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Abstract. Quantum Wasserstein divergences are modified versions of quantum Wasserstein dis-
tances defined by channels, and they are conjectured to be genuine metrics on quantum state

spaces by De Palma and Trevisan. We prove triangle inequality for quantum Wasserstein diver-

gences for every quantum system described by a separable Hilbert space and any quadratic cost
operator under the assumption that a particular state involved is pure, and all the states have

finite energy. We also provide strong numerical evidence suggesting that the triangle inequality

holds in general, for an arbitrary choice of states.
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1. Introduction

1.1. Motivation and main result. Although the classical problem of transporting mass in an
optimal way was formulated in the 18th century by Monge, the theory of classical optimal transport
(OT) became one of the central topics of analysis only in the last few decades with intimate links to
mathematical physics [16,37,40], PDE theory [1,24,41], and probability [2,4,35]. Not to mention the
countless applications in artificial intelligence, image processing, and many other fields of applied
sciences. See e.g. [23, 42,43] and the references therein.

The quantum counterpart of classical OT is just emerging in these years. As always, the corre-
spondence between the classical world and the quantum world is not one-to-one. Non-commutative
optimal transport is a flourishing research field these days with several different promising approaches
such as that of Biane and Voiculescu [5], Carlen, Maas, Datta, and Rouzé [11–15], Caglioti, Golse,

Mouhot, and Paul [9, 10, 27–30], De Palma and Trevisan [17, 18], Życzkowski and his collabora-
tors [6,25,47,48], and Duvenhage [21,22]. Separable quantum Wasserstein distances have also been
introduced recently [45]. From our viewpoint, the most relevant approach is the one of De Palma
and Trevisan involving quantum channels, which is closely related to the quantum optimal transport
concept of Caglioti, Golse, Mouhot, and Paul based on quantum couplings.

It is a common feature of both the channel-based and the coupling-based quantum optimal trans-
port distances that they are not genuine metrics — in particular, states may have a positive distance
from themselves. This phenomenon is natural on the one hand, considering the nature of quantum
mechanics, but has counter-intuitive consequences on the other hand. One of these consequences is
that there exist non-surjective and even non-injective quantum Wasserstein isometries (i.e., distance
preserving maps) on the compact space of states of a finite-level quantum system [26] — none of
these could possibly happen in a genuine metric setting.

As a response to this phenomenon, De Palma and Trevisan introduced quantum Wasserstein
divergences [19] which are appropriately modified quantum Wasserstein distances — see (13) for a
precise definition. They conjectured that quantum Wasserstein divergences are genuine metrics on
quantum state spaces. This paper is devoted to the question whether the triangle inequality holds
for these divergences. We formulate our main result in an informal way below — see Theorem 1 for
the precise statement.

Main result. For every quantum system described by a separable Hilbert space H, and for ev-
ery finite collection A of observable quantities, the corresponding quadratic quantum Wasserstein
divergence dA satisfies

dA(ρ, τ) ≤ dA(ρ, ω) + dA(ω, τ) (1)

for any triplet (ρ, ω, τ) of states assuming that ω is pure or both ρ and τ are pure, and all the states
involved are of finite energy. Moreover, numerical results strongly indicate that (1) holds for any
triplet (ρ, ω, τ) of states without any further assumptions.

This paper is organized as follows. In the next subsection (Subsec. 1.2) we introduce all the
necessary notions and notation. Section 2 is dedicated to the analytical proof of Theorem 1, which
is a precise formulation of the above main result. In Section 3 we present numerical evidence
suggesting that the conclusion of Theorem 1 holds without any extra assumptions on the states
involved. Encouraged by the numerics presented in Section 3, we make steps in the direction of an
analytic proof of the triangle inequality in full generality — this material is presented in Section 4.

Finally, we remark the analogy of our present problem with the problem of the metric property
of the quantum Jensen-Shannon divergence. In that case, the triangle inequality was proved in 2008
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for pure states analytically and for mixed states numerically [38] (see also [7]). A decade later, the
problem was settled by an analytical proof in full generality — see [46] and [44].

1.2. Basic notions, notation. The classical OT problem is to arrange the transportation of goods
from producers to consumers in an optimal way, given the distribution of production and consump-
tion (described by probability measures µ and ν), and the cost c(x, y) of transporting a unit of goods
from x to y. Accordingly, a transport plan is modeled by a probability distribution π on the product
of the initial and the target space, where dπ(x, y) is the amount of goods to be transferred from x
to y, and hence the marginals of π are µ and ν. So the optimal transport cost is the infimum of a
convex optimization problem with linear loss function:

Cost (µ, ν, c) = inf

{∫∫
X×Y

c(x, y)dπ (x, y)

∣∣∣∣ (π)1 = µ, (π)2 = ν

}
(2)

where (π)i denotes the ith marginal of π, and X is the initial and Y is the target space. Under
mild continuity assumptions on c(x, y) — lower semi-continuity does the job — the infimum in (2) is
actually a minimum as it is realized by a transport plan. These minimizing plans are called optimal
transport plans.

One has great freedom in choosing the cost function c(x, y). However, the quadratic cost c(x, y) =
r2(x, y), which is simply the square of the distance, plays a distinguished role. Its importance comes
mainly from fluid dynamics and the dynamical theory of optimal transportation — the exponent
p = 2 is distinguished by the fact that the kinetic energy is proportional to the square of the velocity.
Accordingly, the relevance of quadratic Wasserstein spaces has grown dramatically in recent decades
due to their close connection with PDE theory and gradient flows. Recall that if (X, r) is complete
and separable metric space, then the classical quadratic Wasserstein space W2(X) is the collection
of those probability measures on the Borel σ-algebra B that satisfy

∫
X
r(x, x0)

2 dµ(x) <∞ for some
x0 ∈ X, endowed with the quadratic Wasserstein distance

d2W2
(µ, ν) := inf

π

∫
X×X

r2(x, y) dπ(x, y) (3)

where the infimum runs over all couplings of µ and ν.
In classical mechanics, the state of a particle moving in Rd is described by a probability measure

µ on the phase space Rd × Rd which is the collection of all possible values of the position and
momentum variables q, p ∈ Rd. In this concrete setting, the quadratic Wasserstein distance (3) of
the classical states µ, ν ∈ P

(
R2d

)
is given by

d2W2
(µ, ν) = inf

π

{∫∫
R2d×R2d

|(q1, p1)− (q2, p2)|2 dπ ((q1, p1), (q2, p2))
}

(4)

where π ∈ P(R2d × R2d) and (π)1 = µ, (π)2 = ν — here (π)i denotes the ith marginal of π. Recall
that Wasserstein distances admit a picturesque probabilistic interpretation as they are defined by
optimization over couplings of probability measures. Let us stick to the concrete case of 2-Wasserstein
distances between states of classical mechanical systems. In this case, the probabilistic version of
(4) reads as follows:

d2W2
(µ, ν) = inf

{
E |(Q1, P1)− (Q2, P2)|2

∣∣∣ law(Q1, P1) = µ, law(Q2, P2) = ν
}
. (5)

In the above formula, the random variables Qj and Pj represent the position and the momentum
of the jth particle (j = 1, 2). That is, we minimize the sum of the expected squared differences
between the positions of the two particles and the momenta of them.
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In quantum mechanics, the state of a particle moving in Rd is described by a wave function
ψ ∈ L2

(
Rd
)
of unit norm, or more generally, by a normalized, positive, trace-class operator ρ

on H = L2
(
Rd
)
. Measurable physical quantities correspond to (possibly unbounded) self-adjoint

operators onH = L2
(
Rd
)
. The spectrum of such an operator is precisely the collection of all possible

outcomes of a quantum measurement. In the sequel, we denote by L(H)sa the set of self-adjoint
but not necessarily bounded operators on H, and S (H) stands for the set of states, that is, the set
of positive trace-class operators on H with unit trace. The space of all bounded operators on H
is denoted by B(H), and we recall that the collection of trace-class operators on H is denoted by

T1(H) and defied by T1(H) =
{
X ∈ B(H)

∣∣∣ trH[
√
X∗X] <∞

}
. Similarly, T2(H) stands for the set of

Hilbert-Schmidt operators defined by T2(H) = {X ∈ B(H) | trH[X∗X] <∞} . When measuring an
observable quantity A ∈ L(H)sa on a quantum system being in the state ρ ∈ S (H) , the probability
of the outcome lying in an interval [a, b] ⊂ R is trH (ρEA ([a, b])) , where EA is the spectral measure
of A. Consequently, a quantum state encapsulates a bunch of classical probability distributions, each
corresponding to a physical quantity we are interested in.

Let us single out a few observable quantities A1, . . . , Ak ∈ L(H)sa we are interested in, and let

X
(ρ)
j denote the random variable obtained by measuring Aj in the initial state ρ, and let X

(ω)
j denote

the random variable obtained by measuring Aj in the final state ω. According to (5), the squared
OT distance of the quantum states ρ, ω ∈ S (H) should read as

D2 (ρ, ω) = inf


k∑

j=1

E
(
X

(ρ)
j −X

(ω)
j

)2 (6)

where the infimum is taken over all possible couplings of the quantum states ρ and ω. According to
the convention introduced by De Palma and Trevisan [18], the set of all couplings of the quantum
states ρ, ω ∈ S (H) is denoted by C (ρ, ω) , and is given by

C (ρ, ω) =
{
Π ∈ S (H⊗H∗)

∣∣ trH∗ [Π] = ω, trH[Π] = ρT
}
, (7)

where the transpose AT of a linear operator A acting on H is a linear operator on the dual space
H∗ defined by the identity (AT η)(φ) ≡ η(Aφ) where η ∈ H∗ and φ ∈ dom(A). That is, a coupling
of ρ and ω is a state Π on H⊗H∗ such that

trH⊗H∗ [(A⊗ IH∗)Π] = trH[ωA]

and
trH⊗H∗

[(
IH ⊗BT

)
Π
]
= trH∗ [ρTBT ] = trH[ρB] (8)

for all bounded A,B ∈ L(H)sa. Note the clear analogy of the above definition of quantum couplings
with the definition of classical couplings that can be rephrased as follows: π ∈ P(X2) is a coupling
of µ ∈ P(X) and ν ∈ P(X) if∫∫

X2

f(x)dπ(x, y) =

∫
X

f(x)dµ(x) and

∫∫
X2

g(y)dπ(x, y) =

∫
X

g(y)dν(y)

for every continuous and bounded function f, g defined on X.We remark that C (ρ, ω) is never empty,
because the trivial coupling ω ⊗ ρT belongs to C (ρ, ω).

Note that the definition of couplings (7) proposed by De Palma and Trevisan [18] is different from
the definition proposed by Golse, Mouhot, Paul [27] in the sense that it involves the dual Hilbert
space H∗ and hence the transpose operation. For a clarification of this difference, see Remark 1
in [18]. For more detail on the latter concept of quantum couplings, the interested reader should
consult [9, 10,27,28,30,32,34].
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Let us jump back to (6) and note that by Born’s rule on quantum measurement, if the state of
our composite quantum system is described by Π ∈ C(ρ, ω), then

E
(
X

(ρ)
j −X

(ω)
j

)2
= trH⊗H∗

[(
Aj ⊗ IH∗ − IH ⊗AT

j

)
Π
(
Aj ⊗ IH∗ − IH ⊗AT

j

)]
. (9)

Here we used the convention that the right-hand side of (9) is defined to be +∞ if there is an
eigenvector of Π outside the domain of Aj ⊗ IH∗ − IH ⊗ AT

j for some j ∈ {1, . . . , k} . Therefore,
in view of (6), (7), and (9), the quadratic Wasserstein distance of ρ and ω with respect to the

measurable quantities {Aj}kj=1 =: A is given by

D2
A (ρ, ω) = inf

Π∈C(ρ,ω)


k∑

j=1

trH⊗H∗
[(
Aj ⊗ IH∗ − IH ⊗AT

j

)
Π
(
Aj ⊗ IH∗ − IH ⊗AT

j

)] . (10)

We recall (see [18, Definition 6]) that the energy of a state ρ ∈ S (H) with respect to the observable

A ∈ L(H)sa is given by EA(ρ) =
∑∞

j=1 pj ||Aψj ||2 , where
∑∞

j=1 pj |ψj⟩⟨ψj | is the spectral decom-

position of ρ, and EA(ρ) = +∞ if ψj /∈ dom(A) for some j. The energy of ρ with respect to the

collection of observables A = {A1, . . . , Ak} is defined by EA(ρ) =
∑k

j=1EAj (ρ). Recall that classical
quadratic Wasserstein spaces consist of probability measures with finite second moment. As the
natural quantum analogs of them are states with finite energy, we restrict our attention to such
quantum states in the sequel.

By [18, Proposition 3], if the states ρ, ω ∈ S (H) have finite energy, then any quantum coupling
Π ∈ C(ρ, ω) has finite cost. Moreover, both AjρAj and AjωAj are trace-class for every j ∈ {1, . . . , k}
– see [18, Lemma 3]. Consequently, by the definition of Hilbert-Schmidt and trace-class operators,√
ρAj and

√
ωAj are Hilbert-Schmidt, and so are Aj

√
ρ and Aj

√
ω as taking the adjoint is an

involution of T2(H). Note furthermore that both
√
ρ and

√
ω are Hilbert-Schmidt by definition, and

hence the operators ρAj , Ajρ, ωAj , Ajω are trace-class as they are products of two Hilbert-Schmidt
operators.

A prominent coupling of a state ρ ∈ S (H) with itself is the canonical purification ||√ρ⟩⟩⟨⟨√ρ|| ∈
S(H ⊗ H∗) which is the rank-one projection corresponding to the unit vector ||√ρ⟩⟩ ∈ H ⊗ H∗

obtained from
√
ρ ∈ T2(H) by the canonical isomorphism between T2(H) and H⊗H∗.

An important feature of the quadratic Wasserstein distances is that the distance of a state ρ from
itself (which may be positive) is always realized by the canonical purification — see [18, Corollary
1]. That is,

D2
A (ρ, ρ) =

k∑
j=1

trH⊗H∗
[(
Aj ⊗ IH∗ − IH ⊗AT

j

)
||√ρ⟩⟩⟨⟨√ρ||

(
Aj ⊗ IH∗ − IH ⊗AT

j

)]
=

k∑
j=1

trH⊗H∗ [||Aj
√
ρ−√

ρAj⟩⟩⟨⟨Aj
√
ρ−√

ρAj ||] =
k∑

j=1

||Aj
√
ρ−√

ρAj ||2HS

We have seen that the finite energy condition on ρ implies that both Aj
√
ρ and

√
ρAj are Hilbert-

Schmidt operators, and hence not only AjρAj but also
√
ρAj

√
ρAj and Aj

√
ρAj

√
ρ and

√
ρA2

j

√
ρ

are trace-class operators. We note that taking the adjoint leaves both the Hilbert-Schmidt norm and
the trace invariant, and hence

∣∣∣∣Aj
√
ρ
∣∣∣∣
HS

=
∣∣∣∣√ρAj

∣∣∣∣
HS

and trH[Aj
√
ρAj

√
ρ] = trH[

√
ρAj

√
ρAj ].

Consequently,

D2
A(ρ, ρ) =

k∑
j=1

trH[2AjρAj − 2
√
ρAj

√
ρAj ]. (11)
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Moreover, the following concavity-like result is true for any choice of A = {A1, . . . , Ak} and for any
ρ, ω ∈ S (H) with finite energy:

D2
A(ρ, ω) ≥

1

2

(
D2

A(ρ, ρ) +D2
A(ω, ω)

)
. (12)

Indeed, (12) is an easy consequence of Theorem 1 and Corollary 1 of [18]. The following conjecture
was popularized by Dario Trevisan and Giacomo De Palma in the fall of 2022 — see also [19].

Conjecture 1 (De Palma-Trevisan, [19]). A modified version of the quantum optimal transport
distance (10) defined by

dA(ρ, ω) :=

√
D2

A(ρ, ω)−
1

2
(D2

A(ρ, ρ) +D2
A(ω, ω)) (13)

is a true metric for all finite collections of observables A = {A1, . . . , Ak} on the set of those states
on H that have finite energy with respect to A — up to some non-degeneracy assumptions on the
Aj’s to ensure the definiteness of dA, that is, that dA(ρ, ω) = 0 only if ρ = ω.

Let us denote by P1(H) the set of rank-one ortho-projections on H, that is, the set of pure states.
Note that if either ρ or ω is a pure state, then the only coupling of them is the tensor product, that
is, C(ρ, ω) =

{
ω ⊗ ρT

}
. Therefore, by (10), the quadratic quantum Wasserstein distance DA(ρ, ω)

has the following explicit form in this special case:

D2
A(ρ, ω) =

k∑
j=1

trH⊗H∗
[(
Aj ⊗ IH∗ − IH ⊗AT

j

) (
ω ⊗ ρT

) (
Aj ⊗ IH∗ − IH ⊗AT

j

)]
=

k∑
j=1

trH⊗H∗
[
AjωAj ⊗ ρT − ωAj ⊗AT

j ρ
T −Ajω ⊗ ρTAT

j + ω ⊗AT
j ρ

TAT
j

]
= trH[AjωAj ] + trH[AjρAj ]− 2trH[ωAj ]trH[ρAj ]. (14)

Here we used that trH⊗H∗ [X⊗Y ] = trH[X]trH∗ [Y ] if X ∈ T1(H) and Y ∈ T1(H∗), that trH∗ [XT ] =
trH[X] for X ∈ T1(H), and that the operators ρAj , Ajρ, ωAj , Ajω are trace-class.

2. Triangle inequality for quantum Wasserstein divergences — the proof of
Theorem 1

Having introduced all the necessary notions and notation, we are in the position to state and
prove our main result.

Theorem 1. Let H be a separable Hilbert space, and let A = {Aj}kj=1 ⊂ L(H)sa be an arbitrary finite

collection of observable quantities, and let dA be the corresponding quadratic quantum Wasserstein
divergence defined by (13) and (10). Let ρ, ω, τ ∈ S(H) and assume that ω ∈ P1(H) or both ρ and
τ are in P1(H). Moreover, assume that ρ, ω and τ have finite energy with respect to A. Then the
triangle inequality

dA(ρ, τ) ≤ dA(ρ, ω) + dA(ω, τ) (15)

holds true.

Proof. If ω is pure or both ρ and τ are pure, then by (14) and (11) we have

d2A(ρ, ω) =

N∑
j=1

(
trH[

√
ρAj

√
ρAj ] + trH[

√
ωAj

√
ωAj ]− 2trH[ρAj ]trH[ωAj ]

)
(16)
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and

d2A(ω, τ) =

N∑
j=1

(
trH[

√
ωAj

√
ωAj ] + trH[

√
τAj

√
τAj ]− 2trH[ωAj ]trH[τAj ]

)
. (17)

By relaxing the infimum in the definition of the quantum Wasserstein divergence to the tensor
product coupling, we get

d2A(ρ, τ) ≤
N∑
j=1

(
trH[

√
ρAj

√
ρAj ] + trH[

√
τAj

√
τAj ]− 2trH[ρAj ]trH[τAj ]

)
. (18)

By (12) the quantum Wasserstein divergence is a non-negative real number and hence eq. (15) is
equivalent to

2dA(ρ, ω)dA(ω, τ) ≥ d2A(ρ, τ)−
(
d2A(ρ, ω) + d2A(ω, τ)

)
. (19)

If X ∈ S (H) is a state having finite energy with respect to the observable Y ∈ L(H)sa, then
X1/4Y X1/4 is a Hilbert-Schmidt operator. Indeed, let

∑∞
j=1 λj |φj⟩⟨φj | be the spectral resolution

of X, and let us compute the trace of the positive operator (X1/4Y X1/4)2 by

trH[(X1/4Y X1/4)2] =

∞∑
j=1

⟨φj |X1/4Y X1/4X1/4Y X1/4|φj⟩ =

=

∞∑
j=1

∣∣∣∣∣∣X1/4Y X1/4φj

∣∣∣∣∣∣2 =

∞∑
j=1

(
λ
1/4
j

)2 ∣∣∣∣∣∣X1/4Y φj

∣∣∣∣∣∣2 .
Now let us note that this is precisely the trace of

√
XY

√
XY that we already have shown to be a

trace-class operator. This latter statement can be checked by the direct computation

trH[
√
XY

√
XY ] =

∞∑
j=1

⟨φj |
√
XY

√
XY |φj⟩ =

∞∑
j=1

⟨
√
Xφj |Y

√
XY |φj⟩ =

∞∑
j=1

√
λj

∣∣∣∣∣∣X1/4Y φj

∣∣∣∣∣∣2 .
So both

√
X and X1/4Y X1/4 are Hilbert-Schmidt operators, and by the Cauchy-Schwarz inequality

for the Hilbert-Schmidt inner product of them we get

trH[
√
XY

√
XY ] = trH[(X1/4Y X1/4)2]trH[(

√
X)2] ≥ (trH[X1/4Y X1/4X1/2])2 = (trH[XY ])2,

where we used that both X1/4Y X3/4 and XY are trace-class and hence their traces coincide, and
hence we get the following upper bound for the right-hand side (RHS) of (19):

RHS ≤
N∑
j=1

(
trH[

√
ρAj

√
ρAj ] + trH[

√
τAj

√
τAj ]− 2trH[ρAj ]trH[τAj ]

)
−

−
N∑
j=1

(
trH[

√
ρAj

√
ρAj ] + trH[

√
ωAj

√
ωAj ]− 2trH[ρAj ]trH[ωAj ]

)
−

−
N∑
j=1

(
trH[

√
ωAj

√
ωAj ] + trH[

√
τAj

√
τAj ]− 2trH[ωAj ]trH[τAj ]

)
≤

≤
N∑
j=1

(
−2trH[ρAj ]trH[τAj ]− 2(trH[ωAj ])

2 + 2trH[ρAj ]trH[ωAj ] + 2trH[ωAj ]trH[τAj ]
)
=
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=

N∑
j=1

2 (trH[ωAj ]− trH[ρAj ]) (trH[τAj ]− trH[ωAj ]) . (20)

Now a Cauchy-Schwartz for the Euclidean space RN tells us that

N∑
j=1

2 (trH[ωAj ]− trH[ρAj ]) (trH[τAj ]− trH[ωAj ]) ≤

≤ 2

 N∑
j=1

(trH[ωAj ]− trH[ρAj ])
2

1/2(
N∑

k=1

(trH[τAk]− trH[ωAk])
2

)1/2

≤

≤ 2

 N∑
j=1

(
trH[

√
ωAj

√
ωAj ] + trH[

√
ρAj

√
ρAj ]− 2trH[ωAj ]trH[ρAj ]

)1/2

×

×

 N∑
j=1

(
trH[

√
τAj

√
τAj ] + trH[

√
ωAj

√
ωAj ]− 2trH[τAj ]trH[ωAj ]

)1/2

=

= 2dA(ω, ρ)dA(τ, ω)

where we used again the Cauchy-Schwarz inequality for the Hilbert-Schmidt inner product
trH[

√
XY

√
XY ] ≥ (trH[XY ])2, for X = ρ, τ, ω and Y = Aj . This completes the proof of (19) and

hence that of the Theorem. □

3. Numerical evidence for the triangle inequality for generic triplets of states

The quantum optimal transport problem is a semidefinite programming task, and we used Wol-
fram Mathematica [36] to perform numerical simulations. The data generated during our experi-
ments (Mathematica notebooks, their pdf images, and the raw data exported from the notebooks)
is available online, see [8].

In the quantum bit (H = C2) case, we ran the following experiment. We chose four pairs
of random states (ρ(0,1), τ(0,1)), (ρ(0,2), τ(0,2)), (ρ(0,3), τ(0,3)), (ρ(0,4), τ(0,4)) and four triples of random
self-adjoint operators: A(0,1),A(0,2),A(0,3) and A(0,4). The random states are normalized Wishart

matrices: they are of the form X∗X
tr(X∗X) where X is a 2 × 2 random matrix with i.i.d. complex

standard Gaussian entries. The random self-adjoint operators are defined similarly: they are of the
form Y + Y ∗ where the elements of Y are i.i.d. complex Gaussians. Then we let ω ∈ S (H) run on
the following lattice within the state space:

Lat(S(C2)) :=

{
1

2

(
I +

1

10
(jσ1 + kσ2 + lσ3)

) ∣∣∣∣ j, k, l ∈ Z, j2 + k2 + l2 ≤ 100

}
. (21)

We computed the minimal gap between the two sides of the triangle inequality

min
ω∈Lat(S(C2))

(
dA(0,m)

(ρ(0,n), ω) + dA(0,m)
(ω, τ(0,n))− dA(0,m)

(ρ(0,n), τ(0,n))
)

(22)
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for every m,n ∈ 1, 2, 3, 4. We found the following 4× 4 = 16 elements long list of minimal gaps:


m/n 1 2 3 4
1 0.310819 0.528506 0.760247 0.352543
2 0.218016 0.715538 0.590063 0.453942
3 0.280697 0.642319 0.669042 0.800527
4 0.195821 0.443850 0.447589 0.401331

 .

Then we turned to the case of higher dimensions d := dim(H) = 3, 4, 5. In each dimension, we
generated 4000 triples of random states

(ρ(d,n), ω(d,n), τ(d,n)), n = 1, . . . , 4000

which are i.i.d. normalised d× d Wishart matrices, and 4000 triples of random self-adjoint matrices
A(d,n) (1 ≤ n ≤ 4000). Then we computed the minimal gap

mg(d) := min
n∈{1,...,4000}

(
dA(d,n)

(ρ(d,n), ω(d,n)) + dA(d,n)
(ω(d,n), τ(0,n))− dA(0,m)

(ρ(d,n), τ(d,n))
)
. (23)

We found that mg(3) = 0.854168,mg(4) = 1.89892, and mg(5) = 2.69551.
That is, we found strong numerical evidence indicating that the conclusion of Theorem 1 holds

in full generality, without any additional assumption on the states ρ, ω, τ involved.
These minima are convincing but do not tell too much about how the gap depends on the states

involved. Therefore, we worked out the following illustrative examples.
In the first example, we considered H = C2 and chose the deterministic states

ρ(1,1) =
1

2

(
I +

1√
2
σ1 +

1√
3
σ2

)
and τ(1,1) =

1

2

(
I +

1

3
σ2 +

1

4
σ3

)
.

We singled out the section z = 1√
2
of the Bloch ball, that is, we took ω’s of the form

ω =
1

2

(
I + xσ1 + yσ2 +

1√
2
σ3

)

where x2 + y2 ≤ 1
2 . The set of self-adjoint matrices generating the quadratic cost operator is chosen

to be A(1,1) = {σ1, σ3} . We considered the gap

dA(1,1)
(ρ(1,1), ω(1,1)(x, y)) + dA(1,1)

(ω(1,1)(x, y), τ(1,1))− dA(1,1)
(ρ(1,1), τ(1,1))

where ω(1,1)(x, y) =
1
2

(
I + xσ1 + yσ2 +

1√
2
σ3

)
, and plotted it as a function of x and y in Figure 1.
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Figure 1. The plot of the gap in the first scenario: H = C2, the states and the
cost are chosen to be nice

The second example deals with H = C4. We chose

ρ(1,2) =
1

4
(I +

1

10
σ1 ⊗ σ1 +

1

5
σ2 ⊗ σ0 +

3

10
σ3 ⊗ σ0)

and

τ(1,2) =
1

4
(I +

3

10
σ0 ⊗ σ3 +

1

5
σ1 ⊗ σ3 +

1

10
σ3 ⊗ σ0).

We considered ω’s of the form

ω(1,2)(x, y) =

=
1

4
(I + xσ0 ⊗ σ1 + yσ0 ⊗ σ2 +

1

10
σ1 ⊗ σ0 +

1

10
σ1 ⊗ σ1 +

1

10
σ1 ⊗ σ2 +

3

10
σ2 ⊗ σ0 +

1

5
σ2 ⊗ σ2) (24)

and the cost governed by the collection of all possible tensor products of Pauli matrices:

A(1,2) = {σj ⊗ σk | j, k ∈ 0, 1, 2, 3, (j, k) ̸= (0, 0)} .

Figure 2 shows the plot of the gap

dA(1,2)
(ρ(1,2), ω(1,2)(x, y)) + dA(1,2)

(ω(1,2)(x, y), τ(1,2))− dA(1,2)
(ρ(1,2), τ(1,2))
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Figure 2. The plot of the gap in the second scenario: H = C4, the states and the
cost are chosen to be nice

The following Figure 3 concerns the qubit case again, but now the states ρ(1,3) and τ(1,3) are
random (independent normalized Wishart) densities, the quadratic cost operator is generated by
random self-adjoint operators, and ω(1,3) = ω(1,3)(x, y) runs over the section z = 1

5 , that is,

ω(1,3)(x, y) =
1
2

(
I + xσ1 + yσ2 +

1
5σ3
)
where x2 + y2 ≤ 24

25 .

Figure 3. The plot of the gap in the third scenario: H = C2, the states and the
cost are random

Finally, Figure 4 shows the behaviour of the gap in the H = C4 case, with random states ρ(1,4)
and τ(1,4), and random quadratic cost. The third state ω(1,4) runs over the region described in (24).
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Figure 4. The plot of the gap in the second scenario: H = C4, the states and the
cost are random

4. Steps towards an analytic proof of the triangle inequality in full generality

The positive numerical results presented in Section 3 encouraged us to take steps towards an
analytical proof of the general case. In Subsection 4.1 we study the special case when H = C2 and
the cost operator C is the symmetric cost. As we will see, it is vital to get useful lower bounds
for quantum Wasserstein distances. One way to get these lower bounds is to find (not necessarily
optimal) solutions of the dual optimization problem — see Proposition 2. Another way of getting
lower bounds is described in Subsection 4.2. The starting point of this method is the observation
that the summands of the quadratic cost operators are gaps between the arithmetic and geometric
means of certain operators.

4.1. Triangle inequality for qubits — the case of the symmetric cost. In the special case
H = C2, elements of S(H) can be represented by vectors using the Bloch representation. The Bloch
vector bρ of a state ρ ∈ S(H) is defined by

R3 ∋ bρ := (trH(ρσj))
3
j=1

where the σj ’s are the Pauli operators

σ1 =

[
0 1
1 0

]
σ2 =

[
0 −i
i 0

]
σ3 =

[
1 0
0 −1

]
. (25)

The positivity condition ρ ≥ 0 is equivalent to the Euclidean length of bρ being at most 1.
In this section we stick to H = C2 and we choose the cost operator to be

Cs =

3∑
j=1

(
σj ⊗ ITC2 − IC2 ⊗ σT

j

)2
(26)

where the “s” in the subscript of Cs refers to the symmetry of Cs meaning that it involves all
the Pauli matrices. The induced quantum Wasserstein distance (10) is denoted by Ds, and the
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corresponding modified quantum Wasserstein distance, or Wasserstein divergence (13) is denoted
by ds.

We aim to prove the triangle inequality

ds(ρ, τ) ≤ ds(ρ, ω) + ds(ω, τ) (27)

for a reasonably large class of states ρ, ω, τ ∈ S(C2).
As we have seen, (27) is equivalent to

2ds(ρ, ω)ds(ω, τ) ≥ d2s(ρ, τ)−
(
d2s(ρ, ω) + d2s(ω, τ)

)
. (28)

By the very definition of the Wasserstein divergence (13), the above (28) can be written as

2
(
D2

s(ρ, ω)−
1

2

(
D2

s(ρ, ρ) +D2
s(ω, ω)

)) 1
2
(
D2

s(ω, τ)−
1

2

(
D2

s(ω, ω) +D2
s(τ, τ)

)) 1
2 ≥

≥ D2
s(ρ, τ)−

1

2

(
D2

s(ρ, ρ) +D2
s(τ, τ)

)
−D2

s(ρ, ω) +
1

2

(
D2

s(ρ, ρ) +D2
s(ω, ω)

)
−

−D2
s(ω, τ) +

1

2

(
D2

s(ω, ω) +D2
s(τ, τ)

)
= D2

s(ρ, τ)−D2
s(ρ, ω)−D2

s(ω, τ) +D2
s(ω, ω). (29)

Our strategy to prove (29) is to give a lower bound LB of the left-hand side of (29) and an upper
bound UB of the right side of (29) such that LB ≥ UB. The following statement will turn out to be
useful in deriving such lower and upper bounds.

Proposition 2. We have the lower bound

D2
s(ρ, ω) ≥ 4 |bρ − bω|2 (30)

for any ρ, ω ∈ S(C2) where bρ is the Bloch vector of ρ and |·|2 denotes the l2 (Euclidean) norm.

Proof. The first step is to prove that

Cs ≥ X ⊗ ITC2 − IC2 ⊗XT (31)

for anyX ∈ Lsa(C2) satisfying −4IC2 ≤ X ≤ 4IC2 . A crucial observation of [26] is that the symmetric
cost operator Cs defined in (26) is unitary invariant, that is,(

U ⊗
(
UT
)∗)

Cs

(
U∗ ⊗ UT

)
= Cs (32)

for any U ∈ U(2). Therefore, the spectral resolution of Cs, which is computed in [26] in the compu-
tational basis, is valid in any orthonormal basis.

Let {e1, e2} ⊂ C2 be the eigenbasis of X and let {f1, f2} ⊂ (C2)∗ be the corresponding dual basis.
Then we have

CS = 0 · |v0⟩⟨v0|+ 8 · (|v1⟩⟨v1|+ |v2⟩⟨v2|+ |v3⟩⟨v3|) (33)

where

v0 =
1√
2
(e1 ⊗ f1 + e2 ⊗ f2), v1 =

1√
2
(e1 ⊗ f2 + e2 ⊗ f1),

v2 =
1√
2
(−ie1 ⊗ f2 + ie2 ⊗ f1), v3 =

1√
2
(e1 ⊗ f1 − e2 ⊗ f2).

Now let us note that X ⊗ ITC2 − IC2 ⊗XT always annihilates v0 = 1√
2
(e1 ⊗ f1 + e2 ⊗ f2). Indeed,

(X ⊗ ITC2 − IC2 ⊗XT )(e1 ⊗ f1 + e2 ⊗ f2) =

= (λ1e1)⊗ f1 + (λ2e2)⊗ f2 − e1 ⊗ (λ1f1)− e2 ⊗ (λ2f2) = 0.
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And on the subspace orthogonal to v0 it is enough to guarantee that

X ⊗ ITC2 − IC2 ⊗XT ≤ 8I

which is clear as both X ⊗ ITC2 and −IC2 ⊗ XT is bounded from above by 4I. So we have proved
(31) and now we use it to get useful lower bounds on quantum Wasserstein distances by appropriate
choices of X. The lower bound on the symetric cost (31) implies that for any ρ, ω ∈ S(C2) we have

D2
s(ρ, ω) = trH⊗H∗ (Π0Cs) ≥ trH⊗H∗

(
Π0(X ⊗ ITC2 − IC2 ⊗XT )

)
=

= trH(ωX)− trH(ρX) = trH((ω − ρ)X).

We aim for the highest possible lower bound on D2
s(ρ, ω), so let us choose X as follows:

X := 4
bω − bρ

|bω − bρ|2
· σ (34)

This choice satisfies the condition −4IC2 ≤ X ≤ 4IC2 and

trH((ω − ρ)X) = trH

((
1

2
(bω − bρ) · σ

)(
4

bω − bρ

|bω − bρ|2
· σ
))

=

=
2

|bω − bρ|2
2 |bω − bρ|22 = 4 |bω − bρ|2

which is precisely the lower bound appearing in (30). □

Moreover, we have the following explicit formula for the self-distance D2
s(ρ, ρ).

Proposition 3. We have

D2
s(ρ, ρ) = 2

(
1−

√
1− |bρ|22

)
(35)

where |·|2 denotes the Euclidean (l2) norm.

Proof. The purification of ρ realizes the self-distance: D2
s(ρ, ρ) = ⟨⟨√ρ||Cs||

√
ρ⟩⟩. The spectral

decomposition of Cs is

Cs = 4 (||σ1⟩⟩⟨⟨σ1||+ ||σ2⟩⟩⟨⟨σ2||+ ||σ3⟩⟩⟨⟨σ3||)

and it follows from the spectral resolution of ρ that

√
ρ =

√
λ
1

2

(
I +

bρ

|bρ|2
· σ
)
+

√
1− λ

1

2

(
I − bρ

|bρ|2
· σ
)

where λ = 1
2 (1 + |bρ|2). Therefore,

⟨⟨√ρ||Cs||
√
ρ⟩⟩ = 4

∣∣∣∣∣∣∣∣12(√λ−
√
1− λ)

bρ

|bρ|2
· σ
∣∣∣∣∣∣∣∣2
HS

=

=

(
1− 2

√
1

2
(1 + |bρ|2)

1

2
(1− |bρ|2)

)
2 |bρ|22
|bρ|22

= 2

(
1−

√
1− |bρ|22

)
.

□
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With (30) and (35) in hand, we can give the following upper bound on the right-hand side of
(29):

D2
s(ρ, τ)−D2

s(ρ, ω)−D2
s(ω, τ) +D2

s(ω, ω) ≤

≤ 6− 2bρ · bτ − 4 |bρ − bω|2 − 4 |bω − bτ |2 + 2

(
1−

√
1− |bω|22

)
where D2

s(ρ, τ) was bounded by the cost of the independent coupling.
The lower bound on the left hand side of (29) that we can obtain by Proposition 2 and Proposition

3 reads as follows:

2

(
D2

s(ρ, ω)−
1

2

(
D2

s(ρ, ρ) +D2
s(ω, ω)

)) 1
2
(
D2

s(ω, τ)−
1

2

(
D2

s(ω, ω) +D2
s(τ, τ)

)) 1
2

≥

≥ 2

(
4 |bρ − bω|2 −

(
1−

√
1− |bρ|22

)
−
(
1−

√
1− |bω|22

)) 1
2

×

×
(
4 |bω − bτ |2 −

(
1−

√
1− |bω|22

)
−
(
1−

√
1− |bτ |22

)) 1
2

.

We summarize the above computations in the following corollary.

Corollary 4. Let us choose ρ, ω, τ ∈ S(C2) such that their Bloch vectors satisfy

6− 2bρ · bτ − 4 |bρ − bω|2 − 4 |bω − bτ |2 + 2

(
1−

√
1− |bω|22

)
≤

≤ 2

(
4 |bρ − bω|2 −

(
1−

√
1− |bρ|22

)
−
(
1−

√
1− |bω|22

)) 1
2

×

×
(
4 |bω − bτ |2 −

(
1−

√
1− |bω|22

)
−
(
1−

√
1− |bτ |22

)) 1
2

. (36)

Then the quantum Wasserstein divergence corresponding to the symmetric cost operator satisfies the
triangle inequality

ds(ρ, τ) ≤ ds(ρ, ω) + ds(ω, τ).

Remark 1. There are various ways to obtain easy-to-check examples of states ρ, ω, τ,∈ S(C2) that
satisfy the assumption of Corollary 4. One way is to fix ω = 1

2I, that is, bω = 0. In this case,

simple 2-variable calculus shows that (36) is satisfied whenever both |bρ|2 and |bτ |2 are at least 1
2 ,

no matter what the angle between bρ and bτ is. Moreover, a numerical test shows if we choose a
random triplet of states (the states are chosen independently according to the uniform distribution on
the Bloch ball), it will satisfy (36) with high probability (around 96%). The details of this numerics
is presented in the subfolder ”Corollary-4” of [8]. Note, however, that there are states that do not
satisfy (36): the easiest example is ρ = ω = τ = 1

2I.

Remark 2. Note that the estimate (31) may be sharp: the numerics tells us that it gives the precise
transport cost in the special cases

• ρ = 1
2 (I +

1
2σj), ω = 1

2 (I +
1
2σk), j ̸= k

• ρ = 1
2 (I + ασj), ω = 1

2 (I + βσj), sgn(α) = −sgn(β).
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4.2. Lower estimation of the cost function. Assuming that Aj ≥ 0 for every j ∈ {1, . . . , k}, we
can write the cost operator as the difference of an arithmetic and a geometric mean as follows

C =

k∑
j=1

(
Aj ⊗ IH∗ − IH ⊗AT

j

)2
=

=

k∑
j=1

(
A2

j ⊗ IH∗ + IH ⊗ (AT
j )

2 − 2Aj ⊗AT
j

)
=

= 2

k∑
j=1

(
A2

j ⊗ IH∗ + IH ⊗ (AT
j )

2

2
− [(A2

j ⊗ IH∗)(IH ⊗ (AT
j )

2)]1/2

)
.

Introducing the function

f(t) =
1 + t

2
−

√
t, (t ≥ 0),

the cost operator can be written as

C = 2

k∑
j=1

(A2
j ⊗ IH∗)f(A−2

j ⊗ (AT
j )

2).

f is an operator convex function on [0,∞) and its tangent line at s is given by

gs(t) =
1−

√
s

2
+

√
s− 1

2
√
s
t.

By the convexity of f we have
f(t) ≥ gs(t), (s > 0, t ≥ 0),

and

C = 2

k∑
j=1

(A2
j ⊗ IH∗)f(A−2

j ⊗ (AT
j )

2) ≥

≥ 2

k∑
j=1

(A2
j ⊗ IH∗)gs(A

−2
j ⊗ (AT

j )
2) =

=

k∑
j=1

(
(1−

√
s)A2

j ⊗ IH∗ +

√
s− 1√
s

IH ⊗ (AT
j )

2

)
=

= (1−
√
s)

 k∑
j=1

A2
j

⊗ IH∗ +

√
s− 1√
s

IH ⊗

 k∑
j=1

(AT
j )

2

 .

We can use this estimation to give a lower bound for the cost function in the state Π.

trH⊗H∗ [ΠC] ≥ trH⊗H∗

Π
(1−

√
s)

 k∑
j=1

A2
j

⊗ IH∗ +

√
s− 1√
s

IH ⊗

 k∑
j=1

(AT
j )

2

 =

= (1−
√
s)

trH

 k∑
j=1

A2
j

ω

− 1√
s
trH∗

 k∑
j=1

(AT
j )

2

 ρT

 =

= (1−
√
s)

(
α(ω)− 1√

s
β(ρ)

)
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for all s > 0, where α(ω) = trH

[(∑k
j=1A

2
j

)
ω
]
and

β(ρ) = trH∗

 k∑
j=1

(AT
j )

2

 ρT

 = trH

 k∑
j=1

A2
j

 ρ

 .
The function

h(s) = (1−
√
s)

(
α(ω)− 1√

s
β(ρ)

)
has maximum at s = β(ρ)

α(ω) . Since

h

(
β(ρ)

α(ω)

)
= 2

(
α(ω) + β(ρ)

2
−
√
α(ω)β(ρ)

)
,

we deduce that the cost function can be estimated from below by the Hellinger distance of α(ω) and
β(ρ), that is,

trH⊗H∗(ΠC) ≥ 2

(
α(ω) + β(ρ)

2
−
√
α(ω)β(ρ)

)
.

5. Applications

The aim of this section is to highlight a direct application of our main result in quantum complexity
theory (Subsection 5.1), and to present a brief description of the role of quantum optimal transport
distances in mathematical physics (Subsections 5.2 and 5.3).

5.1. Wasserstein complexity. We may define the Wasserstein complexity of quantum channels re-
lying on quantumWasserstein divergences. Given a finite collections of observablesA = {A1, . . . , Ak},
let us define the Wasserstein complexity of a channel Φ : S (H) → S (H) by

CW (Φ) := max
ρ∈S(H)

dA(ρ,Φ(ρ)). (37)

In [39] the quantum Wasserstein complexity is introduced in a similar way, using the quantum
generalization of the Hamming-Wasserstein classical metric. A connection between this complexity
and the circuit cost of unitary channels is provided, the latter being bounded from below by the
former. The argument of this bound relies heavily on the triangle inequality of the Wasserstein
distance used. We suggest now that (37) may have a similar application in light of the triangle
inequality proposed in this paper.

To justify our suggestion we now prove a few useful properties of (37) that is desirable of a
complexity quantity. It follows from the definition, the positive definiteness of dA and the lack of
self-distance in terms of dA that the Wasserstein complexity is faithful: CW (Φ) = 0 if and only if
Φ is the identity. The Wasserstein complexity is subadditive under concatenation: CW (Φ2 ◦ Φ1) ≤
CW (Φ2) + CW (Φ1). Indeed,

CW (Φ1 ◦ Φ2) = max
ρ∈S(H)

dA(ρ,Φ1 ◦ Φ2(ρ)) ≤ max
ρ∈S(H)

[dA(ρ,Φ2(ρ)) + dA(Φ2(ρ),Φ1 ◦ Φ2(ρ))]

≤ max
ρ∈S(H)

dA(ρ,Φ2(ρ)) + max
ρ∈S(H)

dA(Φ2(ρ),Φ1 ◦ Φ2(ρ))

≤ max
ρ∈S(H)

dA(ρ,Φ2(ρ)) + max
ρ∈S(H)

dA(ρ,Φ1(ρ)) = CW (Φ2) + CW (Φ1), (38)
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where the first inequality follows from the triangle inequality for the Wassertein divergence dA,
the second inequality is due maximizing terms of a sum separately, and the last inequality follows
from broadening the domain of the second maximum. From this it also follows directly that the
Wasserstein complexity is subadditive under tensor products in the following sense:

CW (Φ1 ⊗ Φ2) ≤ CW (Φ1 ⊗ I) + CW (I ⊗ Φ2).

We note that whether the Wasserstein complexity (37) is convex or not is an open question.

5.2. Mean-field approximations of evolution equations. Among the many applications of
classical optimal transport, one is particularly important for the development of quantum optimal
transport theory. In [20], Dobrushin employed a special approximation based on a transport-related
metric, the so-called Kantorovich-Rubinstein metric, to prove the uniqueness of the solution to the
Vlasov equation. The Vlasov equations, which describe the limiting situation of weakly interacting
particles with a large radius of interaction, are among the most frequently used kinetic equations in
statistical mechanics. More recently, Golse, Paul, and Mouhot have extended Dobrushin’s approach
to the quantum setting. Since Dobrushin used an optimal transport metric to compare N -particle
densities and their mean-field limits, it was a natural idea to define a transport-related quantity
for the purpose of comparing quantum states [27]. The significance of the quantum counterpart of
optimal transport (and the Wasserstein metric) in addressing various problems in quantum dynamics
became even more evident later through their subsequent papers, see e.g. [9, 10,27,28,31,33].

5.3. The Luttinger model. The non-equilibrium dymamics of the Luttinger model, describing
the low energy physics in Luttinger liquid is a field studied extensively. The question of how much
the time evolved state described by ρ(t) differs from the initial state ρ(0) is often investigated. The
paper [3] study the time evolution of Uhlmann fidelity (or the Loschmidt echo) which measures the
overlap between the time evolved and the initial thermal equilibrium states, is evaluated for arbitrary
initial temperatures and quench protocols. Instead of fidelity we can consider other dissimilarity
measures between states to describe these effects. With zero initial temperature, i.e. the initial
state is the pure ground state of the Hamiltonian, the Wasserstein distance is easiliy computable
and can be used for further investigations.

Acknowledgment. We are grateful to the anonymous referees for their insightful suggestions and
comments.

6. Appendix: the code used for the numerical study

Here we present the Wolfram Mathematica [36] code that we used to obtain the numerical results
discussed in Section 3.

RandSelfadjMatrix[l_] := Module[{A, i},

A = RandomVariate[NormalDistribution[], {l, l}] +

I * RandomVariate[NormalDistribution[], {l, l}];

A = A + ConjugateTranspose[A];

A = Chop[A];

A]

RandPositive[l_, r_] := Module[{A},

A = RandomVariate[NormalDistribution[], {l, r}] +

I * RandomVariate[NormalDistribution[], {l, r}];
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A = A.ConjugateTranspose[A];

A]

RandState[l_, r_] := Module[{A},

A = RandPositive[l, r];

A = A / Tr[A];

A]

CostfromObservable[Observables_, transpose_] := Sum[

MatrixPower[KroneckerProduct[Observables[[k]],

IdentityMatrix[Length[Observables[[1]]]]] -

KroneckerProduct[IdentityMatrix[Length[Observables[[1]]]],

If[transpose,Transpose[Observables[[k]]], Observables[[k]]]], 2],

{k, 1, Length[Observables]}]

SaMCNB[dim_] :=

SaMCNB[dim] = Flatten[{{Table[SparseArray[{{k, k} -> 1,

{dim, dim} -> 0}], {k, 1, dim}]},

Table[Table[SparseArray[{{k, m} -> Sqrt[2] / 2,

{m, k} -> Sqrt[2] / 2, {dim, dim} -> 0}],

{m, k + 1, dim}], {k, 1, dim - 1}],

Table[Table[SparseArray[{{k, m} -> -I * Sqrt[2] / 2,

{m, k} -> I * Sqrt[2] / 2, {dim, dim} -> 0}],

{m, k + 1, dim}], {k, 1, dim - 1}]}, 2];

SaMPB[2] = {{{1, 0}, {0, 1}}, {{0, 1}, {1, 0}},

{{0, -I}, {I, 0}}, {{1, 0}, {0, -1}}};

SaMPB[dim_] := SaMPB[dim] = Flatten[Table[

KroneckerProduct[SaMPB[dim / 2][[j]], SaMPB[2][[k]]],

{j, 1, dim^2 / 4}, {k, 1, 4}], 1];

SaMPNB[dim_] := SaMPNB[dim] = SaMPB[dim] / Sqrt[dim];

QOT[rho_, omega_, C_, dual_, transpose_]

:= Module[{dim, sol, Pi, x, y, X, Y},

dim = Length[rho];

If[

dual, {x = Table[Symbol["x" <> ToString[n]], {n, dim^2}];

y = Table[Symbol["y" <> ToString[n]], {n, dim^2}];

sol = SemidefiniteOptimization[-Tr[(y.SaMCNB[dim]).omega

+ (x.SaMCNB[dim]).rho],

{VectorGreaterEqual[{C - KroneckerProduct[(y.SaMCNB[dim]),

IdentityMatrix[dim]] -

KroneckerProduct[IdentityMatrix[dim], If[transpose, Transpose[

(x.SaMCNB[dim])], x.SaMCNB[dim]]], 0}, {"SemidefiniteCone", dim^2}]},

Flatten[{x, y}]];

X = Chop[sol[[1 ;; dim^2, 2]].SaMCNB[dim], 10^-3];
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Y = Chop[sol[[dim^2 + 1 ;; 2 * dim^2, 2]].SaMCNB[dim], 10^-3];

Chop[Sqrt[Tr[X.omega + Y.rho]], 10^-3],

X // MatrixForm, Y // MatrixForm},

{x = Table[Symbol["x" <> ToString[n]], {n, dim^4}];

sol = SemidefiniteOptimization[

Chop[Simplify[Tr[(x.SaMCNB[dim^2]).C]], 10^-3],

{ResourceFunction["MatrixPartialTrace"]

[x.SaMCNB[dim^2], 2, {dim, dim}] -> omega,

ResourceFunction["MatrixPartialTrace"]

[x.SaMCNB[dim^2], 1, {dim, dim}] ->

If[transpose, Transpose[rho], rho],

VectorGreaterEqual[{x.SaMCNB[dim^2], 0},

{"SemidefiniteCone", dim^2}] },x];

Pi = Chop[Sum[sol[[n, 2]]SaMCNB[dim^2][[n]], {n, 1, dim^4}], 10^-3];

Chop[Sqrt[Tr[C.Pi]], 10^-3], Pi // MatrixForm}]]

ModQOT [rho_, omega_, cost_, dual_, transpose_]

:= Sqrt[QOT[rho, omega, cost, dual, transpose][[1]]^2 -

(QOT[rho, rho, cost, dual, transpose][[1]]^2

+ QOT[omega, omega, cost, dual, transpose][[1]]^2) / 2]

TriIneq[rho_, omega_, tau_, C_, dual_, transpose_]

:= ModQOT[rho, omega, C, dual, transpose] +

ModQOT[omega, tau, C, dual, transpose]

- ModQOT[rho, tau, C, dual, transpose]
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quantum HWI inequality. Ann. Henri Poincaré, 21(7):2115–2150, 2020. doi:10.1007/s00023-020-00891-8.
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[47] Karol Życzkowski and Wojciech S lomczyński. The Monge metric on the sphere and geometry of quantum states.

J. Phys. A, 34(34):6689–6722, 2001. doi:10.1088/0305-4470/34/34/311.
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