Kernel prin-
cipal component analysis, in: International Conference on Artificial
Neural Networks, Springer, 1997, pp. 583–588, http://dx.doi.org/10.1007/
BFb0020217.

[24] Bernhard Schölkopf, Alexander Smola, Klaus-Robert Müller, Nonlinear
component analysis as a kernel eigenvalue problem, Neural Comput. 10
(5) (1998) 1299–1319, http://dx.doi.org/10.1162/089976698300017467.

[25] Zhenqiu Liu, Dechang Chen, Halima Bensmail, Gene expression data clas-
sification with kernel principal component analysis, J. Biomed. Biotechnol.
2005 (2) (2005) 155, http://dx.doi.org/10.1155/JBB.2005.155.

[26] Ferran Reverter, Esteban Vegas, Pedro Sánchez, Mining gene expression
profiles: an integrated implementation of kernel principal component
analysis and singular value decomposition, Genom., Proteom. Bioinform.
8 (3) (2010) 200–210, http://dx.doi.org/10.1016/S1672-0229(10)60022-8.

[27] Dan Shen, Haipeng Shen, James Stephen Marron, Consistency of sparse
PCA in high dimension, low sample size contexts, J. Multivariate Anal. 115
(2013) 317–333, http://dx.doi.org/10.1016/j.jmva.2012.10.007.

[28] Hui Zou, Trevor Hastie, Robert Tibshirani, Sparse principal component
analysis, J. Comput. Graph. Statist. 15 (2) (2006) 265–286, http://dx.doi.
org/10.1198/106186006X113430.
14
[29] Karl Sjöstrand, Mikkel B. Stegmann, Rasmus Larsen, Sparse principal
component analysis in medical shape modeling, in: Medical Imaging 2006:
Image Processing, Vol. 6144, International Society for Optics and Photonics,
2006, 61444X, http://dx.doi.org/10.1007/s10994-021-06025-3.

[30] Haiyan Jiang, Haoyi Xiong, Dongrui Wu, Ji Liu, Dejing Dou, AgFlow: fast
model selection of penalized PCA via implicit regularization effects of
gradient flow, Mach. Learn. 110 (8) (2021) 2131–2150, http://dx.doi.org/
10.1007/s10994-021-06025-3.

[31] An Gie Yong, Sean Pearce, et al., A beginner’s guide to factor analysis:
Focusing on exploratory factor analysis, Tutor. Quant. Methods Psychol. 9
(2) (2013) 79–94, http://dx.doi.org/10.20982/tqmp.09.2.p079.

[32] Leandre R. Fabrigar, Duane T. Wegener, Exploratory Factor Analysis, Oxford
University Press, 2011.

[33] Rudolf J. Rummel, Applied Factor Analysis, Northwestern University Press,
1988.

[34] Hee-Ju Kim, Common factor analysis versus principal component analysis:
Choice for symptom cluster research, Asian Nurs. Res. (ISSN: 1976-1317) 2
(1) (2008) 17–24, http://dx.doi.org/10.1016/S1976-1317(08)60025-0, URL
https://www.sciencedirect.com/science/article/pii/S1976131708600250.

[35] Hervé Abdi, Factor rotations in factor analyses, in: Encyclopedia for
Research Methods for the Social Sciences, Sage, Thousand Oaks, CA, 2003,
pp. 792–795.

[36] Leandre R. Fabrigar, Duane T. Wegener, Robert C. MacCallum, Erin J.
Strahan, Evaluating the use of exploratory factor analysis in psychological
research., Psychol. Methods 4 (3) (1999) 272, http://dx.doi.org/10.1037/
1082-989X.4.3.272.

[37] Robert C. MacCallum, Keith F. Widaman, Shaobo Zhang, Sehee Hong,
Sample size in factor analysis., Psychol. Methods 4 (1) (1999) 84, http:
//dx.doi.org/10.1037/1082-989X.4.1.84.

[38] Keith E. Muller, Yueh-Yun Chi, Jeongyoun Ahn, J.S. Marron, Limitations of
high dimension, low sample size principal components for Gaussian data,
2008, Under Revision for Resubmission.

[39] Sungkyu Jung, J. Stephen Marron, PCA consistency in high dimension,
low sample size context, Ann. Statist. 37 (6B) (2009) 4104–4130, http:
//dx.doi.org/10.1214/09-AOS709.

[40] Mathieu Jacomy, Tommaso Venturini, Sebastien Heymann, Mathieu Bas-
tian, ForceAtlas2, a continuous graph layout algorithm for handy network
visualization designed for the gephi software, PLoS One 9 (6) (2014) 1–12,
http://dx.doi.org/10.1371/journal.pone.0098679.

[41] Michael T. Brannick, Paul E. Spector, Estimation problems in the block-
diagonal model of the multitrait-multimethod matrix, Appl. Psychol. Meas.
14 (4) (1990) 325–339, http://dx.doi.org/10.1177/014662169001400401.

[42] Vincent D. Blondel, Jean-Loup Guillaume, Renaud Lambiotte, Etienne Lefeb-
vre, Fast unfolding of communities in large networks, J. Stat. Mech. Theory
Exp. 2008 (10) (2008) P10008, http://dx.doi.org/10.1088/1742-5468/2008/
10/p10008.

[43] V.A. Traag, L. Waltman, N.J. van Eck, From louvain to leiden: guaranteeing
well-connected communities, Sci. Rep. (ISSN: 2045-2322) 9 (1) (2019)
5233, http://dx.doi.org/10.1038/s41598-019-41695-z.

[44] Gábor J. Székely, Maria L. Rizzo, Brownian distance covariance, Ann. Appl.
Stat. 3 (4) (2009) 1236–1265, http://dx.doi.org/10.1214/09-AOAS312.

[45] Marcell Tamás Kurbucz, A joint dataset of official COVID-19 reports
and the governance, trade and competitiveness indicators of world bank
group platforms, Data Brief (ISSN: 2352-3409) 31 (2020) 105881, http://
dx.doi.org/10.1016/j.dib.2020.105881, URL https://www.sciencedirect.com/
science/article/pii/S2352340920307757.

[46] Gábor J. Székely, Maria L. Rizzo, The distance correlation t-test of inde-
pendence in high dimension, J. Multivariate Anal. (ISSN: 0047-259X) 117
(2013) 193–213, http://dx.doi.org/10.1016/j.jmva.2013.02.012, URL https:
//www.sciencedirect.com/science/article/pii/S0047259X13000262.

[47] Mark E.J. Newman, Modularity and community structure in networks, Proc.
Natl. Acad. Sci. 103 (23) (2006) 8577–8582, http://dx.doi.org/10.1073/pnas.
0601602103.

[48] Britta Ruhnau, Eigenvector-centrality — a node-centrality? Social Networks
(ISSN: 0378-8733) 22 (4) (2000) 357–365, http://dx.doi.org/10.1016/
S0378-8733(00)00031-9, URL https://www.sciencedirect.com/science/
article/pii/S0378873300000319.

[49] Andreas Noack, Modularity clustering is force-directed layout, Phys. Rev.
E 79 (2009) 026102, http://dx.doi.org/10.1103/PhysRevE.79.026102, URL
https://link.aps.org/doi/10.1103/PhysRevE.79.026102.

[50] Marcell Tamás Kurbucz, A joint dataset of official COVID-19 reports and
the governance, trade and competitiveness indicators of world bank group
platforms, 2020, URL https://data.mendeley.com/datasets/hzdnxph8vg/6.

http://dx.doi.org/10.1007/978-981-13-6661-1_3
http://dx.doi.org/10.1007/978-981-13-6661-1_3
http://dx.doi.org/10.1007/978-981-13-6661-1_3
http://dx.doi.org/10.1109/ICARM.2019.8834333
http://dx.doi.org/10.31577/cai_2021_1_1
http://dx.doi.org/10.31577/cai_2021_1_1
http://dx.doi.org/10.31577/cai_2021_1_1
http://refhub.elsevier.com/S0950-7051(22)00587-1/sb10
http://refhub.elsevier.com/S0950-7051(22)00587-1/sb10
http://refhub.elsevier.com/S0950-7051(22)00587-1/sb10
http://dx.doi.org/10.1016/j.patcog.2014.04.001
http://dx.doi.org/10.1016/j.eswa.2019.07.003
http://dx.doi.org/10.1016/j.eswa.2019.07.003
http://dx.doi.org/10.1016/j.eswa.2019.07.003
http://dx.doi.org/10.1007/s00521-018-3543-9
http://dx.doi.org/10.1007/s00521-018-3543-9
http://dx.doi.org/10.1007/s00521-018-3543-9
http://dx.doi.org/10.1016/j.csda.2018.08.015
http://dx.doi.org/10.1016/j.csda.2018.08.015
http://dx.doi.org/10.1016/j.csda.2018.08.015
http://dx.doi.org/10.25904/1912/3890
http://arxiv.org/abs/1707.07189
https://books.google.hu/books?id=_olByCrhjwIC
https://books.google.hu/books?id=_olByCrhjwIC
https://books.google.hu/books?id=_olByCrhjwIC
http://dx.doi.org/10.1002/wics.101
https://onlinelibrary.wiley.com/doi/abs/10.1002/wics.101
http://refhub.elsevier.com/S0950-7051(22)00587-1/sb19
http://refhub.elsevier.com/S0950-7051(22)00587-1/sb19
http://refhub.elsevier.com/S0950-7051(22)00587-1/sb19
http://refhub.elsevier.com/S0950-7051(22)00587-1/sb19
http://refhub.elsevier.com/S0950-7051(22)00587-1/sb19
http://dx.doi.org/10.1016/j.jmva.2021.104779
http://dx.doi.org/10.1016/j.jmva.2021.104779
http://dx.doi.org/10.1016/j.jmva.2021.104779
http://dx.doi.org/10.1016/j.knosys.2020.106097
http://dx.doi.org/10.1016/j.knosys.2020.106097
http://dx.doi.org/10.1016/j.knosys.2020.106097
http://dx.doi.org/10.1109/BIBM.2015.7359871
http://dx.doi.org/10.1109/BIBM.2015.7359871
http://dx.doi.org/10.1109/BIBM.2015.7359871
http://dx.doi.org/10.1007/BFb0020217
http://dx.doi.org/10.1007/BFb0020217
http://dx.doi.org/10.1007/BFb0020217
http://dx.doi.org/10.1162/089976698300017467
http://dx.doi.org/10.1155/JBB.2005.155
http://dx.doi.org/10.1016/S1672-0229(10)60022-8
http://dx.doi.org/10.1016/j.jmva.2012.10.007
http://dx.doi.org/10.1198/106186006X113430
http://dx.doi.org/10.1198/106186006X113430
http://dx.doi.org/10.1198/106186006X113430
http://dx.doi.org/10.1007/s10994-021-06025-3
http://dx.doi.org/10.1007/s10994-021-06025-3
http://dx.doi.org/10.1007/s10994-021-06025-3
http://dx.doi.org/10.1007/s10994-021-06025-3
http://dx.doi.org/10.20982/tqmp.09.2.p079
http://refhub.elsevier.com/S0950-7051(22)00587-1/sb32
http://refhub.elsevier.com/S0950-7051(22)00587-1/sb32
http://refhub.elsevier.com/S0950-7051(22)00587-1/sb32
http://refhub.elsevier.com/S0950-7051(22)00587-1/sb33
http://refhub.elsevier.com/S0950-7051(22)00587-1/sb33
http://refhub.elsevier.com/S0950-7051(22)00587-1/sb33
http://dx.doi.org/10.1016/S1976-1317(08)60025-0
https://www.sciencedirect.com/science/article/pii/S1976131708600250
http://refhub.elsevier.com/S0950-7051(22)00587-1/sb35
http://refhub.elsevier.com/S0950-7051(22)00587-1/sb35
http://refhub.elsevier.com/S0950-7051(22)00587-1/sb35
http://refhub.elsevier.com/S0950-7051(22)00587-1/sb35
http://refhub.elsevier.com/S0950-7051(22)00587-1/sb35
http://dx.doi.org/10.1037/1082-989X.4.3.272
http://dx.doi.org/10.1037/1082-989X.4.3.272
http://dx.doi.org/10.1037/1082-989X.4.3.272
http://dx.doi.org/10.1037/1082-989X.4.1.84
http://dx.doi.org/10.1037/1082-989X.4.1.84
http://dx.doi.org/10.1037/1082-989X.4.1.84
http://refhub.elsevier.com/S0950-7051(22)00587-1/sb38
http://refhub.elsevier.com/S0950-7051(22)00587-1/sb38
http://refhub.elsevier.com/S0950-7051(22)00587-1/sb38
http://refhub.elsevier.com/S0950-7051(22)00587-1/sb38
http://refhub.elsevier.com/S0950-7051(22)00587-1/sb38
http://dx.doi.org/10.1214/09-AOS709
http://dx.doi.org/10.1214/09-AOS709
http://dx.doi.org/10.1214/09-AOS709
http://dx.doi.org/10.1371/journal.pone.0098679
http://dx.doi.org/10.1177/014662169001400401
http://dx.doi.org/10.1088/1742-5468/2008/10/p10008
http://dx.doi.org/10.1088/1742-5468/2008/10/p10008
http://dx.doi.org/10.1088/1742-5468/2008/10/p10008
http://dx.doi.org/10.1038/s41598-019-41695-z
http://dx.doi.org/10.1214/09-AOAS312
http://dx.doi.org/10.1016/j.dib.2020.105881
http://dx.doi.org/10.1016/j.dib.2020.105881
http://dx.doi.org/10.1016/j.dib.2020.105881
https://www.sciencedirect.com/science/article/pii/S2352340920307757
https://www.sciencedirect.com/science/article/pii/S2352340920307757
https://www.sciencedirect.com/science/article/pii/S2352340920307757
http://dx.doi.org/10.1016/j.jmva.2013.02.012
https://www.sciencedirect.com/science/article/pii/S0047259X13000262
https://www.sciencedirect.com/science/article/pii/S0047259X13000262
https://www.sciencedirect.com/science/article/pii/S0047259X13000262
http://dx.doi.org/10.1073/pnas.0601602103
http://dx.doi.org/10.1073/pnas.0601602103
http://dx.doi.org/10.1073/pnas.0601602103
http://dx.doi.org/10.1016/S0378-8733(00)00031-9
http://dx.doi.org/10.1016/S0378-8733(00)00031-9
http://dx.doi.org/10.1016/S0378-8733(00)00031-9
https://www.sciencedirect.com/science/article/pii/S0378873300000319
https://www.sciencedirect.com/science/article/pii/S0378873300000319
https://www.sciencedirect.com/science/article/pii/S0378873300000319
http://dx.doi.org/10.1103/PhysRevE.79.026102
https://link.aps.org/doi/10.1103/PhysRevE.79.026102
https://data.mendeley.com/datasets/hzdnxph8vg/6

	Network-based dimensionality reduction of high-dimensional, low-sample-size datasets
	Introduction
	Materials and methods
	Data employed
	Methods employed
	Applied correlation coefficients
	Modularity-based community detection
	Calculating the latent variables with eigenvector centralities


	Calculation
	Results and discussion
	Comparison of NDA with PCA and PFA on non-HDLSS data
	Comparison of NDA with SPCA on HDLSS data

	Summary and conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix A. Indicators of the CWTS Leiden Ranking 2020 database
	Appendix B. GovDB'20 dataset
	Appendix C. Correlation graphs of CWTS indicators
	References


