
Received: 13 February 2024 Revised: 5 September 2024 Accepted: 11 September 2024

DOI: 10.1112/jlms.70000

Journal of the London
Mathematical SocietyRESEARCH ARTICLE

Isometries of Lipschitz-free Banach spaces

Marek Cúth1 Michal Doucha2 Tamás Titkos3,4

1Faculty of Mathematics and Physics,
Department of Mathematical Analysis,
Charles University, Prague 8, Czech
Republic
2Institute of Mathematics of the Czech
Academy of Sciences, Prague 1, Czech
Republic
3Department of Mathematics, Corvinus
University of Budapest, Budapest,
Hungary
4HUN-REN Alfréd Rényi Institute of
Mathematics, Budapest, Hungary

Correspondence
Marek Cúth, Charles University, Faculty
of Mathematics and Physics, Department
of Mathematical Analysis, Sokolovská 83,
186 75 Prague 8, Czech Republic.
Email: cuth@karlin.mff.cuni.cz

Funding information
GAČR, Grant/Award Numbers:
23-04776S, 22-07833K; Czech Academy of
Sciences, Grant/Award Number: RVO
67985840; NKFIH, Grant/Award Number:
K134944; Hungarian Academy of
Sciences, Grant/Award Number:
LP2021-15/2021

Abstract
Wedescribe surjective linear isometries and linear isom-
etry groups of a large class of Lipschitz-free spaces that
includes, for example, Lipschitz-free spaces over any
graph. We define the notion of a Lipschitz-free rigid
metric spacewhose Lipschitz-free space only admits sur-
jective linear isometries coming from surjective dilations
(i.e., rescaled isometries) of the metric space itself. We
show that this class of metric spaces is surprisingly rich
and contains all 3-connected graphs as well as geomet-
ric examples such as nonabelian Carnot groups with
horizontally strictly convex norms. We prove that every
metric space isometrically embeds into a Lipschitz-free
rigid space that has only three more points.
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1 INTRODUCTION

The study of linear isometries of Banach spaces is as old as Banach spaces themselves. Indeed,
Banach already in [9] described linear isometries of separable 𝐶(𝐾) spaces, a result that has later
become known as the Banach-Stone theorem. Banach himself later described the isometries of
𝐿𝑝[0, 1], for 𝑝 ∈ [1,∞) ⧵ {2}, which was later generalized by Lamperti to all 𝐿𝑝(𝑋, 𝜇) spaces and
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becameknownas theBanach–Lamperti theorem,which is relevant also for the topic of the present
paper. Since then, linear isometries of many more classes of Banach spaces have been described,
andwe refer the reader to themonographs [15, 16] for a detailed account on this topic. In this paper,
we continue this line of research for the class of Lipschitz-free Banach spaces and, to a smaller
extent, also their duals. These spaces are free objects in the category of Banach spaces over the
category of metric spaces, and due to their close relation to Wasserstein spaces, they attract the
attention of researchers not only from (linear and nonlinear) functional analysis, but also metric
geometry, optimal transport, and computer science, and have become one of the most intensively
studied classes of Banach spaces. We refer to [29] for an introduction.
Anyone familiar with these spaces will immediately notice that every isometry of the under-

lying metric space induces a linear isometry of the corresponding Lipschitz-free space. The
converse is true for some metric spaces and fails dramatically for others. Understanding when
and why this happens significantly improves our knowledge of the linear structure of these
Banach spaces, and we believe that it is worth studying. Let us remark we are not the first ones
to undertake this research. Surjective linear isometries of Lipschitz-free spaces over so-called
uniformly concave metric spaces are fully described in [29, Section 3.8], which is based on a
much older result of Mayer–Wolf from [23]. Very interesting results were obtained recently by
Alexander, Fradelizi, García-Lirola, and Zvavitch in [1] where they describe linear isometries of
finite-dimensional Lipschitz-free spaces using graph-theory techniques. One also has to keep
in mind that Lipschitz-free spaces over ℝ and ℕ are 𝐿1-spaces; therefore, their isometries are
described by the Banach–Lamperti theorem — not in the language of the Lipschitz-free spaces
though, a work that is yet to be done and could shed some light on how to deal with isometries of
Lipschitz-free spaces over some geodesic metric spaces such as ℝ𝑛.
This paper generalizes both [29, Section 3.8] and [1], where especially the latter was an

inspiration to many results presented here. Similarly as [1], it uses graph-theory techniques
together with the recent advances of Aliaga et al. ([2–4]) on the structure of extreme points in
Lipschitz-free spaces.
Let us summarize the main results of the paper.

∙ For anymetric space, which can be viewed as a complete weighted directed graph, we define
a certain subgraph 𝑉(). If 𝑉() is connected and its vertices are dense in, in which case
 is called a weak Prague space, there is a one-to-one correspondence between linear isome-
tries of the Lipschitz-free space () and special edge bijections of 𝑉(). See Section 3 for
details. In particular, we fully describe the linear isometry groups of Lipschitz-free spaces (and
also Lip0-spaces) over any graphs. See Section 6.

∙ If the subgraph 𝑉() is moreover 3-connected, then  is Lipschitz-free rigid meaning
that there is a one-to-one correspondence between surjective linear isometries of () and
surjective dilations of. See Theorem 4.9.

∙ We show that the class of Lipschitz-free rigid metric spaces is quite rich. Besides 3-connected
graphs it contains, for example, nonabelian Carnot groups with so-called horizontally strictly
convex norms which includes the Heisenberg group with the Korányi norm (see Section 7).
One can conveniently build new Lipschitz-free rigid spaces using the 𝓁𝑝-sum operations (see
Section 5). In particular, every metric space isometrically embeds into a Lipschitz-free rigid
metric space containing only three new points (see Corollary 5.6).

We remark that there also exists a parallel and very active research on isometries and isometry
groups of 𝑝-Wasserstein spaces of measures over metric spaces, initiated by Kloeckner in [20] and
[10]. Because of this and the close relation between Wasserstein spaces and Lipschitz-free spaces
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mentioned above, one of our initial motivations was to explore the similarities and differences in
the structure of isometries of Lipschitz-free spaces and 1-Wasserstein spaces over the samemetric
space. It turns out that 1-Wasserstein spaces seem to bemuchmore rigid thanLipschitz-free spaces
and the methods showing that are quite different. We refer to [18] and references therein for a
recent account on this topic.
The recommendation on how to read this paper is the following. The reader should read

Sections 2–4 in their natural order, where we introduce the notations and basic facts, define
the central notions of (weak) Prague spaces, and characterize the surjective isometries of their
Lipschitz-free spaces, and introduce the Lipschitz-free rigid metric spaces, respectively. The
remaining Sections 5–7 can be read independently. Therewe build newLipschitz-free rigid spaces,
completely describe linear isometry groups of Lipschitz-free spaces over graphs, and present
some examples, notably showing that nonabelian Carnot groups with horizontally strictly convex
norms are Lipschitz-free rigid, respectively.

2 PRELIMINARIES AND NOTATION

2.1 Lipschitz-free spaces

Let (, 𝑑) be ametric space. There are several equivalent definitions of the Lipschitz-free Banach
space() over. Themost common one requires a choice of a distinguished point 0 ∈ and
() is then defined as the closed linear span of {𝛿(𝑚)∶ 𝑚 ∈ 𝑀} ⊆ (Lip0())∗, where 𝛿(𝑚) ∶
Lip0() → ℝ, for 𝑚 ∈, is the evaluation functional 𝑓 ∈ Lip0() → 𝑓(𝑚). In this paper, we
shall use another definition (which is used in [29]) that avoids the necessity of choosing a point,
whose advantage will become apparent shortly. Denote by0() the real vector space {𝑥 ∶→

ℝ∶ |supp(𝑥)| < ∞,
∑
𝑚∈ 𝑥(𝑚) = 0} of molecules over . For any 𝑥 ∈ 0() and a function

𝑓 ∶→ ℝ, denote by 𝑓(𝑥) the sum
∑
𝑚∈ 𝑥(𝑚)𝑓(𝑚) and set

‖𝑥‖ ∶= sup
𝑓
|𝑓(𝑥)|,

where the supremum is taken over all 1-Lipschitz functions. This is a norm on 0() and we
denote by () the corresponding completion. The reason to use this definition is that given any
bijective isometry𝜙 ∶→,𝜙 uniquely extends to a bijective isometry of0() and therefore
also uniquely to a bijective isometry of(). In fact, given any surjective 𝑎-dilation𝜙 ∶→,
where 𝑎 > 0, 𝜙 uniquely induces a bijective isometry of (). We recall that a map 𝜙 ∶→

is called an 𝑎-dilation if for every 𝑥, 𝑦 ∈, we have 𝑑(𝑥, 𝑦) = 𝑎𝑑(𝜙(𝑥), 𝜙(𝑦)). Let us also note
here that the group of linear isometries of a Banach space 𝑋 shall be denoted by LIso(𝑋).
For 𝑥, 𝑦 ∈, 𝑥 ≠ 𝑦, we denote𝑚𝑥,𝑦 ∶=

𝜒{𝑥}−𝜒{𝑦}

𝑑(𝑥,𝑦)
∈ (), the normalized elementarymolecule

supported on 𝑥 and 𝑦. An important feature of Lipschitz-free spaces is their universal property,
see [29, Theorem 3.6]. Namely, if we fix any base point 0 ∈, then the map 𝛿 ∶→ ()

defined as 𝛿(𝑥) = 𝑑(𝑥, 0)𝑚𝑥,0
for 𝑥 ∈ is an isometric embedding, and moreover, for every

Banach space𝑋 and a Lipschitz map 𝑓 ∶→ 𝑋 with 𝑓(0) = 0, there is a unique bounded lin-
earmap𝑇𝑓 ∶ () → 𝑋 satisfying ‖𝑇𝑓‖ = Lip(𝑓) and𝑇𝑓 ◦ 𝛿 = 𝑓, we say that𝑇𝑓 is the canonical
linearization of 𝑓.
We refer the reader to [29, Section 3], where all of the above (andmore) information concerning

Lipschitz-free spaces may be found.
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2.2 Graphs

We shall work both with directed and undirected graphs in this paper. An undirected graph is a
pair (𝑉, 𝐸) where 𝑉 is a set (of vertices) and 𝐸 ⊆ {𝑒 ∈ (𝑉)∶ |𝑒| = 2} is a set of edges viewed as a
set of pairs of vertices. Notice that with this definition, we do not allow loops and multiple edges
between pairs of vertices.
A directed graph is a pair (𝑉, 𝐸)where𝑉 is again a set (of vertices) and𝐸 ⊆ 𝑉2 ⧵ {(𝑣, 𝑣)∶ 𝑣 ∈ 𝑉}

is a set of ordered pairs of distinct vertices. We emphasize that all the directed graphs (𝑉, 𝐸) in this
paper have the property that for each directed edge 𝑒 = (𝑣1, 𝑣2) ∈ 𝐸, there is an edge (𝑣2, 𝑣1) ∈ 𝐸

with the opposite orientation which we shall denote by −𝑒. Notice that such directed graphs are
in one-to-one correspondence with undirected graphs.
If (𝑉, 𝐸) is a directed graph and 𝑒 = (𝑣1, 𝑣2) ∈ 𝐸, then we call 𝑣1, resp. 𝑣2 the source, resp. range

of 𝑒, and denote them by 𝑠(𝑒), resp. 𝑟(𝑒). A cycle, or more precisely a directed cycle, in (𝑉, 𝐸) is a
set of edges {𝑒1, … , 𝑒𝑛} ⊆ 𝐸 such that 𝑟(𝑒𝑖) = 𝑠(𝑒𝑖+1), for 𝑖 < 𝑛, and 𝑟(𝑒𝑛) = 𝑠(𝑒1). We say that the
sequence of edges (𝑒1, … , 𝑒𝑛) ⊆ 𝐸 is an unoriented cycle if there are signs (𝜀𝑖)𝑛𝑖=1 ∈ {−1, 1}𝑛 such
that (𝜀1𝑒1, … , 𝜀𝑛𝑒𝑛) is an oriented cycle. A cycle is simple if it is not a concatenation of two proper
subcycles. An edge path from a vertex 𝑣1 to a vertex 𝑣2 is a sequence of edges (𝑒1, … , 𝑒𝑛) such that
𝑠(𝑒1) = 𝑣1, 𝑟(𝑒𝑛) = 𝑣2 and 𝑟(𝑒𝑖) = 𝑠(𝑒𝑖+1) for 𝑖 < 𝑛. There is also an obvious definition of a cycle
for undirected graphs.
If (𝑉, 𝐸) is a directed graph and𝐴 ⊆ 𝐸, then we denote by −𝐴 the set {−𝑒∶ 𝑒 ∈ 𝐴} and say that

𝐴 is symmetric if𝐴 = −𝐴. For both a directed and undirected graph (𝑉, 𝐸), we shall often identify
any𝐸′ ⊆ 𝐸with the corresponding subgraph of (𝑉, 𝐸)whose set of edges is𝐸′ and contains exactly
those vertices that are incident to 𝐸′.
Occasionally, we also work with weighted graphs, which is a graph (directed or undirected)

equipped with a weight function 𝑤 ∶ 𝐸 → ℝ+
0
. If the graph is directed, we also require that 𝑤 is

symmetric as well, that is, 𝑤(𝑒) = 𝑤(−𝑒) for all 𝑒 ∈ 𝐸.
A (directed or undirected) graph (𝑉, 𝐸) is 𝑛-connected, for 𝑛 ⩾ 1, if upon removing 𝑛 − 1 ver-

tices, the graph remains connected. Note that the one vertex graph is connected. We also note
that directed graphs are connected if there is a directed edge path between any two vertices. We
define a relation ∼ on the set of edges 𝐸 of an undirected graph, where two edges are related if
they lie on a common simple cycle. This relation is clearly symmetric and transitive. So, upon
adding the diagonal to the relation, it is also reflexive and thus an equivalence relation. Edge com-
ponents are equivalence classes with respect to this equivalence relation. We extend these notions
also for directed graphs (𝑉, 𝐸) that we consider, that is, having the property that 𝐸 is symmetric.
For each 𝑒 ∈ 𝐸, let [𝑒] = {𝑒, −𝑒} and notice that (𝑉, {[𝑒]∶ 𝑒 ∈ 𝐸}) is an undirected graph. Then, set
𝑒 ∼ 𝑓, for 𝑒, 𝑓 ∈ 𝐸 if [𝑒] ∼ [𝑓] in the undirected graph. The edge components of directed graphs
are defined analogously.
We shall need the following fact concerning (infinite) graphs, which we will employ in a few

situations. This is a standard theorem by Whitney for finite graphs. We refer to [12, Section 3.2]
where the fact is proved. We remark that the implicit assumption there is that the graph is finite,
but the proof works verbatim also in the infinite case.

Fact 2.1 [12, Section 3.2]. Let𝐺 = (𝑉, 𝐸) be a graph. Then,𝐺 is 2-connected graph if and only if every
two edges are contained in a simple cycle.

Let (, 𝑑) be a metric space. Put 𝐸𝑀 ∶=2 ⧵ {(𝑥, 𝑥)∶ 𝑥 ∈}. For any 𝑒 = (𝑥, 𝑦) ∈ 𝐸𝑀 , we
denote 𝑚𝑒 = 𝑚𝑥,𝑦 , and further, we define a weight on 𝐸𝑀 by 𝑤(𝑒) = 𝑑(𝑒) ∶= 𝑑(𝑥, 𝑦) (note that
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then we have𝑚−𝑒 = −𝑚𝑒). Set also

𝐸𝑒𝑥𝑡() ∶=
{
(𝑥, 𝑦) ∶ 𝑚𝑥,𝑦 is an extreme point in 𝐵()∗∗

}
.

By 𝑉𝑒𝑥𝑡(), we denote the set {𝑥 ∈ ∶ ∃𝑦 ∈ such that (𝑥, 𝑦) ∈ 𝐸ext()}, and by 𝐺𝑒𝑥𝑡(),
we denote the weighted directed graph (𝑉𝑒𝑥𝑡(), 𝐸𝑒𝑥𝑡()). If the metric space  is clear
from the context, we write 𝐸𝑒𝑥𝑡, 𝑉𝑒𝑥𝑡, and 𝐺𝑒𝑥𝑡 instead of 𝐸𝑒𝑥𝑡(), 𝑉𝑒𝑥𝑡(), and 𝐺𝑒𝑥𝑡(),
respectively.
Given a metric space (, 𝑑) and 𝑥, 𝑦 ∈, we let [𝑥, 𝑦] ∶= {𝑧 ∈∶ 𝑑(𝑥, 𝑦) = 𝑑(𝑥, 𝑧) +

𝑑(𝑧, 𝑦)} and if 𝑚𝑥,𝑦 is an extreme point in 𝐵()∗∗ , we say that it is a preserved extreme point of
𝐵().
In the following, we collect several known results concerning (preserved) extreme points from

the literature that is relevant for this paper.

Fact 2.2. Let  be a pointed metric space. Then all the preserved extreme points of 𝐵() are
normalized elementary molecules. Moreover, given distinct points 𝑥, 𝑦 ∈, we have

∙ 𝑚𝑥,𝑦 ∈ ext 𝐵() if and only if [𝑥, 𝑦] = {𝑥, 𝑦},
∙ 𝑚𝑥,𝑦 ∈ ext 𝐵()∗∗ if and only if for every 𝜀 > 0, there exists 𝛿 > 0 such that for every 𝑧 ∈with
min{𝑑(𝑥, 𝑧), 𝑑(𝑦, 𝑧)} ⩾ 𝜀, we have 𝑑(𝑥, 𝑦) ⩽ 𝑑(𝑥, 𝑧) + 𝑑(𝑦, 𝑧) − 𝛿.

Proof. Preserved extreme points are normalized elementary molecules by [29, Corollary 3.44].
The characterization of normalized elementary molecules that are preserved extreme points is
contained in [2, Theorem 4.1]. Finally, the characterization of normalized elementary molecules
that are extreme points is [4, Theorem 3.2]. □

The information contained in Fact 2.2 will be used in the sequel freely without a direct
reference.

Remark 2.3. Let us note that in our paper, we work with the set 𝐸𝑒𝑥𝑡() defined through the
notion of preserved extreme points. One might wonder what would happen if we considered
rather the “simpler” set of edges

𝐸𝑒𝑥𝑡() ∶=
{
(𝑥, 𝑦) ∶ 𝑚𝑥,𝑦 is an extreme point in 𝐵()

}
.

In our proofs, it is crucial that linear isometries preserve these edges. This is known for preserved
extreme points (see Fact 2.2), but not for extreme points as it is a famous open problem whether
all the extreme points are normalized elementary molecules (this is known to be the case, e.g.,
for compact metric spaces [2] and for uniformly discrete metric spaces [5], but, in general, the
question remains open). In the case the problemwere solved and we knew that any extreme point
is an elementary molecule, we could replace 𝐸𝑒𝑥𝑡() by 𝐸𝑒𝑥𝑡(), and this would result in a
simplification of several proofs, since in some cases, it is more technically demanding to check
that a normalized elementary molecule is preserved extreme point than to check it is an extreme
point (see Fact 2.2 and, e.g., the proof of Proposition 5.1). At thismoment,we are not aware of cases,
where this approach (of using 𝐸𝑒𝑥𝑡() instead of 𝐸𝑒𝑥𝑡()) could provide us with new examples
of Lipschitz-free rigid spaces.
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3 ISOMETRIES ON LISPCHITZ-FREE SPACES GENERATED BY
CYCLIC BIJECTIONS

In this section, we introduce the fundamental class of (weak) Prague metric spaces and show that
surjective linear isometries of their Lipschitz-free spaces are amenable to a description.

Definition 3.1. Let (, 𝑑) be a metric space. We say that 𝐸 ⊂ 𝐸𝑀 is weakly admissible (for)
if it is symmetric, 𝑉𝐸 ∶= {𝑥 ∈∶ ∃𝑦 ∈ ∶ (𝑥, 𝑦) ∈ 𝐸} is dense subset of , and the graph
𝐺 = (𝑉𝐸, 𝐸) is connected. We say that 𝐸 is admissible if, moreover, for every 𝑥, 𝑦 ∈ 𝑉𝐸 , we have

𝑑(𝑥, 𝑦) = inf

{
𝑛∑
𝑖=1

𝑑(𝑒𝑖)∶ 𝑒1, … , 𝑒𝑛 is 𝐸-path from 𝑥 to 𝑦

}
. (1)

The connection of weakly admissible sets to isometries of Lipschitz-free spaces is explained
in the following. In order to formulate our conditions in a short way, we shall use the following
notation.

Notation 3.2. Let (1, 𝑑1) and (2, 𝑑2) be metric spaces with weakly admissible sets 𝐸1 and 𝐸2
and let 𝜎 ∶ 𝐸1 → 𝐸2 be a bijection. In what follows we shall use the following conditions:

(Sa) 𝐸′ ⊂ 𝐸1 is a simple cycle if and only if 𝜎(𝐸′) is a simple cycle in 𝐸2,
(Sb) 𝑑1(𝑒)

𝑑2(𝜎(𝑒))
is constant on each simple cycle 𝐸′ ⊂ 𝐸1,

(Sc) for every 𝐸1-path 𝑒1, … , 𝑒𝑛 from 𝑥 ∈ 𝑉𝐸1 to 𝑦 ∈ 𝑉𝐸1 and every 𝐸2-path 𝑓1, … , 𝑓𝑘 from 𝑥′ ∈

𝑉𝐸2 to 𝑦
′ ∈ 𝑉𝐸2 , we have

𝑑1(𝑥, 𝑦) =
‖‖‖‖‖

𝑛∑
𝑖=1

𝑑1(𝑒𝑖)𝑚𝜎(𝑒𝑖)

‖‖‖‖‖ and 𝑑2(𝑥
′, 𝑦′) =

‖‖‖‖‖‖
𝑘∑
𝑗=1

𝑑2(𝑓𝑗)𝑚𝜎−1(𝑓𝑗)

‖‖‖‖‖‖ .
Proposition 3.3. Let (1, 𝑑1) and (2, 𝑑2) be metric spaces with weakly admissible sets 𝐸1 and
𝐸2. Let 𝜎 ∶ 𝐸1 → 𝐸2 be a bijection and suppose that one of the following conditions hold:

(i) 𝜎 satisfies (Sa), (Sb) and (Sc),
(ii) 𝐸1 and 𝐸2 are admissible and 𝜎 satisfies (Sa) and (Sb).

Then there exists a surjective isometry 𝑇 ∶ (1) → (2) such that 𝑇(𝑚𝑒) = 𝑚𝜎(𝑒), for every 𝑒 ∈
𝐸1.
Moreover, (ii) implies (i).

Proof. Assume that 𝜎 satisfies (Sa) and (Sb). First, we notice that the following holds:

𝐶 ⊂ 𝐸1 is a cycle ⇒
∑
𝑒∈𝐶

𝑑1(𝑒)𝑚𝜎(𝑒) = 0. (2)

Indeed, first consider the case when 𝐶 is a simple cycle. By (Sb), there exists 𝐾 > 0 with
𝑑1(𝑒)

𝑑2(𝜎(𝑒))
= 𝐾 for 𝑒 ∈ 𝐶, and so,

∑
𝑒∈𝐶

𝑑1(𝑒)𝑚𝜎(𝑒) = 𝐾
∑
𝑒∈𝐶

𝑑2(𝜎(𝑒))𝑚𝜎(𝑒) = 𝐾
∑
𝑒∈𝐶

(
𝛿𝑠(𝜎(𝑒)) − 𝛿𝑟(𝜎(𝑒))

)
= 0,
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where in the last equality, we used that 𝜎(𝐶) is a simple cycle by (Sa). Thus, (2) holds whenever 𝐶
is a simple cycle. Now, given a cycle 𝐶 = (𝑒1, … , 𝑒𝑛), we inductively find simple cycles 𝐶1, … , 𝐶𝑘
such that there is a permutation𝜋 ∈ 𝑆𝑛 and 𝑖1 < … < 𝑖𝑘 ⩽ 𝑘with𝐶𝑗 = (𝑒𝜋(𝑖𝑗+1), … , 𝑒𝜋(𝑖𝑗+1)) for 𝑗 =
1,… , 𝑘: first we pick the first index 𝑙 such that there is 𝑗 < 𝑙 with 𝑟(𝑒𝑗) = 𝑟(𝑒𝑙) and then put 𝐶1 ∶=
(𝑒𝑗+1, … , 𝑒𝑙), and next, we pick the cycle (𝑒1, … , 𝑒𝑗, 𝑒𝑙+1, … , 𝑒𝑛) and proceed inductively. Having
simple cycles 𝐶1, … , 𝐶𝑘 as described above, we have

∑
𝑒∈𝐶

𝑑1(𝑒)𝑚𝜎(𝑒) =

𝑘∑
𝑖=1

(∑
𝑒∈𝐶𝑖

𝑑1(𝑒)𝑚𝜎(𝑒)

)
= 0,

where the last equality follows from the already proven part. Thus, we proved that (2) holds for
any cycle 𝐶 ⊂ 𝐸1.
Now, given 𝑥, 𝑦 ∈ 𝑉𝐸1 and any directed edge path 𝑒1, … , 𝑒𝑛 ∈ 𝐸1 from 𝑥 to 𝑦, we let

𝜙(𝑥, 𝑦) ∶=

𝑛∑
𝑖=1

𝑑1(𝑒𝑖)𝑚𝜎(𝑒𝑖)
.

By (2), this formula does not depend on the choice of the edge path because if 𝑓1, … , 𝑓𝑘 ∈ 𝐸1
is another edge path from 𝑥 to 𝑦, then 𝑒1, … , 𝑒𝑛, −𝑓𝑚,… ,−𝑓1 is a directed cycle, and so, we
have (

𝑛∑
𝑖=1

𝑑1(𝑒𝑖)𝑚𝜎(𝑒𝑖)

)
−

(
𝑚∑
𝑗=1

𝑑1(𝑓𝑗)𝑚𝜎(𝑓𝑗)

)
(2)
= 0.

Now, we note that both (ii) and (Sc) imply that ‖𝜙(𝑥, 𝑦)‖ ⩽ 𝑑1(𝑥, 𝑦) for any 𝑥, 𝑦 ∈ 𝑉𝐸1 . Indeed,
assuming (Sc), we have even equality, so it suffices to check it under the assumptions that (ii)
holds. Pick 𝑥 ≠ 𝑦 ∈ 𝑉𝐸1 . For every 𝜀 > 0, there exists a directed edge path 𝑒1, … , 𝑒𝑛 ∈ 𝐸1 from 𝑥

to 𝑦 such that 𝑑1(𝑥, 𝑦) ⩾
(∑𝑛

𝑖=1 𝑑1(𝑒𝑖)
)
− 𝜀. But then, we obtain

‖𝜙(𝑥, 𝑦)‖ = ‖‖‖‖‖
𝑛∑
𝑖=1

𝑑1(𝑒𝑖)𝑚𝜎(𝑒𝑖)

‖‖‖‖‖ ⩽
𝑛∑
𝑖=1

𝑑1(𝑒𝑖)‖𝑚𝜎(𝑒𝑖)
‖ = 𝑛∑

𝑖=1

𝑑1(𝑒𝑖) ⩽ 𝑑1(𝑥, 𝑦) + 𝜀

and since 𝜀 > 0 was arbitrary, we obtain ‖𝜙(𝑥, 𝑦)‖ ⩽ 𝑑1(𝑥, 𝑦).
Now, for 𝑖 ∈ {1, 2}, set 𝑋𝑖 ∶= span {𝑚𝑒 ∶ 𝑒 ∈ 𝐸𝑖}. Since 𝐸𝑖 are weakly admissible, 𝑋𝑖 is a dense

subspace of (𝑖) for 𝑖 ∈ {1, 2}. We define 𝑇0 ∶ 𝑋1 → 𝑋2 by setting

𝑇0(𝑚𝑒) ∶= 𝑚𝜎(𝑒), 𝑒 ∈ 𝐸1

and extending it linearly. We shall verify that 𝑇0 is a well-defined surjective linear isometry, and
thus, it has a unique extension to a surjective linear isometry 𝑇 ∶ (1) → (2).
Pick arbitrary base points 0 ∈ 𝑉𝐸1 and 0 ∈ 𝑉𝐸2 . We claim that there is a 1-Lipschitz map-

ping 𝑓 ∶ 𝑉𝐸1 → (𝑉𝐸2) with 𝑓(0) = 0 such that 𝑇𝑓|𝑋1 = 𝑇0, where 𝑇𝑓 ∶ (𝑉𝐸1) → (𝑉𝐸2) is
the unique linear operator obtained from 𝑓 by the universal property of (𝑉𝐸1). Set 𝑓(0) ∶= 0.
For 0 ≠ 𝑥 ∈ 𝑉𝐸1 , we set 𝑓(𝑥) ∶= 𝜙(𝑥, 0). In order to check that 𝑓 is 1-Lipschitz, pick
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8 of 36 CÚTH et al.

𝑥 ≠ 𝑦 ∈ 𝑉𝐸1 and a directed edge path 𝑒1, … , 𝑒𝑛 ∈ 𝐸1 from 𝑥 to 𝑦. Notice that 𝛿𝑥 − 𝛿𝑦 =∑𝑛
𝑖=1 𝑑1(𝑒𝑖)𝑚𝑒𝑖

, so

‖𝑓(𝑥) − 𝑓(𝑦)‖ = ‖‖‖‖‖‖𝑇0
(

𝑛∑
𝑖=1

𝑑1(𝑒𝑖)𝑚𝑒𝑖

)‖‖‖‖‖‖ =
‖‖‖‖‖

𝑛∑
𝑖=1

𝑑1(𝑒𝑖)𝑇0(𝑚𝑒𝑖
)
‖‖‖‖‖ = ‖𝜙(𝑥, 𝑦)‖ ⩽ 𝑑1(𝑥, 𝑦).

Thus, 𝑓 is 1-Lipschitz. Finally, it is obvious from the way how we defined 𝑓 that 𝑓(𝑥) =
𝑇0(𝛿(𝑥) − 𝛿(0)) for 0 ≠ 𝑥 ∈ 𝑉𝐸1 , which implies that 𝑇𝑓|𝑋1 = 𝑇0. This finishes the proof of
the claim above.
Similarly, applying the above to (𝑇0)−1, we obtain a 1-Lipschitz mapping g ∶ 𝑉𝐸2 → (𝑉𝐸1)

with g(0 ) = 0 such that 𝑇g |𝑋2 = (𝑇0)
−1, where 𝑇g ∶ (𝑉𝐸2) → (𝑉𝐸1) is obtained from g by

the universal property of (𝑉𝐸2). But then, we observe that 𝑇𝑓 = (𝑇g )
−1, so 𝑇𝑓 is linear isom-

etry with inverse 𝑇g and since 𝜎 is surjective, we finally deduce that 𝑇0 = 𝑇𝑓|𝑋1 is a surjective
linear isometry.
Notice that this implies that, in fact, for every 𝑥, 𝑦 ∈ 𝑉𝐸1 , we have the equality 𝜙(𝑥, 𝑦) =

𝑑1(𝑥, 𝑦). Since, as we have shown above, 𝜙(𝑥, 𝑦) does not depend on the choice of the edge
path between 𝑥 and 𝑦 (and noticing that similar arguments apply of course for edge paths
between points from 𝑉𝐸2), we conclude that (ii) implies (i), proving the “Moreover” part of the
statement. □

Next, we aim for a kind of converse to Proposition 3.3. Notice that such a potential converse
might have a chance to work only for isometries 𝑇 ∶ () → ( ), where and aremetric
spaces with (weakly) admissible sets 𝐸1 and 𝐸2, respectively, only if 𝑇 maps 𝐸1 to 𝐸2. For this
reason, we need to work with subsets of 𝐸, resp. 𝐸 that are preserved by isometries. This is the
content of Proposition 3.5 where we do not yet require that these subsets are (weakly) admissible.
In the proof, we need the following variant of [1, Lemma 2.5], the proof is analogical, so we omit

it.

Lemma 3.4. Let  be a metric space and 𝐸′ ⊂ 𝐸𝑀 be a finite set such that for any 𝑒 ∈ 𝐸′, it is
not true that −𝑒 ∈ 𝐸′. Then, {𝑚𝑒 ∶ 𝑒 ∈ 𝐸′} ⊂ () is not linearly independent if and only if 𝐸′
contains an unoriented cycle.

Proposition 3.5. Let (, 𝑑) and ( , 𝑑 ) be metric spaces and 𝑇 ∶ () → ( ) be a sur-
jective isometry. Then, there exists a symmetric bijection 𝜎 ∶ 𝐸𝑒𝑥𝑡() → 𝐸𝑒𝑥𝑡( ), that is, 𝜎(−𝑒) =
−𝜎(𝑒) for 𝑒 ∈ 𝐸𝑒𝑥𝑡(), such that

∙ 𝑇(𝑚𝑒) = 𝑚𝜎(𝑒), 𝑒 ∈ 𝐸𝑒𝑥𝑡(),
∙ 𝜎 satisfies (Sa), (Sb), and (Sc) with 𝐸1 = 𝐸𝑒𝑥𝑡() and 𝐸2 = 𝐸𝑒𝑥𝑡( ).

Proof. Since 𝑇 is a linear isometry, it maps preserved extreme points to preserved extreme points.
Since the only preserved extreme points are normalized elementary molecules, we obtain that for
every 𝑒 ∈ 𝐸𝑒𝑥𝑡(), there exists 𝜎(𝑒) ∈ 𝐸𝑒𝑥𝑡( ) such that 𝑇(𝑚𝑒) = 𝑚𝜎(𝑒). Since 𝑇 is a bijection, we
easily obtain that themapping 𝜎 ∶ 𝐸𝑒𝑥𝑡() → 𝐸𝑒𝑥𝑡( ) is a bijection aswell. Further, note that for
any 𝑒 ∈ 𝐸𝑒𝑥𝑡(), we have 𝜎(−𝑒) = −𝜎(𝑒) that follows easily from the fact that 𝑇(𝑚−𝑒) = −𝑇(𝑚𝑒).
Let us pick a simple cycle (𝑒1, … , 𝑒𝑛) from 𝐸𝑒𝑥𝑡(). In the case that 𝑛 = 2, we have

{𝑒1, 𝑒2} = {𝑒1, −𝑒1} and so {𝜎(𝑒1), 𝜎(𝑒2)} = {𝜎(𝑒1), −𝜎(𝑒1)}. Consider now the case when 𝑛 ⩾ 3.
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Then, 𝜎(𝑒𝑖) ≠ −𝜎(𝑒𝑗) for 𝑖 < 𝑗 ⩽ 𝑛 − 1 and

𝑛−1∑
𝑖=1

𝑑(𝑒𝑖)𝑚𝜎(𝑒𝑖)
= 𝑇

(
𝑛−1∑
𝑖=1

𝑑(𝑒𝑖)𝑚𝑒𝑖

)
= 𝑇(0) = 0,

so, by Lemma 3.4, {𝜎(𝑒𝑖) ∶ 𝑖 ⩽ 𝑛 − 1} contains an unoriented cycle, that is, there are 𝑚 ⩽ 𝑛,
𝜀 ∈ {±1}𝑚−1 and one-to-one mapping 𝜋 ∶ {1, … ,𝑚 − 1} → {1, … , 𝑛 − 1} such that {𝜀(𝑖)𝜎(𝑒𝜋(𝑖)) ∶
𝑖 ⩽ 𝑚 − 1} is a cycle. Applying the above to 𝑇−1, we obtain that {𝑒𝜋(1), … , 𝑒𝜋(𝑚−1)} contains an
unoriented cycle, and so,𝑚 = 𝑛 and 𝜋 ∈ 𝑆(𝑛 − 1) is a permutation. After using one more permu-
tation, we may without loss of generality assume that the source 𝑓𝑖 ∶= 𝑠

(
𝜀(𝑖)𝜎(𝑒𝜋(𝑖))

)
is equal to

the range of 𝜀(𝑖 − 1)𝜎(𝑒𝜋(𝑖−1)) for 𝑖 ⩽ 𝑛 − 1 (where 𝜀(0) ∶= 𝜀(𝑛 − 1) and 𝜋(0) ∶= 𝜋(𝑛 − 1)). Thus,
we have

0 =

𝑛−1∑
𝑖=1

𝑑(𝑒𝑖)𝑚𝜎(𝑒𝑖)
=

𝑛−1∑
𝑖=1

𝑑(𝑒𝜋(𝑖))𝑚𝜎(𝑒𝜋(𝑖))
=

𝑛−1∑
𝑖=1

𝑑(𝑒𝜋(𝑖))𝜀(𝑖)𝑚𝜀(𝑖)𝜎(𝑒𝜋(𝑖))

=

𝑛−1∑
𝑖=1

𝑑(𝑒𝜋(𝑖))

𝑑(𝜎(𝑒𝜋(𝑖)))
𝜀(𝑖)
(
𝛿𝑓𝑖 − 𝛿𝑓𝑖+1

)
,

and so, comparing the coefficients, we obtain that 𝑑(𝑒𝜋(𝑖))

𝑑(𝜎(𝑒𝜋(𝑖)))
𝜀(𝑖), 𝑖 ⩽ 𝑛 − 1 is constant.

Thus, 𝜀 is constant and so, using the fact that 𝐸′ ⊂ 𝐸𝑒𝑥𝑡 is a cycle in 𝐺𝑒𝑥𝑡 if and only if −𝐸′ is
a cycle in 𝐺𝑒𝑥𝑡, we obtain that {𝜎(𝑒𝑖) ∶ 𝑖 ⩽ 𝑛 − 1} is a simple cycle. Thus, 𝜎(𝐸′) is a simple cycle
whenever 𝐸′ ⊂ 𝐸𝑒𝑥𝑡 is a simple cycle. Moreover,

𝑑(𝑒)

𝑑(𝜎(𝑒))
is constant on each simple cycle 𝐸′ ⊂ 𝐸𝑒𝑥𝑡.

This proves that 𝜎 satisfies both (Sa) and (Sb).
In order to check that (Sc) holds, pick 𝐸𝑒𝑥𝑡()-path 𝑒1, … , 𝑒𝑛 from 𝑥 ∈ to 𝑦 ∈ and notice

that then 𝛿(𝑥) − 𝛿(𝑦) =
∑𝑛
𝑖=1 𝑑(𝑒𝑖)𝑚𝑒𝑖

. Thus, since 𝑇 is isometry, we obtain

𝑑(𝑥, 𝑦) =
‖‖‖‖‖

𝑛∑
𝑖=1

𝑑(𝑒𝑖)𝑚𝑒𝑖

‖‖‖‖‖ =
‖‖‖‖‖

𝑛∑
𝑖=1

𝑑(𝑒𝑖)𝑇(𝑚𝑒𝑖
)
‖‖‖‖‖ =
‖‖‖‖‖

𝑛∑
𝑖=1

𝑑(𝑒𝑖)𝑚𝜎(𝑒𝑖)

‖‖‖‖‖ .
Finally, for 𝐸𝑒𝑥𝑡( )-path 𝑓1, … , 𝑓𝑘 from 𝑥′ ∈ to 𝑦′ ∈ , using that 𝑇−1 is isometry, we
similarly obtain that 𝑑 (𝑥′, 𝑦′) =

‖‖‖∑𝑘
𝑖=1 𝑑 (𝑓𝑗)𝑚𝜎−1(𝑓𝑗)

‖‖‖. □

Definition 3.6. A metric space is called a Prague space if 𝐸𝑒𝑥𝑡() is admissible and a weak
Prague space if 𝐸𝑒𝑥𝑡() is weakly admissible.†

Let us mention two important classes of Prague spaces. The first one is the following class from
[29].

Definition 3.7 [29, Definition 3.3]. A metric space  is uniformly concave if for every 𝑥 ≠ 𝑦 ∈

 and 𝜀 > 0, there exists 𝛿 > 0 such that 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦) − 𝛿 > 𝑑(𝑥, 𝑦) for all 𝑧 ∈ satisfying
min{𝑑(𝑥, 𝑧), 𝑑(𝑦, 𝑧)} ⩾ 𝜀.

† The name “Prague” was given to these spaces by the Budapest coauthor of this paper during his visit in Prague in order
to simplify the wording.
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10 of 36 CÚTH et al.

Notice that it follows immediately from Fact 2.2 that equivalently,  is uniformly concave if
and only if 𝐸𝑒𝑥𝑡() = {(𝑥, 𝑦)∶ 𝑥 ≠ 𝑦 ∈}; in particular, such spaces are Prague.
The second class is the class of connected undirected graphs with the graph metric. We need

the following simple lemma that immediately implies that every such a graph viewed as a metric
space is a Prague space. We recall from the preliminaries that each undirected graph corresponds
to a directed graph where each edge has its inverse. We may thus state the next lemma for such
graphs.

Lemma 3.8. Let (𝑉, 𝐸) be a connected directed graph as in the paragraph above. Then, 𝐸𝑒𝑥𝑡 = 𝐸.
In particular, (𝑉, 𝐸) with the graph metric is a Prague space.

Proof. Given 𝑥, 𝑦 ∈ 𝑉, we have that [𝑥, 𝑦] = {𝑥, 𝑦} if and only if (𝑥, 𝑦) ∈ 𝐸. Thus,𝑚𝑥,𝑦 ∈ ext 𝐵(𝑉)
only if (𝑥, 𝑦) ∈ 𝐸, so we have 𝐸𝑒𝑥𝑡 ⊂ 𝐸. Conversely, pick (𝑥, 𝑦) ∈ 𝐸 and 𝜀 > 0. Then, for 𝛿 ∶= 1,
we obtain that given 𝑧 ∈ 𝑉 withmin{𝑑(𝑧, 𝑥), 𝑑(𝑧, 𝑦)} ⩾ 𝜀, we have

𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦) − 𝑑(𝑥, 𝑦) ⩾ 2 − 𝑑(𝑥, 𝑦) = 𝛿,

so (𝑥, 𝑦) ∈ 𝐸𝑒𝑥𝑡. Thus, 𝐸𝑒𝑥𝑡 = 𝐸. □

We are now ready to state the main result of this section that directly follows from
Propositions 3.3 and 3.5.

Theorem 3.9. Let and be weak Prague spaces.

(i) There is one-to-one correspondence between surjective linear isometries between () and
( ), and bijections between 𝐸𝑒𝑥𝑡() and 𝐸𝑒𝑥𝑡( ) satisfying (Sa), (Sb), and (Sc).

(ii) If both  and  are, moreover, Prague, then there is a one-to-one correspondence between
surjective linear isometries between () and ( ), and bijections between 𝐸𝑒𝑥𝑡() and
𝐸𝑒𝑥𝑡( ) satisfying (Sa) and (Sb).

In both cases (i) and (ii), the correspondence is of the form 𝜎 → 𝑇𝜎, where 𝜎 ∶ 𝐸𝑒𝑥𝑡() → 𝐸𝑒𝑥𝑡( )

is an appropriate bijection and 𝑇𝜎 ∶ () → ( ) is a linear isometry uniquely determined by
the condition 𝑇𝜎(𝑚𝑒) = 𝑚𝜎(𝑒) for all 𝑒 ∈ 𝐸𝑒𝑥𝑡().

4 LIPSCHITZ-FREE RIGID SPACES

At this moment, we are ready to investigate Lipschitz-free spaces whose surjective isometries are
determined by surjective dilations of the underlying metric spaces. They will be the content of
this section. A formal definition follows.

Definition 4.1. Let (, 𝑑) be a metric space. We say that it is Lipschitz-free rigid if for any
𝑇 ∈ LIso(()), there exist 𝜀 ∈ {±1}, 𝑎 > 0 and a surjective 𝑎-dilation g ∶→ such that
𝑇(𝑚𝑥,𝑦) = 𝜀𝑚g(𝑥),g(𝑦) for every 𝑥, 𝑦 ∈. Given a Lipchitz-free rigid space , we say that it is
strongly Lipschitz-free rigid if every isometry from LIso(Lip0()) is an adjoint of some isometry
from LIso(()).
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ISOMETRIES OF LIPSCHITZ-FREE BANACH SPACES 11 of 36

Remark 4.2. We are not aware of any example of a metric space that is Lipschitz-free rigid but not
strongly Lipschitz-free rigid. Note, however, that whenever () is a strongly unique predual of
Lip0(), then strong rigidity and rigidity coincide. It is not known whether () is a strongly
unique predual of Lip0() for any metric space, it is known that it is the case whenever is
bounded or whenever is a geodesic space, see [29, Section 3.4] for more details.

Remark 4.3. We note that in [30, Theorem 3.3] (see also [29, Theorem 3.27]), the author assumes
that is a geodesic space, but in the proof, he uses only that for any 𝑥, 𝑦 ∈ and 𝑛 ∈ ℕ with
𝑑(0, 𝑥) < 𝑛 and 𝑑(0, 𝑦) > 𝑛, there exists 𝑧 ∈ with 𝑑(0, 𝑧) = 𝑛 and 𝑧 ∈ [𝑥, 𝑦]; this condition is
satisfied also for any connected graph endowed with the graph metric. So, for any such graph
𝐺, (𝐺) is a strongly unique predual of Lip0(𝐺), and therefore, 𝐺 is strongly Lipschitz-free rigid
whenever it is Lipschitz-free rigid.

Proposition 4.4. Let be aweak Prague space. Suppose that𝐸𝑒𝑥𝑡 is 2-connected andwhenever𝜎 ∶
𝐸𝑒𝑥𝑡 → 𝐸𝑒𝑥𝑡 is a bijection satisfying (Sa), (Sb) with𝐸1 = 𝐸2 = 𝐸𝑒𝑥𝑡 , there exists a graph isomorphism
𝑓 ∶ 𝑉𝑒𝑥𝑡 → 𝑉𝑒𝑥𝑡 and 𝜀 ∈ {±1} satisfying 𝜎(𝑣, 𝑤) = 𝜀(𝑓(𝑣), 𝑓(𝑤)) for every (𝑣, 𝑤) ∈ 𝐸𝑒𝑥𝑡 . Then is
Lipschitz-free rigid. If is a Prague space, then the converse holds as well.

Proof. Let  be a weak Prague space and suppose that the condition from the statement is
satisfied. Let 𝑇 ∶ () → () be a surjective linear isometry. By Theorem 3.9, there exists
a bijection 𝜎 ∶ 𝐸𝑒𝑥𝑡 → 𝐸𝑒𝑥𝑡 satisfying (Sa) and (Sb). So, by the assumption, there are a graph iso-
morphism 𝑓 ∶ 𝑉𝑒𝑥𝑡 → 𝑉𝑒𝑥𝑡 and 𝜀 ∈ {±1} satisfying 𝜎(𝑣, 𝑤) = 𝜀(𝑓(𝑣), 𝑓(𝑤)) for every (𝑣, 𝑤) ∈ 𝐸𝑒𝑥𝑡
such that 𝑑(𝜎(𝑒))∕𝑑(𝑒) is constant on simple cycles. Since 𝐸𝑒𝑥𝑡 is 2-connected, and so, by Fact 2.1,
every two edges of 𝐸𝑒𝑥𝑡 lie on a common simple cycle, we get that 𝑑(𝜎(𝑒))∕𝑑(𝑒) is globally con-
stant. For every (𝑣, 𝑤) ∈ 𝐸𝑒𝑥𝑡, we have

𝑑(𝑓(𝑣),𝑓(𝑤))

𝑑(𝑣,𝑤)
= 𝑑(𝜎(𝑣,𝑤))

𝑑(𝑣,𝑤)
=∶ 𝑎 and we claim that, in general,

for all 𝑥 ≠ 𝑦 ∈ 𝑉𝑒𝑥𝑡, we have 𝑑(𝑓(𝑥), 𝑓(𝑦)) = 𝑎𝑑(𝑥, 𝑦). Indeed, let 𝑒1, … , 𝑒𝑛 be an edge path in 𝐸𝑒𝑥𝑡
from 𝑥 to 𝑦. Then,

𝑑(𝑓(𝑥), 𝑓(𝑦)) =
‖‖‖‖‖

𝑛∑
𝑖=1

𝑑(𝜎(𝑒𝑖))𝑚𝜎(𝑒𝑖)

‖‖‖‖‖ = 𝑎

‖‖‖‖‖‖𝑇
(

𝑛∑
𝑖=1

𝑑(𝑒𝑖)𝑚𝑒𝑖

)‖‖‖‖‖‖ = 𝑎
‖‖‖‖‖

𝑛∑
𝑖=1

𝑑(𝑒𝑖)𝑚𝑒𝑖

‖‖‖‖‖ = 𝑎𝑑(𝑥, 𝑦).

Thus, 𝑓 extends to a surjective dilation 𝑓 ∶→ which together with 𝜀 witness that  is
Lipschitz-free rigid.
Now suppose that  is a Lipschitz-free rigid Prague space. In order to get a contradiction,

suppose that 𝐸𝑒𝑥𝑡 is not 2-connected. Then, by Fact 2.1, 𝐸𝑒𝑥𝑡 contains at least two distinct edge
components. Let 𝐹 ⊆ 𝐸𝑒𝑥𝑡 be an edge component and 𝐹′ ∶= 𝐸𝑒𝑥𝑡 ⧵ 𝐹 that is nonempty. We define
𝜎 ∶ 𝐸 → 𝐸 to be Id on 𝐹 and −Id on 𝐹′. Then, clearly, 𝜎 satisfies (Sa) and (Sb), and so, by Theo-
rem 3.9, there exists a surjective isometry 𝑇 ∶ () → () such that 𝑇(𝑚𝑒) = 𝑚𝜎(𝑒) for every
𝑒 ∈ 𝐸𝑒𝑥𝑡. Since is Lipschitz-free rigid, there exist a surjective dilation𝑓 ∶→ and 𝜀 ∈ {±1}

such that𝑇(𝑚𝑥,𝑦) = 𝜀𝑚𝑓(𝑥),𝑓(𝑦) for all𝑥, 𝑦 ∈ 𝑉𝑒𝑥𝑡. Since𝐸𝑒𝑥𝑡 is connected, there exist𝑥, 𝑦, 𝑧 ∈ 𝑉𝑒𝑥𝑡
such that (𝑥, 𝑦) ∈ 𝐹 and (𝑥, 𝑧) ∈ 𝐹′. Then,𝑚𝑥,𝑦 = 𝑇(𝑚𝑥,𝑦) = 𝜀𝑚𝑓(𝑥),𝑓(𝑦), showing that 𝜀 = +1. On
the other hand,𝑚𝑧,𝑥 = 𝑇(𝑚𝑥,𝑧) = 𝜀𝑚𝑓(𝑥),𝑓(𝑧) showing that 𝜀 = −1, a contradiction.
Finally, suppose that 𝜎 ∶ 𝐸𝑒𝑥𝑡 → 𝐸𝑒𝑥𝑡 is a bijection satisfying (Sa) and (Sb). By Theorem 3.9,

there exists a surjective linear isometry 𝑇 ∶ () → () satisfying 𝑇(𝑚𝑒) = 𝑚𝜎(𝑒) for every
𝑒 ∈ 𝐸𝑒𝑥𝑡. Since  is Lipschitz-free rigid, there exist 𝜀 ∈ {±1}, 𝑎 > 0 and a surjective 𝑎-dilation
g ∶→ such that 𝑇(𝑚𝑥,𝑦) = 𝜀𝑚g(𝑥),g(𝑦) for every 𝑥, 𝑦 ∈. Since 𝑇 maps {𝑚𝑒 ∶ 𝑒 ∈ 𝐸𝑒𝑥𝑡}
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bijectively onto itself, we have (g(𝑥), g(𝑦)) ∈ 𝐸𝑒𝑥𝑡 if and only if (𝑥, 𝑦) ∈ 𝐸𝑒𝑥𝑡 and therefore
g[𝑉𝑒𝑥𝑡] = 𝑉𝑒𝑥𝑡 and g ↾ 𝑉𝑒𝑥𝑡 is the required graph isomorphism. □

The converse for weak Prague spaces does not hold as the following example shows. Since the
proof is quite long and technical, in order not to disturb the flow of this section, this example can
be found as Proposition 7.4 in Section 7.

Example 4.5. Consider the subset 𝐼 ∶= {0} × [0, 1] ⊂ ℝ2 and point 𝑥0 ∶= (1, 0) ∈ ℝ2. Then, the
metric space (𝐼 ∪ {𝑥0}, ‖ ⋅ ‖2) is a weak Prague space that is Lipschitz-free rigid, but 𝐸𝑒𝑥𝑡 is not 2-
connected.

It is a well-known result of Whitney that for 3-connected finite graphs any cycle-preserving
bijection between edges is induced by a graph isomorphism, see, for example, [26, Section 5.3].
So, Proposition 4.4 implies that whenever is finite and 𝐸𝑒𝑥𝑡() is 3-connected and then is
rigid. This was observed already in [1]. We shall extend this observation to situations when 𝐸𝑒𝑥𝑡
is infinite, see Theorem 4.9. In order to prove it, we need an analogy of the Whitney’s theorem
mentioned above for infinite graphs, see Corollary 4.8. We suspect that it is well known in graph
theory, but we did not find any reference, so we include our proof below. In the remainder of this
section, all the graphs are undirected. We recall that the directed graphs we consider, usually of
the form (𝑉𝑒𝑥𝑡, 𝐸𝑒𝑥𝑡), are in one-to-one correspondence with undirected graphs.

Definition 4.6. Let 𝐺 = (𝑉, 𝐸) be a graph. We say 𝐸′ ⊂ 𝐸 is a basis of 𝐸 if it is a maximal set of
edges that does not contain a simple cycle. Equivalently, it is a spanning forest, that is, a disjoint
union of trees that is incident with all the vertices of 𝑉𝐸 .
(Note that given connected graph (𝑉, 𝐸), there exists a basis 𝐸0 ⊂ 𝐸 that is then a spanning tree

and then (𝑉, 𝐸0) is again a connected graph.)

Lemma 4.7. Let 𝐺 = (𝑉, 𝐸) be a 2-connected graph. For 𝑣 ∈ 𝑉, put 𝐸𝑣 ∶= {𝑒 ∈ 𝐸∶ 𝑣 ∉ 𝑒} and let
𝐸′ ⊊ 𝐸. Then, 𝐸′ ∈ {𝐸𝑣 ∶ 𝑣 ∈ 𝑉} if and only if the following two conditions hold:

(i) (
⋃
𝐸′, 𝐸′) is connected;

(ii) for every 𝐸0 ⊂ 𝐸′ and 𝑒 ∈ 𝐸 ⧵ 𝐸′, if 𝐸0 is a basis of 𝐸′, then 𝐸0 ∪ {𝑒} is a basis of 𝐸.

In particular, 𝐸′ ∈ {𝐸𝑣 ∶ 𝑣 ∈ 𝑉 ∧ 𝐸𝑣 is 2-connected} if and only if (ii) holds together with the
following condition

(iii) For every 𝑒, 𝑒′ ∈ 𝐸′, there is a simple cycle 𝐶 ⊂ 𝐸′ with {𝑒, 𝑒′} ⊂ 𝐶.

Proof. First, pick 𝑣 ∈ 𝑉 and let us verify that condition (ii) holds for 𝐸′ = 𝐸𝑣 (condition (i) follows
from 2-connectedness of 𝐺). Pick a basis 𝐸0 of 𝐸𝑣 and 𝑒 ∈ 𝐸 ⧵ 𝐸𝑣. Since 𝐸0 does not contain a
simple cycle, 𝐸0 ∪ {𝑒} does not contain a simple cycle as well. Moreover, since 𝐺 is 2-connected,
𝐸𝑣 is connected and so 𝐸0 is connected as well, which implies that 𝐸0 ∪ {𝑒} is connected subset of
𝐸, and therefore, it is a maximal set of edges not containing simple cycles, that is, it is a basis of
𝐸. Thus, (ii) holds for 𝐸′ = 𝐸𝑣.
On the other hand, pick some𝐸′ ⊊ 𝐸 satisfying (i) and (ii). First, we note that there exists 𝑣 ∈ 𝑉

such that 𝐸′ ⊂ 𝐸𝑣 as otherwise any basis 𝐸0 of 𝐸′ is incident to all the vertices from 𝑉, and so, for
any 𝑒 ∈ 𝐸 ⧵ 𝐸′, we have that 𝐸0 ∪ {𝑒} contains a simple cycle, which contradicts (ii). Moreover,
this 𝑣 is unique since if 𝐸′ ⊆ 𝐸𝑣 ∩ 𝐸𝑤, for 𝑣 ≠ 𝑤, then for any spanning tree 𝐸0 of 𝐸′ adding one
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ISOMETRIES OF LIPSCHITZ-FREE BANACH SPACES 13 of 36

𝑒 ∈ 𝐸 ⧵ 𝐸′ cannot be a spanning tree of𝐸 because either𝐸0 ∪ {𝑒} is not a tree, or𝐸0 ∪ {𝑒} is incident
just with one of the vertices 𝑣 and 𝑤. By (i), (

⋃
𝐸′, 𝐸′) is connected, and so, there exists 𝐸0 ⊂ 𝐸′

which is basis of 𝐸′ and (
⋃
𝐸′, 𝐸0) is connected. Thus, since 𝑣 is the unique vertex satisfying

𝐸′ ⊂ 𝐸𝑣, 𝐸0 is incident with all the vertices of 𝑉 except 𝑣. If there was 𝑒 ∈ 𝐸𝑣 ⧵ 𝐸
′, then by (ii), we

would obtain that 𝐸0 ∪ {𝑒} is basis of 𝐸 that would, however, contradict the fact that 𝐸0 ∪ {𝑒} ⊂ 𝐸𝑣
is not basis of 𝐸. Thus, we have 𝐸𝑣 ⧵ 𝐸′ = ∅ and therefore 𝐸′ = 𝐸𝑣.
The “In particular” part now easily follows using Fact 2.1 and the easy observation that (iii)

implies (i). □

Corollary 4.8 (Whitney’s theorem for infinite graphs). Let 𝐺 = (𝑉, 𝐸) be a 3-connected graph and
let 𝜎 ∶ 𝐸 → 𝐸 be a simple cycle-preserving bijection. Then, there is a bijection 𝑓𝜎 ∶ 𝑉 → 𝑉 satisfying
𝜎({𝑣, 𝑤}) = {𝑓𝜎(𝑣), 𝑓𝜎(𝑤)} for every {𝑣, 𝑤} ∈ 𝐸.
(In particular, 𝑓𝜎 is graph isomorphism.)

Proof. For 𝑣 ∈ 𝑉, put𝐸𝑣 ∶= {𝑒 ∈ 𝐸∶ 𝑣 ∉ 𝑒}. Since𝐺 is 3-connected, every𝐸𝑣 is 2-connected. Thus,
by Lemma 4.7, because conditions (iii) and (ii) are preserved by simple cycle-preserving bijections,
there exists a bijection 𝑓𝜎 ∶ 𝑉 → 𝑉 satisfying 𝜎(𝐸𝑣) = 𝐸𝑓𝜎(𝑣) for any 𝑣 ∈ 𝑉. Given 𝑒 = {𝑣, 𝑤}, we
have 𝜎(𝑒) = (𝐸 ⧵ 𝐸𝑓𝜎(𝑣)) ∩ (𝐸 ⧵ 𝐸𝑓𝜎(𝑤)) = {𝑓𝜎(𝑣), 𝑓𝜎(𝑤)}, and therefore, 𝑓𝜎 is graph isomorphism
satisfying that 𝜎({𝑣, 𝑤}) = {𝑓𝜎(𝑣), 𝑓𝜎(𝑤)} for every {𝑣, 𝑤} ∈ 𝐸. □

As an easy consequence of Proposition 4.4 and Corollary 4.8, we obtain the main result of this
section.

Theorem 4.9. Let be a weak Prague metric space such that 𝐸𝑒𝑥𝑡() is 3-connected. Then, is
Lipschitz-free rigid.

Proof. Let 𝜎 ∶ 𝐸𝑒𝑥𝑡 → 𝐸𝑒𝑥𝑡 be a symmetric bijection satisfying (Sa),(Sb), for every 𝑒 ∈ 𝐸𝑒𝑥𝑡. Let
(𝑉𝑒𝑥𝑡, [𝐸𝑒𝑥𝑡]) be the undirected graph where [𝐸𝑒𝑥𝑡] ∶= {[𝑒]∶ 𝑒 ∈ 𝐸𝑒𝑥𝑡} and for each 𝑒 ∈ 𝐸𝑒𝑥𝑡, [𝑒] =
{𝑒, −𝑒}. Let [𝜎] ∶ [𝐸𝑒𝑥𝑡] → [𝐸𝑒𝑥𝑡] be the bijection defined by [𝜎]([𝑒]) = [𝜎(𝑒)]. Clearly, it is simple
cycle preserving and since (𝑉𝑒𝑥𝑡, [𝐸𝑒𝑥𝑡]) is 3-connected, by Corollary 4.8, [𝜎] is induced by a graph
isomorphism𝑓 ∶ 𝑉𝑒𝑥𝑡 → 𝑉𝑒𝑥𝑡. Let (𝑥, 𝑦) ∈ 𝐸𝑒𝑥𝑡 be arbitrary and let 𝜀 ∈ {±1} be such that𝜎(𝑥, 𝑦) =
𝜀(𝑓(𝑥), 𝑓(𝑦)) holds. We claim that 𝜀 does not depend on the choice of (𝑥, 𝑦) ∈ 𝐸𝑒𝑥𝑡. Otherwise,
there are (𝑥, 𝑦), (𝑥′, 𝑦′) ∈ 𝐸𝑒𝑥𝑡 such that𝜎(𝑥, 𝑦) = (𝑓(𝑥), 𝑓(𝑦)) and𝜎(𝑥′, 𝑦′) = (𝑓(𝑦′), 𝑓(𝑥′)). Since
𝐸𝑒𝑥𝑡 is 2-connected, there exists a simple directed cycle 𝑒1, … , 𝑒𝑖, … , 𝑒𝑛 ∈ 𝐸𝑒𝑥𝑡 such that 𝑒1 = (𝑥, 𝑦)

and 𝑒𝑖 = (𝑥′, 𝑦′). Let 𝑗 ⩽ 𝑛 be the smallest index such that (𝑓(𝑠(𝑒𝑗)), 𝑓(𝑟(𝑒𝑗)) = −𝜎(𝑒𝑗). Notice that
1 < 𝑗 ⩽ 𝑖. Then, we get that 𝑟(𝜎(𝑒𝑗−1)) ≠ 𝑠(𝜎(𝑒𝑗)). This is a contradiction since 𝜎 preserves simple
directed cycles.
Consequently, we have 𝜎(𝑥, 𝑦) = 𝜀(𝑓(𝑥), 𝑓(𝑦)), for every (𝑥, 𝑦) ∈ 𝐸𝑒𝑥𝑡. Since 𝜎 was arbitrary,

the assumption of Proposition 4.4 is satisfied, so is Lipschitz-free rigid. □

Remark 4.10. We note that by Proposition 7.5 from Section 7, there exists a Lipschitz-free rigid
finite graph 𝐺 = (𝑉, 𝐸) that is 2-connected, but not 3-connected. This shows that the converses to
Whitney’s theorem (Corollary 4.8) and Theorem 4.9 do not hold even for finite graphs.

The following is a basic example witnessing the first applications of Theorem 4.9. The first one
is known (see [29, Theorem 3.55]), and the second is known only for finite graphs (see [1, Corollary
4.3]).
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14 of 36 CÚTH et al.

Corollary 4.11. The following are examples of Lipschitz-free rigid Prague spaces.

∙ Uniformly concave metric spaces.
∙ 3-connected graphs (𝑉, 𝐸) endowed with the graph metric.

Remark 4.12. We note that the examples mentioned in Corollary 4.11 are even strongly Lipschitz-
free rigid. For the case of uniformly concave metric spaces it follows from [29, Theorem 3.56], for
the case of 3-connected graphs, we refer the reader to Remark 4.3.

5 BUILDING NEW LIPSCHITZ-FREE RIGID SPACES

Although we already know examples of Lipschitz-free rigid metric spaces from Corollary 4.11 and
more will appear in Section 7, it is also very useful to know that one can build new examples from
the old ones using simple operations that are described below. The main application will be an
isometric embedding of any metric space into a Lipschitz-free rigid space containing only three
more points.

5.1 Sums of metric spaces

Given two metric spaces1 and2 and 𝑝 ∈ [1,∞), we denote by1 ⊕𝑝 2 their 𝓁𝑝-sum, that
is, themetric space1 ×2 withmetric defined as 𝑑((𝑥, 𝑦), (𝑢, 𝑣)) ∶= ‖(𝑑1

(𝑥, 𝑢), 𝑑2
(𝑦, 𝑣))‖𝑝,

where ‖(𝑟1, 𝑟2)‖𝑝 denotes 𝑝

√
𝑟
𝑝
1
+ 𝑟

𝑝
2
. It is well known that this defines a metric. One way how

to check it is by the fact that1 ⊕𝑝 2 is canonically isometric to a subspace of the 𝓁𝑝-sum of
Banach spaces (1) ⊕𝑝 (2). Concerning extreme points, we have the following.

Proposition 5.1. Let1,2 be pointed metric spaces, 𝑝 ∈ (1,∞) and put ∶=1 ⊕𝑝 2. Pick
(𝑥1, 𝑦1), (𝑥2, 𝑦2) ∈ such that𝑚𝑦1,𝑦2

∈ 𝐵(2)
is a preserved extreme point. Then𝑚(𝑥1,𝑦1),(𝑥2,𝑦2)

∈

𝐵() is a preserved extreme point as well.

Proof. We shall use the characterization of preserved extreme points from Fact 2.2.
Pick 𝜀 > 0. Then, we find 𝜂 ∈ (0, 1) such that

(1 − 𝜂𝑝)1∕𝑝 > 𝜂
𝑑1

(𝑥1,𝑥2)

𝑑2
(𝑦1,𝑦2)

.

By the assumption, there exists 𝛿1 > 0 such that given 𝑧 ∈2 withmin{𝑑2
(𝑦1, 𝑧), 𝑑2

(𝑦2, 𝑧)} ⩾

𝜂𝜀, we have 𝑑2
(𝑦1, 𝑦2) ⩽ 𝑑2

(𝑦1, 𝑧) + 𝑑2
(𝑦2, 𝑧) − 𝛿1. Let us denote by ∙ the scalar product and

consider the function ℎ ∶ [0,∞)2 → ℝ defined by

ℎ(𝑎, 𝑏)

∶= (𝑎, 𝑏) ∙ (𝑑1
(𝑥1, 𝑥2)

𝑝−1, 𝑑2
(𝑦1, 𝑦2)

𝑝−1) − ‖(𝑎, 𝑏)‖𝑝‖(𝑑1
(𝑥1, 𝑥2)

𝑝−1, 𝑑2
(𝑦1, 𝑦2)

𝑝−1)‖𝑞.
Note that by the Hölder inequality, we have ℎ(𝑎, 𝑏) ⩽ 0 and ℎ(𝑎, 𝑏) = 0 if and only if (𝑎, 𝑏) is a
multiple of

(
𝑑1

(𝑥1, 𝑥2)
𝑞(𝑝−1)∕𝑝, 𝑑2

(𝑦1, 𝑦2)
𝑞(𝑝−1)∕𝑝

)
=
(
𝑑1

(𝑥1, 𝑥2), 𝑑2
(𝑦1, 𝑦2)

)
. Thus, we have
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ISOMETRIES OF LIPSCHITZ-FREE BANACH SPACES 15 of 36

𝛿2 ∶= −ℎ(𝜀(1 − 𝜂𝑝)1∕𝑝, 𝜀𝜂) > 0, and finally, we put

𝛿 ∶=
min{𝛿1 ⋅ 𝑑2

(𝑦1, 𝑦2)
𝑝−1, 𝛿2}‖(𝑑1

(𝑥1, 𝑥2)
𝑝−1, 𝑑2

(𝑦1, 𝑦2)
𝑝−1)‖𝑞 .

Pick (𝑥3, 𝑦3) ∈ with

min
{
𝑑((𝑥1, 𝑦1), (𝑥3, 𝑦3)), 𝑑((𝑥3, 𝑦3), (𝑥2, 𝑦2))

}
⩾ 𝜀. (3)

In order to shorten the notation, we shall write 𝑑𝑖,𝑗 and 𝜌𝑖,𝑗 instead of 𝑑1
(𝑥𝑖, 𝑥𝑗) and 𝑑2

(𝑦𝑖, 𝑦𝑗)

for 𝑖, 𝑗 ∈ {1, 2, 3}, respectively.
Our aim is to show that we have

𝑑((𝑥1, 𝑦1), (𝑥2, 𝑦2)) ⩽ 𝑑((𝑥1, 𝑦1), (𝑥3, 𝑦3)) + 𝑑((𝑥3, 𝑦3), (𝑥2, 𝑦2)) − 𝛿, (4)

which by the above-mentioned characterization of preserved extreme points will imply that
𝑚(𝑥1,𝑦1),(𝑥2,𝑦2)

is preserved extreme point.
We may without loss of generality assume that 𝜌1,3 ⩽ 𝜌2,3. Thus, if 𝜌1,3 ⩾ 𝜂𝜀, by the choice of

𝛿1, we obtain

𝑑((𝑥1, 𝑦1), (𝑥2, 𝑦2)) =
1‖(𝑑1,2,𝜌1,2)‖𝑝−1𝑝

‖‖‖(𝑑1,2, 𝜌1,2)‖‖‖𝑝𝑝
⩽

1‖(𝑑1,2,𝜌1,2)‖𝑝−1𝑝

(
(𝑑1,3 + 𝑑3,2)𝑑

𝑝−1
1,2

+ (𝜌1,3 + 𝜌3,2 − 𝛿1)𝜌
𝑝−1
1,2

)
Hölder
⩽

1‖(𝑑1,2,𝜌1,2)‖𝑝−1𝑝

⎛⎜⎜⎝‖(𝑑1,3, 𝜌1,3)‖𝑝 + ‖(𝑑3,2, 𝜌3,2)‖𝑝 −
𝛿1⋅𝜌

𝑝−1
1,2‖‖‖‖(𝑑𝑝−11,2
,𝜌
𝑝−1
1,2

)‖‖‖‖𝑞
⎞⎟⎟⎠
‖‖‖‖(𝑑𝑝−11,2

, 𝜌
𝑝−1
1,2

)‖‖‖‖𝑞
= ‖(𝑑1,3, 𝜌1,3)‖𝑝 + ‖(𝑑3,2, 𝜌3,2)‖𝑝 − 𝛿1⋅𝜌

𝑝−1
1,2‖‖‖‖(𝑑𝑝−11,2
,𝜌
𝑝−1
1,2

)‖‖‖‖𝑞
⩽ 𝑑((𝑥1, 𝑦1), (𝑥3, 𝑦3)) + 𝑑((𝑥3, 𝑦3), (𝑥2, 𝑦2)) − 𝛿.

Hence, it suffices to consider the case when 𝜌1,3 < 𝜀𝜂. By (3), we have

𝑑1,3 ⩾ (𝜀𝑝 − 𝜌
𝑝
1,3
)1∕𝑝 > 𝜀(1 − 𝜂𝑝)1∕𝑝.

The following estimate will help us to finish the proof.

Claim. We havemax{ℎ(𝑎, 𝑏)∶ 𝑎 ⩾ 𝜀(1 − 𝜂𝑝)1∕𝑝, 𝑏 ⩽ 𝜀𝜂} = −𝛿2.

Proof of the Claim. Given 𝑠, 𝑐, 𝑑 ⩾ 0, we consider the function

𝑓𝑠,𝑐,𝑑(𝑡) ∶= (𝑡, 𝑠) ∙ (𝑐, 𝑑) − ‖(𝑡, 𝑠)‖𝑝 ⋅ ‖(𝑐, 𝑑)‖𝑞, 𝑡 ⩾ 0.
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16 of 36 CÚTH et al.

Then computing the derivative, we find out that the function 𝑓𝑠,𝑐,𝑑 is increasing on (0, 𝑠
𝑐𝑞∕𝑝

𝑑𝑞∕𝑝
) and

decreasing on (𝑠 𝑐
𝑞∕𝑝

𝑑𝑞∕𝑝
,∞). Pick some 𝑏 ⩽ 𝜀𝜂 and consider the function 𝑓𝑠0,𝑐0,𝑑0 with 𝑠0 = 𝑏, 𝑐0 =

𝑑1
(𝑥1, 𝑥2)

𝑝−1 and 𝑑0 = 𝑑2
(𝑦1, 𝑦2)

𝑝−1. Note that then for 𝑎 ⩾ 𝜀(1 − 𝜂𝑝)1∕𝑝, we have

𝑎 ⩾ 𝜀(1 − 𝜂𝑝)1∕𝑝 > 𝜂𝜀
𝑑1

(𝑥1, 𝑥2)

𝑑2
(𝑦1, 𝑦2)

⩾ 𝑏
𝑑1

(𝑥1, 𝑥2)

𝑑2
(𝑦1, 𝑦2)

= 𝑠0
𝑐
𝑞∕𝑝

0

𝑑
𝑞∕𝑝

0

,

and therefore, ℎ(𝑎, 𝑏) = 𝑓𝑠0,𝑐0,𝑑0(𝑎) ⩽ 𝑓𝑠0,𝑐0,𝑑0 (𝜀(1 − 𝜂𝑝)1∕𝑝) = ℎ(𝜀(1 − 𝜂𝑝)1∕𝑝, 𝑏). Similarly, con-
sider the function 𝑓𝑠1,𝑐1,𝑑1 with 𝑠1 = 𝜀(1 − 𝜂𝑝)1∕𝑝, 𝑐1 = 𝑑2

(𝑦1, 𝑦2)
𝑝−1 and 𝑑1 = 𝑑1

(𝑥1, 𝑥2)
𝑝−1.

Then, for 𝑏 ⩽ 𝜂𝜀, we have

𝑏 ⩽ 𝜂𝜀 < 𝜀(1 − 𝜂𝑝)1∕𝑝
𝑑2

(𝑦1, 𝑦2)

𝑑1
(𝑥1, 𝑥2)

= 𝑠1
𝑐
𝑞∕𝑝

1

𝑑
𝑞∕𝑝

1

and therefore,ℎ(𝜀(1 − 𝜂𝑝)1∕𝑝, 𝑏) = 𝑓𝑠1,𝑐1,𝑑1 (𝑏) ⩽ 𝑓𝑠1,𝑐1,𝑑1(𝜀𝜂) = ℎ(𝜀(1 − 𝜂𝑝)1∕𝑝, 𝜀𝜂), which finishes
the proof of the claim. □

Now, the following computation finishes the proof

𝑑 ((𝑥1, 𝑦1), (𝑥2, 𝑦2)) =
1‖(𝑑1,2, 𝜌1,2)‖𝑝−1𝑝

‖ (𝑑1,2, 𝜌1,2) ‖𝑝𝑝
⩽

1‖(𝑑1,2, 𝜌1,2)‖𝑝−1𝑝

(
(𝑑1,3 + 𝑑3,2)𝑑

𝑝−1

1,2
+ (𝜌1,3 + 𝜌3,2)𝜌

𝑝−1

1,2

)
=

1‖(𝑑1,2, 𝜌1,2)‖𝑝−1𝑝

(
ℎ(𝑑1,3, 𝜌1,3) + ‖(𝑑1,3, 𝜌1,3)‖𝑝‖‖‖‖(𝑑𝑝−11,2

, 𝜌
𝑝−1

1,2

)‖‖‖‖𝑞 + (𝑑3,2, 𝜌3,2) ∙ (𝑑
𝑝−1

1,2
, 𝜌

𝑝−1

1,2
)

)

Hölder
⩽

1‖(𝑑1,2, 𝜌1,2)‖𝑝−1𝑝

⎛⎜⎜⎜⎜⎝
ℎ(𝑑1,3, 𝜌1,3)‖‖‖‖(𝑑𝑝−11,2

, 𝜌
𝑝−1

1,2

)‖‖‖‖𝑞
+ ‖(𝑑1,3, 𝜌1,3)‖𝑝 + ‖(𝑑3,2, 𝜌3,2)‖𝑝

⎞⎟⎟⎟⎟⎠
‖‖‖‖(𝑑𝑝−11,2

, 𝜌
𝑝−1

1,2

)‖‖‖‖𝑞
=

ℎ(𝑑1,3, 𝜌1,3)‖‖‖‖(𝑑𝑝−11,2
, 𝜌

𝑝−1

1,2

)‖‖‖‖𝑞
+ ‖(𝑑1,3, 𝜌1,3)‖𝑝 + ‖(𝑑3,2, 𝜌3,2)‖𝑝

Claim
⩽ ‖(𝑑1,3, 𝜌1,3)‖𝑝 + ‖(𝑑3,2, 𝜌3,2)‖𝑝 − 𝛿2‖‖‖‖(𝑑𝑝−11,2

, 𝜌
𝑝−1

1,2

)‖‖‖‖𝑞
⩽ 𝑑((𝑥1, 𝑦1), (𝑥3, 𝑦3)) + 𝑑((𝑥3, 𝑦3), (𝑥2, 𝑦2)) − 𝛿. □

Corollary 5.2. Let 1 and 2 be metric spaces with |1| ⩾ 3 such that 2 is a weak Prague
space and 𝑉𝑒𝑥𝑡(2) =2. Let 𝑝 ∈ (1,∞). Then for the metric space  ∶=1 ⊕𝑝 2, we have
that 𝑉𝑒𝑥𝑡() = and 𝐸𝑒𝑥𝑡() is 3-connected. In particular, is Lipschitz-free rigid.
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ISOMETRIES OF LIPSCHITZ-FREE BANACH SPACES 17 of 36

Moreover, if 2 is uniformly concave and does not contain isolated points, then  is a
Prague space.

Proof. By Proposition 5.1, we have

𝐸𝑒𝑥𝑡() ⊃ {
(
(𝑥, 𝑦), (𝑥′, 𝑦′)

)
∶ (𝑦, 𝑦′) ∈ 𝐸𝑒𝑥𝑡(2), 𝑥, 𝑥

′ ∈}.

Thus, by the assumption, we have that 𝑉𝑒𝑥𝑡() ⊃1 × 𝑉𝑒𝑥𝑡(2) =1 ×2. Since 𝑉𝑒𝑥𝑡(2)

is connected, given points (𝑥, 𝑦), (𝑥′, 𝑦′) ∈ and an 𝑉𝑒𝑥𝑡(2)-path 𝑧0, … , 𝑧𝑛 from 𝑦 to 𝑦′, for
every 𝑧′ ∈1, we have that (𝑥, 𝑧0), (𝑧′, 𝑧1), … , (𝑧′, 𝑧𝑛−1), (𝑥′, 𝑧𝑛) is 𝐸𝑒𝑥𝑡()-path from (𝑥, 𝑦) to
(𝑥′, 𝑦′) and therefore since |1| ⩾ 3, 𝐸𝑒𝑥𝑡() is 3-connected. The “In particular” part follows
from Theorem 4.9.
Finally, in order to check the “Moreover” part, assume additionally that2 is uniformly con-

cave, that is, that 𝐸𝑒𝑥𝑡(2) = {(𝑥, 𝑦)∶ 𝑥 ≠ 𝑦 ∈2}, and that2 does not contain isolated points.
Pick (𝑥, 𝑦), (𝑥′, 𝑦′) ∈. If 𝑦 ≠ 𝑦′, then we have (𝑥, 𝑦), (𝑥, 𝑦′) ∈ 𝐸𝑒𝑥𝑡() and there is nothing to
check. So, we may suppose that 𝑦 = 𝑦′. Given 𝜀 > 0, since 𝑦 is not isolated, we find 𝑦𝜀 ∈2 with
0 < 𝑑2

(𝑦, 𝑦𝜀) < 𝜀. Then by the assumption, for the 𝐸𝑒𝑥𝑡()-path (𝑥, 𝑦), (𝑥, 𝑦𝜀), (𝑥′, 𝑦) from (𝑥, 𝑦)

to (𝑥′, 𝑦′), we obtain

𝑑((𝑥, 𝑦), (𝑥, 𝑦𝜀)) + 𝑑
(
(𝑥, 𝑦𝜀), (𝑥

′, 𝑦)
)
= 𝑑2

(𝑦, 𝑦𝜀) +
(
𝑑1

(𝑥, 𝑥′)𝑝 + 𝑑2
(𝑦, 𝑦𝜀)

𝑝
)1∕𝑝

⩽ 𝜀 +
(
𝑑1

(𝑥, 𝑥′)𝑝 + 𝜀𝑝
)1∕𝑝

→ 𝑑1
(𝑥, 𝑥′) = 𝑑

(
(𝑥, 𝑦), (𝑥′, 𝑦′)

)
. □

Corollary 5.3. Let  be a metric space with || ⩾ 3 and let  be a uniformly concave metric
space. Then,⊕𝑝  is Lipchitz-free rigid for every 𝑝 ∈ (1,∞).

5.2 Disjoint unions of metric spaces

For two sets 𝐴 and 𝐵, we shall denote their disjoint union by 𝐴 ⊔ 𝐵. Given two bounded metric
spaces, we easily obtain the following.

Proposition 5.4. Let  and  be bounded metric spaces with min{||, | |} ⩾ 3. Then there
exists ametric on ⊔ extendingmetrics onand respectively, such that ⊔ is Lipschitz-
free rigid.

Proof. We extend the metric by putting for 𝑥 ∈ and 𝑦 ∈ , 𝑑(𝑥, 𝑦) ∶= 1 +max{diam,

diam }, it follows from Fact 2.2, by setting 𝛿 = 𝜀, that (𝑥, 𝑦) ∈ 𝐸𝑒𝑥𝑡( ⊔ ). Thus, we have

𝐸𝑒𝑥𝑡( ⊔ ) ⊃ {(𝑥, 𝑦)∶ 𝑥 ∈, 𝑦 ∈ },

and so, 𝑉𝑒𝑥𝑡( ⊔ ) = ⊔ and since min{||, | |} ⩾ 3, 𝐸𝑒𝑥𝑡( ⊔ ) is 3-connected.
Thus, by Theorem 4.9, ⊔ is Lipschitz-free rigid. □
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In particular, any bounded metric space with at least three points may be isometrically embed-
ded into a Lipschitz-free rigid space with only three more points. As we shall see now, this holds
even for unbounded metric spaces, see Corollary 5.6.

Proposition 5.5. Let and be metric spaces such that | | ⩾ 4 and is uniformly concave.
Then, for any point 0 ∈ , there is a metric on ⊔ ⧵ {0 } extending the metrics on and
 ⧵ {0 }, respectively, such that ⊔ ⧵ {0 } is Lipschitz-free rigid.

Proof. Fix any 𝑝 ∈ (1,∞) and two points 0 ∈ and 0 ∈ . Then there are isometric
embeddings 𝜄 ∶→⊕𝑝  , resp. 𝜄 ∶ →⊕𝑝  defined by 𝑥 ∈↦ (𝑥, 0 ) ∈

⊕𝑝  , resp. 𝑦 ∈ → (0, 𝑦) ∈⊕𝑝  . Identifying  ⊔ ⧵ {0 } with the disjoint
union 𝜄[] ∪ 𝜄 [ ⧵ {0 }] ⊆⊕𝑝  , we obtain a metric on ⊔ ⧵ {0 } inherited from
⊕𝑝  that extends the respective metrics on , resp.  ⧵ {0 }. The extension, for 𝑥 ∈

and 𝑦 ∈ ⧵ {0 }, can be explicitly given by the formula

𝑑(𝑥, 𝑦) =
(
𝑑
𝑝


(𝑥, 0) + 𝑑

𝑝

 ′ (0 , 𝑦)
)1∕𝑝

.

By Proposition 5.1 and the assumption, we get for all 𝑦 ≠ 𝑦′ ∈ ⧵ {0 } that 𝑚𝜄 (𝑦),𝜄 (𝑦′) is
a preserved extreme point in 𝐵(⊕𝑝 ), so it is also a preserved extreme point in its subspace
𝐵(⊔⧵{0 }). Analogously, the same holds for every pair 𝑥 ∈ and 𝑦 ∈ ⧵ {0 }.
Thus, we have 𝑉𝑒𝑥𝑡( ⊔ ⧵ {0 }) = ⊔ ⧵ {0 } and 𝐸𝑒𝑥𝑡( ⊔ ⧵ {0 }) is 3-

connected, because | ⧵ {0 }| ⩾ 3. By Theorem 4.9,  ⊔ ⧵ {0 } is Lipschitz-free
rigid. □

Corollary 5.6. Any metric space may be isometrically embedded into a Lipschitz-free rigid space
with only three more points.

6 DESCRIPTION OF ISOMETRY GROUPS OF LIPSCHITZ-FREE
SPACES OVER GRAPHS

Let us start this section with the following observation describing completely the isometry group
LIso(()) for Lipschitz-free rigid spaces.

Proposition 6.1. Let be a Lipschitz-free rigidmetric spacewith || ⩾ 3. Let us denote byDil()

the group of all the dilations endowed with the topology of pointwise convergence. For each g ∈

Dil(), let 𝑇g ∈ LIso(()) denote the unique isometry satisfying 𝑇(𝑚𝑥,𝑦) = 𝑚g(𝑥),g(𝑦) for 𝑥, 𝑦 ∈
, 𝑥 ≠ 𝑦. Then themapping {−1, 1} × Dil() ∋ (𝜀, g) ↦ 𝜀𝑇g ∈ LIso(()) is an isomorphism of
topological groups.

Proof. Since is Lipschitz-free rigid, the mapping is surjective. The fact that it is group homo-
morphism is easy and left to the reader. Further, in order to see the mapping is one-to-one, since
we already know that it is homomorphism, it suffices to observe that whenever 𝜀𝑇g = 𝐼𝑑 then
𝜀 = 1 and g = 𝐼𝑑. Indeed, we have 𝜀𝑚g(𝑥),g(𝑦) = 𝑚𝑥,𝑦 for every 𝑥, 𝑦 ∈with 𝑥 ≠ 𝑦 and so either
𝜀 = 1 in which case we obtain g = 𝐼𝑑; or 𝜀 = −1 in which case we obtain g(𝑥) = 𝑦 and g(𝑦) = 𝑥
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for every 𝑥, 𝑦 ∈ with 𝑥 ≠ 𝑦 that is easily seen not to be possible whenever  consists of at
least three points.
Thus, we have checked that the mapping is isomorphism of groups and in order to check it

is homeomorphism, it suffices to check that both the mapping and its inverse are continuous at
the identity. In order to check continuity, we note that given a pointwise convergent net (𝜀𝑖, g𝑖) →
(1, 𝐼𝑑), we have eventually 𝜀𝑖 = 1 and𝑇g𝑖

(𝑚𝑥,𝑦) → 𝑚𝑥,𝑦 for every normalized elementarymolecule
𝑚𝑥,𝑦 , which implies that 𝑇g𝑖

→ 𝐼𝑑 pointwise (we are using the general and well-known fact that if
a bounded net 𝑆𝑖 of operators between Banach spaces is pointwise convergent on a linearly dense
set, then it is pointwise convergent on the whole domain as well).
Finally, in order to check continuity of the inverse, assume that there is a net (𝜀𝑖, g𝑖) (where

g𝑖 are 𝑎𝑖-dilations) satisfying 𝜀𝑖𝑚g𝑖 (𝑥),g𝑖 (𝑦)
→ 𝑚𝑥,𝑦 for every 𝑥, 𝑦 ∈ with 𝑥 ≠ 𝑦. In order to get

a contradiction, assume that 𝜀𝑖 is not eventually equal to 1, so passing to a subnet, we have
𝑚g𝑖 (𝑥),g𝑖 (𝑦)

→ −𝑚𝑥,𝑦 = 𝑚𝑦,𝑥, which using [17, Lemma 2.2] implies that g𝑖(𝑥) → 𝑦 and g𝑖(𝑦) → 𝑥

for every 𝑥, 𝑦 ∈ with 𝑥 ≠ 𝑦, which is, however, not possible whenever consists of at least
three points, a contradiction. Thus, 𝜀𝑖 is eventually equal to 1, and so, we have𝑚g𝑖 (𝑥),g𝑖 (𝑦)

→ 𝑚𝑥,𝑦

and using [17, Lemma 2.2], we obtain g𝑖 → 𝐼𝑑 pointwise and we are done. □

It is not true that every connected graph is Lipschitz-free rigid. Nevertheless, the linear isometry
group of a Lipschitz-free space over any connected graph still admits precise description that will
be provided in this section. Let us start with a general observation on the linear isometry groups
of weak Prague spaces that shows that these groups are light in the sense of [24]. Let us recall
that strong (resp. weak) operator topology on the space of linear operators, denoted by SOT (resp.
WOT), is the topology given by pointwise norm (resp. weak) convergence.

Proposition 6.2. Let be a weak Prague space. Then, on the linear isometry group LIso(()),
the WOT topology coincides with the SOT topology.

Proof. It is obvious that SOT convergence implies WOT convergence. Let us prove the converse.
Let (𝑇𝑖) be a net in LIso(()) that converges to 𝑇 ∈ LIso(()) in WOT topology. Let 𝜎𝑖 and 𝜎
be as given in Theorem 3.9, that is, bijections on 𝐸𝑒𝑥𝑡 satisfying (i), 𝑇𝑖(𝑚𝑒) = 𝑚𝜎𝑖(𝑒)

and 𝑇(𝑚𝑒) =

𝑚𝜎(𝑒) for every 𝑒 ∈ 𝐸𝑒𝑥𝑡. Then, for every 𝑒 ∈ 𝐸𝑒𝑥𝑡, we have that𝑚𝜎𝑖(𝑒)
= 𝑇𝑖(𝑚𝑒)

𝑤
→ 𝑇(𝑚𝑒) = 𝑚𝜎(𝑒),

but since weak and norm topologies coincide onmolecules, see, for example, [17, Lemma 2.2], this

implies that 𝑇𝑖(𝑚𝑒)
‖⋅‖
→ 𝑇(𝑚𝑒), 𝑒 ∈ 𝐸𝑒𝑥𝑡. Since 𝐸𝑒𝑥𝑡 is weakly admissible, the set {𝑚𝑒 ∶ 𝑒 ∈ 𝐸𝑒𝑥𝑡} is

linearly norm-dense in (), this implies that 𝑇𝑖 → 𝑇 in SOT topology. □

Remark 6.3. In [6], the authors were interested in finding nonexamples of light Banach spaces,
that is, Banach spaces 𝑋 for which SOT and WOT topology coincide on LIso(𝑋). Proposition 6.2
gives us an essentially new class of light Banach spaces. For example, since it iswell known that for
𝐼 = [0, 1], (𝐼) is isometric to 𝐿1 = 𝐿1(𝐼), by Example 4.5, we have that 𝐿1 embeds isometrically as
a hyperplane into a light Banach space (namely, into the Banach space (𝐼 ∪ {𝑥0}), where 𝐼 ∪ {𝑥0}
is as in Example 4.5). This seems to be interesting since it is known that 𝐿1 is not light, see [6,
Proposition 5.2].

Proposition 6.4. Let  be a weak Prague (resp. Prague) metric space. Let Σ be the topological
group of all permutations of𝐸𝑒𝑥𝑡 satisfying (Sa), (Sb), and (Sc) (resp. (Sa) and (Sb)) with the topology
of pointwise convergence, where 𝐸𝑒𝑥𝑡 has the topology inherited from () (after identifying each
𝑒 ∈ 𝐸𝑒𝑥𝑡 with𝑚𝑒 ∈ ()). Then, Σ and LIso() are topologically isomorphic.
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Proof. By Theorem 3.9, the map 𝜎 ∈ Σ → 𝑇𝜎 ∈ LIso(() is a bijection. It is straightforward
that it is also a group homomorphism. So, it suffices to check that it is a homeomorphism. Let
(𝜎𝑖)𝑖∈𝐼 ⊆ Σ be a net pointwise converging to 𝜎 ∈ Σ. Notice that for every 𝑒 ∈ 𝐸𝑒𝑥𝑡, we then have
𝑇𝜎𝑖 (𝑚𝑒) converges in norm to 𝑇𝜎(𝑚𝑒) and since {𝑚𝑒 ∶ 𝑒 ∈ 𝐸𝑒𝑥𝑡} is linearly norm-dense in (),
we get that (𝑇𝜎𝑖 )𝑖∈𝐼 converges in SOT to 𝑇𝜎. Conversely, let (𝜎𝑖)𝑖∈𝐼 ⊆ Σ be a net such that (𝑇𝜎𝑖 )𝑖∈𝐼
converges in SOT to 𝑇𝜎. Fix 𝑒 ∈ 𝐸𝑒𝑥𝑡. We have that 𝑇𝜎𝑖 (𝑚𝑒) converges in norm to 𝑇𝜎(𝑚𝑒), thus by
definition 𝜎𝑖(𝑒) → 𝜎(𝑒) in 𝜏, so (𝜎𝑖)𝑖∈𝐼 converges to 𝜎 pointwise. □

For the purpose of the following proposition, we recall several notions. First, for a collection
(𝑋𝑖)𝑖∈𝐼 of Banach spaces and 𝑝 ∈ [1,∞], we denote by (

⨁
𝑖∈𝐼 𝑋𝑖)𝑝 the 𝓁𝑝-sum of Banach spaces

(𝑋𝑖)𝑖∈𝐼 . We shall also use the following.

Definition 6.5. Suppose that we are given a sequence of topological groups (𝐺𝑖)𝑖∈𝐼 indexed by
some set 𝐼 and a topological group𝐻 acting by permutations on 𝐼.We shall write ℎ(𝑖) for the action
of ℎ ∈ 𝐻 on 𝑖 ∈ 𝐼. Assume that for each orbit 𝐼′ ⊆ 𝐼 of𝐻 on 𝐼, the groups (𝐺𝑟)𝑟∈𝐼′ are topologically
isomorphic via some fixed isomorphisms 𝜙𝑟1,𝑟2 ∶ 𝐺𝑟1 → 𝐺𝑟2 such that 𝜙𝑟2,𝑟3 ◦𝜙𝑟1,𝑟2 = 𝜙𝑟1,𝑟3 , for
𝑟1, 𝑟2, 𝑟3 ∈ 𝐼′. We define the (unrestricted) wreath product

∏
𝑖∈𝐼 𝐺𝑖 ≀ 𝐻 to be the topological group

that is as a topological space the direct product (
∏

𝑖∈𝐼 𝐺𝑖) × 𝐻 andmultiplication is defined by the
rule

(
(g𝑖)𝑖∈𝐼, 𝜋

)
⋅
(
(ℎ𝑖)𝑖∈𝐼, 𝜋

′
)
=
(
(g𝑖𝜙𝜋−1(𝑖),𝑖(ℎ𝜋−1(𝑖)))𝑖∈𝐼, 𝜋 ◦𝜋′

)
.

(It is well known and easy to check that such an operation really well defines a group operation
on the set (

∏
𝑖∈𝐼 𝐺𝑖) × 𝐻.)

Remark 6.6. Wreath products are sometimes defined under more stringent assumptions that the
action of𝐻 on 𝐼 is transitive and that all the groups (𝐺𝑖)𝑖∈𝐼 are equal instead of just being isomor-
phic; we refer, for example, to [11, Chapter 8] for an introduction to wreath products of groups. It
is clear that the second requirement is just a notational issue. For the first, notice that if (𝐼𝑗)𝑗∈𝐽 is
an enumeration of the orbits of the action of 𝐻 on 𝐼 and we denote by𝑊𝑗 , for 𝑗 ∈ 𝐽, the wreath
product

∏
𝑖∈𝐼𝑗

𝐺𝑖 ≀ 𝐻, then the full wreath product
∏

𝑖∈𝐼 𝐺𝑖 ≀ 𝐻 is (topologically) isomorphic to the
direct product

∏
𝑗∈𝐽 𝑊𝑗 .

Proposition 6.7. Let be a Prague space and (𝐸𝑖)𝑖∈𝐼 be the decomposition of 𝐸𝑒𝑥𝑡() into edge
components. Then, the following holds.
(i) For every 𝑖 ∈ 𝐼, we have that 𝑉𝐸𝑖 ∶=

⋃
𝐸𝑖 ⊂ is Prague space and 𝐸𝑒𝑥𝑡(𝑉𝐸𝑖 ) = 𝐸𝑖 is

2-connected.
(ii) () ≡ (

⨁
𝑖∈𝐼 (𝑉𝐸𝑖 ))1 isometrically.

(iii) Let us denote by 𝑆𝐼 the group of all the bijections𝜋 ∶ 𝐼 → 𝐼 such that for every 𝑖 ∈ 𝐼, we have that
(𝑉𝐸𝑖 ) and (𝑉𝐸𝜋(𝑖) ) are linearly isometric.

† Then, LIso((𝑀)) is algebraically isomorphic to
the wreath product

∏
𝑖∈𝐼 LIso((𝑉𝐸𝑖 )) ≀ 𝑆𝐼 .

Moreover, if the topology on 𝐸𝑒𝑥𝑡() ⊂ () is discrete, then this algebraic isomorphism is
also a topological homeomorphism.

Proof.

(i) Pick 𝑖 ∈ 𝐼. It is easy to observe that 𝐸𝑒𝑥𝑡(𝑉𝐸𝑖 ) ⊃ 𝐸𝑖 , so we have 𝑉𝑒𝑥𝑡(𝑉𝐸𝑖 ) = 𝑉𝐸𝑖 and 𝐸𝑒𝑥𝑡(𝑉𝐸𝑖 )
is 2-connected. Moreover, in the graph 𝐸𝑒𝑥𝑡(), for every simple edge path from 𝑥 ∈ 𝑉𝐸𝑖 to

† For the canonical choice of mappings 𝜙𝑖,𝑗 ∶ LIso((𝑉𝐸𝑖 )) → LIso((𝑉𝐸𝑗 )) for 𝑖, 𝑗 such that (𝑉𝐸𝑖 ) and (𝑉𝐸𝑗 ) are
isometric, we refer the reader to the proof below.
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𝑦 ∈ 𝑉𝐸𝑖 , we have that all the edges in the path are from 𝐸𝑖 and since is Prague space, the
condition (1) holds in the space 𝑉𝐸𝑖 , and so, 𝑉𝐸𝑖 is indeed a Prague space. It remains to prove
that 𝐸𝑒𝑥𝑡(𝑉𝐸𝑖 ) ⊂ 𝐸𝑖 . Pick (𝑥, 𝑦) ∈ 𝐸𝑒𝑥𝑡(𝑉𝐸𝑖 ). Since 𝐸𝑖 is an edge component, we have that
(𝑥, 𝑦) ∈ 𝐸𝑒𝑥𝑡() implies (𝑥, 𝑦) ∈ 𝐸𝑖 . Thus, to conclude that it suffices to prove that (𝑥, 𝑦) ∈
𝐸𝑒𝑥𝑡(). In order to get a contradiction, suppose that this is not the case.
Then there exists 𝜀 > 0 such that for every 𝛿 ∈ (0, 𝜀

2
), there is 𝑧𝛿 ∈ 𝑉𝑒𝑥𝑡() ⧵ 𝑉𝐸𝑖 with

min{𝑑(𝑥, 𝑧𝛿), 𝑑(𝑦, 𝑧𝛿)} > 𝜀 and 𝑑(𝑥, 𝑦) > 𝑑(𝑥, 𝑧𝛿) + 𝑑(𝑦, 𝑧𝛿) − 𝛿. Since 𝑧𝛿 ∉ 𝑉𝐸𝑖 , there exists
a unique vertex 𝑧′

𝛿
∈ 𝑉𝐸𝑖 such that for every 𝑣 ∈ 𝑉𝐸𝑖 and every 𝑉𝑒𝑥𝑡()-path 𝑥0, … , 𝑥𝑛 from

𝑧𝛿 to 𝑣, we have 𝑧′𝛿 ∈ {𝑥1, … , 𝑥𝑛}. Thus, using that  is Prague (we use condition (1)), we
have 𝑑(𝑥, 𝑧𝛿) = 𝑑(𝑥, 𝑧′

𝛿
) + 𝑑(𝑧′

𝛿
, 𝑧𝛿) and 𝑑(𝑦, 𝑧𝛿) = 𝑑(𝑦, 𝑧′

𝛿
) + 𝑑(𝑧′

𝛿
, 𝑧𝛿). But then we obtain

𝑑(𝑥, 𝑦) > 𝑑(𝑥, 𝑧𝛿) + 𝑑(𝑦, 𝑧𝛿) − 𝛿 = 𝑑(𝑥, 𝑧′
𝛿
) + 𝑑(𝑦, 𝑧′

𝛿
) + 2𝑑(𝑧′

𝛿
, 𝑧𝛿) − 𝛿

> 𝑑(𝑥, 𝑧′
𝛿
) + 𝑑(𝑦, 𝑧′

𝛿
) − 𝛿.

Moreover, by the above, we also have

𝑑(𝑧′
𝛿
, 𝑧𝛿) <

𝛿 + 𝑑(𝑥, 𝑦) − 𝑑(𝑥, 𝑧′
𝛿
) − 𝑑(𝑦, 𝑧′

𝛿
)

2
⩽
𝛿

2
,

which implies

min{𝑑(𝑥, 𝑧′
𝛿
), 𝑑(𝑦, 𝑧′

𝛿
)} = min{𝑑(𝑥, 𝑧𝛿), 𝑑(𝑦, 𝑧𝛿)} − 𝑑(𝑧′

𝛿
, 𝑧𝛿) ⩾ 𝜀 − 𝛿

2
⩾

𝜀

2
.

But since 𝛿 > 0 was arbitrary and 𝑧′
𝛿
∈ 𝑉𝐸𝑖 , this contradicts the fact that (𝑥, 𝑦) ∈ 𝐸𝑒𝑥𝑡(𝑉𝐸𝑖 ).

(ii) Put 𝐸𝐼 ∶= {{𝑖, 𝑗}∶ 𝑖, 𝑗 ∈ 𝐼, 𝑖 ≠ 𝑗, 𝑉𝐸𝑖 ∩ 𝑉𝐸𝑗 ≠ ∅} and note that the graph 𝑇 = (𝐼, 𝐸𝐼) is a tree,
that is, for any 𝑖, 𝑗 ∈ 𝐼, 𝑖 ≠ 𝑗, there is a unique 𝐸𝐼-path from 𝑖 to 𝑗. Moreover, for every {𝑖, 𝑗} ∈
𝐸𝐼 , there exists a unique vertex 𝑣𝑖,𝑗 ∈ 𝑉𝐸𝑖 ∩ 𝑉𝐸𝑗 . Thus, for any 𝑥 ∈ 𝑉𝐸𝑖 and 𝑦 ∈ 𝑉𝐸𝑗 and the
unique𝐸𝐼-path 𝑖1, … , 𝑖𝑛 from 𝑖 to 𝑗, we have that any𝐸𝑒𝑥𝑡()-path from 𝑥 to 𝑦 passes through
vertices 𝑣𝑖1,𝑖2 , 𝑣𝑖2,𝑖3 , … , 𝑣𝑖𝑛−1,𝑖𝑛 , and using that is Prague (we use condition (1)), we obtain
that

𝑑(𝑥, 𝑦) = 𝑑(𝑥, 𝑣𝑖1 ) +

𝑛−1∑
𝑘=1

𝑑(𝑣𝑖𝑘 , 𝑣𝑖𝑘+1) + 𝑑(𝑣𝑖𝑛 , 𝑦),

and for any 𝑓 ∈ Lip0(𝑉𝑒𝑥𝑡())

|𝑓(𝑥) − 𝑓(𝑦)| ⩽ |𝑓(𝑥) − 𝑓(𝑣𝑖1)| + 𝑛−1∑
𝑘=1

|𝑓(𝑣𝑖𝑘 ) − 𝑓(𝑣𝑖𝑘+1)| + |𝑓(𝑣𝑖𝑛 ) − 𝑓(𝑦)|
⩽ sup

𝑖∈𝐼
‖𝑓|𝑉𝐸𝑖 ‖Lip

(
𝑑(𝑥, 𝑣𝑖1 ) +

𝑛−1∑
𝑘=1

𝑑(𝑣𝑖𝑘 , 𝑣𝑖𝑘+1) + 𝑑(𝑣𝑖𝑛 , 𝑦)

)
= sup

𝑖∈𝐼
‖𝑓|𝑉𝐸𝑖 ‖Lip𝑑(𝑥, 𝑦),
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22 of 36 CÚTH et al.

so we have that ‖𝑓‖Lip = sup𝑖∈𝐼‖𝑓|𝑉𝐸𝑖 ‖Lip and the mapping Lip0(𝑉𝑒𝑥𝑡()) ∋ 𝑓 ↦ Φ(𝑓) ∶=

(𝑓|𝑉𝐸𝑖 − 𝑓(0𝑉𝐸𝑖
))𝑖∈𝐼 ∈ (

⨁
𝑖∈𝐼 Lip0(𝑉𝐸𝑖 ))∞ is an isometry, which is 𝑤∗-𝑤∗ continuous, which

follows from the Banach–Diedonné theorem together with the fact that whenever 𝑓𝛾
𝑤∗

→

𝑓 is a bounded net, then 𝑓𝛾 → 𝑓 pointwise and therefore for every 𝑖 ∈ 𝐼. we obtain
that 𝑓𝛾|𝑉𝐸𝑖 − 𝑓𝛾(0𝑉𝐸𝑖

) → 𝑓|𝑉𝐸𝑖 − 𝑓(0𝑉𝐸𝑖
) pointwise (equivalently, in the 𝑤∗-topology of

Lip0(𝑉𝐸𝑖 )). Moreover, this isometry Φ is surjective.
Indeed, pick 𝑖0 with 0 ∈ 𝑉𝐸𝑖0

, put 𝑐𝑖0 ∶= 0 and, for any 𝑖 ∈ 𝐼 ⧵ {𝑖0}, we let

𝑐𝑖 ∶=

𝑛∑
𝑘=1

(𝑓𝑖𝑘−1(𝑣𝑖𝑘−1,𝑖𝑘 ) − 𝑓𝑖𝑘 (𝑣𝑖𝑘−1,𝑖𝑘 )),

where 𝑖0, … , 𝑖𝑛 is the 𝐸𝐼-path from 𝑖0 to 𝑖. Given (𝑓𝑖)𝑖∈𝐼 ∈ (
⨁

𝑖∈𝐼 Lip0(𝑉𝐸𝑖 ))∞, we define 𝑓 ∶
→ ℝ by 𝑓(𝑥) ∶= 𝑓𝑖(𝑥) + 𝑐𝑖 for 𝑥 ∈ 𝑉𝐸𝑖 . This is a well-defined mapping because for 𝑥 ∈
𝑉𝐸𝑖 ∩ 𝑉𝐸𝑗 , we have 𝑥 = 𝑣𝑖,𝑗 , so we may without loss of generality assume that the 𝐸𝐼-path
from 𝑖0 to 𝑖 and 𝑗 is 𝑖0, … , 𝑖𝑚, 𝑖 and 𝑖0, … , 𝑖𝑚, 𝑖, 𝑗, respectively, which implies that 𝑐𝑗 = 𝑐𝑖 +

𝑓𝑖(𝑣𝑖,𝑗) − 𝑓𝑗(𝑣𝑖,𝑗), and so,

𝑓𝑖(𝑣𝑖,𝑗) + 𝑐𝑖 = 𝑓𝑖(𝑣𝑖,𝑗) + 𝑐𝑗 + 𝑓𝑗(𝑣𝑖,𝑗) − 𝑓𝑖(𝑣𝑖,𝑗) = 𝑓𝑗(𝑣𝑖,𝑗) + 𝑐𝑗.

Since𝑓|𝑉𝐸𝑖 is Lipschitz for every 𝑖 ∈ 𝐼, by the above, we have that𝑓 ∈ Lip0() andmoreover
Φ(𝑓) = (𝑓𝑖)𝑖∈𝐼 , because for 𝑖 ∈ 𝐼 and 𝑥 ∈ 𝑉𝐸𝑖 , we have 𝑓(𝑥) − 𝑓(0𝑉𝐸𝑖

) = 𝑓𝑖(𝑥) − 𝑓𝑖(0𝑉𝐸𝑖
) =

𝑓𝑖(𝑥).
Thus, the mappingΦ defined above is adjoint of an isometry between (

⨁
𝑖∈𝐼 (𝑉𝐸𝑖 ))1 and

(𝑉𝑒𝑥𝑡()), which using that 𝑉𝑒𝑥𝑡() is dense in proves (ii).
(iii) Let  be the decomposition of 𝐼 into equivalence class where 𝑖, 𝑗 ∈ 𝐼 are equivalent if

(𝑉𝐸𝑖 ) ≡ (𝑉𝐸𝑗 ). Choose a representative 𝑖𝐸 ∈ 𝐸 ⊆ 𝐼 for each 𝐸 ∈  and for each 𝑗 ∈ 𝐸, fix
a linear isometry 𝑇𝑖𝐸,𝑗 ∶ (𝑉𝑖𝐸 ) → (𝑉𝑗). Then for every 𝐸 ∈  and 𝑖, 𝑗 ∈ 𝐸, set 𝑇𝑖,𝑗 to be
the identity if 𝑖 = 𝑗 and otherwise set 𝑇𝑖,𝑗 ∶= 𝑇𝑖𝐸,𝑗 ◦𝑇

−1
𝑖𝐸,𝑖
. Notice that 𝑇𝑖,𝑘 = 𝑇𝑗,𝑘 ◦𝑇𝑖,𝑗 for all

𝑖, 𝑗, 𝑘 ∈ 𝐸 ∈  . Finally, for each 𝑖, 𝑗 ∈ 𝐸 ∈  , we define 𝜙𝑖,𝑗 ∶ LIso((𝑉𝑖)) → LIso((𝑉𝑗)) by
g ∈ LIso((𝑉𝑖)) ↦ 𝑇𝑖,𝑗 ◦ g ◦𝑇𝑗,𝑖 .
Let us denote by Σ, as in Proposition 6.4, the topological group of all bijections 𝜎 ∶

𝐸𝑒𝑥𝑡() → 𝐸𝑒𝑥𝑡() satisfying conditions (Sa) and (Sb). By Proposition 6.4, we have a topo-
logical group isomorphism between Σ and LIso(()) given by the map 𝜎 ∈ Σ → 𝑇𝜎 ∈

LIso(()). Note that given 𝜎 ∈ Σ, there exists𝜋 ∈ 𝑆𝐼 such thatwe have𝜎(𝐸𝑖) = 𝐸𝜋(𝑖), 𝑖 ∈ 𝐼,
and so, we may define the mapping Ω ∶ Σ →

∏
𝑖∈𝐼 LIso

(
(𝑉𝐸𝑖 )

)
≀ 𝑆𝐼 by

Ω(𝜎) ∶=

((
𝑇𝜎|𝐸

𝜋−1(𝑖)

◦𝑇𝑖,𝜋−1(𝑖)

)
𝑖∈𝐼

, 𝜋

)
.

We easily observe that Ω is one-to-one. Further, Ω is surjective because given ((𝑇𝑖)𝑖∈𝐼, 𝜋) ∈∏
𝑖∈𝐼 LIso

(
(𝑉𝐸𝑖 )

)
≀ 𝑆𝐼 we have that 𝑇𝜋(𝑖) ◦ (𝑇𝑖,𝜋(𝑖)) ∶ (𝑉𝐸𝑖 ) → (𝑉𝐸𝜋(𝑖) ) is linear isometry

and so by the already proved part (i) and by Proposition 3.9, we find bijections𝜎𝑖 ∶ 𝐸𝑖 → 𝐸𝜋(𝑖),
𝑖 ∈ 𝐼 satisfying (Sa) and (Sb) with 𝑇𝜎𝑖 = 𝑇𝜋(𝑖) ◦ (𝑇𝑖,𝜋(𝑖)) and now we easily observe that for
𝜎 ∶=

⋃
𝑖∈𝐼 𝜎𝑖 ∶ 𝐸 → 𝐸, we have Ω(𝜎) = ((𝑇𝑖)𝑖∈𝐼, 𝜋). Thus, Ω is a bijection.

 14697750, 2024, 5, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.70000 by C

orvinus U
niversity O

f B
udapest, W

iley O
nline L

ibrary on [28/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://londmathsoc.onlinelibrary.wiley.com/action/rightsLink?doi=10.1112%2Fjlms.70000&mode=


ISOMETRIES OF LIPSCHITZ-FREE BANACH SPACES 23 of 36

Let us check thatΩ is a homomorphism. Fix 𝜎1, 𝜎2 ∈ Σ. We have

Ω(𝜎1)Ω(𝜎2)

=

((
(𝑇𝜎1↾𝐸𝜋−1

1
(𝑖)
◦𝑇𝑖,𝜋−1

1
(𝑖)

)
𝑖∈𝐼

, 𝜋1

)((
(𝑇𝜎2↾𝐸𝜋−1

2
(𝑖)
◦𝑇𝑖,𝜋−1

2
(𝑖)

)
𝑖∈𝐼

, 𝜋2

)
=

((
(𝑇𝜎1↾𝐸𝜋−1

1
(𝑖)
◦𝑇𝑖,𝜋−1

1
(𝑖) ◦𝜙𝜋−1

1
(𝑖),𝑖(𝑇𝜎2↾𝐸𝜋−1

2
𝜋−1
1

(𝑖)
◦𝑇𝜋−1

1
(𝑖),𝜋−1

2
𝜋−1
1
(𝑖))

)
𝑖∈𝐼

, 𝜋1𝜋2

)
=

((
𝑇𝜎1↾𝐸𝜋−1

1
(𝑖)
◦𝑇𝑖,𝜋−1

1
(𝑖) ◦𝑇𝜋−1

1
(𝑖),𝑖 ◦𝑇𝜎2↾𝐸𝜋−1

2
𝜋−1
1

(𝑖)
◦𝑇𝜋−1

1
(𝑖),𝜋−1

2
𝜋−1
1
(𝑖) ◦𝑇𝑖,𝜋−1

1
(𝑖)

)
𝑖∈𝐼

, 𝜋1𝜋2

)
=

((
𝑇𝜎1↾𝐸𝜋−1

1
(𝑖)
◦𝑇𝜎2↾𝐸𝜋−1

2
𝜋−1
1

(𝑖)
◦𝑇𝑖,𝜋−1

2
𝜋−1
1
(𝑖)

)
, 𝜋1𝜋2

)
=

((
𝑇𝜎1𝜎2↾𝐸𝜋−1

2
𝜋−1
1

(𝑖)
◦𝑇𝑖,𝜋−1

2
𝜋−1
1
(𝑖)

)
, 𝜋1𝜋2

)
= Ω(𝜎1𝜎2).

Finally, if 𝐸𝑒𝑥𝑡() is discrete topological space, then for any convergent net (𝜎𝛾) in Σ, we
have that the corresponding permutations (𝜋𝛾) are pointwise eventually constant, and using this
observation, it is easy to observe that thenΩ is even a topological homeomorphism. □

In the rest of this section, we shall completely describe the group of linear isometries of a
Lipschitz-free space over an arbitrary undirected graph viewed as a metric space with graph met-
ric. We note that this description could be extended to weighted graphs or even to more general
Prague metric spaces; however, notationally, it would become cumbersome, so for simplicity, we
stick to the graph case and leave the possible generalizations to the reader.
Let (𝑀, 𝐸) be an undirected graph. Our aim is to describe the linear isometry group of((𝑀, 𝐸))

(or more simply just (𝑀)). Since there is a bijection between undirected graphs and directed
graphs, where for each edge, there is also its inverse, we shall, in fact, assume that𝑀 is directed
and for every 𝑒 ∈ 𝐸, there is also −𝑒 ∈ 𝐸, its inverse. Next, we claim that we may without loss of
generality assume that 𝑀 is 2-connected. Indeed, this follows from Proposition 6.7, Lemma 3.8,
and the next lemma.

Lemma 6.8. Let (𝑀, 𝐸) be a directed graph as in the paragraph above. Then, 𝐸𝑒𝑥𝑡(𝑀) is a discrete
subset of (𝑀).

Proof. First recall that 𝐸𝑒𝑥𝑡(𝑀) = 𝐸 by Lemma 3.8. Now for two distinct (𝑥, 𝑦), (𝑥′, 𝑦′) ∈ 𝐸, using
[28, Lemma 1.2] and supposing that ‖𝑚𝑥,𝑦 − 𝑚𝑥′,𝑦′‖ < 2, we have

‖𝑚𝑥,𝑦 − 𝑚𝑥′,𝑦′‖ = ‖𝑚𝑥,𝑦 + 𝑚𝑦′,𝑥′‖ = 𝑑(𝑥, 𝑥′) + 𝑑(𝑦, 𝑦′) + |𝑑(𝑥, 𝑦) − 𝑑(𝑥′, 𝑦′)|
min{𝑑(𝑥, 𝑦), 𝑑(𝑥′, 𝑦′)}

= 𝑑(𝑥, 𝑥′) + 𝑑(𝑦, 𝑦′) ⩾ 1,
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so when we identify 𝐸𝑒𝑥𝑡(𝑀) with a subset of (𝑀), we obtain that 𝐸𝑒𝑥𝑡(𝑀) is 1-separated and
therefore discrete. □

Thus, from now on, we assume that our graph (𝑀, 𝐸) is 2-connected. By Proposition 3.5, every
linear bijective isometry 𝑇 ∶ (𝑀) → (𝑀) induces a symmetric bijection 𝜎 ∶ 𝐸 → 𝐸 satisfying
(Sa) (notice that the condition (Sb) is trivial in the case of graphs; in fact, 𝑑(𝑒) = 𝑑(𝜎(𝑒)) = 1 for all
𝑒 ∈ 𝐸). Let𝐵 be the Boolean algebra generated by simple directed cycles consisting of at least three
edges. 𝜎 induces also a Boolean algebra isomorphism 𝜋 ∶ 𝐵 → 𝐵. Call the atoms of 𝐵 pieces. That
is, each piece is an intersection of simple directed cycles and 𝜋 maps pieces to pieces. Moreover,
for each piece 𝑝, we also have its inverse −𝑝 and 𝜋(−𝑝) = −𝜋(𝑝).
We define a bipartite graph (𝑉, 𝐹) where 𝑉 = 𝑉1

∐
𝑉2 and a labeling 𝜆 of 𝑉1 by natural num-

bers. The set of vertices 𝑉 is a disjoint union 𝑉1
∐
𝑉2, where 𝑉1 is the set of all (directed) pieces,

𝑉2 is the set of all simple (directed) cycles consisting of at least three edges, and for 𝑣 ∈ 𝑉1 and
𝑤 ∈ 𝑉2, there is an edge 𝑓 ∈ 𝐹 if 𝑣 ⊆ 𝑤, that is, the piece 𝑣 is a part of the simple cycle 𝑤. Notice
that (𝑉, 𝐹) has exactly two connected components. The label 𝜆(𝑣) of a piece 𝑣 is its size |𝑣|. Notice
that if there is an edge 𝑓 ∈ 𝐹 between 𝑝 ∈ 𝑉1 and 𝑐 ∈ 𝑉2, there is also an edge (which may be
denoted by −𝑓) between −𝑝 ∈ 𝑉1 and −𝑐 ∈ 𝑉2, and 𝜆(−𝑝) = 𝜆(𝑝).
Notice that 𝐸 =

⋃
𝑝∈𝑉1

𝑝. For each 𝑝 ∈ 𝑉1, we enumerate the edges of 𝑝 as {𝑒
𝑝
1
, … , 𝑒

𝑝|𝑝|} in such
a way that −𝑒𝑝

𝑖
= 𝑒

−𝑝

𝑖
, for every 𝑝 ∈ 𝑉1 and 𝑖 ⩽ |𝑝|. We define an equivalence relation ∼ on 𝑉1,

where 𝑝 ∼ 𝑞 if and only if 𝑞 = −𝑝. We denote the equivalence class of 𝑝 by [𝑝] and the set of
equivalence classes by [𝑉1]. Similarly, the equivalence relation ∼ extends naturally to 𝑉2 and 𝐹.
Set

𝑆 ∶=
∏

[𝑝]∈[𝑉1]

𝑆|𝑝|,
where for each [𝑝] ∈ [𝑉1], 𝑆|𝑝| is the group of permutations of {1, … , |𝑝|}.
Denote also by ([𝑉], [𝐹], 𝜆) the bipartite graph with [𝑉] as the set of vertices and where there is

an edge from [𝐹] between [𝑝1], [𝑝2] ∈ [𝑉] if and only if there is an edge from 𝐹 between 𝑝1 and 𝑝2
or between 𝑝1 and −𝑝2. Notice that this is well defined since the set of edges 𝐹 is also symmetric.
Notice that ([𝑉], [𝐹]) is connected. The piece labeling 𝜆 of𝑉1 induces a piece labeling of [𝑉1] since
it is also symmetric.
Each automorphism [𝜓] of ([𝑉], [𝐹], 𝜆) leaves [𝑉1] invariant, and thus acts on [𝑉1] by per-

mutations. By this we can consider a wreath product 𝑆 ≀ Aut([𝑉], [𝐹], 𝜆) as in Definition 6.5,
where we note that for [𝑝], [𝑞] ∈ [𝑉1] lying in the same orbit ofAut([𝑉], [𝐹], 𝜆), we have |𝑝| = |𝑞|
and therefore we may in the definition of the wreath product take 𝜙[𝑝],[𝑞] ∶ 𝑆|𝑝| → 𝑆|𝑞| to be the
identity.

Proposition6.9. Givena2-connectedundirected graph𝑀, there is a topological group isomorphism
Ω ∶ LIso((𝑀)) →

(
𝑆 ≀ Aut([𝑉], [𝐹], 𝜆)

)
× {1, −1}.

Proof. Let 𝑇 ∶ (𝑀) → (𝑀) be a linear isometry. We shall define a triple Ω(𝑇) =∶

((𝑠𝑇
[𝑝]
)[𝑝]∈[𝑉1], [𝜓𝑇], 𝜀𝑇), where [𝜓𝑇] ∈ Aut([𝑉], [𝐹], 𝜆), (𝑠𝑇

[𝑝]
)[𝑝]∈[𝑉1] ∈ 𝑆, and 𝜀𝑇 ∈ {1, −1}.

We first define a symmetric automorphism 𝜓𝑇 of (𝑉, 𝐹, 𝜆); that is, an automorphism sat-
isfying 𝜓𝑇(−𝑥) = −𝜓𝑇(𝑥) for each 𝑥 ∈ 𝑉. It will canonically induce an automorphism [𝜓𝑇]

of ([𝑉], [𝐹], 𝜆). By Proposition 3.5, 𝑇 induces a symmetric simple cycle preserving bijection
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𝜎𝑇 ∶ 𝐸 → 𝐸, which, in turn, induces a Boolean algebra automorphism𝜋𝑇 ∶ 𝐵 → 𝐵, which is itself
symmetric. Since 𝜎𝑇 is simple cycle preserving, it induces a bijection 𝜓2 ∶ 𝑉2 → 𝑉2. Since 𝜋𝑇 is a
Boolean algebra automorphism, it induces a bijection 𝜓1 ∶ 𝑉1 → 𝑉1 and since 𝜋𝑇 is induced by
𝜎𝑇 , we have 𝜆(𝜓1(𝑣)) = 𝜆(𝑣) for 𝑣 ∈ 𝑉1. We define 𝜓𝑇 ∶ 𝑉 → 𝑉 by 𝜓1 ∪ 𝜓2.
It is easy to observe that (𝑣, 𝑤) ∈ 𝐹 if and only if (𝜓𝑇(𝑣), 𝜓𝑇(𝑤)) ∈ 𝐹. Since 𝜓𝑇 is symmetric,

[𝜓𝑇] ∈ Aut([𝑉], [𝐹], 𝜆) is well defined. Next, we define the sign 𝜀𝑇 . Since (𝑉, 𝐹) has two connected
components,𝜓𝑇 either preserves both of them, or switches them. In the former case, we set 𝜀𝑇 = 1,
and in the latter, we set 𝜀𝑇 = −1.
Now we define (𝑠𝑇

[𝑝]
)[𝑝]∈[𝑉1]. Fix 𝑝 ∈ 𝑉1. Recall that 𝑝 = {𝑒

𝑝
1
, … , 𝑒

𝑝|𝑝|}. We also have 𝜓−1𝑇 (𝑝) =

{𝑒
𝜓−1
𝑇
(𝑝)

1
, … , 𝑒

𝜓−1
𝑇
(𝑝)|𝜓−1

𝑇
(𝑝)|}, and |𝑝| = |𝜓−1𝑇 (𝑝)|. Since 𝜎−1

𝑇
[𝑝] = 𝜓−1

𝑇
(𝑝), for every 𝑖 ⩽ |𝑝|, there is 𝑗 ⩽ |𝑝|

such that 𝜎𝑇(𝑒
𝜓−1
𝑇
(𝑝)

𝑖
) = 𝑒

𝑝

𝑗
. By the choice of the enumeration of the edges of𝑝 and−𝑝 and since 𝜎𝑇

is symmetric, we have 𝜎𝑇(𝑒
𝜓−1
𝑇
(−𝑝)

𝑖
) = 𝜎𝑇(−𝑒

𝜓−1
𝑇
(𝑝)

𝑖
) = −𝑒

𝑝

𝑗
= 𝑒

−𝑝

𝑗
. Thus, wemay safely set 𝑠𝑇

[𝑝]
(𝑖) =

𝑗. It is clear that 𝑠𝑇
[𝑝]

is a permutation of {1, … , |𝑝|}.
Let us show thatΩ is injective. Let𝑇1 ≠ 𝑇2 ∈ LIso((𝑀). If𝜋𝑇1 ≠ 𝜋𝑇2 , then there exists an atom

of 𝐵 where 𝜋𝑇1 and 𝜋𝑇2 differ. Thus, by definition, there exists 𝑝 ∈ 𝑉1, where 𝜓𝑇1(𝑝) ≠ 𝜓𝑇2(𝑝).
If [𝜓𝑇1(𝑝)] = [𝜓𝑇2(𝑝)], then Ω(𝑇1)3 = −Ω(𝑇2)3, where Ω(𝑇𝑖)3 is the projection onto the third
coordinate, that is, the element of {1, −1}. If [𝜓𝑇1(𝑝)] ≠ [𝜓𝑇2(𝑝)], then Ω(𝑇1)1 ≠ Ω(𝑇2)1, where
Ω(𝑇𝑖)1 ∈ Aut([𝑉], [𝐹], 𝜆) is the projection onto the first coordinate.
So, suppose that 𝜋𝑇1 = 𝜋𝑇2 . However, since 𝜎𝑇1 ≠ 𝜎𝑇2 , there exists 𝑒 ∈ 𝐸 such that

𝜎𝑇1(𝑒) ≠ 𝜎𝑇2(𝑒). We have that 𝑒 = 𝑒
𝑝

𝑖
, for some unique 𝑝 ∈ 𝑉1 and 𝑖 ⩽ |𝑝|. It follows that

(Ω(𝑇1)2)[𝜓𝑇1 (𝑝)]
(𝑖) ≠ (Ω(𝑇2)2)[𝜓𝑇2 (𝑝)]

(𝑖), where (Ω(𝑇𝑗)2)[𝜓𝑇𝑖 (𝑝)] ∈ 𝑆|𝑝| is the corresponding projec-
tion.
Let conversely ((𝑠[𝑝])[𝑝]∈[𝑉1], [𝜓], 𝜀) ∈ (𝑆 ≀ Aut([𝑉], [𝐹], 𝜆)) × {1, −1}. We shall construct a sym-

metric simple cycle preserving bijection 𝜎 ∶ 𝐸 → 𝐸. By Proposition 3.3, there exists then a
linear isometry 𝑇 ∶ (𝑀) → (𝑀) such that 𝜎 = 𝜎𝑇 . It will be then easy to check that Ω(𝑇) =
((𝑠[𝑝])[𝑝]∈[𝑉1], [𝜓], 𝜀).
Pick 𝑒 ∈ 𝐸. There is a unique piece 𝑝 ∈ 𝑉1 such that 𝑒 ∈ 𝑝. So, there is 𝑖 ⩽ |𝑝| such that 𝑒 = 𝑒

𝑝

𝑖
.

Let 𝑞 ∈ 𝑉1 be the unique piece such that [𝑞] = [𝜓]([𝑝]) and 𝑞 and 𝑝 are in the same connected
component of (𝑉, 𝐹). We define

𝜎(𝑒) = 𝜎(𝑒
𝑝

𝑖
) ∶= 𝑒

𝜀𝑞

𝑠[𝑞](𝑖)
. (5)

Notice that−𝑒 = 𝑒
−𝑝

𝑖
by definition and so [𝜓]([−𝑝]) = [𝜓]([𝑝]); however, we now have that−𝑞 is

in the same connected component as −𝑝. Thus,

𝜎(−𝑒) = 𝑒
−𝜀𝑞

𝑠[𝑞](𝑖)
= −𝜎(𝑒),

showing that 𝜎 is symmetric.
It is clear that 𝜎 is injective. To check it is surjective, pick 𝑒 ∈ 𝐸 that is again equal to 𝑒𝑝

𝑖
, for

some 𝑝 ∈ 𝑉1 and 𝑖 ⩽ |𝑝|. Let 𝑞 be the unique piece such that [𝑞] = [𝜓−1]([𝑝]) and 𝑞 and 𝑝 lie in
the same connected component. Then, there is 𝑗 ⩽ |𝑝| such that 𝑠[𝑝](𝑗) = 𝑖. It is straightforward
to check that then 𝜎(𝑒𝜀𝑞

𝑗
) = 𝑒

𝑝

𝑖
.
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26 of 36 CÚTH et al.

We need to check that 𝜎 is simple cycle preserving. Let 𝑐 ∈ 𝑉2 be a simple directed cycle. The
cycle 𝑐 is a disjoint union of some pieces 𝑝1, … , 𝑝𝑛 ∈ 𝑉1, where {𝑝1, … , 𝑝𝑛} = {𝑝 ∈ 𝑉1 ∶ ∃𝑓 ∈

𝐹 (𝑓 connects 𝑝 and 𝑐)}. Since [𝜓] is a graph automorphism, we have that {[𝜓]([𝑝𝑖])∶ 𝑖 ⩽ 𝑛} =

{[𝑝] ∈ [𝑉]∶ ∃[𝑓] ∈ [𝐹] ([𝑓] connects [𝜓]([𝑝]) and [𝜓]([𝑐]))}. Let 𝑐′ ∈ 𝑉2 and 𝑞1, … , 𝑞𝑛 ∈ 𝑉1 be
such that [𝑐′] = [𝜓]([𝑐]), [𝑞𝑖] = [𝜓]([𝑝𝑖]), for 𝑖 ⩽ 𝑛, and they lie in the same connected component
as 𝑐 and {𝑝1, … , 𝑝𝑛} if 𝜀 = 1, and in the other component of 𝑐 and {𝑝1, … , 𝑝𝑛} if 𝜀 = −1. Notice that
𝑐′ =

⋃
𝑖⩽𝑛 𝑞𝑖 . By definition of 𝜎, for each 𝑖 ⩽ 𝑛, we have 𝜎[𝑝𝑖] = 𝑞𝑖 . It follows that

𝜎[𝑐] =
⋃
𝑖⩽𝑛

𝜎[𝑝𝑖] =
⋃
𝑖⩽𝑛

𝑞𝑖 = 𝑐′,

and since 𝑐was arbitrary, we get that 𝜎 preserves simple cycles. Thus, there exists 𝑇 ∈ LIso((𝑀))

such that 𝜎 = 𝜎𝑇 and by the above, we easily deduce that [𝜓𝑇] = [𝜓]. Pick any 𝑝 ∈ 𝑉1, then we
have that 𝜀𝑇 = 1 if and only if 𝜎(𝑝) is in the same connected component as𝑝, which is by the above
equivalent to the fact that 𝜀 = 1. Finally, it is now easy to check that (𝑠𝑇

[𝑝]
)[𝑝]∈[𝑉1] = (𝑠[𝑝])[𝑝]∈[𝑉1].

We have proved that Ω is a surjection; thus, it is bijective. It remains to prove that it is a
continuous group homomorphism with a continuous inverse.
Since themap𝑇 ↦ 𝜎𝑇 is a topological group isomorphismbyProposition 6.4, it suffices to check

that the map 𝜎 ∈ Σ ↦
(
(𝑠
𝑇𝜎
[𝑝]
)[𝑝], [𝜓𝑇𝜎 ], 𝜖𝑇𝜎

)
is a homeomorphic homomorphism, where Σ, as in

Proposition 6.4, is the topological group of all symmetric bijections of 𝐸𝑒𝑥𝑡(𝑀) satisfying (Sa) and
(Sb).
Let us first check that it is a group homomorphism. Fix 𝜎1, 𝜎2 ∈ Σ. In the sequel, we shall

write 𝜎 for 𝜎1 ◦𝜎2,
(
(𝑠[𝑝])[𝑝], 𝜓, 𝜖

)
for
(
(𝑠
𝑇𝜎1 ◦𝜎2
[𝑝]

)[𝑝], [𝜓𝑇𝜎1 ◦𝜎2
], 𝜖𝑇𝜎1 ◦𝜎2

)
, and

(
(𝑠𝑖
[𝑝]
)[𝑝], 𝜓𝑖, 𝜖𝑖

)
for(

(𝑠
𝑇𝜎𝑖
[𝑝]
)[𝑝], [𝜓𝑇𝜎𝑖

], 𝜖𝑇𝜎𝑖

)
, 𝑖 = 1, 2. It is easy to deduce that 𝜓𝑇𝜎1 ◦𝑇𝜎2 = 𝜓𝑇𝜎1

◦𝜓𝑇𝜎2
. Thus, we have

[𝜓] = [𝜓1] ◦ [𝜓2] and 𝜀 = 𝜀1𝜀2 =∶ 𝛿.
Since

(
(𝑠1
[𝑝]
)[𝑝], 𝜓1, 𝜖1

)(
(𝑠2
[𝑝]
)[𝑝], 𝜓2, 𝜖2

)
=
(
(𝑠1
[𝑝]
𝑠2
[𝜓−1
1
(𝑝)]

)[𝑝], 𝜓1 ◦𝜓2, 𝜖1𝜀2
)
, we need to verify that

𝑠[𝑝] = 𝑠1
[𝑝]
𝑠2
[𝜓−1
1
(𝑝)]

for every [𝑝] ∈ [𝑉1].

Fix therefore [𝑝] ∈ [𝑉1] and 𝑖 ⩽ |𝑝|. We have
𝑠1
[𝑝]
𝑠2
[𝜓−1
1
(𝑝)]

(𝑖) = 𝑗 ⇔ 𝑒
𝑝

𝑗
= 𝜎1

(
𝑒
𝜓−1
1
(𝑝)

𝑘

)
& 𝑒

𝜓−1
1
(𝑝)

𝑘
= 𝜎2

(
𝑒
𝜓−1
2
𝜓−1
1
(𝑝)

𝑖

)
⇔ 𝑒

𝑝

𝑗
= 𝜎
(
𝑒
𝜓−1(𝑝)

𝑖

)
⇔ 𝑠[𝑝](𝑖) = 𝑗,

which proves that 𝑠[𝑝] = 𝑠1
[𝑝]
𝑠2
[𝜓−1
1
(𝑝)]

for every [𝑝] ∈ [𝑉1] and therefore Ω is a group homomor-

phism.
It remains to show that themapping Σ ∋ 𝜎 ↦

(
(𝑠
𝑇𝜎
[𝑝]
)[𝑝], [𝜓𝑇𝜎 ], 𝜖𝑇𝜎

)
is homeomorphism, which,

however, easily follows from the fact that the topology on 𝐸𝑒𝑥𝑡() is discrete by Lemma 6.8 and
so a net (𝜎𝛾) converges pointwise if and only if it is pointwise eventually constant. □

Remark 6.10. Although this section was formulated, in order to ease the notation, only for
Lipschitz-free spaces over connected graphs, all the results are valid as well for Lip0-spaces over
connected graphs. In particular, we have a complete description of the linear isometry group of
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Lip0(𝐺), whenever𝐺 is a connected graph. This follows, by Remark 4.3, from the fact that Lip0(𝐺)
has a strongly unique predual.

7 EXAMPLES

This penultimate section complements the theory developed in this paper. In the first part of the
section, we show that a certain interesting and extensively studied class of metric spaces inmetric
geometry belongs to the class of Lipschitz-free rigid Prague spaces. In the second part, we present
examples showing that converses to various results from Section 4 do not hold.

7.1 Carnot groups as examples of Lipschitz-free rigid Prague spaces

The theorem below presents one of our main examples of Lipschitz-free rigid spaces. We note
that the rigidity of the same class for the 1-Wasserstein spaces was obtained in [8] — by different
methods.

Theorem 7.1. Let (𝐆, 𝑑𝑁) be a nonabelian Carnot group endowed with a metric induced by a
homogeneous horizontally strictly convex norm. Then (𝐆, 𝑑𝑁) is a Prague space, which is moreover
Lipschitz-free rigid.

The class of spaces considered in Theorem 7.1 includes many important metric spaces
considered by numerous authors, see Examples 7.3 where more details are provided.
Before we come to the proof of Theorem 7.1, we recall the relevant information about Carnot

groups. Every Carnot group is as a topological group homeomorphic to ℝ𝑛. For the informed
reader, we note thatmore precisely everyCarnot group is a simply connected and connected nilpo-
tent Lie group whose Lie algebra admits a stratification. We provide more comments on this in
Remark 7.2. The properties of Carnot groups we need are the following.

(Car1) Carnot group as a topological group is (canonically) isomorphic to 𝐆 = (ℝ𝑁, ∗), where
on ℝ𝑁 we have the usual Euclidean topology and ∗ is a real analytic group operation
defined by a polynomial. After this (canonical) identification, we can decompose the
Carnot group (ℝ𝑁, ∗) asℝ𝑁 = ℝ𝑁1 ⊕ …⊕ℝ𝑁𝑟 with𝑁1 +⋯ +𝑁𝑟 = 𝑁, where 𝑟 > 1 if and
only if 𝐆 is not abelian, and find a family of Carnot group isomorphisms {𝛿𝜆}𝜆>0 (called
Carnot-dilations) such that:

𝛿𝜆(𝑥
(1), … , 𝑥(𝑟)) = (𝜆𝑥(1), … , 𝜆𝑟𝑥(𝑟)),

where 𝑥(𝑖) ∈ ℝ𝑁𝑖 for 𝑖 = 1, … , 𝑟.
(Car2) A map 𝑁 ∶ 𝐆 → ℝ⩾0 is called a norm on 𝐆 if it satisfies

(i) 𝑁(g) = 0 ⟺ g = (0, … , 0),
(ii) 𝑁(g−1) = 𝑁(g), for all g ∈ 𝐆,
(iii) 𝑁(g ∗ g ′) ⩽ 𝑁(g) + 𝑁(g ′), for all g , g ′ ∈ 𝐆.
Every norm 𝑁 induces a left-invariant metric 𝑑𝑁 (i.e., metric satisfying 𝑑𝑁(g0 ∗ g ,

g0 ∗ g ′) = 𝑑𝑁(g , g
′) for all g0, g , g ′ ∈ 𝐆) by the formula 𝑑𝑁(g , g ′) ∶= 𝑁(g−1 ∗ g ′). A norm
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28 of 36 CÚTH et al.

𝑁 ∶ 𝐆 → ℝ⩾0 on a Carnot group is called homogeneous if 𝑁(𝛿𝜆(g)) = 𝜆𝑁(g) for all 𝜆 > 0

and for all g ∈ 𝐆.
Whenever 𝑑𝑁 is a metric induced by a homogeneous norm on 𝐆 = (ℝ𝑁, ∗), then 𝑑𝑁 is

compatible with the topology of 𝐆 and (𝐆, 𝑑𝑁) is proper and complete.
(Car3) Let 𝐆 = (ℝ𝑁, ∗) be a Carnot group as in (Car1) (so on 𝐆 we have the decomposition and

Carnot-dilations as in (Car1)). Given 𝑧 ∈ ℝ𝑁1 , we say 𝑙(𝑧) ∶= {(𝑠𝑧, 0, … , 0) ∶ 𝑠 ∈ ℝ} ⊂ 𝐆

is horizontal line through the origin. It is a subgroup of 𝐆 (in fact, it is what is called a
one-parameter subgroup). In particular, for 𝑠, 𝑡 ∈ ℝ, we have (𝑠𝑧, 0, … , 0) ∗ (𝑡𝑧, 0, … , 0) =
((𝑠 + 𝑡)𝑧, 0, … , 0). The set of all the points on all the horizontal lines through the origin
is denoted as 𝐻𝐆, that is, 𝐻𝐆 ∶=

⋃
𝑧∈ℝ𝑁1 {𝑙(𝑧)} = {(𝑧, 0, … , 0)∶ 𝑧 ∈ ℝ𝑁1}. Notice therefore

that 𝐆 ≠ 𝐻𝐆 if and only if 𝐆 is not abelian.
A homogeneous norm 𝑁 on 𝐆 = (ℝ𝑁, ∗) is said to be horizontally strictly convex if

whenever g , g ′ ∈ 𝐆 ⧵ {(0, … , 0)} are such that𝑁(g ∗ g ′) = 𝑁(g) + 𝑁(g ′), then there exists
𝑙(𝑧) ∈ 𝐻𝐆 such that g , g ′ ∈ 𝑙(𝑧).
Suppose that 𝑑𝑁 is the metric induced by a homogeneous horizontally strictly convex

norm on𝐆 = (ℝ𝑁, ∗). Then it is easy to check that whenever g1, g2, g ∈ 𝐆 (g ≠ g1, g ≠ g2)
are such that 𝑑𝑁(g1, g2) = 𝑑𝑁(g1, g) + 𝑑𝑁(g , g2), there exists 𝑧 ∈ ℝ𝑁1 such that g−1

1
∗ g2 ∈

𝑙(𝑧), in particular g2 ∈ g1 ∗ 𝐻𝐆 ∶= {g1 ∗ ℎ∶ ℎ ∈ 𝐻𝐆}.
We note that on any Carnot group, there exists a homogeneous horizontally strictly

convex norm.

Remark 7.2. In this remark, we comment on Carnot groups for readers who have some knowledge
of Lie theory. Carnot groups are simply connected and connected nilpotent Lie groups 𝐺 whose
Lie algebra 𝔤 admits a stratification, that is, a direct sum decomposition 𝔤 =

⨁𝑟
𝑖=1 𝑉𝑖 such that for

every 𝑖 < 𝑟, [𝑉1, 𝑉𝑖] = 𝑉𝑖+1. Since 𝐺 and 𝔤 are nilpotent, the Baker–Campbell–Hausdorff formula
has only finitely many nonvanishing terms and therefore may be used to globally define, using
polynomials, group operation ∗ on 𝔤. Since (𝔤, ∗) and𝐺 are then two simply connected Lie groups
with Lie algebra 𝔤, they must be equal. This explains much of (Car1), that is, why without loss of
generality 𝐺 is ℝ𝑁 with polynomially defined multiplication and the decomposition 𝐺 = ℝ𝑁 =

ℝ𝑁1 ⊕ …⊕ℝ𝑁𝑟 corresponds to the stratification 𝑉1 ⊕ …⊕𝑉𝑟 on 𝔤, where the dimension of 𝑉𝑖 ,
for 𝑖 ⩽ 𝑟, is 𝑁𝑖 . It also explains why for a fixed 𝑧 ∈ ℝ𝑁1 , 𝑙(𝑧) is a subgroup. Indeed, given 𝑠, 𝑡 ∈ ℝ,
𝑠𝑧 and 𝑡𝑧 commute as elements of 𝔤, that is, [𝑠𝑧, 𝑡𝑧] = 0, so by the Baker–Campbell–Hausdorff
formula, we have ((𝑠 + 𝑡)𝑧, 0… , 0) = (𝑠𝑧, 0… , 0) ∗ (𝑡𝑧, 0… , 0). Note also that by definition, 𝑟 = 1

is equivalent to [𝔤, 𝔤] = {0}, which, in turn, is equivalent to the fact that 𝐆 is abelian.
We refer the reader to [19] for a general background on Lie groups, including nilpotency

and the Baker–Campbell–Hausdorff formula. We also refer to [13] which is more specialized to
Carnot groups. In the paragraph below we suggest some references, where the interested reader
may find proofs of the above-mentioned properties of Carnot groups together with some more
interesting results.
The property (Car2) follows from [21, Proposition 2.26]. The notion of horizontally strictly con-

vex homogeneous norm mentioned in (Car3) was introduced in [7] and it was proved in [8] that
such a norm exists on every Carnot group. For some natural examples, we refer to Examples 7.3.

Proof of Theorem 7.1. Let𝐆 = (𝐆, 𝑑𝑁) be as in the assumptions. Wemay without loss of generality
assume 𝐆 = (ℝ𝑁, ∗) as in (Car1). First, we claim that

𝐸𝑒𝑥𝑡(𝐆) = {(g , g ′)∶ g ′ ∉ g ∗ 𝐻𝐆}.
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Indeed, fix two distinct points g , g ′ ∈ 𝐆. Since 𝐆 is proper, using [3, Proposition 2.3], we obtain
that 𝑚g ,g′ ∈ (𝐆) is a preserved extreme point if and only if [g , g ′] = {g , g ′} which is, in turn,
equivalent to the fact that g ′ ∉ g ∗ 𝐻𝐆.
Next, we show that for an arbitrary element g ∈ 𝐆 and for arbitrary 𝜀 > 0, we can choose a

g𝜀 ∈ 𝐆 such that (g , g𝜀) ∈ 𝐸𝑒𝑥𝑡(𝐆) and 𝑑𝑁(g , g𝜀) < 𝜀. Put 𝐻𝐆(g) ∶= g ∗ 𝐻𝐆. Since left translation
is an isometry (and thus a homeomorphism), we get that𝐻𝐆(g) is a closed set with empty interior.
Here, we used that 𝑑𝑁 is compatible with the Euclidean topology of ℝ𝑁 , and that 𝐻𝐆 has an
empty interior since dim(𝐻𝐆) = 𝑁1 < 𝑁 as 𝐆 is not abelian. On the other hand, 𝐵(g , 𝜀) (the 𝑑𝑁-
ball centered at g ∈ 𝐆 with radius 𝜀) is an open set, and therefore, 𝐵(g , 𝜀) ⧵ 𝐻𝐆(g) ≠ ∅, and for
all g𝜀 ∈ 𝐵(g , 𝜀) ⧵ 𝐻𝐆(g), using the observation in the paragraph above, we have (g , g𝜀) ∈ 𝐸𝑒𝑥𝑡(𝐆).
Consequently, 𝑉𝑒𝑥𝑡(𝐆) = 𝐆.
Finally, if g1, g2 ∈ 𝐆, g1 ≠ g2, then for all 𝜀 > 0, the same argument as above gives us an element

g𝜀 ∈ 𝐵(g1, 𝜀) ⧵
(
𝐻𝐆(g1) ∪ 𝐻𝐆(g2)

)
. For such a g𝜀, we have 𝑑𝑁(g𝜀, g2) ⩽ 𝑑𝑁(g𝜀, g1) + 𝑑𝑁(g1, g2) <

𝜀 + 𝑑𝑁(g1, g2), and thus, 𝑑𝑁(g1, g𝜀) + 𝑑𝑁(g𝜀, g2) ∈ [𝑑𝑁(g1, g2), 2𝜀 + 𝑑𝑁(g1, g2)]. Using this simple
observation and the fact that (g1, g𝜀), (g2, g𝜀) ∈ 𝐸𝑒𝑥𝑡(𝐆), we have

𝑑𝑁(g1, g2) ⩽ inf

{
𝑘∑
𝑖=1

𝑑𝑁(𝑒𝑖)∶ (𝑒𝑖)
𝑘
𝑖=1

∈ 𝐸𝑒𝑥𝑡(𝐆)
𝑘 is a walk from g1 to g2

}
⩽ inf

𝜀
{𝑑𝑁(g1, g𝜀) + 𝑑𝑁(g𝜀, g2)} = 𝑑𝑁(g1, g2).

This shows that 𝐆 is a Prague space. Moreover, since by the above, there are infinitely many
paths between any two points, we have that in particular 𝐸𝑒𝑥𝑡(𝐆) is 3-connected, and so, 𝐆 is
Lipschitz-free rigid by Corollary 4.8. □

Examples 7.3. Let us mention important examples of metrics on Carnot groups to which our
Theorem 7.1 applies.

∙ Recall that the Heisenberg group ℍ𝑛 is the Carnot group ℍ𝑛 = (ℝ2𝑛+1, ∗), where for 𝑥, 𝑦 ∈ ℝ𝑛

and 𝑡 ∈ ℝ, we have

(𝑥, 𝑦, 𝑡) ∗ (𝑥′, 𝑦′, 𝑡′) ∶= (𝑥 + 𝑥′, 𝑦 + 𝑦′, 𝑡 + 𝑡′ + 2

𝑛∑
𝑖=1

(𝑥′𝑖 𝑦𝑖 − 𝑥𝑖𝑦
′
𝑖 )),

and Carnot-dilations (𝛿𝜆)𝜆>0 are given by 𝛿𝜆(𝑥, 𝑦, 𝑡) ∶= (𝜆𝑥, 𝜆𝑦, 𝜆2𝑡). Examples of horizontally
strictly convex homogeneous norms on ℍ𝑛 are, for example, the Heisenberg–Korányi norm‖⋅‖𝐻 given by ‖(𝑥, 𝑦, 𝑡)‖𝐻 ∶=

(‖(𝑥, 𝑦)‖4
𝐸
+ 𝑡2
) 1
4 for (𝑥, 𝑦, 𝑡) ∈ ℍ𝑛 or the Lee and Naor norm‖⋅‖𝐿𝑁 given by ‖(𝑥, 𝑦, 𝑡)‖𝐿𝑁 =

√‖(𝑥, 𝑦, 𝑡)‖2
𝐻
+ ‖(𝑥, 𝑦)‖2

𝐸
for (𝑥, 𝑦, 𝑡) ∈ ℍ𝑛, where ‖⋅‖𝐸 denotes

the Euclidean norm.We refer to [7] formore details and examples of horizontally strictly convex
homogeneous norms on ℍ𝑛.

∙ Given a Carnot group 𝐆 = (ℝ𝑁, ∗), the Hebisch–Sikora norm on ‖⋅‖𝐻𝑆 ∶ 𝐆 → ℝ+ is defined as

‖𝑞‖𝐻𝑆 ∶= inf {𝑡 > 0∶ 𝛿1∕𝑡(𝑞) ∈ 𝐵(0, 𝑟)}, 𝑞 ∈ 𝐆,

where 𝐵(0, 𝑟) ⊂ ℝ𝑁 is the usual Euclidean ball in ℝ𝑁 centered at the origin, with radius 𝑟. In
[8], the authors proved that there exists 𝑟0 > 0 such that for all 0 < 𝑟 < 𝑟0, the function ‖⋅‖𝐻𝑆
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defined above is a horizontally strictly convex homogeneous norm on 𝐆. We refer to [8] and
references therein for more information about Hebisch–Sikora norms and their applications.

Finally, we note that our Theorem 7.1 does not apply to Carnot groups endowed with the standard
Carnot–Carathéodory distance, because geodesic metric spaces are not Prague spaces. However,
we note that the Carnot–Carathéodory distance on Heisenberg groups is the path metric associ-
ated to the Korányi norm (see [22, Corollary 2.3.5]).We do not know if there is such a close relation
between the Carnot–Carathéodory distance and other horizontally strictly convex norms.

7.2 Counterexamples from Section 4

In the first proposition, we prove the claim mentioned in Example 4.5.

Proposition 7.4. Consider the subset 𝐼 ∶= {0} × [0, 1] ⊂ ℝ2 and point 𝑥0 ∶= (1, 0) ∈ ℝ2. Then the
metric space = (𝐼 ∪ {𝑥0}, ‖ ⋅ ‖2) is a weak Prague space which is Lipschitz-free rigid, but 𝐸𝑒𝑥𝑡()

is not 2-connected.

Proof. For any 𝑥, 𝑦 ∈, we have [𝑥, 𝑦] = {𝑥, 𝑦} if and only if 𝑥0 ∈ {𝑥, 𝑦}. Fixing 𝑦 ∈ 𝐼 and picking
any 𝑧 ≠ 𝑦 ∈ 𝐼, we have 𝑑(𝑥0, 𝑦) + 𝑑(𝑥0, 𝑧) ⩾ 2, so clearly by Fact 2.2,𝑚𝑥0,𝑦

∈ ext 𝐵()∗∗ . There-
fore, we have 𝐸𝑒𝑥𝑡 = {(𝑥, 𝑥0), (𝑥0, 𝑥)∶ 𝑥 ∈ 𝐼} and 𝑉𝑒𝑥𝑡 =. Thus, we easily observe that 𝐸𝑒𝑥𝑡 is
weakly admissible and since there are no cycles in 𝐸𝑒𝑥𝑡, 𝐸𝑒𝑥𝑡 is not 2-connected. It remains to
check is Lipschitz-free rigid.
Let 𝜎 ∶ 𝐸𝑒𝑥𝑡 → 𝐸𝑒𝑥𝑡 be a bijection satisfying conditions (Sa), (Sb), and (Sc). By Theorem 3.9,

it suffices to check that then there exists 𝜀 ∈ {±1} such that 𝜎(𝑒) = 𝜀𝑒, 𝑒 ∈ 𝐸𝑒𝑥𝑡. Since 𝜎 is a
bijection, there exists a bijection 𝑓 ∶ [0, 1] → [0, 1] and 𝜀 ∶ [0, 1] → {±1} such that 𝜎(𝑥0, (0, 𝑡)) =
𝜀(𝑡)(𝑥0, (0, 𝑓(𝑡))) for every 𝑡 ∈ [0, 1].
First, we shall show that 𝜀 is a constant mapping. For 𝑡 > 0, using (Sc), we obtain that for the

𝐸𝑒𝑥𝑡-path ((0, 0), 𝑥0), (𝑥0, (0, 𝑡)) from (0,0) to (0, 𝑡), we have

𝑡 =
‖‖‖𝜀(0)𝑑(𝑥0, (0, 0))𝑚(0,𝑓(0)),𝑥0

+ 𝜀(𝑡)𝑑(𝑥0, (0, 𝑡))𝑚𝑥0,(0,𝑓(𝑡))
‖‖‖

=
‖‖‖‖‖𝜀(0) 𝑑(𝑥0, (0, 0))

𝑑(𝑥0, (0, 𝑓(0)))
𝛿(0,𝑓(0)) − 𝜀(𝑡)

𝑑(𝑥0, (0, 𝑡))

𝑑(𝑥0, (0, 𝑓(𝑡)))
𝛿(0,𝑓(𝑡))

‖‖‖‖‖ ,
which implies that 𝜀(𝑡) = 𝜀(0) as otherwise we would have

𝑡 =
‖‖‖‖‖ 𝑑(𝑥0, (0, 0))

𝑑(𝑥0, (0, 𝑓(0)))
𝛿(0,𝑓(0)) +

𝑑(𝑥0, (0, 𝑡))

𝑑(𝑥0, (0, 𝑓(𝑡)))
𝛿(0,𝑓(𝑡))

‖‖‖‖‖ = 𝑑(𝑥0, (0, 0)) + 𝑑(𝑥0, (0, 𝑡)) > 1,

which is in contradiction with 𝑡 ⩽ 1. Since 𝑡 > 0was arbitrary, this proves that 𝜀 is a constant map,
so we can without loss of generality assume that 𝜎(𝑥0, (0, 𝑡)) = (𝑥0, (0, 𝑓(𝑡))) for every 𝑡 ∈ [0, 1]

and it remains to prove that 𝑓 is the identity.
Similarly as above, given 𝑠, 𝑡 ∈ [0, 1] and 𝐸𝑒𝑥𝑡-path ((0, 𝑠), 𝑥0), (𝑥0, (0, 𝑡)) from (0, 𝑠) to (0, 𝑡),

using (Sc), we obtain

|𝑡 − 𝑠| = ‖‖‖‖‖ 𝑑(𝑥0, (0, 𝑠))

𝑑(𝑥0, (0, 𝑓(𝑠)))
𝛿(0,𝑓(𝑠)) −

𝑑(𝑥0, (0, 𝑡))

𝑑(𝑥0, (0, 𝑓(𝑡)))
𝛿(0,𝑓(𝑡))

‖‖‖‖‖ .
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By the well-known formula [14, Lemma 11], supposing that 1+𝑡2

1+𝑓(𝑡)2
⩾

1+𝑠2

1+𝑓(𝑠)2
, we have

|𝑡 − 𝑠| =√1 + 𝑡2 +
(|𝑓(𝑡) − 𝑓(𝑠)| −√1 + 𝑓(𝑡)2

)√
1 + 𝑠2

1 + 𝑓(𝑠)2
(6)

(and, of course, if 1+𝑡2

1+𝑓(𝑡)2
⩽

1+𝑠2

1+𝑓(𝑠)2
, then the above holds with 𝑠 and 𝑡 interchanged). We shall

prove in a series of claims that this already implies that 𝑓 is the identity mapping.

Claim 1. The function 𝑓 is
√
2-Lipschitz. Moreover, it is a strictly increasing homeomorphism

with 𝑓(0) = 0 and 𝑓(1) = 1.

Proof of Claim 1. Supposing that 1+𝑡2

1+𝑓(𝑡)2
⩾

1+𝑠2

1+𝑓(𝑠)2
, using (6) and simplifying, we obtain

|𝑡 − 𝑠|(√1 + 𝑓(𝑠)2) +
√
(1 + 𝑠2)(1 + 𝑓(𝑡)2) =

√
(1 + 𝑡2)(1 + 𝑓(𝑠)2) + |𝑓(𝑡) − 𝑓(𝑠)|√1 + 𝑠2

⩾
√
(1 + 𝑠2)(1 + 𝑓(𝑡)2) + |𝑓(𝑡) − 𝑓(𝑠)|√1 + 𝑠2,

which implies that

|𝑓(𝑡) − 𝑓(𝑠)||𝑠 − 𝑡| ⩽

√
1 + 𝑓(𝑠)2

1 + 𝑠2
,

and, changing the roles of 𝑡 and 𝑠 if 1+𝑡2

1+𝑓(𝑡)2
⩾

1+𝑠2

1+𝑓(𝑠)2
does not hold, we obtain that for any 𝑡, 𝑠 ∈

[0, 1], we have

|𝑓(𝑡) − 𝑓(𝑠)||𝑠 − 𝑡| ⩽ max

⎧⎪⎨⎪⎩
√
1 + 𝑓(𝑡)2

1 + 𝑡2
∶ 𝑡 ∈ [0, 1]

⎫⎪⎬⎪⎭ ⩽
√

1 + 1

1 + 0
=
√
2.

Thus, the function 𝑓 is
√
2-Lipschitz and therefore 𝑓 ∶ [0, 1] → [0, 1] is continuous bijection, so

it is a homeomorphism, and so, it is either strictly increasing function with 𝑓(0) = 0 and 𝑓(1) = 1

or strictly decreasing function with 𝑓(1) = 0 and 𝑓(0) = 1. Since for 𝑡 = 1 and 𝑠 = 0, we have

1 + 𝑡2

1 + 𝑓(𝑡)2
=

2

1 + 𝑓(1)2
⩾ 1 ⩾

1

1 + 𝑓(0)2
=

1 + 𝑠2

1 + 𝑓(𝑠)2
,

from (6), we obtain

1 =
√
2 + (1 −

√
1 + 𝑓(1)2)

1√
1 + 𝑓(0)2

and since we have {𝑓(0), 𝑓(1)} = {0, 1}, this implies that 𝑓(0) = 0 and 𝑓(1) = 1 and, by the above,
the function 𝑓 is strictly increasing. □
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Claim 2. We have 𝑓(𝑡) = 𝑡 for every 𝑡 ∈ [0, 1].

Proof of Claim 2. Assume that we have 𝑡 ⩾ 𝑓(𝑡). Then, since 1+𝑡2

1+𝑓(𝑡)2
⩾ 1 = 1+02

1+𝑓(0)2
, we obtain from

(6) applied to 𝑡 and 𝑠 = 0 that, using Claim 1, we have

𝑡 =
√
1 + 𝑡2 + 𝑓(𝑡) −

√
1 + 𝑓(𝑡)2,

which implies that for the function ℎ(𝑥) ∶= 𝑥 −
√
1 + 𝑥2, we have ℎ(𝑡) = ℎ(𝑓(𝑡)), but since ℎ is

one-to-one on [0,1], it follows that 𝑡 = 𝑓(𝑡).
Finally, assume that 𝑡 ⩽ 𝑓(𝑡). Then since 1 = 1+02

1+𝑓(0)2
⩾

1+𝑡2

1+𝑓(𝑡)2
, from (6), we obtain

𝑡 = 1 + (𝑓(𝑡) − 1)

√
1 + 𝑡2

1 + 𝑓(𝑡)2
,

which implies that for the function g(𝑥) ∶= 𝑥−1√
1+𝑥2

, we have g(𝑡) = g(𝑓(𝑡)), but since g is one-to-
one on [0,1], it follows that 𝑡 = 𝑓(𝑡). □

Thus, 𝑓 is identity, and so, is Lipschitz-free rigid. □

Next, we provide the example mentioned in Remark 4.10.

Proposition 7.5. There exists a finite graph 𝐺 = (𝑉, 𝐸) that is 2-connected, but not 3-connected
such that for every simple cycle-preserving bijection 𝜎 ∶ 𝐸 → 𝐸, there exists a graph isomorphism
𝑓 ∶ 𝑉 → 𝑉 such that 𝜎({𝑥, 𝑦}) = {𝑓(𝑥), 𝑓(𝑦)} for every {𝑥, 𝑦} ∈ 𝐸.
In particular, 𝐺 is a Lipschitz-free rigid space with 𝐸𝑒𝑥𝑡 not being 3-connected.

Proof. In this proof by 𝐾𝑛, we denote the complete graph with 𝑛 vertices. Our graph 𝐺 consists of
three disjoint complete graphs 𝐾𝑖1 , 𝐾𝑖2 , and 𝐾𝑖3 together with three more vertices 𝑎1, 𝑎2, and 𝑎3,
where each 𝑎𝑗 , 𝑗 ∈ {1, 2, 3} is connected by edges 𝐸𝑗,𝑘 with vertices from 𝐾𝑖𝑘 , 𝑘 ∈ {1, 2, 3}, where
𝐸𝑗,𝑗 = ∅ and |𝐸𝑗,𝑘| ⩾ 3 are distinct natural numbers.

a3
Ki1 Ki2

Ki3

E3,1

a2 a1
E2,3

E3,2

E1,3

E1,2
E2,1

We claim that if, moreover,min{𝑖1, 𝑖2, 𝑖3} > 2 + max{|𝐸(𝑗,𝑘)|∶ 𝑗, 𝑘 ∈ {1, 2, 3}, 𝑗 ≠ 𝑘}, then this will
be the graph we are looking for.
It is easy to observe that 𝐺 is 2-connected and not 3-connected. Moreover, if we denote by 𝐺𝑗 ,

𝑗 = 1, 2, 3 subgraphs with edges
⋃3
𝑘=1 𝐸𝑘,𝑗 ∪ 𝐾𝑖𝑗 , then each 𝐺𝑗 is 3-connected. Let 𝜎 ∶ 𝐸 → 𝐸 be a

cycle-preserving bijection. We claim that then 𝜎(𝐺𝑗) = 𝐺𝑗 for every 𝑗 = 1, 2, 3.
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Indeed, first, we observe that 𝑒 ∈ 𝐸𝑗,𝑘 if and only if 𝑒 is contained in exactly |𝐸𝑗,𝑘| − 1 cycles of
length three, which is a property preserved by 𝜎, and since |𝐸𝑗,𝑘| are distinct numbers, we have

𝜎(𝐸𝑗,𝑘) = 𝐸𝑗,𝑘, 𝑗, 𝑘 = 1, 2, 3. (7)

Next, for each distinct edges 𝑒, 𝑒′ ∈ 𝐸𝑗,𝑘, there is a unique 𝑓 ∈ 𝐾𝑖𝑘 such that {𝑒, 𝑒
′, 𝑓} is a cycle and

since by (7) we have {𝜎(𝑒), 𝜎(𝑒′)} ⊂ 𝐸𝑗,𝑘, we obtain 𝜎(𝑓) ∈ 𝐾𝑖𝑘 because {𝜎(𝑒), 𝜎(𝑒
′), 𝜎(𝑓)} is a cycle.

Thus,

∀𝑘 ∈ {1, 2, 3} ∃𝑓 ∈ 𝐾𝑖𝑘 ∶ 𝜎(𝑓) ∈ 𝐾𝑖𝑘 . (8)

Now, pick any 𝑓′ ∈ 𝐾𝑖𝑘 and consider now the edge 𝑓 ∈ 𝐾𝑖𝑘 with 𝜎(𝑓) ∈ 𝐾𝑖𝑘 . Then, there
are at least 𝑖𝑘 − 2 disjoint cycles containing both {𝑓, 𝑓′}, so since we have 𝜎(𝑓) ∈ 𝐾𝑖𝑘 and
max{|𝐸𝑗,𝑘|∶ 𝑗 = 1, 2, 3} < 𝑖𝑘 − 2, we obtain that𝜎(𝑓′) ∈ 𝐾𝑖𝑘 . Since𝑓

′ ∈ 𝐾𝑖𝑘 was arbitrary, we have
𝜎(𝐾𝑖𝑘 ) = 𝐾𝑖𝑘 for 𝑘 = 1, 2, 3, which together with (7) gives that 𝜎(𝐺𝑗) = 𝐺𝑗 for 𝑗 = 1, 2, 3, which
finishes the proof of the claim above.
Since each 𝐺𝑗 is 3-connected, by Corollary 4.8, we obtain that there are graph isomorphisms

𝑓𝑗 ∶ 𝐺𝑗 → 𝐺𝑗 such that 𝜎({𝑥, 𝑦}) = {𝑓𝑗(𝑥), 𝑓𝑗(𝑦)} for each edge {𝑥, 𝑦} from 𝐺𝑗 . Since |𝐸𝑗,𝑘| are
distinct numbers, vertices 𝑎𝑘 in graphs 𝐺𝑗 are uniquely determined by their degrees, and so,
𝑓𝑗|{𝑎1,𝑎2,𝑎3}⧵{𝑎𝑗} is identity. Thus, 𝑓 = 𝑓1 ∪ 𝑓2 ∪ 𝑓3 ∶ 𝐺 → 𝐺 is a well-defined graph isomorphism
satisfying 𝜎({𝑥, 𝑦}) = {𝑓(𝑥), 𝑓(𝑦)} for any edge {𝑥, 𝑦} from 𝐺. This finishes the proof that 𝐺 is the
graph we wanted to find.
The “In particular” part then immediately follows. Indeed, using the same arguments as in the

proof of Theorem 4.9 (together with Lemma 3.8), we see that 𝐺 is a Lipschitz-free rigid Prague
space. □

8 CONCLUDING REMARKS AND OPEN PROBLEMS

8.1 Remarks

A famous open problem asks whether (ℝ𝑛) and (ℝ𝑚), and also (ℤ𝑛) and (ℤ𝑚), are isomor-
phic if 𝑛,𝑚 ⩾ 2, 𝑛 ≠ 𝑚. We cannot answer this exact question but our results provide answers to
some other related open problems.
(1) Consider ℤ𝑛, for 𝑛 ⩾ 2, equipped either with the inherited Euclidean distance or the 𝓁1-

distance, also known as the Manhattan distance in this context, which is the graph metric for the
canonical graph structure on ℤ𝑛. It is routine to check that it is a Prague space with 𝐸𝑒𝑥𝑡 being 3-
connected— in the case of theManhattan distance, simply a 3-connected graph. By Theorem 4.9,
(ℤ𝑛) is Lipschitz-free rigid and since ℤ𝑛 is uniformly discrete and so does not admit noniso-
metric dilations, it follows that LIso((ℤ𝑛)) is equal to the product of {−1, 1} with the isometry
group Iso(ℤ𝑛) of ℤ𝑛 (see Proposition 6.1), which is the same for both the Euclidean and Man-
hattan distances. The group Iso(ℤ𝑛) as a semidirect product 𝐹𝑛 ⋉ 𝑇𝑛, where 𝑇𝑛 is the group of
translations equal to ℤ𝑛 itself and 𝐹𝑛 is the finite group of isometries fixing 0 that consists of rota-
tions and reflections. In particular, LIso((ℤ𝑛)) and LIso((ℤ𝑚)) differ for different 𝑛 ≠ 𝑚 ⩾ 2.
Indeed, assuming 𝑛 > 𝑚, LIso((ℤ𝑚)) is equal to {−1, 1} × (𝐹𝑚 ⋉ ℤ𝑚) and does not contain ℤ𝑛
as a subgroup, while LIso((ℤ𝑛)) does.
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Remark 8.1. Wewere informed byRamónAliaga that it is possible to distinguish(ℤ𝑛) and(ℤ𝑚)
isometrically also directly by counting the preserved extreme points. Such a direct approach seems
no longer possible in the next more involved example where we really need to compute the
isometry groups as an invariant that distinguishes the corresponding Lipschitz-free spaces.

(2)Consider for each 𝑛 ∈ ℕ the Heisenberg groupℍ𝑛 equipped with the Korányi metric, which
is a topological group homeomorphic toℝ2𝑛+1 (see Examples 7.3 for details). By Theorem 7.1,ℍ𝑛 is
Lipschitz-free rigid, that is, every isometry of(ℍ𝑛) is induced by 𝜀 ∈ {−1, 1} and an 𝑎-dilation 𝜙 ∶
ℍ𝑛 → ℍ𝑛. In fact, according to Proposition 6.1, {−1, 1} × Dil(ℍ𝑛) ∋ (𝜀, 𝜙) ↦ 𝜀𝑇𝜙 ∈ LIso((ℍ𝑛))

is an isomorphism of topological groups. Notice that in the Heisenberg case, an 𝑎-dilation can
be uniquely written as the composition of an isometry and a Carnot-dilation. Indeed, using
the homogeneity of the metric, we have that 𝑑(𝑥, 𝑦) = 1

𝑎
𝑑(𝜙(𝑥), 𝜙(𝑦)) = 𝑑(𝛿 1

𝑎

𝜙(𝑥), 𝛿 1
𝑎

𝜙(𝑦)), and

thus, 𝜙(𝑥) = 𝛿𝑎

(
𝛿 1
𝑎

𝜙(𝑥)
)
, where 𝛿 1

𝑎

𝜙(𝑥) is an isometry. This means that LIso((ℍ𝑛)) = {−1, 1} ×

Dil(ℍ𝑛) can be topologically identified with {−1, 1} × ℝ+ × Iso(ℍ
𝑛). We claim that if𝑚 < 𝑛, then

the spaces (ℍ𝑛) and (ℍ𝑚) are not isometric. Indeed, if they were, then their isometry groups
would coincide. Our task is now to show that {−1, 1} × ℝ+ × Iso(ℍ

𝑛) and {−1, 1} × ℝ+ × Iso(ℍ
𝑚)

are not isomorphic. By [27, Theorem 3.5], Iso(ℍ𝑛) is the same group regardless of ℍ𝑛 being
equipped with the left-invariant Riemannian distance or the Carnot–Carathéodory metric. Fur-
thermore, by [22, Corollary 2.3.5], it is also the same group if ℍ𝑛 is equipped with the Korányi
metric. In particular, it follows from the Myers–Steenrod theorem ([25]) that Iso(ℍ𝑛) is a Lie
group. Since ℝ+ and {−1, 1} are Lie as well and a product of Lie groups is a Lie group, we get
that LIso((ℍ𝑛)) is a Lie group. Therefore, if LIso((ℍ𝑚)) and LIso((ℍ𝑛))were isomorphic their
Lie algebras 𝔩𝑚, resp. 𝔩𝑛 would be isomorphic (see, e.g., [19, Corollary 9.1.10]). We shall reach a
contradiction by proving that the dimensions of 𝔩𝑚 and 𝔩𝑛 are not equal. By again [27, Theorem
3.5], Iso(ℍ𝑛) is a semidirect product 𝐴𝑛 ⋉ ℍ𝑛, where the right side is the Heisenberg group itself
acting by translations and 𝐴𝑛 is the group of isometries of ℍ𝑛 fixing 0. Denoting, for 𝑖 = 𝑚, 𝑛,
the Lie algebra of 𝐴𝑖 and ℍ𝑖 𝔞𝑖 , resp. 𝔥𝑖 , we get that dim(𝔩𝑖) = dim(𝔞𝑖) + dim(𝔥𝑖) + dim(ℝ+) =

dim(𝔞𝑖) + dim(𝔥𝑖) + 1 (by, e.g., [19, Proposition 9.2.25]). We have dim(𝔥𝑖) = 2𝑖 + 1, so we need
to compute dim(𝔞𝑖). Since by [27, Corollary 3.6 (1)], the connected component of the unit of 𝐴𝑖
can be identified with the unitary group 𝑈(𝑖), we get that 𝔞𝑖 is isomorphic to the Lie algebra of
𝑈(𝑖) that is known to have dimension 𝑖2 (see, e.g., [19, Example 5.1.6 (v)]). Therefore, we get that
dim(𝔩i) = i2 + 2i + 2 and we are done.

8.2 Problems

We find the following question the most pressing.

Question 1. Does there exist a Lipschitz-free rigid metric space such that
⋃
𝐸𝑒𝑥𝑡() is not

dense in?

A very interesting answer to the previous question would be answering positively the next
question. However, even a negative answer to the next question would be interesting.

Question 2. Is ℝ𝑑, for 𝑑 ⩾ 2, Lipschitz-free rigid? Either if it is equipped with the Euclidean or
with the Manhattan distance.
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Question 3. Does every metric space isometrically embed into a Lipschitz-free rigid space that
contains only one additional point?
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