
Research Article

Collective Intelligence
Volume 3:1: 1–16
© The Author(s) 2024
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/26339137241231912
journals.sagepub.com/home/col

Modeling interconnected social and
technical risks in open source software
ecosystems

William Schueller1,2 and Johannes Wachs1,3,4
1Complexity Science Hub Vienna, Vienna, Austria
2Veterinary Public Health and Epidemiology, University of Veterinary Medicine, Vienna, Austria
3Institute of Data Analytics and Information Systems, Corvinus University of Budapest, Budapest, Hungary
4HUN-REN Centre for Economic and Regional Studies, Budapest, Hungary

Abstract
Open source software ecosystems consist of thousands of interdependent libraries, which users can combine to great
effect. Recent work has pointed out two kinds of risks in these systems: that technical problems like bugs and vulnerabilities
can spread through dependency links, and that relatively few developers are responsible for maintaining even the most
widely used libraries. However, a more holistic diagnosis of systemic risk in software ecosystem should consider how these
social and technical sources of risk interact and amplify one another. Motivated by the observation that the same individuals
maintain several libraries within dependency networks, we present a methodological framework to measure risk in
software ecosystems as a function of both dependencies and developers. In our models, a library’s chance of failure
increases as its developers leave and as its upstream dependencies fail. We apply our method to data from the Rust
ecosystem, highlighting several systemically important libraries that are overlooked when only considering technical
dependencies. We compare potential interventions, seeking better ways to deploy limited developer resources with a view
to improving overall ecosystem health and software supply chain resilience.

Keywords
Open source software, decentralized collaboration, systemic risk, networks, social-technical systems

Introduction

Open source software (OSS) ecosystems are built by de-
centralized collaborations of thousands of software devel-
opers. Developers write specialized libraries by relying on
the work of others, growing a complex network of de-
pendencies. The result is a distribution of work and effort
that has been shown to create immense value (Blind and

Schubert 2023; Greenstein and Nagle 2014). Two key risks
threaten the functionality of the system as a whole: the
propagation of bugs and vulnerabilities through the ever-
growing network of dependencies (Decan et al., 2019), and
its reliance on small groups or even individuals who fix such
problems in widely used libraries (Avelino et al., 2016;
Eghbal 2020; Pfeiffer 2021). Yet risk assessments of OSS
ecosystems have thus far largely neglected the fact that these

Corresponding author:
Johannes Wachs, Corvinus University of Budapest, Fovam Ter 8, Budapest 1093, Hungary.
Email: johannes.wachs@uni-corvinus.hu

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons
Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use,
reproduction and distribution of the work without further permission provided the original work is attributed as specified on the

SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

Data Availability Statement included at the end of the article.

https://uk.sagepub.com/en-gb/journals-permissions
https://doi.org/10.1177/26339137241231912
https://journals.sagepub.com/home/col
https://orcid.org/0000-0002-9044-2018
mailto:johannes.wachs@uni-corvinus.hu
https://creativecommons.org/licenses/by-nc/4.0/
https://us.sagepub.com/en-us/nam/open-access-at-sage
http://crossmark.crossref.org/dialog/?doi=10.1177%2F26339137241231912&domain=pdf&date_stamp=2024-02-15

risks are interrelated: key individuals often maintain several
libraries across the network of dependencies that make up a
software ecosystem. When such individuals leave the eco-
system, multiple libraries may go unmaintained and become
unchecked potential sources (Lehman 1980; Valiev et al.,
2018) or conduits (Decan et al., 2018; Ohm et al., 2020)
for issues in the dependency network. Efforts to quantify
systemic risk—the risk that problems in a specific library can
impact the functioning of the system as a whole—in such
ecosystems should consider this correlation.

Indeed while these two perspectives both highlight im-
portant problems, significant systemic risks in OSS ecosystem
emerge through the complex interaction of their social and
technical systems. The risks of ever-expanding dependency
networks are amplified when individuals are contributors to
several libraries in a dependency chain. In Figure 1, we plot
the dependencies among the 100most downloaded libraries in
the Rust ecosystem. Individual developers are the most
prolific contributors to multiple libraries and their departures
would introduce a correlated shock impacting the future
functionality of the system. The aim of our work is to model
the systemic importance of all developers and libraries that
takes these correlations into account.

In particular, we adapt methods used to study the
propagation of errors in complex systems to the case of open
source software ecosystems. We use a simulation approach
to quantify systemic risk and apply it to data from the Rust
ecosystem. We simulate the removal of developers from the
system, which induces potential failures in libraries that
they maintain, which in turn spread with some probability to
downstream dependencies. The likelihood that a library
fails, governed by a production function, increases as its
developers leave and as its upstream dependencies fail. We
define an iterative equation to calculate the spread of issues
resulting from the departure of specific developers from the
system. At the system level, we find the significant potential

for long cascades of failures when specific individuals
leave.We also highlight the libraries that play a major role in
many potential cascade paths, representing natural inter-
vention targets.

Our method highlights key libraries that these purely
technical dependency-based measures overlook: among the
top 1000 Rust libraries by count of their downstream de-
pendencies, our measure of library systemic importance is
moderately correlated with its direct (Spearman’s ρ ≈ .56)
and transitive dependencies (Spearman’s ρ ≈ .54). Our
measure has an even weaker correlation with the number of
GitHub stars a library has (Spearman’s ρ ≈ .42), suggesting
that social visibility is a poor proxy for systemic importance.
Indeed, in an intervention study we show that allocating
developers to the most systemically risky libraries improves
system robustness more than by adding developers to li-
braries central in the dependency network or to highly visible
libraries. Our measure provides valuable insights for indi-
viduals, foundations, and firms who wish to support OSS
ecosystem stability (Overney et al., 2020; Spaeth et al., 2015).

Background

We review the measurement of systemic risks and cascades
in complex systems. We then turn to the specific case of
such risks in software ecosystems, discussing both social
and technical factors.

Resilience and vulnerability of complex systems

The field of complexity science has long studied the vul-
nerability of interconnected systems. Studies of cascading
failures in financial networks (Haldane and May 2011;
Thurner and Poledna 2013), supply chains (Diem et al.,
2022), power distribution networks (Kinney et al., 2005),
regional economies (Tóth et al., 2022), and healthcare

Figure 1. The dependency network among the 100 most downloaded libraries in the Rust ecosystem, observed July 2020. A directed
edge between two libraries indicates a dependency. Distinct colors highlight three groups of libraries that have the same developer
making the most commits in the previous year. For example, Developer B makes the most commits in each of the three red libraries.
Across all 100 libraries, there are 59 unique most active developers, indicating that key individuals often play an important role in multiple
interdependent libraries.
Note: 24 disconnected libraries are not shown.

2 Collective Intelligence

systems (Sardo et al., 2019) all highlight that a few key
nodes in a system can play a systemically important role that
is not obvious from their local topology or individual size.
The spread of errors in coupled networks is even less
predictable (Poledna et al., 2015; Schneider et al., 2013).
Previous descriptive work in the software engineering
research community has pointed out the potential appli-
cation of complex systems approaches to the study of
software systems (Decan et al., 2019; Mens and Grosjean
2015).

Studies of complex systems simulate the spread of
failures from specific sources to quantify overall systemic
risk and the importance of individual entities in the system
(Peters et al., 2008). In these simulations, the functions
governing how errors spread are tailored to the specific
situation. For instance, recent work on the resilience of
supply chains has used production functions such as the
Cobb-Douglas and Leontief functions to model the effect of
upstream failures on a node’s production (Diem et al.,
2022). The choice of a specific production function cap-
tures whether inputs are complements or substitutes. In the
software context, the effort of maintainers and the func-
tionality of upstream dependencies are complementary. The
initial condition of the error or failure is also important:
contagion in financial networks often begins with the de-
fault of a large loan or a bankruptcy. In the case of any
specific application, care must be taken to understand the
mechanisms of how errors spread.

Vulnerabilities of open source software ecosystems

Technical vulnerabilities. Bugs and vulnerabilities spread
through software ecosystems via dependencies (Valiev
et al., 2018). A 2018 study estimates that half of libraries
in the NPM ecosystem are affected by upstream vulnera-
bilities (Decan et al., 2018). In 2016, a developer of an
auxiliary string formatting program called left-pad removed
his libraries from NPM, a package manager for JavaScript
libraries, and caused a cascade of failures that lead to large
scale service interruptions around the web (Hejderup et al.,
2018). A significant share of the web’s infrastructure de-
pended, often indirectly, on left-pad’s 11 lines of code.
Though left-pad itself is a “trivial package”—its removal
caused its downstream dependencies, many of which were
widely-used, to fail.

Upstream issues can also occur in more substantial
pieces of software. Many of these systemically important
libraries are overlooked because they have worked well in
the background for many years. The Heartbleed bug, in-
troduced into the widely used OpenSSL cryptography li-
brary in 2012, made roughly half a million webservers and
their user passwords and cookies vulnerable to attack
(Durumeric et al., 2014). Though the bug was quickly re-
solved, servers remained vulnerable until patched.

Software systems are also frequently attacked via
loopholes introduced by upstream dependencies (Ohm
et al., 2020). In 2017, intruders exploited a vulnerability
to access an Equifax database, exposing personal finance
data of over one hundred million people. Equifax used an
outdated version of Apache Struts 2, a web application
framework which had a publicly known (and patched)
security vulnerability (Luszcz 2018). Another example of
software that is widely relied upon is log4j, a “ubiquitous”
Java logging library (Newman 2021). In late 2021, a zero-
day vulnerability in log4j was reported which could be used
to take control of software systems remotely. Security re-
searchers have recently demonstrated how dependency
managers themselves can be used to introduce malicious
lines into the codebases of leading software companies
(Birsan 2021). The share of libraries in NPM inheriting
vulnerabilities from upstream dependencies is rising over
time (Zerouali et al., 2021). Tracking vulnerabilities is also a
significant challenge for developers and companies
(Pashchenko et al., 2018), and they often persist in eco-
systems (Alfadel et al., 2021), for instance when patches are
not adopted by downstream dependencies (Decan et al.,
2022).

These risks in the “supply chain” of OSS are increasingly
recognized and quantified in the empirical software engi-
neering literature (Amreen et al., 2019; Ma 2018). Many
upstream dependencies are small libraries in the mold of
left-pad (Abdalkareem et al., 2017). These so called
“trivial” libraries are ironically more likely to occupy
critical positions in the dependency network, owing to their
widespread use (Chowdhury et al., 2022). This highlights
the importance of considering the network as a whole, rather
than focusing on important seeming libraries. For instance,
having unmaintained upstreams increases the risk that a
library will itself be abandoned (Valiev et al., 2018).

Social roots of ecosystem vulnerability. Early advocates for the
OSS model of software development argued that small
contributions of many developers would lead to high quality
software (Raymond 1999). And although the decentralized
peer production process has resulted in remarkably suc-
cessful software (Benkler et al., 2015), the reliance on
volunteers and unpaid labor to maintain such widely used
software often leads to an underproduction of OSS. In this
context underproduction, coined by Champion and Mako
Hill in their study of the Debian ecosystem, refers to a
mismatch between the supply of software development
labor and demand of people relying on a particular software
library (Champion and Hill 2021).

The extent to which software relies on individual de-
velopers has been conceptualized as the truck factor or bus
factor of a library (Torchiano et al., 2011; Williams and
Kessler 2003). It has been described as “the number of
developers on a team who have to be hit with a truck (i.e., to

Schueller and Wachs 3

go on vacation, to become ill, or to leave the company for
another) before the project is in serious trouble” (https://
www.agileadvice.com/archives/2005/05/truck). In other
words, the truck factor describes the distribution and re-
dundancy of essential knowledge and know-how about a
specific software library or project among its developers. A
hypothetical library with a truck factor of one relies in some
essential way on the contributions, efforts, and knowledge
of a single individual. Empirical studies have shown that
truck factors of even widely used libraries are often very low
(Ferreira et al., 2019; Pfeiffer, 2021). One study of
133 popular projects on GitHub found that nearly two-thirds
had a truck factor of two or less (Avelino et al., 2016). In
practice, libraries are often abandoned because their original
core developers and maintainers lack the time or interest to
continue working on them (Coelho and Valente, 2017).

When libraries go under-maintained or become depre-
cated, issues tend to build up. It is one of Lehman’s Laws
that software quickly becomes ineffective or nonfunctional
without maintenance (Lehman 1980). In practice, the same
individuals who write the original code of a program are the
ones who maintain it, a task which often requires quick
interventions when something goes wrong (Cook 2020).
Unmaintained libraries are not adapted to changes of the
broader ecosystem. When upstream libraries introduce
breaking changes, a deprecated library will cease to function
as expected and can pass issues downstream. This is not just
a theoretical concern: over half of NPM libraries depend
transitively on at least one deprecated library (Cogo et al.,
2022).

Previous work diagnosing the health of ecosystems has
not directly addressed the phenomenon of developers
working on multiple libraries within an ecosystem. Such
developers can make highly valuable contributions, for
example, because they facilitate coordination and com-
munication between interlinking parts of a larger system
(Herbsleb and Grinter, 1999) or because they are uniquely
placed to anticipate failures or issues (Cataldo and Herbsleb,
2013). Although their attentions may be divided (Vasilescu
et al., 2016), developers involved in multiple part of an
ecosystem are in a position to better consider how new
developments in one library may affect others. At the same
time, these same aspects make such developers essential to
the system as a whole. When such a developer leaves the
OSS world, whether it is because they find a new job and no
longer have the time, or because they retire, or simply
because they no longer want to participate, they may leave
several key libraries under- or unmaintained at the
same time.

Data

We now turn to the data we use to build and test our systemic
risk measurement framework. We use data from the Rust

ecosystem, utilizing a dynamic database of dependencies
and contributions to Rust libraries assembled by Schueller
et al. (Schueller et al., 2022). Rust is a relatively young but
growing programming language, which was recently
adopted as the second official language of the Linux kernel
project. We chose Rust for several reasons. First, the Rust
dependency manager Cargo stores data on the evolution of
dependencies between libraries overtime. It also has data on
the number of downloads over time, allowing us to test the
impact of hypothetical failures on end users. Second, a large
majority of Rust libraries available on Cargo are hosted on
GitHub or Gitlab (over 80%, increasing to over 90% for
libraries downloaded at least 10,000 times (Schueller et al.,
2022)), likely because of the language’s youth relative to
these platforms and its community’s strong OSS orientation,
allowing us to download nearly all libraries and their
complete development histories. Finally, as a growing
ecosystem, Rust allows us to track the evolution of systemic
risk across its life-course.

In short, the Rust ecosystem offers, to the best of our
knowledge, the most complete data on contributions, de-
pendencies, and outcomes of any OSS ecosystem. We note
that while other ecosystems may not have the same quality
and scope of data, our framework is modular and can be
adapted to different datasets.

Package metadata, repositories,
dependency network

The core of the dataset is derived from a database dump
from Cargo (available on https://crates.io/data-access)
containing extensive metadata about packages. The dataset
includes package names, URLs, versions, dependencies,
creation date, and daily downloads. URLs can be linked to
valid repository (repo) URLs on GitHub, Gitlab, and other
platforms. It also provides details on dependencies between
packages, enabling the construction of a dependency net-
work at any point in time, which is important as libraries add
and remove dependencies on a regular basis. The database
discards information about versions by considering only the
dependencies of the latest version of a library—recognizing
that version conflicts are a major way in which libraries
break because of undermaintenance (Decan et al., 2019;
Wang et al., 2020).

Developer contributions

We consider commits as the elemental contributions that
developers make to projects. Though we acknowledge that
other forms of contributions such as issue reporting rep-
resent valuable contributions to OSS projects and ecosys-
tems as a whole (Trinkenreich et al., 2020), solving
problems created by changes in upstream dependencies, for

4 Collective Intelligence

https://www.agileadvice.com/archives/2005/05/truck
https://www.agileadvice.com/archives/2005/05/truck
https://crates.io/data-access

example, typically requires committing code. The dataset
we employ disambiguates user accounts and removes bot
accounts (Golzadeh et al., 2021; Schueller et al., 2022). We
associate developers to libraries, weighing their contribu-
tions by their share of the total commits made. In the
analysis carried out in the rest of the paper we fix the scope
of the dataset: we consider the dependency network be-
tween Rust repos as observed on January 1, 2022. We
consider contributions (commits) made to repos from
January 1, 2021 to January 1, 2022. To emphasize this point
of flexibility, we refer to libraries rather than repos or
packages in the subsequent sections.

Methods and analysis

Modeling library functionality via
production functions

The key insight our paper brings from the complex systems
literature is that when systems have rich interdependencies,
small changes in seemingly unimportant parts of a system
can have an outsized effect on the functioning of the whole
(Peters et al., 2008). To carry out this kind of analysis in the
context of spreading failures in the Rust ecosystem, we will
now describe how to quantify a library’s functionality in
terms of social and technical inputs.

A library i requires both functioning upstream depen-
dencies and active contributors to continue to function
properly. A developer stopping to contribute, or a depen-
dency missing, compromised or exposed to bugs will ex-
pose the library itself to an increased risk. We assume that
both sources of risk can be combined into one quantity: a
probability of failure 0 ≤ F(i) ≤ 1. In our context, failure is an
abstraction of the issues, bugs, and vulnerabilities that a
library can spread to its downstream dependencies.

Risk is minimized when a library has active maintainers
and functioning dependencies. Risk is highest when all
developers having stopped maintenance work on the library
and/or all upstream dependencies have failed. To combine
the two sources of risk, we adapt the notion of a production
function from the economics literature (Brown 1957).
Production functions are used in a variety of contexts to
describe how inputs are combined to generate outputs. A
traditional example is how capital and labor combine to
create goods in an economy. The chosen functional form
governs how the inputs interact with one another. For in-
stance, two inputs may substitute for or complement one
another. In one extreme case, one or more inputs may be
essential to production.

In our case, we argue that maintaining developers and
functioning upstream dependencies are both required for a
library to continue to work. These two inputs to software
maintenance can only substitute for each other in a limited
way. This perspective aggregates and necessarily simplifies

several sources of risks, but provides a flexible framework
to consider the impact of both social and technical vul-
nerabilities. Specifically we use a Cobb-Douglas style
production function (Brown 1957) Pi, which considers the
product of the shares of functioning its upstream depen-
dencies (di) and active contributors (ci)

1

Fi ¼ 1� Pi ¼ 1�
�
c1=2i + d1=2

i

�
For example, a library or package with one half of its

contributors available, and two-thirds of its upstream de-
pendencies functioning, will have a roughly 43% (1 �
((1/2)1/2 + (2/3)1/2)) risk exposure, that is, its chance of
failing. We selected the Cobb-Douglas production function
to model the spread of risk because it suggests that con-
tributors and upstream health are complements and im-
perfect substitutes, and that libraries can fail if either is
missing. Indeed the Cobb-Douglas functional form is often
used to model or estimate the relative contributions of labor
and capital to output in a firm or industry (Brown 1957). The
relative weighting of dependencies and maintainers can be
adjusted via the exponents. Other production functions such
as the Leontief production function (1 � min (ci, di)), in
which inputs cannot be substituted at all, or a linear pro-
duction function (1 � ci + di/2), in which inputs are perfect
substitutes, present alternatives. In this sense, our frame-
work is flexible and can diagnose systemic risk with respect
to different kinds of issues. We plot the Cobb-Douglas
function predicted chance of library failure in Figure 2.

Spread of failures

In order to model the spread of library failures in the
ecosystem, we need represent two kinds of relationships.
The first kind consists of maintenance activity by devel-
opers in specific libraries. We store this information as a
matrix∗ C, in which the entry Ci,j counts the number of
commits made by developer i to library j. We normalize the
columns of this matrix and obtain bC, in which the entry bCi, j

can be interpreted as the share of contributions to library j
made by developer i.

The second kind of relationships within the ecosystem
we consider are the dependencies between libraries. We
store this information in a matrix D. D is a square matrix
with rows and columns equal to the number of depen-
dencies. EntryDi,j is equal to 1 if library j depends on library
i, and is 0 otherwise. Similar to the previous case, we
normalize the columns of this matrix to obtain bD, in which

the entry bDi, j can be interpreted as the share of dependency
of library j on library i.

We now define two vectors that track the state of the
system. SC is a vector corresponding to the contributors in
the ecosystem. The i-th entry of SC is 1 if contributor i is

Schueller and Wachs 5

active, otherwise 0. As our analysis deals with the potential
consequences of contributors leaving the ecosystem, this
vector will be an input to our scenarios.

The second vector SL tracks the state of each library. That
is to say it defines the likelihood that a library will fail, given
the status of its upstream dependencies and contributors.

When all libraries are fully functioning, every coordinate
of SL is equal to 1. Those coordinates correspond con-
ceptually to 1 � Fi as defined in the previous subsection,
and depending on the imposed conditions—for example,
some developers missing—can take values between 0 and 1,
0 being the highest possible level of risk exposure.

Our scenarios consider what happens to the libraries after
a contributor leaves the ecosystem. The departure of a
developer triggers potential issues: either directly on those
libraries to which she contributes, or indirectly, on those
libraries which depend on libraries she maintains, as sug-
gested by Lehman’s Law (Lehman 1980). This information
is captured by the following self-referential equation

SL ¼
�
SCu

+ bC�1=2

1
�
SLu

+ bD�1=2

In this equation 1 denotes element-wise matrix mul-
tiplication. Likewise, the exponents are to be taken element-
wise. T denotes the transpose of the vectors. In plain terms,
the left factor corresponds to the effect of absent contrib-
utors on the states of the libraries, while the right factor
corresponds to the effect of potential malfunctioning up-
stream dependencies. These effects are combined by the
Cobb-Douglas style production function.

In our application, bC, bD, and SC are fixed and we can
represent the equation in the following form SL ¼ f ðSLÞ,

emphasizing that the library state vector is updating. To find
the solution of this equation, we iterate from the initial state
in which all libraries are functioning, which we denote SL0

SL
0 ¼ 1

SL
nþ1 ¼ f

�
SL
n

�
This sequence converges towards a stable solution in a

finite number of steps, which we denote SL ¼ SLFin.
We now describe the specific calculations we make. We

proceed by initializing all entries of the library state vector
SL to 1. We then remove a developer from the system,
changing a single entry of the contributor state vector SC

from 1 to 0. This allows us to calculate a step of the spread or
diffusion of issues. Our practical implementation includes
two small corrections to the equation to handle edge cases.
When a library has no dependencies, its entry on the right
factor is set to one at the end of every step in the iteration.
When a library has no contributors the left factor is similarly
hardcoded to one. In the next step, we observe that the left
factor is unchanged—we do not remove additional
developers—and that the right factor is simply the result of
the calculation carried out in the previous step. We repeat
this calculation several times, until the state vector of SL is
unchanged. As the dependency network has no cycles
(i.e., is a directed acyclic graph), the process always con-
verges. In practice, this happens in a relatively small number
of steps—approximately 20 in our application—as the
depth of the dependency network is small relative to the size
of the system as a whole.

We now carry out one step of an example diffusion on a
toy ecosystem.We visualize this example in Figure 3. In this
ecosystem, there are four libraries maintained by three
developers. The normalized contributors’ matrix is

bC ¼
24 0 :5 0 0
1 :25 0 0
0 :25 1 1

35

Column 2 indicates that contributor 1 is responsible for
half of the contributions to library 2, while contributors
2 and 3 are responsible for one quarter each. Contributor
2 is the sole contributor to library 1. The normalized
dependency matrix, on the other hand is a square 4 ×
4 matrix:

bD ¼

2664
0 1 0 1
0 0 :5 0
0 0 0 0
0 0 :5 0

3775
This matrix indicates that library 1 has no upstream

dependencies (column 1), while libraries 2 and 4 depends

Figure 2. The chance of library failure in terms of the shares of
inactive developers and failed upstream dependencies, as
quantified using a Cobb-Douglas production function. A library
with all of its original developers still active, and 60% of its direct
upstream dependencies functional has a roughly 80% chance to
survive.

6 Collective Intelligence

solely on library 1. Library 3 (column 3) depends on both
libraries 2 and 4. We calculate what happens according to
our method if contributor 2 is removed from the system, as
indicated in Figure 3. We obtain the following equation:

SL
1 ¼

�
½ 1 0 1 �+ bC�1=2

1
�
½ 1 1 1 1 �+ bD�1=2

Carrying out the matrix multiplications and the expo-
nents (element-wise) of the two factors yields

SL
1 ¼

0ffiffiffi
3

4

r
1

1

26666664

377777751
1
1
1
1

2664
3775 ¼

0ffiffiffi
3

4

r
1

1

26666664

37777775
In the next step of the calculation, the left factor would be

unchanged, but the right factor would be changed, reflecting
the spread of the probability of failure from libraries 1 and 2
(recall that the removed contributor 2 contributed to both).
As the reader can verify, the removal of contributor 2 leads
to a chain reaction in which the functionality of all libraries
in the ecosystem is affected. Specifically the next step of the
iteration yields

SL
2 ¼

0

0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

p þ 2

4

s
0

266666664

377777775
The next iteration after that results in a library state

vector of all zeros: SL3 ¼ SLFin ¼ 0
!
. In other words, the

removal of the single developer has lead to a cascade of
failures impacting all libraries in the toy system.

Ranking contributors, libraries, and the ecosystem as
a whole

With this method to model the spread of failures resulting
from the removal of individual contributors, we proceed to
test the robustness of the whole Rust ecosystem, aiming to
rank contributors and libraries for their systemic impor-
tance. To do so, we simply repeat the iterated calculation
above for every contributor in the ecosystem. That is, we
remove each contributor, alone, a single time. Note that
more complex removals are possible—the diffusion equa-
tion is flexible and can accommodate any valid input
contributor state vector. For example, one could remove all
contributors supported by a specific corporation or
foundation.

For each contributor we remove from the system, our
calculations yield a final library state vector SLFin. These
vectors represent the functionality of the libraries following
the cascade induced by a specific contributor’s departure.
We define the risk Ri to library i as the difference

Ri ¼ 1� SL
FinðiÞ

As not all libraries are equally important to the ecosystem
as a whole, we weigh these entries by the share of down-
loads the specific library has of all total downloads. Spe-
cifically the download-weighted risk of a simulated removal
to library i is defined as

Rdl
i ¼ �

1� SL
FinðiÞ

� � dliP
jdlj

where the denominator in the right factor of the product
denotes the sum of downloads of all libraries. Recall that
downloads (like commits) are counted only in the year
January 1, 2021 to January 1, 2022 for the analysis and
results presented in this paper.

Summing the resulting download-weighted risk score
over all libraries in the ecosystem yields our final risk score
for a specific scenario (defined originally by the input
contributor state vector SC. It also carries a straightforward
interpretation: it describes the average risk exposure of a
random individual download of a library in the ecosystem
for the given scenario. With this framework in hand, we can
now define how we rank contributors and libraries, and
quantify overall ecosystem’s risk.

Ranking contributors

Ranking contributors in terms of their systemic importance
in this context is straightforward. Given the removal of
contributor j, implemented by setting the j-th entry of the
input contributor state vector SC to 0, the overall Con-
tributor Impact Ij is simply the sum of all library
download-weighted risk scores

Figure 3. An example ecosystem. (a) The network of
dependencies between four libraries. (b) The three contributors
to the libraries. Percentages denote what share of contributions
they make to a specific library. For instance, contributor 1 makes
50% of all contributions to library 2. In our example calculation,
we simulate the consequences of the departure of contributor
2 from the system.

Schueller and Wachs 7

Ij ¼
X
i

Rdl
i

In other words, this measures the average impact that the
removal a contributor from the system would have on a
random observed download of a library in the Rust
ecosystem.

Overall ecosystem risk

We derive global measure G of the systemic risk of the
ecosystem by summing up all contributor impact scores

G ¼
X
j

Ij

This quantity can be used to compare the change in
overall risk due to some intervention, as we will implement
later in the paper. It also provides a baseline which we use to
define library importance.

Ranking libraries

Finally, we also derive a measure ranking the systemic
importance of libraries. This is perhaps the most important

ranking, as interventions can most easily be made at the
level of libraries. Specifically, we consider how often a
library serves as a conduit of spreading failure to down-
stream dependencies. We do this by rerunning the full set of
developer removals and failure propagation calculations
with each library “immunized” to failure, one by one. In
terms of our equation, the immunized library’s entry in the
library state vector SL is hard-coded to 1. This counterfactual
allows us to quantify how a library amplifies or transmits
issues through the software dependency network. The
change in the overall ecosystem risk score G when a library
is protected in this way serves as a quantification of its
contribution to overall risk. We define this measure, which
we call the Risk Transmission Score of a library i, as
follows

RTSi ¼ G� Gi

where Gi denotes the ecosystem risk score calculated when
library i is immune to failure.

Results

We plot the rank-ordered distribution of Contributor
Impact in Figure 4. We observe a remarkable

Figure 4. The rank-ordered contributions of Rust contributors to systemic risk, on a logarithmic scale. The top 10 developers account
for 43% of systemic risk.

8 Collective Intelligence

concentration of systemic risk: with the top 10 con-
tributors accounting for over a 40% of the risk observed
in our analyses. We observe a similar, though slightly
less concentrated distribution when we consider the
importance of different libraries in terms of their Risk
Transmission Score, see Figure 5. This recalls our
motivating example from earlier in the paper: individual
developers are playing an important role in multiple
important libraries.

To compare our method of ranking important libraries
with alternative measures, for example, by the count of
their transitive dependencies, we zoom in on the very top
ranked libraries. We plot libraries ranked among the top
20 according to Risk Transmission Rank or by the count of
their transitive dependencies in Figure 6. Our method
suggests that libraries above the diagonal are more im-
portant than a count of their downstream dependencies
suggests. Our method highlights several libraries (“rand”
and “syn,” among others) that are among the top 10 li-
braries according to Risk Transmission Rank, but do not
break into the top 100 libraries by number of transitive
dependencies. These libraries have a prominent position in
the network topology that amplify their contribution to
systemic risk.

Interventions

While it is valuable to highlight vulnerabilities in a system,
our methodology can be used to suggest how to intervene in
the system to improve its resilience by allocating scarce
development resources. In particular, our ranking of li-
braries in the Rust ecosystem can be used to allocate
support. For instance, a foundation or firm may have funds
to sponsor development or maintenance on a specific li-
brary. Though in reality, developer resources are not fun-
gible and cannot be allocated to any library in arbitrary
amounts (Mockus 2009), a prioritization in terms of risk
remains useful. Thus in this section, we describe an in-
tervention in terms of development time contributed to a
fixed number of libraries. We compare the impact on sys-
temic risk of various allocation strategies based on rankings
of libraries, including our Risk Transmission Rank score.
We first describe alternative rankings, then describe how we
implement the interventions, and finally report results.

Rankings

As our aim is to compare reasonable strategies to allocate
development resources across libraries, we consider several

Figure 5. The risk transmission rank (RTR) importance of Rust libraries, on a logarithmic scale. We quantify a library’s importance by
rerunning our failure cascade model with that library immunized against failure, and then comparing the overall outcome against the
general case when the library can fail. The top 10 libraries account for 22% of the total observed differences across all libraries.

Schueller and Wachs 9

perspectives on what makes a library important or well-
known. We consider a library’s place in the dependency
network, its overall use, its age, its popularity, and its
systemic importance as quantified by our Risk Transmission
Rank. We also test random allocations as a benchmark. We
summarize these rankings in Table 1, and describe them
below.

In a technical sense, a library is important in an eco-
system if many other libraries depend on it. These de-
pendencies can be direct or indirect (sometimes called
transitive). We therefore use the count of transitive de-
pendencies as one ranking of libraries (Decan et al., 2019).
A simpler way to rank libraries is by their age, arguing that
older (active) libraries are more likely to be important.

In practice, libraries are often ranked by their use and
popularity in the broader community. We measure use via
the count of downloads of a Rust library, as tracked by
Cargo. Popularity or social visibility is measured by
counting the number of stars a library has received on
GitHub (Borges and Tulio Valente 2018). Both factors are
thought to play an important role in the success of open
source software. A large active user base of a specific library
provides a kind of defense against errors as suggested by
Raymond’s notion that “with many eyes all bugs are
shallow” (Raymond 1999). The launch of GitHub Sponsors
and growing adoption of crowdfunding to support OSS

maintainers suggests that highly visible libraries will be
even more likely receive resources (Overney et al., 2020).
However, we know from examples that not all systemically
importance packages are highly visible. Anecdotally,
OpenSSL was taken for granted before the discovery of the
Heartbleed vulnerability.

Intervention design and quantifying impact

While software developers and software development time
is not a fungible resource, we make the simplifying as-
sumption that a donor can contribute to a library by adding
a single developer. Developers added this way make a
uniform weekly contribution of commits, which we fix at 5/
7 times the number of days across which we analyze the
system (in our case 365). We denote this contribution factor
(5/7 times 365) by e, roughly one contribution per weekday.
We add a single developer to the top K libraries according
to each ranking for a range of values between 1 and 1000.

After allocation, we rerun our framework—one by one
we remove each developer in the system and calculate the
resulting cascades. We calculateG, the overall systemic risk
of the ecosystem in each of these scenarios, comparing it the
original estimate derived in the previous section. As more
contributors are added, the overall systemic risk falls. We

Figure 6. Libraries of the Rust ecosystem in the top 20 according to either their risk transmission rank (RTR) or the count of
(downstream) transitive dependencies.We observe several libraries in the top 10 of the RTR, hence likely of systemic importance, that
are not even in the top 100 according to the number of transitive dependencies they have.

10 Collective Intelligence

compare the effectiveness of allocations according to the
different rankings.

We need to make one modification to the methodology in
this case. Specifically, if we are adding contributions to a
library as part of an intervention, we should not simulate
what happens if these new resources are withdrawn. Rather,
we represent these extra contributions as a kind of over-
production (c.f. (Champion and Hill 2021)) that can be used
to absorb shocks. Specifically, we add a term X to our self-
referencing equation for the library state vector

SL ¼
�
SCu

+ bC�1=2

1
�
SLu

+ bDþ X
�1=2

Here X is a vector corresponding to the libraries of the
ecosystem. An entry i is equal to e/N, where N is the total
number of commits to library i, if library i is allocated a
developer, 0 otherwise. Recall that e captures the contri-
butions of these allocated developers, estimated at a rate of
one commit per week day. This correction insures that
additional resources allocated by the intervention can only
help a library. In each round of the calculation, we cap
entries of the library state vector SL at 1 to insure
convergence.

Intervention results

We visualize the improvement in systemic risk as a function
of developers added according to the different ranking
heuristics in Figures 7 and 8.We observe a sharp decrease in
overall risk using the Risk Transmission Rank, the number
of downloads, or the number of transitive dependencies to
rank libraries. Using GitHub stars, library age, or a random
ranking to allocate development resources are significantly
less effective strategies. Given that GitHub stars are a major
source of visibility in the OSS community (Borges and
Tulio Valente 2018), we suggest that equating systemic
importance with stars may be leading to systemic mis-
allocation of attention and help.

To quantify the relative performance of these rankings,
we calculate the area below the horizontal line at the
baseline systemic risk level and above the curve for each

heuristic up to different numbers of developers added, and
normalize by the total area under the baseline. We report
these values in Table 2. These results verify the patterns we
observe in the figures: allocating developers by RTR,
downloads, and transitive dependencies are better strategies
than allocating them by age or visibility (i.e., stars on
GitHub). Though RTR performs best across the entire range
of the intervention, it is still interesting to note that ranking
libraries by transitive dependencies and downloads are also
relatively strong heuristics. As these require less data and
calculation, they may be good strategies in other ecosystems
with less data.

Discussion

OSS ecosystems tend to evolve, like many complex sys-
tems, towards efficiency. If there is a library that does
something well, it can quickly become widely used.
However, this drive towards efficiency may increase sys-
temic risks. Studies of risk in ecosystems that focus on the
structure of technical dependencies overlook the potential
synchronized risks coming from departing developers ac-
tive in multiple libraries. In this work, we present a
framework to quantify these risks.

Our method highlights individual libraries which are
worthy of more attention and support. As the most central
and important developers in OSS ecosystems are under
increasing pressure and stress (Eghbal 2020), measures of
ecosystem health need to consider the interaction of these
social aspects with their technical structure (Constantinou
and Mens 2017). In other words, OSS ecosystem sustain-
ability can be thought about via the networks of depen-
dencies between its libraries and how their maintainers span
them. Within individual libraries or projects, the importance
of socio-technical congruence—that is the coordination
between people working on interdependent modules—is
well known (Cataldo et al., 2008); our paper suggests how
such congruence at the ecosystem level could provide
warnings and help maintainers of downstream libraries
anticipate upstream issues. More generally, our work con-
tributes to a growing literature on the sustainability and re-
silience of key software supply chains (Lamb and Zacchiroli
2021; Ohm et al., 2020; Zimmermann et al., 2019).

The primary shortcoming of our work is the evaluation of
our ranking of developer and libraries importance using
ground-truth empirical data. Two distinct challenges make
this difficult and merit future work. First, we need to detect
the consequential departure of developers from roles as
maintainers, either in specific libraries or the ecosystem as a
whole. It is difficult to distinguish unplanned departures
from more gentle farewells, in which other developers are
ready to take over or a library is clearly labeled as depre-
cated and its downstream dependencies are informed.
Second, we need to quantify the impact of such a departure,

Table 1. Ways to rank libraries in the rust ecosystem to allocate
developer resources in an intervention.

Name Description

Transitive dependencies # of upstream dependencies
Downloads # of downloads on Cargo
Age Time since appearance
Stars Number of stars on GitHub
Random Random allocation (baseline)
Risk transmission rank Spreading-based measure

Schueller and Wachs 11

which may manifest in many ways. One possibility is to
consider the growth in issues reported in downstream li-
braries and their rate of resolution over time. Another is to
consider the spread of security vulnerabilities around un- or
undermaintained libraries (Zheng et al., 2023).

Otherwise, our framework also has several potential
empirical extensions. One could expand data to other
ecosystems (Decan et al., 2019) or define dependencies at
more granular levels (Blincoe et al., 2015; Hejderup et al.,
2022). One could also expand the scope of contributions to
include issue reporting and community management
(Trinkenreich et al., 2020), or consider heterogeneity in
commit sizes (Gote et al., 2021). Issue and pull request
response times and rates (Dey and Mockus 2020), could be
deployed as metrics for system health.

Another simplifying assumption of our work is that the
libraries we observe are functioning and properly main-
tained, no matter how many developers they have. This is
often false, as shown by Champion and Mako Hill in their
recent work on the Debian package ecosystem (Champion
and Hill 2021). They introduce the notion of underpro-
duction and quantify it by tracking issue survival rates. One
could extend our model by adapting this measure or by
adopting different kinds of production functions.

Our framework can also be adapted to analyze the
consequences of multiple developers leaving an ecosystem
at the same time. This is not a hypothetical scenario—the
increased reliance on centralized sponsors of libraries and
even ecosystems presents another kind of risk. For example,
many of the core developers of the Rust ecosystem were
employed byMozilla. In a round of layoffs in the summer of
2020, many of these developers lost their jobs at the same
time. While Rust seems to have weathered this storm, it
demonstrates that often multiple developers leave a system
at around the same time. External geopolitical shocks like
wars and economic sanctions between nations can also have
a significant impact on software developers and the eco-
systems they operate in (Wachs 2023). Our framework can
also be used to study how different kinds of resources are
allocated to support OSS.While our analyses considered the
case of individual developers being added to specific
projects, it can also be adapted to study the potential impact
of, for example, collective efforts to fix issues in multiple
libraries in a specific system2.

In general, people leave OSS projects for reasons that
may be correlated within an ecosystem, such as the end of
funding of a university project or changing workplaces
(Miller et al., 2019). Luis Villa of Tidelift, a firm that helps

Figure 7. The change in overall systemic risk as a function of developers added by various library ranking heuristics, ranging from adding
one contributor to 100 (log scale).

12 Collective Intelligence

users and firms support OSS with financial contributions,
suggests that we should perhaps rather talk of a “boss factor”
than truck factor.3 Indeed, many of the most widely used and
influential OSS projects are maintained by companies and
paid individuals (Germonprez et al., 2019). In this way, OSS
ecosystems can be thought of as a co-production of volun-
teers and companies (O’Neil et al., 2021). Policymakers
seeking to promote the use of OSS should consider these
aspects of sustainability (Blind et al., 2021).

Our work provides additional motivation for getting
more people involved in OSS. Mentorship of new

contributors has been shown to be a key determinant of
people becoming active participants in ecosystems
(Steinmacher et al., 2021). At the same time, our work
shows indirectly how social barriers to participation
(Steinmacher et al., 2015) make software ecosystems more
brittle in the long run. More work is needed to understand
how disparities in participation in open source, for example,
owing to gender (Terrell et al., 2017; Vasilescu et al., 2014)
or geography (Braesemann et al., 2019; Takhteyev 2012;
Wachs et al., 2022), block us from realizing more stable
systems.

Figure 8. Extending the previous figure to scenarios adding between 100 and 1000 developers to the ecosystem.

Table 2. Cumulative reduction of systemic risk when adding developers according to different intervention strategies, relative to the
baseline systemic risk. whether adding just a few or many developers, adding them to high RTR ranked libraries yields the greatest
decrease in systemic risk.

Developers added 1(%) 2(%) 5(%) 10(%) 20(%) 50(%) 100(%) 250(%) 500(%) 1000(%)

Intervention
Risk transmission rank 2.4 4.7 9.5 14.8 21.9 34.3 45.3 62.9 75.4 84.9
Downloads 1.0 1.9 4.0 6.5 14.5 30.8 43.7 61.8 74.0 83.4
Transitive dependencies 1.1 2.9 7.7 11.2 14.4 20.7 28.0 37.5 48.6 66.3
GitHub stars 0.0 0.0 0.0 0.1 0.2 1.0 2.0 6.3 14.0 26.2
Age 0.0 0.1 0.5 0.8 1.0 2.1 3.6 5.7 9.4 15.7
Random 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.2 0.5

Schueller and Wachs 13

Acknowledgements

The authors thank Christian Diem, Tobias Reisch, Hannah
Schuster, Balint Daroczy, Aleksandra Urman, Rositsa Ivanova,
and participants of seminars at the Complexity Science Hub
Vienna and WU Wien for valuable feedback. Johannes Wachs
acknowledges support from the Center for Collective Learning
(101086712-LearnData-HORIZON-WIDERA-2022-TALENTS-
01 financed by European Research Executive Agency (REA)) and
the Hungarian National Scientific Fund (OTKA FK 145960).

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with re-
spect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for
the research, authorship, and/or publication of this article: This work
was supported by the European Research Executive Agency;
101086712-LearnData-HORIZON-WIDERA-2022-TALENTS-01
and Hungarian National Scientific Fund (OTKA FK-145960).

ORCID iD

Johannes Wachs https://orcid.org/0000-0002-9044-2018

Data Availability Statement

An anonymized dataset is available on Figshare (https://figshare.
com/s/93158d03416765444650). The underlying code for both
data collection and processing is released as an open-source Py-
thon library called RepoDepo: https://github.com/wschuell/
repodepo. Code to reproduce our analyses is available at https://
github.com/wschuell/misteriosse.

Notes

1. We refer to developers and contributors interchangeably, pre-
ferring to use the notation C to distinguish their role from the
role of technical dependencies.

2. An example of such an effort in the Rust ecosystem is the Rust
Lib Blitz project, see: https://blog.rust-lang.org/2017/05/05/
libz-blitz.html

3. See: https://blog.tidelift.com/bus-factor-boss-factor-and-the-
economics-of-disappearing-maintainers

References

Abdalkareem R, Nourry O, Wehaibi S, et al. (2017) Why do
developers use trivial packages? an empirical case study on
npm. In: Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineeringm, Paderborn, Germany,
4–8 Sep 2017, pp. 385–395.

Alfadel M, Costa DE and Shihab E (2021) Empirical analysis of
security vulnerabilities in python packages. In: 2021 IEEE
International Conference on Software Analysis, Evolution and

Reengineering (SANER), Honolulu, HI, 12 March 2021,
pp. 446–457. IEEE.

Amreen S, Bichescu B, Bradley R, et al. (2019) A methodology for
measuring floss ecosystems. In: Towards Engineering Free/Libre
Open Source Software (FLOSS) Ecosystems for Impact and Sus-
tainability. Salmon Tower Building, NewYork City: Springer, 1–29.

Avelino G, Passos L, Hora A, et al. (2016) A novel approach for
estimating truck factors. In: 2016 IEEE 24th International
Conference on Program Comprehension (ICPC), Austin, TX,
17 May 2017, pp. 1–10. IEEE.

Benkler Y, Shaw A and Hill BM (2015) Peer production: a form of
collective intelligence. Handbook of Collective Intelligence
175. Cambridge, MA: MIT Press.

Birsan A (2021) Dependency confusion: how i hacked into apple,
microsoft and dozens of other companies. Medium.

Blincoe K, Harrison F and Damian D (2015) Ecosystems in Gi-
tHub and a method for ecosystem identification using reference
coupling. In: 2015 IEEE/ACM 12th Working Conference on
Mining Software Repositories, Florence, Italy, 16–17 May
2015, pp. 202–211. IEEE.

Blind K and Schubert T (2023) Estimating the gdp effect of open
source software and its complementarities with r&d and pat-
ents: evidence and policy implications. The Journal of Tech-
nology Transfer 1: 1–26.

Blind K, Böhm M, Grzegorzewska P, et al. (2021) The Impact of
Open Source Software and Hardware on Technological In-
dependence, Competitiveness and Innovation in the EU
Economy. Brussels: European Commission.

Borges H and Tulio Valente M (2018) What’s in a GitHub star?
understanding repository starring practices in a social coding
platform. Journal of Systems and Software 146: 112–129.

Braesemann F, Stoehr N and GrahamM (2019) Global networks in
collaborative programming. Regional Studies, Regional Sci-
ence 6(1): 371–373.

Brown EHP (1957) The meaning of the fitted cobb-douglas
function. Quarterly Journal of Economics 71(4): 546–560.

Cataldo M and Herbsleb JD (2013) Coordination breakdowns and
their impact on development productivity and software failures.
IEEE Transactions on Software Engineering 39(3): 343–360.

Cataldo M, Herbsleb JD and Carley KM (2008) Socio-technical
congruence: a framework for assessing the impact of technical
and work dependencies on software development productivity. In:
Proceedings of the Second ACM-IEEE International Symposium
on Empirical Software Engineering and Measurement, Kai-
serslautern, Germany, 9–10 October, 2008, pp. 2–11.

Champion K and Hill BM (2021) Underproduction: an approach
for measuring risk in open source software. In: 2021 IEEE
International Conference on Software Analysis, Evolution and
Reengineering (SANER), Honolulu, HI, 9–12 March 2021,
pp. 388–399. IEEE.

Chowdhury MAR, Abdalkareem R, Shihab E, et al. (2022) On the
untriviality of trivial packages: an empirical study of npm
javascript packages. IEEE Transactions on Software Engi-
neering 48: 2695–2708.

14 Collective Intelligence

https://orcid.org/0000-0002-9044-2018
https://orcid.org/0000-0002-9044-2018
https://figshare.com/s/93158d03416765444650
https://figshare.com/s/93158d03416765444650
https://github.com/wschuell/repodepo
https://github.com/wschuell/repodepo
https://github.com/wschuell/misteriosse
https://github.com/wschuell/misteriosse
https://blog.rust-lang.org/2017/05/05/libz-blitz.html
https://blog.rust-lang.org/2017/05/05/libz-blitz.html
https://blog.tidelift.com/bus-factor-boss-factor-and-the-economics-of-disappearing-maintainers
https://blog.tidelift.com/bus-factor-boss-factor-and-the-economics-of-disappearing-maintainers

Coelho J and Valente MT (2017) Why modern open source
projects fail Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering, Paderborn, Germany, 4–
8 September 2017, pp. 186–196.

Cogo FR, Oliva GA and Hassan AE (2022) Deprecation of
packages and releases in software ecosystems: a case study on
npm. IEEE Transactions on Software Engineering 48:
2208–2223.

Constantinou E and Mens T (2017) Socio-technical evolution of
the ruby ecosystem in GitHub. In: 2017 IEEE 24th Interna-
tional Conference on Software Analysis, Evolution and Re-
engineering (SANER), Klagenfurt, Austria, 20–24 Feb 2017,
pp. 34–44. IEEE.

Cook RI (2020) Above the line, below the line.Communications of
the ACM 63(3): 43–46.

Decan A, Mens T and Constantinou E (2018) On the impact of
security vulnerabilities in the npm package dependency net-
work. In: Proceedings of the 15th International Conference on
Mining Software Repositories, Gothenburg, Sweden, 28–
29 May 2018, pp. 181–191.

Decan A, Mens T and Grosjean P (2019) An empirical comparison
of dependency network evolution in seven software packaging
ecosystems. Empirical Software Engineering 24(1): 381–416.

Decan A, Mens T, Zerouali A, et al. (2022) Back to the past–
analysing backporting practices in package dependency net-
works. IEEE Transactions on Software Engineering 48:
4087–4099.

Dey T and Mockus A (2020) Effect of technical and social factors
on pull request quality for the npm ecosystem. In: Proceedings
of the 14th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM), Bari, Italy,
5 – 9 October, 2020, pp. 1–11.

Diem C, Borsos A, Reisch T, et al (2022) Quantifying firm-level
economic systemic risk from nation-wide supply networks.
Scientific Reports 12: 7791, 1-13.

Durumeric Z, Li F, Kasten J, et al. (2014) The matter of heartbleed.
In: Proceedings of the 2014 Conference on Internet Mea-
surement Conference, Vancouver, Canada, 5–7 November
2014, pp. 475–488.

Eghbal N (2020)Working in Public: The Making andMaintenance of
Open Source Software. San Francisco and Dublin: Stripe Press.

Ferreira M, Mombach T, Valente MT, et al. (2019) Algorithms for
estimating truck factors: a comparative study. Software Quality
Journal 27(4): 1583–1617.

Germonprez M, Lipps J and Goggins S (2019) The Rising Tide:
Open Source’s Steady Transformation. Greenville, South
Carolina: First Monday.

Golzadeh M, Decan A, Legay D, et al. (2021) A ground-truth
dataset and classification model for detecting bots in GitHub
issue and PR comments. Journal of Systems and Software 175:
110911.

Gote C, Scholtes I and Schweitzer F (2021) Analysing time-
stamped co-editing networks in software development teams
using git2net. Empirical Software Engineering 26(4): 1–41.

Greenstein S and Nagle F (2014) Digital dark matter and the
economic contribution of Apache. Research Policy 43(4):
623–631.

Haldane AG and May RM (2011) Systemic risk in banking
ecosystems. Nature 469(7330): 351–355.

Hejderup J, van Deursen A and Gousios G (2018) Software eco-
system call graph for dependency management. In: 2018 IEEE/
ACM 40th International Conference on Software Engineering:
New Ideas and Emerging Technologies Results (ICSE-NIER),
Gothenburg, Sweden, 27 May 2018, pp. 101–104. IEEE.

Hejderup J, Beller M, Triantafyllou K, et al. (2022) Präzi: from
package-based to call-based dependency networks. Empirical
Software Engineering 27(5): 102–142.

Herbsleb JD and Grinter RE (1999) Splitting the organization and
integrating the code: conway’s law revisited. In: Proceedings of
the 21st International Conference on Software Engineering,
Los Angeles, CA, 22 May 1999, pp. 85–95.

Kinney R, Crucitti P, Albert R, et al. (2005) Modeling cascading
failures in the north american power grid. The European
Physical Journal B 46(1): 101–107.

Lamb C and Zacchiroli S (2021) Reproducible Builds: Increasing
the Integrity of Software Supply Chains. New York City, NY:
IEEE Software.

Lehman MM (1980) Programs, life cycles, and laws of software
evolution. Proceedings of the IEEE 68(9): 1060–1076.

Luszcz J (2018) Apache struts 2: how technical and development
gaps caused the equifax breach.Network Security 2018(1): 5–8.

Ma Y (2018) Constructing supply chains in open source software.
In: 2018 IEEE/ACM 40th International Conference on Soft-
ware Engineering: Companion (ICSE-Companion), Gothen-
burg, Sweden, 27 May 2018, pp. 458–459. IEEE.

Mens T and Grosjean P (2015) The ecology of software ecosys-
tems. Computer 48(10): 85–87.

Miller C,Widder DG, Kästner C, et al. (2019)Why do people give up
flossing? a study of contributor disengagement in open source. In:
IFIP International Conference on Open Source Systems, Mon-
treal, QC, Canada, 26–27 May 2019, pp. 116–129. Springer.

Mockus A (2009) Succession: measuring transfer of code and
developer productivity. In: 2009 IEEE 31st International
Conference on Software Engineering, Washington, DC, 16–
24 May 2009, pp. 67–77. IEEE.

Newman LH (2021) The internet is on fire.Wire Magazine 1: 1–15.
Ohm M, Plate H, Sykosch A, et al. (2020) Backstabber’s knife

collection: a review of open source software supply chain
attacks. In: International Conference on Detection of Intrusions
and Malware, and Vulnerability Assessment, Lisbon, Portugal,
24-26 June 2009, pp. 23–43. Springer.

Overney C, Meinicke J, Kästner C, et al. (2020) How to not get
rich: an empirical study of donations in open source. In:
Proceedings of the ACM/IEEE 42nd International Conference
on Software Engineering, Seoul, Korea, 5–11 Oct 2020,
pp. 1209–1221.

O’Neil M, Muselli L, Raissi M, et al. (2021) ‘Open source has won
and lost the war’: legitimising commercial–communal

Schueller and Wachs 15

hybridisation in a FOSS project. New Media & Society 23(5):
1157–1180.

Pashchenko I, Plate H, Ponta SE, et al. (2018) Vulnerable open
source dependencies: counting those that matter. In: Pro-
ceedings of the 12th ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement, New York,
NY, 11–12 Oct 2018, pp. 1–10.

Peters K, Buzna L and Helbing D (2008) Modelling of cascading
effects and efficient response to disaster spreading in complex
networks. International Journal of Critical Infrastructures 4(1-
2): 46–62.

Pfeiffer RH (2021) Identifying critical projects via pagerank and
truck factor. In: 2021 IEEE/ACM 18th International Confer-
ence on Mining Software Repositories (MSR), Madrid, Spain,
22–30 May 2021, pp. 41–45. IEEE.

Poledna S, Molina-Borboa JL, Martı́nez-Jaramillo S, et al. (2015)
The multi-layer network nature of systemic risk and its im-
plications for the costs of financial crises. Journal of Financial
Stability 20: 70–81.

Raymond E (1999) The cathedral and the bazaar. Knowledge,
Technology & Policy 12(3): 23–49.

Lo Sardo DR, Thurner S, Sorger J, et al. (2019) Quantification of the
resilience of primary care networks by stress testing the health
care system. Proceedings of the National Academy of Sciences of
the United States of America 116(48): 23930–23935.

Schneider CM, Yazdani N, Araújo NA, et al. (2013) Towards de-
signing robust coupled networks. Scientific Reports 3(1): 1–7.

Schueller W, Wachs J, Servedio VD, et al. (2022) Evolving col-
laboration, dependencies, and use in the rust open source
software ecosystem. Scientific Data 9(1): 703.

Spaeth S, von Krogh G and He F (2015) Research note—perceived
firm attributes and intrinsic motivation in sponsored open
source software projects. Information Systems Research 26(1):
224–237.

Steinmacher I, Conte T, GerosaMA, et al. (2015) Social barriers faced
by newcomers placing their first contribution in open source
software projects. In: Proceedings of the 18thACMConference on
Computer Supported Cooperative Work & Social Computing,
Vancouver, BC, Canada, 14–18 March 2015, pp. 1379–1392.

Steinmacher I, Balali S, Trinkenreich B, et al. (2021) Being a
mentor in open source projects. Journal of Internet Services
and Applications 12(1): 7–33.

Takhteyev Y (2012) Coding Places: Software Practice in a South
American City. Cambridge, Massachusetts: MIT Press.

Terrell J, Kofink A, Middleton J, et al. (2017) Gender differences
and bias in open source: pull request acceptance of women
versus men. PeerJ Computer Science 3: e111.

Thurner S and Poledna S (2013) Debtrank-transparency: con-
trolling systemic risk in financial networks. Scientific Reports
3(1): 1–7.

Torchiano M, Ricca F and Marchetto A (2011) Is my project’s
truck factor low? theoretical and empirical considerations about
the truck factor threshold. In: Proceedings of the 2Nd Inter-
national Workshop on Emerging Trends in Software Metrics,
Honolulu, HI, May 24, 2011, pp. 12–18.

Tóth G, Elekes Z, Whittle A, et al. (2022) Technology Network
Structure Conditions the Economic Resilience of Regions.
Vancouver, BC, Canada: Economic Geography.

Trinkenreich B, Guizani M, Wiese I, et al. (2020) Hidden figures:
roles and pathways of successful OSS contributors. Proceed-
ings of the ACM on Human-Computer Interaction 4(CSCW2):
1–22.

Valiev M, Vasilescu B and Herbsleb J (2018) Ecosystem-level
determinants of sustained activity in open-source projects: a
case study of the pypi ecosystem. In: Proceedings of the
2018 26th ACM Joint Meeting on European Software Engi-
neering Conference and Symposium on the Foundations of
Software Engineering, Lake Buena Vista FL, 4–9 Nov 2018,
pp. 644–655.

Vasilescu B, Capiluppi A and Serebrenik A (2014) Gender, rep-
resentation and online participation: a quantitative study. In-
teracting with Computers 26(5): 488–511.

Vasilescu B, Blincoe K, Xuan Q, et al. (2016) The sky is not the
limit: multitasking across GitHub projects. In: Proceedings of
the 38th International Conference on Software Engineering,
Austin Texas, 14 May 2016, pp. 994–1005.

Wachs J (2023) Digital traces of brain drain: developers during
the Russian invasion of Ukraine. EPJ Data Science 12(1):
14.

Wachs J, Nitecki M, Schueller W, et al. (2022) The geography of
open source software: evidence from github. Technological
Forecasting and Social Change 176: 121478.

Wang Y, Wen M, Liu Y, et al. (2020) Watchman: monitoring
dependency conflicts for python library ecosystem. In: Pro-
ceedings of the ACM/IEEE 42nd International Conference on
Software Engineering, Seoul, South Korea, 27 June 2020,
pp. 125–135.

Williams L and Kessler RR (2003) Pair Programming Illuminated.
Glenview, IL: Addison-Wesley Professional.

Zerouali A, Mens T, Decan A, et al (2021) On the Impact of
Security Vulnerabilities in the NPM and Rubygems Depen-
dency Networks. arXiv preprint arXiv:2106.06747.

Zheng X, Wan Z, Zhang Y, et al. (2023) A closer look at the
security risks in the rust ecosystem. ACM Transactions on
Software Engineering and Methodology 33: 1–30.

Zimmermann M, Staicu CA, Tenny C, et al. (2019) Small world
with high risks: a study of security threats in the npm
ecosystem. In: 28th USENIX Security Symposium (USE-
NIX Security 19), Santa Clara, CA, 28 May 2019,
pp. 995–1010.

16 Collective Intelligence

	Modeling interconnected social and technical risks in open source software ecosystems
	Introduction
	Background
	Resilience and vulnerability of complex systems
	Vulnerabilities of open source software ecosystems
	Technical vulnerabilities
	Social roots of ecosystem vulnerability

	Data
	Package metadata, repositories, dependency network
	Developer contributions

	Methods and analysis
	Modeling library functionality via production functions
	Spread of failures
	Ranking contributors, libraries, and the ecosystem as a whole
	Ranking contributors
	Overall ecosystem risk
	Ranking libraries

	Results
	Interventions
	Rankings
	Intervention design and quantifying impact
	Intervention results

	Discussion
	Acknowledgements
	Declaration of conflicting interests
	Funding
	ORCID iD
	Data Availability Statement
	Notes
	References

