
CORVINUS UNIVERSITY OF BUDAPEST 

Marianna E. Nagy, Tibor Illés, Yurii 
Nesterov and Petra Renáta Rigó

New Interior-Point 
Algorithm for Linear 
Optimization Based on 
a Universal Tangent 
Direction

http://unipub.lib.uni-corvinus.hu/10470 

C O R V I N U S 
ECONOMICS 
W O R K I N G 
P A P E R S

05/2024 

http://unipub.lib.uni-corvinus.hu/6581


NEW INTERIOR-POINT ALGORITHM
FOR LINEAR OPTIMIZATION BASED

ON A UNIVERSAL TANGENT DIRECTION

MARIANNA E.-NAGY∗, TIBOR ILLÉS† , YURII NESTEROV‡ , AND PETRA RENÁTA

RIGÓ§

Abstract. In this paper, we suggest a new interior-point method for linear optimization, based
on the idea of Parabolic Target Space. Our method can start at any strictly feasible primal-dual pair
and go directly towards a solution by a predictor-corrector scheme. Each iteration needs inversion of
a matrix in small dimension. The worst-case upper bound for the number of matrix factorizations is
O

(√
n ln 1

ε

)
, where n is the dimension of the problem. Our preliminary computational experiments

show that the actual number of iterations depends logarithmically on the dimensions. In the end, the
size of the predictor step typically goes above 99.97% of the maximal possible step to the boundary.
The method demonstrates a very fast local convergence. One of the main differences between our
approach and the standard framework is that the method is based on a parabolic barrier function.

Key words. Linear optimization, interior-point algorithms, parabolic target space, universal
tangent direction.

JEL codes. C61

1. Introduction. The development of the polynomial-time interior-point algo-
rithms (IPAs) for linear optimization (LO) started from the seminal paper by Kar-
markar [9], where he proposed a new projective algorithm, based on the description
of the positive orthant by an analytic barrier. As compared with the previously
known polynomial-time ellipsoid method [10, 14], the theoretical progress was not
very significant. However, the new algorithm had an important advantage of possible
acceleration on problems with an appropriate internal structure.

These ideas were transformed into a more conventional form by Renegar, who
introduced the methods of centers [21], and Gonzaga, who proposed the polynomial-
time path-following barrier methods [7]. These contributions were based on explicit
use of the central path, the object which has been already known by Fiacco and
McCormick [6], and which was actively popularized by Sonnevend [23]. All new
methods were computationally expensive since at each iteration it was necessary to
invert a matrix, formed as a sum of n rank-one (m×m)-matrices (m < n).

Despite the attractive theoretical bound O
(√

n ln n
ε

)
on the total number of iter-

ations, the first versions of the new methods were not very efficient since they followed
the central path by small steps. This disadvantage was eliminated in the primal-dual
settings by Mehrotra [12], who introduced a large infinity-neighbourhood of the cen-
tral path, allowing much bigger steps. From the analysis of one of its versions (e.g.
Section 14.1 in [18]), we know its worst-case complexity bound O

(
n ln n

ε

)
. However,

its practical behavior is usually much better.
Another predictor-corrector algorithm, working with the Euclidean neighbour-
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hood of the central path, was proposed by Mizuno et al. in [13]. A short-step version
of this scheme shares the best-known complexity bound of O

(√
n ln n

ε

)
iterations.

Today, the most efficient practical IPAs, implement one of these two strategies, trying
to enlarge somehow the size of the predictor step and keeping the number of corrector
steps at some reasonable level. As a paradox, we can confirm that the most efficient
practical methods today do not share the best theoretical complexity bounds.

All these methods, working in the primal-dual space, require two stages of the
process even if we know a strictly feasible pair of starting points. Indeed, in the first
stage, we need to find a point in a small neighbourhood of the central path, and in
the second stage, we follow this curve.

This inconvenience served as the main motivation for the development of alterna-
tive approaches. One of them is related to potential-reduction methods (see [24, 25]).
However, the potential functions in this approach explicitly depend on the dimension
and this reduces the adaptivity of such schemes to problems with simple internal
structure.

The second approach is called target-following framework [22], which will be dis-
cussed in detail later on. Nesterov [16] used a new target-following approach for LO,
a long-step greedy target-following algorithm, which can start at an arbitrary strictly
feasible solution. In this method, he embedded the problem into a higher-dimensional
one introducing control variables according to parabolic target space (PTS). On the
extended space, he defined a new parabolic barrier function, which plays a key role
in the new algorithm.

In this paper, we analyse a new version of the long-step PTS greedy algorithm
from [16], based on the universal tangent direction defined in (4.5). This direction
is obtained by using the above-mentioned parabolic barrier function (3.3). In the
algorithm proposed in [16] the search directions are obtained by Newton’s method
applied to the barrier function, which needs invertation of the Hessians. On the
other hand, in this paper, we define the search directions by solving system (2.4)
with different right-hand sides, which is less expensive than the computation of the
search directions in [16]. We prove that the complexity of the new long-step IPA
coincides with the known best ones in the theory of IPAs. Furthermore, we provide
preliminary computational results on randomly generated test set problems. The
method demonstrates a very fast local convergence.

The paper is organized as follows. In Section 2, we give the problem formulation
and the system for determining search directions. In Section 3 we present the parabolic
target-following approach and we introduce the main definitions of the new barrier
function and functional proximity measures. Section 4 presents the new IPA in PTS
based on a universal tangent direction, which alternates predictor and corrector steps.
Section 5 is devoted to the worst-case complexity analysis of the algorithm. First, we
prove that the length of the corrector stage is bounded by an absolute constant.
After that, we show that the progress achieved by the predictor step is sufficient for

bounding the total number of iterations by the value O
(√

n ln µ∗(w0)
ε

)
, where µ∗(w0)

is the merit function of the process, evaluated at the starting point, and ε is the
required accuracy of the solution. In Section 6, we present the results of preliminary
testing on a large set of random problems (1500 instances) and we show that our
results are very promising on this generated test set problems.

Our notations are standard. We work with column vectors in Rn and denote
by Rn

⊕ the nonnegative orthant and by Rn
+ its interior. For two vectors x, y ∈ Rn,

we use notation xy an x/y for the vector formed by componentwise operations with
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the components of x and y. For the norms, we denote by ∥x∥ =
√
xTx and ∥x∥1 =

n∑
i=1

|x(i)|, x ∈ Rn. Notation e ∈ Rn is used for the vector of all ones, and ē is the

vector of all ones in Rn+1. Note that X denotes the diagonal matrix containing the
components of the vector x on the main diagonal. Let G : Rk → Rn be an operator
and z,∆z ∈ Rk. Then, we use the notation DG(z)[∆z] for the directional derivative
of G in z along the direction ∆z. Let us consider the functions defined in [15]

(1.1) ω : R+ → R, ω(t) = t− ln(1 + t)

and

(1.2) ω∗ : [0, 1) → R, ω∗(t) = −t− ln(1− t),

that will be used in the analysis of the algorithm.

2. Problem formulation. In this paper, we propose a new efficient long-step
method based on a universal tangent direction for solving the primal-dual pair of
linear programming problems. The primal problem is the following:

(P ) min
{
cTx : Ax = b, x ≥ 0

}
,

where A ∈ Rm×n, b ∈ Rm and c ∈ Rn. Without loss of generality, we may assume
that rank(A) = m. The dual of this problem is the following:

(D) max
{
bT y : AT y + s = c, s ≥ 0

}
.

The optimality criteria of the primal-dual pair (P ) and (D) can be formulated as:

Ax = b, x ≥ 0,

AT y + s = c, s ≥ 0,(2.1)

xs = 0.

We denote by

F =
{
u = (x, y, s) ∈ Rn

⊕ × Rm × Rn
⊕ : Ax = b, AT y + s = c

}
the feasible set of the primal-dual problem (P ) and (D). We assume the existence of
an interior point, namely that the set of interior points

F+ = {u = (x, y, s) ∈ F : x > 0, s > 0}

is not empty. We define the duality gap

(2.2) cTx− bT y = (AT y + s)Tx− bT y = sTx,

where (x, y, s) ∈ F . We define the central path for LO problems in the standard way
[22, 23], as

(2.3) Ax = b, AT y + s = c, x, s > 0, xs = µ e,

where µ > 0 and e is the all one vector.
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In order to define the search directions for classical IPAs for LO, we apply New-
ton’s method on the barrier function, which results in the following linearized system:

(2.4)
A∆x = 0,

AT∆y +∆s = 0,
S∆x+X∆s = a,

where a ∈ Rn is properly selected, see for example in [1, 2, 3, 5, 8, 11, 19, 20, 22].
Note that system (2.4) has a unique solution for any a ∈ Rn vector, see [22]. Hence,
∆y = −[AS−1XAT ]−1S−1a and ∆x = S−1(a + XAT∆y). Moreover, due to the
structure of the linear system in (2.4), independent on the right-hand side a, we have

(2.5) ∆xT∆s = 0.

In order to estimate the norms of ∆x∆s, we use the classical method from the
literature, see [22]:

∥∆x∆s∥ ≤
∥∥∥∥√ s

x
∆x

√
x

s
∆s

∥∥∥∥
1

≤ 1

2

∥∥∥∥√ s

x
∆x+

√
x

s
∆s

∥∥∥∥2 =
1

2

∥∥∥∥ a√
xs

∥∥∥∥2 .(2.6)

Usually, the direction defined by (2.4) is applied to the classical logarithmic barrier
function for positive orthant. However, we show that it is applicable to a parabolic
barrier function, too.

In the following section, we present the parabolic target-following framework.

3. Target-following framework for LO and its modification. The main
difference between target-following approaches and other IPAs lies in the fact that
IPAs follow the central path, while the target-following approaches follow the so-
called weighted central path defined as

(3.1) Ax = b, AT y + s = c, x, s > 0, xs = v̄,

where v̄ ∈ Rn is a positive vector of control parameters, see [22]. The weighted central
path has a unique solution [16], namely (x(v̄), y(v̄), s(v̄)). The main advantage of this
approach is that any strictly feasible starting point u0 = (x0, y0, s0) defines a starting
point of this path by choosing v̄i = x0

i s
0
i , i = 1, . . . , n. Thus, we can immediately

start the main stage of the process with v̄ > 0.
However, the target-following approach suffers from a serious drawback. The

point x(v̄) is characterized there as a solution of the following weighted center problem:

(3.2) min cTx−
n∑

i=1

v̄i lnxi, such that Ax = b.

The complexity of finding an approximate solution to this problem depends on
the condition number of the weights

κ(v̄) = max
1≤i,j≤n

v̄i
v̄j
.

If the weights are well balanced (κ(v̄) ≈ 1), then the problem is easy. However, then
the point x(v̄) is close to the classical central path. If κ(v̄) is big, then this operation
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is expensive. At the same time, during the minimization process, it is difficult to keep
the condition number reasonably small, especially at the beginning.

The above difficulty was eliminated in [16] by replacing in (3.1) the nonlinear
equations by convex inequalities and introducing the parabolic target space (PTS)
defined as

Fw =
{
w = (v0, v) ∈ R+ × Rn : v0 ≥ ∥v∥2

}
,

which is a convex set and denote its interior by F+
w . Following the steps discussed

in [16] for LO and in [4] for weighted LCP, we can relax the third equation of (2.1)
for the original variable u = (x, y, s) of (P )-(D) from two points of view using the
variable w = (v0, v) of PTS. In this way, we can define the convex set for the joint
variable z = (u,w) as follows:

Fz =
{
z = (u,w) ∈ F × Fw : xs ≥ v2, v0 ≥ cTx− bT y

}
.

Similarly to the set F , due to the affine constraints, we will work with the relative
interior of the set, which for Fz is

F+
z =

{
z = (u,w) ∈ Fz : xs > v2, v0 > cTx− bT y

}
.

Note that F+
z is nonempty, because F+ is nonempty. It admits a (2n + 1)-self-

concordant barrier

(3.3) F (z) = −
n∑

i=1

ln
(
xisi − v2i

)
− ln

(
v0 − cTx+ bT y

)
, z ∈ F+

z .

For z = (u = (x, y, s), w = (v0, v)) ∈ Fz, we can define the following residuals

(3.4) r0(z) = v0 − sTx, ri(z) = xisi − v2i , i = 1, . . . , n,

hence r(z) ∈ Rn+1
⊕ . Note that the average of the residuals does not depend on u.

Indeed,

(3.5)
ēT r(z)

n+ 1
=

v0 − ∥v∥2

n+ 1
=: ρ(w).

Using (3.4), the self-concordant barrier given in (3.3) can be written as

(3.6) F (z) = −
n∑

i=0

ln(ri(z)), z ∈ F+
z .

We define the control barrier function, ϕ : R1+n → R as

(3.7) ϕ(w) = min
u

{
F (u,w) : (u,w) ∈ F+

z

}
, w ∈ F+

w ,

which is a self-concordant barrier for its domain. Following the ideas used in Section 2
of [16], Lemma 3.1 shows that any w ∈ F+

w determines a unique point u in F+.
Furthermore, it gives a closed-form representation for the function ϕ.

Lemma 3.1. Let w ∈ F+
w . Then, u(w) = (x(w), s(w), y(w)) := argminu{F (u,w) :

(u,w) ∈ F+
z } is the unique solution of the following system:

Ax = b,

AT y + s = c,(3.8)

xs = v2 + ρ(w)e,
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where ρ(w) is given in (3.5). Moreover, we have

(3.9) ϕ(w) = −(n+ 1) ln ρ(w).

Based on Lemma 3.1, any sequence {wk} ⊂ F+
w uniquely defines a sequence

{u(wk)} ⊂ F+. Moreover, if wk goes to 0, then u(wk) tends to a solution of the
problem (P )-(D). We can consider the line segment w(t) = tw0 = t(v00 , v

0), t ∈ (0, 1],
i.e. the greedy scheme used in [16], which defines the following parameterized system:

Ax = b,

AT y + s = c,(3.10)

xs = t
v00

n+ 1
e+ t2

((
v0
)2 − ∥v0∥2

n+ 1
e

)
,

which can be considered as a new type of central path problem. In our algorithm, we
follow this new central path.

If v0 is the zero vector, then the second term in the last equation of the system
(3.10) disappears, hence we get back the classical central path. However, our path-
following algorithm is new even in this case since it is based on the functional proximity
measure defined by (3.19).

Consider now the general system (3.8). The last equation of system (3.8) is
equivalent with ri(z) = ρ(w), for all 1 ≤ i ≤ n. Summing up the coordinates of the
last equation of system (3.8), we get

(3.11) s(w)Tx(w) = ∥v∥2 + nρ(w) = nv0+∥v∥2

n+1 ,

thus

(3.12) r0(u(w), w) = v0 − s(w)Tx(w) = ρ(w).

For z ∈ F+
z , let r̂(z) ∈ Rn+1

+ be defined as

(3.13) r̂(z) =

√
r(z)

ρ(w)
.

We have

(3.14) ēT r̂2(z) = ∥r̂(z)∥2 = n+ 1.

It should be mentioned that r̂(z) = ē if and only if u = u(w). Note that we
cannot efficiently compute u(w). However, using (3.13) we can define the following
measures of closeness of point u to u(w):

(3.15) ζ20 (z) =
∥∥∥r̂(z)− 1

r̂(z)

∥∥∥2 = ēT
(

1
r̂2(z) − ē

)
, ζ1(z) =

∥∥∥ 1
r̂2(z) − ē

∥∥∥
and

(3.16) δ(z) =
ζ20 (z)

ζ1(z)
(for ζ1(z) = 0, we define δ(z) = 0).

Using δ(z), we can define the following neighbourhood with parameter β > 0:

(3.17) Nδ(β) = {z = (u,w) ∈ F+
z : δ(z) ≤ β}.
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Another possibility to measure the closeness of u to u(w) is based on the definition of
the control barrier function ϕ and Lemma 3.1. For the unique optimal solution u(w) of
problem (3.7), we have F (u(w), w) = ϕ(w) and F (z) ≥ ϕ(w) for all z = (u,w) ∈ F+

z .
Therefore, let us define the functional proximity measure

(3.18) Ψ(z) = F (z)− ϕ(w) = −
n∑

i=0

ln ri(z) + (n+ 1) ln ρ(w) = −
n∑

i=0

ln r̂2i (z) ≥ 0.

We can introduce the following neighbourhood using the functional proximity mea-
sure:

(3.19) NΨ(τ) = {z = (u,w) ∈ F+
z : Ψ(z) ≤ τ},

where τ > 0.

4. Interior-point algorithm for linear optimization based on a universal
tangent direction. Let us present the algorithmic scheme. Our method starts from
an interior point u0 = (x0, y0, s0) ∈ F+. In order to initiate a scheme in the PTS,
we need to point out a starting control variable w(u) = (v0(u), v(u)) such that u =
u(w(u)). Let us present the rules for computing such a point. Let

(4.1)

ξ(u)
def
= min

1≤i≤n
xisi, v0(u) = sTx+ ξ(u),

v(u)i =
√

xisi − ξ(u), i = 1, . . . , n.

In this case, ρ(w) = ξ(u), so the point u satisfies the last equation of system (3.8)
with w = w(u). Note that in [16], the search directions were obtained by applying
Newton’s method on the parabolic barrier function. This involved the invertation of
the Hessian, which is (3n + m + 1) × (3n + m + 1)-dimensional. In order to avoid
the Hessian and reduce the size of the coefficient matrix of the corresponding system,
in this paper we determine the search directions by considering systems of the form
(2.4), where we get the right-hand side a based on the last equation of system (3.8).
In this way, let us introduce the following quadratic operator G : F+

z → Rn:

(4.2) G(z) = xs− v2 − ρ(w)e.

From Lemma 3.1 we have G(u(w), w) = 0. Let

(4.3) z(α) = z + α∆z.

Then,

(4.4) G(z(α)) = G(z) + αDG(z)[∆z] +
α2

2
D2G[∆z]2.

We will work with the universal tangent direction ∆z for the operator G defined as

(4.5) DG(z)[∆z] = 0.

This means that

(4.6) DG(z)[∆z] = S∆x+X∆s− 2v∆v − 1

n+ 1
(∆v0 − 2vT∆v)e = 0.
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Furthermore,

(4.7) D2G[∆z]2 = 2

(
∆x∆s− (∆v)2 +

1

n+ 1
∥∆v∥2e

)
.

Thus, we have

(4.8) G(z(α)) = G(z) + α2

(
∆x∆s− (∆v)2 +

1

n+ 1
∥∆v∥2e

)
.

We will deal with the greedy direction ∆gz = (∆x,∆s,−v,−v0) in the PTS, hence
our aim is to take a step towards the origin.

Using the greedy direction in the PTS and (4.6), we obtain

(4.9) s∆x+ x∆s+ 2v2 +
1

n+ 1

(
v0 − 2∥v∥2

)
e = 0.

Hence, we obtain the predictor search direction by solving system (2.4) with

(4.10) a =

(
∥v∥2

n+ 1
− ρ(w)

)
e− 2v2 =

e

n+ 1
v0 − 2x(w)s(w),

where the second equality follows from the last equation of system (3.8). This means
that we do not apply the Newton’s method on the parabolic barrier function F ,
therefore we simply call system (2.4) as linearized system instead of Newton-system.

After a predictor step, it might happen that δ(z) > β. Therefore, we need
to perform corrector steps towards u(w). Namely, using (3.8) our aim is to have
(x+∆x)(s+∆s) = v2 + ρ(w)e. Neglecting the quadratic term, the corrector search
direction is obtained by solving system (2.4) with

(4.11) ai := ρ(w)− ri(z), i = 1, . . . , n.

Algorithm 4.1 IPA for LO based on a universal tangent direction

Require: the initial point u0 ∈ F+ and the corresponding w0 = w(u0),

β ∈ (0, 1
3 ], τ > ω∗

(
β

1−β

)
,

the accuracy parameter ε > 0.
u := u0; w := w0.
while v0 > ε do
Predictor step:

Compute ∆u by solving system (2.4) with a :=
(

∥v∥2

n+1 − ρ(w)
)
e− 2v2.

Compute αp = max {α ∈ (0, 1) : (u+ α∆u, (1− α)w) ∈ NΨ(τ)}.
u := u+ αp∆u; w := (1− αp)w.

while z /∈ Nδ(β) do
Corrector step:
Compute ∆u by solving system (2.4) with ai := ρ(w)− ri(z), i = 1, . . . , n.
αc := argmin{F (u+ α∆u,w) : (u+ α∆u) ∈ F+, α ∈ (0, 1)}.
u := u+ αc∆u.

end while
end while
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In what follows, we make some observations regarding the algorithm. In the pre-
dictor step, we take a step in the tangent direction, but we stay in the neighbourhood
NΨ(τ). We take a greedy step, so the new point will be on the boundary of the
neighbourhood NΨ(τ), namely Ψ(u + αp∆u, (1 − αp)w) = τ . In the corrector stage,
we may take several corrector steps until we enter the neighbourhood Nδ(β). The
determination of the corrector step is a one-dimensional optimization problem, which
can be solved by the damped Newton method. It is enough to take only a few damped
Newton steps in order to get a good enough step length. In Lemma 5.1, we will show
that the corrector step length obtained by only one damped Newton step will provide
an enough big decrease of the measure δ(z).

5. Complexity analysis. Algorithm 4.1 performs prediction steps. Each of the
predictor steps is followed by a sequence of corrector steps with w-component of points
z being unchanged. First of all, let us prove that such a sequence cannot be too long,
by providing an upper bound on the number of the corrector steps.

5.1. Corrector stage. In the following lemma, we give an upper bound on the
number of corrector steps inside a main iteration. Although the proximity measures
are different than in [4], we follow the main steps of the proof given in Lemma 4.2 in
[4].

Lemma 5.1. Let z ∈ F+
z such that Ψ(z) = τ , where τ > 0. Then, we need in

each main iteration at most

(5.1)

 τ

ω
(

β√
1+β

)
+ 1

corrector steps in order to have z ∈ Nδ(β), where ω is defined in (1.1).

Proof. The aim of the corrector stage is to enter into the neighbourhood Nδ(β),
i.e. δ(z) ≤ β. Hence, we want to give a lower bound on the decrease of δ(z) after
a corrector step. For this, we consider only an approximate corrector step length.
This is calculated by taking a single damped Newton step applied on the function
f(α) = F (u + α∆u,w) = F (z + α∆z), where ∆z = (∆u, 0). Using (2.4) with the
right hand side given in (4.11), we get

r0(z + α∆z) = r0(z) + αρ(w),

ri(z + α∆z) = (1− α)ri(z) + αρ(w) + α2∆xi∆si, i = 1, . . . , n.

Using (3.6) and (3.13), we have

f(α) = −(n+ 1) ln ρ(w)− ln
[
r̂20(z) + α

(
1− r̂20(z)

)]
−

n∑
i=1

ln

[
r̂2i (z) + α

(
1− r̂2i (z)

)
+

α2∆xi∆si
ρ(w)

]
and

f ′(α) = − 1− r̂20(z)

r̂20(z) + α (1− r̂20(z))
−

n∑
i=1

1− r̂2i (z) + 2α∆xi∆si
ρ(w)

r̂2i (z) + α (1− r̂2i (z)) +
α2∆xi∆si

ρ(w)

.

Then, using (3.15), we have

f ′(0) = −
n∑

i=0

1− r̂2i (z)

r̂2i (z)
= eT

(
e− 1

r̂2(z)

)
= −ζ20 (z).(5.2)

9



Furthermore,

f ′′(α) =

(
1− r̂20(z)

r̂20(z) + α (1− r̂20(z))

)2

−
n∑

i=1

2∆xi∆si
ρ(w)

r̂2i (z) + α (1− r̂2i (z)) +
α2∆xi∆si

ρ(w)

+

n∑
i=1

(
1− r̂2i (z) + 2α∆xi∆si

ρ(w)

r̂2i (z) + α (1− r̂2i (z)) +
α2∆xi∆si

ρ(w)

)2

and from (3.13) and (3.15), we have

f ′′(0) =

n∑
i=0

(
1

r̂2i (z)
− 1

)2

−
n∑

i=1

2∆xi∆si
ρ(w)r̂2i (z)

= ζ21 (z)−
n∑

i=1

2∆xi∆si
ri(z)

.(5.3)

From (2.6) and (4.11), we derive

2

ρ(w)

n∑
i=1

|∆xi∆si| ≤
n∑

i=1

(ri(z)− ρ(w))2

ρ(w)xisi
≤

n∑
i=1

(ri(z)− ρ(w))2

ρ(w)ri(z)
≤ ζ20 (z).(5.4)

Moreover, using ∆xT∆s = 0, (3.15) and (5.4), we obtain

−
n∑

i=1

2∆xi∆si
ri(z)

=
2

ρ(w)

n∑
i=1

ri(z)− ρ(w)

ri(z)
∆xi∆si

≤ ζ20 (z) max
1≤i≤n

∣∣∣∣1− ρ(w)

ri(z)

∣∣∣∣ ≤ ζ20 (z)ζ1(z).(5.5)

From (5.3) and (5.5), we derive the following upper bound on f ′′(α):

(5.6) f ′′(0) ≤ ζ21 (z) + ζ20 (z)ζ1(z).

Thus, we can formulate the following lower bound for the Newton decrement of
the function f(·):

(5.7) λ :=

√
(f ′(0))2

f ′′(0)
≥ ζ20 (z)√

ζ21 (z) + ζ20 (z)ζ1(z)
=

δ(z)√
1 + δ(z)

≥ β√
1 + β

,

since we are at the corrector stage, hence δ(z) ≥ β.
Note that the function f(·) is self-concordant. Therefore, from the general theory

(e.g. Chapter 4 in [15]), we know that taking a single damped Newton step with

α = − f ′(0)
(1+λ)f ′′(0) ensures the following progress in the function value:

F (u,w)− F (u+, w) = f(0)− f(α) ≥ ω(λ) ≥ ω
(

β√
1+β

)
,

where z = (u,w) and z+ = (u+, w) are two consecutive iterates of the inner loop.
In view of the assumption of the lemma, we have Ψ(z) = τ . Hence, if we take k

steps in the corrector stage, then we have

τ ≥ (k − 1)ω

(
β√
1 + β

)
,

which proves the lemma.

In the next subsection, we deal with the analysis of the predictor stage.
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5.2. Predictor step. The first lemma is a technical one which will be used
several times in the next part of the analysis.

Lemma 5.2. Consider the function Φ(η) := −
n∑

i=0

ln(1 + ηi). If ∥η∥ < 1 and

ēT η = 0, then

(5.8) Φ(η) ≤ ω∗(∥η∥),

where ω∗ is defined in (1.2).

Proof. Using that the function Φ is self-concordant and the assumption ∥η∥ < 1,
we can use Theorem 5.1.9 of [17]. Since ∇Φ(0) = ē and ∇2Φ(0) = I, where I is the
(n+1)-dimensional identity matrix and by the assumption of the lemma ēT η = 0, we
obtain

(5.9) Φ(η) ≤ Φ(0) +∇Φ(0)T η + ω∗(∥η∥) = ω∗(∥η∥).

Hence, we get the desired inequality.

The condition for entering the predictor step in Algorithm 4.1 is z ∈ Nδ(β). Let
us derive some of its consequences.

Lemma 5.3. Let z ∈ Nδ(β), with β < 1
2 . Then, ζ0(z) ≤ β√

1−β
and

1− β ≤ r̂2i (z) ≤ 1

1− β
, i = 0, . . . , n,(5.10)

1− β ≤ xisi
xi(w)si(w)

≤ 1

1− β
, i = 1, . . . , n.(5.11)

Proof. Denote by r̂min = min
0≤i≤n

r̂i(z) and r̂max = max
0≤i≤n

r̂i(z). In view of equality

(3.5) and using the definition of r̂(z) in (3.13), we have r̂min ≤ 1 ≤ r̂max. By the
definition of δ (3.16) and the assumption of the lemma ζ20 (z) ≤ βζ1(z), we have

(5.12) ζ20 (z) =

n∑
i=0

(
r̂i(z)−

1

r̂i(z)

)2

≤ β

[
n∑

i=0

(
1− 1

r̂i(z)

)2
]1/2

≤ β
1

r̂min
ζ0(z).

Hence, 0 ≤ 1
r̂min

− r̂min ≤ β
r̂min

, and we get r̂2i (z) ≥ 1 − β, for all i = 0, . . . , n. Thus,

using this and (5.12), we have ζ0(z) ≤ β√
1−β

. This means that 0 ≤ r̂max− 1
r̂max

≤ β√
1−β

and we get r̂2i (z) ≤ 1
1−β .

For proving the inequalities (5.11), note that from (5.10), we have

xisi − v2i = ri(z) ≥ (1− β)ρ(w) = (1− β)
[
xi(w)si(w)− v2i

]
, i = 1, . . . , n.

Thus, xisi ≥ (1−β)xi(w)si(w)+βv2i ≥ (1−β)xi(w)si(w). The remaining inequalities
can be proven in the same way.

In the following lemma, we show that with a predictor step, we reach the boundary
of the neighbourhood NΨ(τ).

Lemma 5.4. Let z ∈ Nδ(β) with β < 1
2 and let τ > ω∗

(
β

1−β

)
. Then, the predictor

step length αp ∈ (0, 1) is well defined and Ψ(z(αp)) = τ holds.
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Proof. Note that the initial value Ψ(z) can be represented as follows:

Ψ(z) = −
n∑

i=0

ln
(
r̂2i (z)

)
, i = 0, . . . , n.

We use Lemma 5.2 for η = r̂2(z) − ē. For this, we want to verify whether the
assumptions of the lemma hold. First, denote by ζ2(z) = ∥r̂2(z) − ē∥. Using δ(z) ≤
β < 1

2 , from Lemma 5.3, we have

(5.13) ζ2(z) ≤ β
1−β < 1.

On the other hand, from (3.14) we have ēT
(
r̂2(z)− ē

)
= 0. Then, using Lemma 5.2,

we obtain

Ψ(z) = Φ
(
r̂2(z)− ē

)
≤ ω∗(ζ2(z)) ≤ ω∗

(
β

1− β

)
< τ,(5.14)

where we used the assumption of the lemma and that the function ω∗ is monotone
increasing. Thus, z is in the interior of NΨ(τ). Hence, there exists a positive predictor
step length with which we stay in the neighbourhoodNΨ(τ). On the other hand, using
the definition of the functional proximity measure given in (3.18) and the barrier
property of F , we have Ψ(z(αp)) = τ .

In the following lemma, we derive an exact expression for the proximity measure
Ψ(·) along the predictor direction given in (4.10). Consider

(5.15) d(α) = r(z(α))− ρ(w(α))ē ∈ Rn+1.

Lemma 5.5. Consider the predictor search direction ∆z = (∆u,−w), i.e., z(α) =
(u(α), w(α)) = (u+ α∆u, (1− α)w), where α ∈ (0, 1). Then,

(5.16) Ψ(z(α)) = −
n∑

i=0

ln

(
1 +

1

ρ(w(α))
di(α)

)
,

where d(α) = r(z)− ρ(w)ē+ α2g(z), with ē = (1, . . . , 1)T ∈ Rn+1 and

g0(z) = 1
n+1∥v∥

2,

gi(z) = ∆xi∆si − v2i +
1

n+1∥v∥
2, i = 1, . . . , n.

Proof. Using (3.18) we have

(5.17) Ψ(z(α)) = −
n∑

i=0

ln ri(z(α)) + (n+ 1) ln ρ(w(α)) = −
n∑

i=0

ln

(
1 +

di(α)

ρ(w(α))

)
.

We analyse d(α). Firstly, we have

ρ(w(α)) =
1

n+ 1

(
(1− α)v0 − (1− α)2∥v∥2

)
=

1− α

n+ 1

(
v0 − ∥v∥2 + α∥v∥2

)
= (1− α)

(
ρ(w) +

α

n+ 1
∥v∥2

)
.(5.18)
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On the other hand, using (4.10), we get for i = 1, . . . , n

ri(z(α)) = xi(α)si(α)− (vi(α))
2 = (xi + α∆xi)(si + α∆si)− (1− α)2v2i

= ri(z)− α

(
2v2i + ρ(w)− 1

n+ 1
∥v∥2

)
+ α(2− α)v2i + α2∆xi∆si

= ri(z)− α

(
ρ(w)− 1

n+ 1
∥v∥2

)
+ α2

(
∆xi∆si − v2i

)
.(5.19)

Thus, combining (5.18) with (5.19), we have for i = 1, . . . , n

di(α) = ri(z(α))− ρ(w(α))

= ri(z)− ρ(w) +
α

n+ 1
∥v∥2 + α2

(
(∆xi∆si − v2i

)
− α(1− α)

n+ 1
∥v∥2

= ri(z)− ρ(w) + α2

(
(∆xi∆si − v2i +

1

n+ 1
∥v∥2

)
.(5.20)

Similarly,

r0(z(α)) = (1− α)v0 − (s+ α∆s)
T
(x+ α∆x)

= r0(z)− α
(
v0 +∆sTx+ sT∆x

)
= r0(z)− α

[
v0 − 2∥v∥2 − n

(
ρ(w)− 1

n+ 1
∥v∥2

)]
= r0(z)− α

(
ρ(w)− 1

n+ 1
∥v∥2

)
.(5.21)

Hence, from (5.18) and (5.21), we get

(5.22) d0(α) = r0(z(α))− ρ(w(α)) = r0(z)− ρ(w) +
α2

n+ 1
∥v∥2.

From (5.17), (5.20) and (5.22), we obtain the result of the lemma.

In the following lemma we give a bound on the predictor step length αp. Following
the idea presented in [4], for w ∈ F+

w we define

(5.23) α(w) =
v0

∥v∥2
> 1.

The geometric interpretation of α(w) can be found in Section 5 of [4].

Lemma 5.6. Let z ∈ Nδ(β) with β ≤ 1
3 and τ = ω∗(ν) for some ν ∈

(
β

1−β , 1
)
.

Then, the predictor step length αp satisfies the following conditions:

(5.24) 0 < ν − β
1−β ≤ ναp + (n+ 1)

(
α(w)

α(w)−1

)2
α2
p.

Proof. We give an indirect proof. For the sake of simplicity, in the proof we use
the notation α = αp. Assume that

(5.25) να+ (n+ 1)

(
α(w)

α(w)− 1

)2

α2 < ν − β

1− β
.
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We want to give an upper bound on Ψ(z(α)) by using Lemma 5.2 for η = d(α)
ρ(w(α)) . For

this, we check the assumptions of the lemma. We consider the vector g(z) defined in

Lemma 5.5. Using (3.15), we get (r(z)− ρ(w)ē)
T
ē = 0. Moreover,

g(z)T ē = 1
n+1∥v∥

2 +
n∑

i=1

∆xi∆si − ∥v∥2 + n
n+1∥v∥

2 = 0.

Using these equations and Lemma 5.5, we obtain ēT d(α) = 0. Furthermore, we have
to prove that q(α) := 1

ρ(w(α))∥d(α)∥ < 1. Let us derive an upper bound for this value.

From (5.18) we have ρ(w(α)) ≥ (1− α)ρ(w). Using this and (5.13) we have

q(α) ≤ 1

(1− α)ρ(w)

(
∥r(z)− ρ(w)ē∥+ α2∥g(z)∥

)
=

1

1− α

(
ζ2(z) +

α2

ρ(w)
∥g(z)∥

)
≤ 1

1− α

(
β

1− β
+

α2

ρ(w)
∥g(z)∥

)
.(5.26)

It remains to bound ∥g(z)∥. Note that g(z) = g∆(z) + gv(z) with

g∆0 (z) = 0, g∆i (z) = ∆xi∆si, i = 1, . . . , n,

gv0(z) = 1
n+1∥v∥

2, gvi (z) = 1
n+1∥v∥

2 − v2i , i = 1, . . . , n.

Therefore, ∥g(z)∥ ≤ ∥gv(z)∥+ ∥g∆(z)∥, with

∥gv(z)∥2 = 1
n+1∥v∥

4 − 2
n+1∥v∥

4 +
n∑

i=1

(vi)
4 ≤ ∥v∥4.

At the same time, from (2.6), (4.10) and Lemma 5.3 we derive

2∥g∆(z)∥ ≤
n∑

i=1

1

xisi

[
2xi(w)si(w)−

1

n+ 1
v0

]2
≤ 1

1− β

n∑
i=1

1

xi(w)si(w)

[
2xi(w)si(w)−

1

n+ 1
v0

]2
=

1

1− β

[
4s(w)Tx(w)− 4

n

n+ 1
v0 +

1

(n+ 1)2
(v0)

2
n∑

i=1

1

xi(w)si(w)

]

≤ 1

1− β

[
4(v0 − ρ(w))− 4

n

n+ 1
v0 +

n

(n+ 1)2ρ(w)
(v0)

2

]
=

1

1− β

[
4∥v∥2

n+ 1
+

n(v0)
2

(n+ 1)2ρ(w)

]
=

∥v∥2

(1− β)(n+ 1)

[
4 +

nα(w)2

α(w)− 1

]
,

where in the last inequality we used (3.12) and xi(w)si(w) = v2i +ρ(w) ≤ ρ(w). Thus,
we conclude that

∥g(z)∥ ≤ ∥v∥2 + ∥v∥2

(1− β)(n+ 1)

[
2 +

nα(w)2

2(α(w)− 1)

]
≤ ∥v∥2

[
1 +

α(w)2

2(1− β)(α(w)− 1)

]
≤ α(w)2

α(w)− 1
∥v∥2.(5.27)
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Note that the last inequality follows from the condition β ≤ 1
3 . From (5.26) and

(5.27), using that 1
ρ(w)∥v∥

2 = n+1
α(w)−1 , we come to the following bound:

(5.28) q(α) ≤ 1
1−α

[
β

1−β + α2(n+ 1)
(

α(w)
α(w)−1

)2]
.

Then, by the indirect assumption (5.25) we have

(5.29) q(α) < ν < 1.

Hence, we can use Lemma 5.2 for η = d(α)
ρ(w(α)) and we get

(5.30) Ψ(z(α)) = Φ
(

d(α)
ρ(w(α))

)
≤ ω∗(q(α)).

From Lemma 5.4 we have Ψ(z(α)) = τ . Using the assumption of the lemma and
(5.30) we have ω∗(ν) = τ = Ψ(z(α)) ≤ ω∗(q(α)). From the monotone increasing
property of the function ω∗, we get q(α) ≥ ν, which contradicts to (5.29). Therefore,
(5.25) is not true, which proves the lemma.

In accordance with the general scheme for analyzing PTS methods proposed in
[4], we can establish a global convergence rate of the process of Algorithm 4.1 in terms
of the merit function

(5.31) µ∗(w) =
α(w)

α(w)− 1
v0 =

v20
v0 − ∥v∥2

≥ v0 ≥ ∥v∥2.

In the following lemma, we give an upper bound on the new value of the merit
function after a predictor step.

Lemma 5.7. Let αp ∈ (0, 1) be a feasible step length in the predictor step of the

PTS IPA. If αp ≥ γ α(w)−1
α(w) with some γ ∈ (0, 1), then µ∗(w(αp)) <

1
1+γ µ∗(w).

Proof. For the sake of simplicity, we use the notation α = αp. By the assumption
of the lemma and using that α(w) > 1,

1

1− α
=

1 + α

1− α2
> 1 + α ≥ 1 + γ

α(w)− 1

α(w)
.

Since α(w(α)) = 1
1−α α(w),

µ∗(w(α))

µ∗(w)
=

1
1−α α(w)
1

1−α α(w)− 1
(1− α) v0

α(w)− 1

α(w)v0
=

α(w)− 1
1

1−α α(w)− 1

<
α(w)− 1(

1 + γ α(w)−1
α(w)

)
α(w)− 1

=
1

1 + γ
,

hence the lemma is proven.

Now we are ready to give the complexity result of the PTS IPA.

Theorem 5.8. Let z ∈ Nδ(β) with β ≤ 1
3 and τ > ω∗

(
β

1−β

)
and let z0 =

(u0, w0) ∈ F+
z be the starting point. Then, the PTS IPA gives a feasible solution of

the problem (P )-(D) with xT s ≤ ε after at most

(5.32) O
(√

n ln µ∗(w0)
ε

)
numbers of iterations.
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Proof. Based on Lemma 5.7, if π = α(w)
α(w)−1αp ≥ γ, then we have µ∗(w(αp)) <

1
1+γµ

∗(w). In order to apply this result to our case, note that α(w)
α(w)−1 > 1. Hence,

using (5.24), for the value π we get the following lower bound:

(5.33) ν − β
1−β ≤ νπ + (n+ 1)π2.

Hence, π = Ω
(

1√
n

)
, thus for Algorithm 4.1 we can take γ = O

(
1√
n

)
. Since the

lengths of corrector stages are uniformly bounded by inequality (5.1), we conclude
that the total number of steps of this method for obtaining a feasible solution of the
problem (P )-(D) with xT s ≤ ε, cannot be bigger than (5.32).

In the following section the obtained numerical results are presented.

6. Preliminary computational experiments. In this section, we present the
preliminary numerical results obtained by using our new IPA in PTS. An advantage
of this method is that it can start from an arbitrary strictly feasible primal-dual point.
Using (4.1) we can compute the starting value of w.

From the computational point of view, in the predictor step, we do not determine
the best step length. However, starting from the maximum feasible step length α, we
used the bisection technique to get an α for which |Ψ(z(α))− τ | ≤ 0.1τ .

By theory, in the corrector stage, we might need several corrector steps. In the
complexity analysis, in the proof of Lemma 5.1 we showed that with only a single
damped Newton step applied to the univariate function f(·) we obtained a good
enough corrector step length. However, in the implementation, we performed several
damped Newton steps applied to f(·) in order to determine the corrector step length.
In this way, for all considered test problems we needed only one corrector step after
each predictor step.

In order to compute the search directions, we used Cholesky decomposition for
the Newton system (2.4) with 1

2nm(m+1)+ 1
6m(m+1)(m+2) multiplications. Note

that we need to compute different right-hand sides a for the predictor and corrector
steps. This computation needs only O(n) operations.

For our computational experiments, we used a simple random generator working
as follows.

• Generate a strictly feasible primal-dual pair of points (x̂, ŝ). Their entries are
uniformly distributed in the interval (0, 1).

• Generate matrix A ∈ Rm×n with entries uniformly distributed in (−1, 1).
• Set b = Ax̂ and c = ŝ.
• The starting point u0 for Algorithm 4.1 is defined as (x̂, 0, ŝ).

In Table 1 we present preliminary computational results for random problems
of small and medium dimensions with 32 ≤ m ≤ n

2 and 64 ≤ n ≤ 1024. In our
experiments with Algorithm 4.1, we used β = 1

4 and τ = 1.
In each cell, we put the average number of predictor steps of Algorithm 4.1 re-

quired for reaching the accuracy ε = 10−8 in the duality gap. Our results correspond
to the series of random test problems of length one hundred. The second value in the
cell corresponds to the relative standard deviation.

In our opinion, these results are very promising. As we have already mentioned,
in all our experiments, any predictor step is followed only by one corrector step.
Hence, we do not display the number of corrector steps. The growth of the number of
predictor steps is clearly proportional to ln(nm). A quite accurate prediction of this
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m
n

64 128 256 512 1024

32 13.6 ± 9.9% 15.4 ± 8.5% 17.0 ± 8.9% 18.8 ± 7.0% 21.2 ± 7.2%

64 17.0± 9.1% 18.8 ± 7.2% 21.0 ± 6.9% 23.0 ± 6.3%

128 20.7 ± 6.3% 22.9 ± 5.6% 25.2 ± 5.7%

256 25.1 ± 5.9% 27.9 ± 4.7%

512 30.1 ± 4.6%
Table 1

Average number of iterations for random LO problems

number is given by the model

(6.1) k ≈ 1 + 2 log2
mn
32 .

For data in Table 1, the average absolute deviation in this forecast is 0.29 iterations.
From Lemma 5.7 we have

µ∗(wk) ≤
(

1

1 + γ

)k

µ∗(w0) ≤ µ∗(w0) exp

(
− γ k

1 + γ

)
.

Therefore, the rate of convergence of our method is exp
(
− γ k

1+γ

)
, where γ = O

(
1√
n

)
and k is the number of predictor steps. But of course, its practical performance is much
better. It depends logarithmically on the dimension and has very weak dependence
on the required accuracy.

Indeed, with our test problems, we observed a very fast local convergence. In
Table 2, we present the progress in the objective function v0 in terms of the predictor
steps for a random problem with n = 512, m = 256, and ε = 10−8. The third column
of Table 2 shows the size of the predictor step relative to the maximal possible step
up to the boundary of the set F+. Thus, our definition (3.18) of the functional
neighbourhood of greedy trajectory allows really large steps.

Iteration v0 % of max step
1 1.2 ·102 31.25
2 1.1 ·102 46.88
3 1.0 ·102 53.13

. . . . . . . . .
14 1.0 ·100 78.13
. . . . . . . . .
20 6.7 ·10−3 84.37
21 2.3 ·10−3 93.75
22 5.7 ·10−4 95.31
23 8.1 ·10−5 95.31
24 2.3 ·10−6 99.02
25 1.9 ·10−9 99.97

Table 2
Progress in v0 and the size of the predictor step relative to the maximal feasible step length

A similar explosion of the convergence rate in the end of the process can be seen
in all our experiments. It would be very interesting to support our observations by a
convincing theoretical explanation.
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7. Conclusion. In this paper, we introduced an IPA for LO in PTS based on
a universal tangent direction. The IPA can start at any strictly feasible primal-dual
pair and go directly towards a solution by a predictor-corrector scheme. The concept
of universal tangent direction yields to an easier computation of the search directions
than in the initial algorithm [16]. We proved that the complexity of the proposed
method coincides with the currently known best complexity results for IPAs.

Our preliminary computational results are very promising. At the end of the
process, the size of the predictor step typically goes above 99.97% of the maximal
possible step to the boundary. The method demonstrates a very fast local convergence.

As future research, it would be interesting to extend this new IPA in PTS to
Linear Complementarity Problems and to Semidefinite Programming. Furthermore,
it would be interesting to analyse the effect of considering other schemes instead of
the greedy one in F+

w . This would yield to different types of central paths.
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