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Abstract
We consider a sender who wishes to persuade multiple receivers to vote in favor of a
proposal and sends them private correlated messages that are conditional on the true
state of the world. The receivers share a common prior, wish to implement the outcome
that matches the true state, and have homogeneous preferences. However, they are
heterogeneous in their voting weights. We consider both behavioral and sophisticated
voters. When voters are behavioral, public communication is optimal if and only if
there is a veto player. For sophisticated voters, we establish lower bounds on the
sender’s gain from persuasion for general voting quotas and show that the sender can
often improve upon public communication. Finally, in an extension, we show that
even when behavioral voters have heterogeneous prior beliefs, public communication
is optimal if and only if there is a veto player.

Keywords Information design · Bayesian persuasion · Strategic voting · Shareholder
voting · Private communication

JEL Classification C72 · D72 · D82 · D83

1 Introduction

How should the CEO of a company communicate with its shareholders in order to
convince them to accept an executive decision? How effectively can a lobbyist com-
municate with the members of the UN Security Council to sway them in favor of
a proposal? What is an optimal way of communicating with voter blocs in elec-
toral campaigns? The voting applications of Bayesian persuasion (e.g. Wang 2013;
Schnakenberg 2015; Alonso and Câmara 2016b; Bardhi and Guo 2018; Chan et al.
2019; Heese and Lauermann 2021; Kerman and Tenev 2021; Guo 2021; Kerman et al.
2024) so far do not provide an answer to these questions, as the situations above involve
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collective decision making under weighted voting rather than voters with equal voting
power.1 In contrast, weighted voting has been a prominent topic both in cooperative
game theory and in the social choice literature. It has been analyzed from a theo-
retical and computational point of view (e.g. Banzhaf III 1964; Taylor and Zwicker
1992, 1993; Snyder Jr et al. 2005; Elkind et al. 2008; Lindner 2008; Freixas and
Molinero 2009; Chalkiadakis et al. 2012), but also in terms of its actual applications
to political (e.g. Barbera and Jackson 2006; Kurz et al. 2017; Baharad et al. 2022)
and financial decision-making (e.g. Strand and Rapkin 2005; Bar-Isaac and Shapiro
2020). For example, the United Nations Security Council, the Council of the European
Union under the Nice Treaty, and the selection of the managing director of the IMF
all involve non-uniform voting weights (Mayer and Napel 2020).2 Similarly, some
companies offer dual class shares, which give the owners different voting rights.3

Alternatively, the shareholders could have voting power proportional to their total
investment in the company. Decision-making in these cases is often shaped by tar-
geted lobbying campaigns aimed at implementing a specific outcome (Wright 1990;
Bergan 2009; Hall and Reynolds 2012; Schnakenberg 2017). Therefore, weighted vot-
ing setups present a natural application of information design that warrants a thorough
investigation.

To the best of our knowledge, this is the first attempt at incorporating weighted vot-
ing into an information design framework. Optimal communication in our framework
exhibits a similar property to ones in other voting applications of information design
(Alonso and Câmara 2016b; Chan et al. 2019; Kerman et al. 2024), which is to target
minimal winning coalitions with positive probability. As these studies consider agents
who have the same voting weights, one can easily determine the defining features
of minimal winning coalitions once the number of receivers is known. On the other
hand, extending the standard case to heterogeneous voting weights poses a significant
challenge since computing all minimal winning coalitions in a weighted voting game
is an NP-hard problem (Aziz and Paterson 2008; Elkind et al. 2008, 2009). Therefore
our problem necessitates using a different method.

We initially do not impose any structure on the voting problem and allow for any
voting weights and quota (minimum number of approval votes required to pass a
proposal). In this case, presenting the optimal communication problem as a tractable
linear programming problem (a standard approach in the information design litera-
ture) does not produce a closed-form solution. Instead, as an alternative approach,
while keeping the voting weights flexible, we consider particular voting quotas (e.g.
minority, majority) that represent reasonable voting situations. Consequently, while
analyzing the problem in its entirety is very challenging, parsing it significantly reduces
its complexity and allows us to derive meaningful insights about the efficiency of pri-
vate communication. In particular, by construction of communication strategies we
establish lower bounds on the value which improve upon public communication and
do not rely on a closed-form solution. Finally, we consider specific voting weights

1 For consistency, throughout the paper we use the term information design instead ofBayesian persuasion.
2 The use of weighted voting dates back at least to the Roman Republic, where the system of corporate
voting allowed voters to have different influences (Mouritsen 2001).
3 E.g. Alphabet (Google) and Meta (Facebook) offer dual-class shares. https://www.nytimes.com/2009/
11/25/technology/internet/25facebook.html, https://www.wsj.com/articles/BL-CFOB-8866.
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(in the case of apex games) that can be interpreted as different voting situations (e.g.
shareholder voting, committee voting, voter blocs, parliamentary voting) and provide
a full characterization of optimal communication.

The main results of this paper address both behavioral and sophisticated voters
and provide bounds and characterizations for the sender’s gain from persuasion under
different voter behavior. This facilitates the comparison between private and public
communication and establishes that the sender is very often (strictly) better off com-
municating privately. In fact, when voters are behavioral, public communication is
optimal if and only if there exists a veto player, without whose support no positive
decision can be made (Theorem 1). This can be especially important for particular vot-
ing situations such as in theUNSecurityCouncil: while in substantive votes permanent
members have the right to veto, in procedural votes no country has veto power.4 Our
result implies that while in substantive votes a lobbyist cannot improve her chances of
persuasion by communicating privately with the members, in procedural votes private
communication can be effective.

In case a minority is sufficient to implement a proposal or in case of majority voting
without veto players, the sender’s gain from private persuasion can be significant,
irrespective of the distribution of weights, often even when voters are sophisticated.
We establish this by finding the lower bounds on the sender’s expected utility in
these cases. Finally, we consider apex games, a specific application of our model
setup which imposes structure on the voting weights and the quota, and we fully
characterize optimal communication for it (Theorem 2). The structure of an apex game
is reminiscent of shareholder voting situations, where there can be amajor shareholder
and many others with a small number of shares. While intuitively a major shareholder
should hinder the persuasion capabilities of a CEO since he has more influence on the
outcome, interestingly, our result implies that this need not be the case (unless this is
a controlling shareholder).

We analyze several possible extensions of the model. First, we consider hetero-
geneous payoff functions, i.e. receivers have different utilities from matching and
mismatching the states. We first show that from the sender’s perspective this is tan-
tamount to receivers with heterogeneous prior beliefs. Afterwards, we show that
Theorem 1 extends to this case as well (Theorem 3). This is an important consid-
eration, since it is natural to consider that different groups of voters (e.g. voter blocs)
might have different prior beliefs about the effect of a particular proposal (while these
beliefs are close to homogeneous within every group). Our result shows that even
when these priors diverge significantly, a campaign which utilizes private communi-
cation (e.g. sending different messages to distinct blocs) is more efficient than one that
employs public communication, unless a group of voters has veto power. As a second
extension we consider allowing the voters to abstain and show that our results do not
change, i.e. excluding abstention is without loss of generality.

This paper frames its main focus as a voting problem, yet it can be interpreted
in several different ways, for example in the broader context of marketing. In par-
ticular, the voting quota corresponds to achieving a critical mass of product sales
and the voting weights represent different consumer demands. Many studies estab-

4 https://www.un.org/en/about-us/un-charter/chapter-5.
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lish the importance of going over a particular threshold of adoptions to be able to
take advantage of the network effects associated with maximum product diffusion in
the market (e.g. see Terpstra 1983; Cabral et al. 1999; Fang et al. 2008; Peng 2010;
Fernández-i Marín 2011). In this interpretation, the sender’s objective is to find the
optimal targeted advertisement campaigns to establish a product on the market. A
similar persuasion problem arises in crowdfunding situations, where a certain level
of investment is required for the product to be launched, which can come from any
number of individual investors. Alternatively, as stated earlier, we can interpret the
voting weights as a group of people who vote uniformly despite each member having
a single vote, i.e. as voter blocs.5

Illustrative example

Consider a company that provides to its shareholders voting weights proportional to
their total investments in the company.6 The CEO of the company wishes to acquire a
start-up in order to build her reputation in the industry (Masulis et al. 2009; Choi et al.
2020).7 Suppose that a simple majority of votes is required to do so. The shareholders
initially believe that the acquisition is profitable with probability 1/3 and approve it
when they have a belief of at least 1/2 that this is so. Suppose that there are five
shareholders with voting rights and let the voting weights be given by (3, 1, 1, 1, 1),
i.e. the total voting weight is 7. As the voting rule is simple majority, 4 votes are
required to approve the acquisition.

The CEO commissions an economic evaluation of the proposal and privately com-
municates the results to the shareholders. The evaluation consists of information such
as the potential profitability of the start-up, the expected costs of acquisition, the quality
of the start-up’s workers, etc. The process of communicating the economic evalua-
tion can be designed so that it either always truthfully recommends to vote in favor
of acquisition of the start-up, or it represents the facts skewed in favor of approving
the acquisition. Mathematically, the communication process can be represented by an
experiment π that sends correlated messages with a certain probability, conditional
on the viability of the acquisition. The choice of π (i.e. the evaluation criteria) is
observed by the shareholders. However, in each realization (i.e. vector of messages
we call signal), shareholders only observe their own private message.

Denote the state in which the acquisition is profitable by P and the state in which
it is not by N . The optimal experiment is given by π below.

5 Many papers establish the existence and analyze the functioning of voter blocs, see Gormley andMurphy
(2008), Evans andTonge (2009), Jakulin et al. (2009), Spirling andQuinn (2010), Eguia (2011a, b),Grimmer
et al. (2022).
6 The problem of shareholder voting holds a prominent position in the literature on corporate governance.
For example, it has been investigated in the context of trading shares/votes (Meirowitz and Pi 2022), as well
as in the context of conflicts of interest (Dressler and Mugerman 2023).
7 There are many other decisions that shareholders can vote on, such as merging with another firm or
electing a new CFO to the company, all of which can present situations in which the private interest of the
CEO does not align with the interest of the company.
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(a) Weights (3, 1, 1, 1, 1). (b) Weights (3, 2, 1, 1). (c) Weights (4, 1, 1, 1).

π P N π ′ P N π ′′ P N

(p, p, p, p, p) 1 0 (p, p, p, p) 1 0 (p, p, p, p) 1 1
2

(p, p, n, n, n) 0 1
8 (p, p, n, n) 0 1

6 (n, n, n, n) 0 1
2

(p, n, p, n, n) 0 1
8 (p, n, p, n) 0 1

6

(p, n, n, p, n) 0 1
8 (p, n, n, p) 0 1

6

(p, n, n, n, p) 0 1
8 (n, p, p, p) 0 1

3

(n, p, p, p, p) 0 3
8 (n, n, n, n) 0 1

6

(n, n, n, n, n) 0 1
8

Here, p represents the privatemessage indicating that the acquisition is profitable and n
represents the converse. Notice that under π , while the sender truthfully recommends
p in state P , a minimal winning coalition of shareholders receives p in state N .
Upon observing a private message p, a shareholder has a posterior belief 1/2 that
the acquisition is profitable. The acquisition is approved for any realization except
(n, n, n, n, n), so the ex-ante probability of accepting it underπ is 1/3·1+2/3·7/8 =
11/12.

Now, suppose that shareholder 5 sells his share and shareholder 2 acquires it, so
the voting weights are given by (3, 2, 1, 1). Since now there are fewer shareholders,
the CEO’s capability to communicate in private decreases, i.e. the number of minimal
winning coalitions the CEO can target in state N is lower. In this case, the optimal
experiment π ′ is given above, under which the probability of approving the proposal
is 8/9. Hence, the CEO can achieve her goal with a lower probability relative to the
initial voting weights.

Alternatively, suppose that shareholder 5 sells his share to shareholder 1 instead
of 2, so that shareholder 1 holds the majority of the shares. The voting weights are
given by (4, 1, 1, 1); shareholder 1 is a dictator in the company’s decisions. In this
case, the CEO must persuade shareholder 1. Since shareholder 1 is in all winning
coalitions, this is equivalent to persuading all shareholders (i.e. targeting the grand
coalition), which implies that optimal communication is equally efficient as public
communication, i.e. when all shareholders observe the same message within a signal.
The optimal experiment is given by π ′′ under which the probability of approval is 2/3,
cf. Kamenica and Gentzkow (2011).

The discussion above illustrates the non-trivial difference that the change of hands
of a single vote can have on the persuasion capabilities of the sender.More generally, it
highlights the importance ofweighted votingwithin the information design framework
as this setup complicates the sender’s optimal persuasion problem when compared to
considering only unitary weights. Another interesting observation from the example
is that increased concentration of votes (e.g. moving from (3,2,1,1) to (4,1,1,1)), can
reduce the sender’s payoff and increase the voters’ payoff (i.e. the implemented out-
come matches the state with a higher probability). However, we show that this is not
true in general.
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Related literature

To the best of our knowledge, this is the first paper within the information design
literature which incorporates voting weights in its setup.

The first benchmark in our analysis comes from the seminal paper by Kamenica
and Gentzkow (2011) who consider a single sender and a single receiver, which cor-
responds to public communication in our case. The setup and analysis in the current
paper is closest to and builds upon (Kerman et al. 2024), who provide our second
benchmark for comparison as they consider a model with a single sender and multi-
ple receivers with unitary voting weights. As our setup analyzes the case of different
voting weights, our model is a generalization of theirs. Third, our model also relates
to the one in Kerman and Tenev (2021), whose model features limited information
spillovers in a social network. Since receivers in a complete component possess the
same information, these components can be interpreted as a single agent with a non-
unitary voting weight (or as voter blocs). Hence, our analysis nests their result on
networks with complete components, which obtain that result as a special case.

We consider both naive and sophisticated voters, which have been extensively
analyzed in the voting literature. A plethora of studies shows that agents are behavioral
in a variety of situations, including large elections. Sincere voting has been observed
under multiple experimental setups (e.g. Herzberg and Wilson 1988; Dasgupta et al.
2008; Hobolt and Spoon 2012; Esponda and Vespa 2014; Bhattacharya et al. 2014;
Grosser and Seebauer 2016; Bhattacharya et al. 2017). Theoretical studies have also
verified the existence of equilibria in which agents behave sincerely (e.g. Krishna and
Morgan 2012; Acharya and Meirowitz 2017; Kleiner and Moldovanu 2017, 2019).8

We address sincere voting both as a behavioral assumption and as equilibriumbehavior
and contrasts the sender’s gain from persuasion in these cases.

Our paper also contributes to the discussion of public vs. private communication.
Arieli and Babichenko (2019) provide a characterization of public communication
under a certain assumption on the sender’s utility function. Translating their assump-
tion to a voting context means that each agent can singlehandedly implement the
sender-preferred outcome. Clearly, this is too strong an assumption in our model. In
fact, we show that in our model this assumption is not necessary to characterize public
communication. In a different study, Taneva (2019) considers conditionally indepen-
dent private signals and shows that they are never strictly optimal.9 In contrast, we
consider private correlated messages and show that public communication is optimal
if and only if there is a veto player when the agents are behavioral. In case of sophis-
ticated agents, however, public communication might be optimal even when there is
no veto player. One important feature of optimal private communication in our model
is that when the voters are behavioral, the sender targets minimal winning coalitions.

8 For other papers that observe sincere voting in experimental setups, see Felsenthal and Brichta (1985),
Degan andMerlo (2007), Van der Straeten et al. (2010), Bassi (2015), Hix et al. (2017), Rich (2017), Lebon
et al. (2018), Puppe and Rollmann (2021); for others considering applications of sincere voting in different
theoretical models, see Benoit et al. (2000), Davidovitch and Ben-Haim (2010), Carmona (2012), Ginzburg
(2017), Bouton and Ogden (2017). For studies that empirically show sincere voting in different elections,
see Burden and Jones (2006), Groseclose and Milyo (2010).
9 Wang (2013) shows a similar result in a voting setup.
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A similar result has been first introduced by Alonso and Câmara (2016b) in the con-
text of public communication and receivers with heterogeneous payoffs. Several other
papers which consider private communication also establish this property (Arieli and
Babichenko 2019; Chan et al. 2019;Kerman et al. 2024).While this provides an impor-
tant starting point for the analysis of sophisticated voters with heterogeneous voting
weights, in this case it is optimal for the sender to target slightly larger coalitions in
order to avoid having pivotal agents. However, these coalitions still need to beminimal
in some sense: they contain at least one pair of agents such that when removed the
coalition becomes losing.

The structure of the paper is as follows. Section2describes themodel, Sect. 3 simpli-
fies the problem. Starting with some preliminaries, it delineates the sender’s problem,
proves its tractability, sketches the bounds for its solution and establishes connections
to relevant results in the literature. Section4 carries the main results. It reinterprets the
optimal persuasion problem with the help of notions pertinent to weighted majority
games in general and thus substantiates tighter limits on the sender’s value. Section5
considers extending the model in two dimensions: allowing for heterogeneous pay-
offs/priors and for abstention. Section6 concludes.

2 Themodel

2.1 Communication and beliefs

Let N = {1, . . . , n} be the set of receivers and � = {X ,Y } the set of states of the
world. For any set S denote by �(S) the set of probability distributions over S with
finite support. Sender and receivers share a common prior belief λ0 ∈ �(�) about the
true state of the world.

Let Si be a finite set of messages the sender can send to receiver i , and let S =∏
i∈N Si , where the elements of S are called signals. An experiment is a function

π : � → �(S) which maps each state of the world to a joint probability distribution
over signals. Denote the set of all experiments by �. For each π ∈ �, si ∈ Si , and
ω ∈ �, let πi (si |ω) = ∑

t∈S:ti=si π(t |ω) be the probability that receiver i observes si
given ω.

Define Sπ = {s ∈ S|∃ω ∈ � : π(s|ω) > 0}. That is, Sπ consists of the signals in
S which are sent with positive probability by π . Similarly, for each π and i ∈ N ,
define Sπ

i = {si ∈ Si |∃ω ∈ � : πi (si |ω) > 0}, which is the set of messages receiver i
observes with positive probability under π .

For any π ∈ � and s ∈ Sπ , the posterior belief profile λs ∈ �(�)n is defined by

λsi (ω) = πi (si |ω)λ0(ω)
∑

ω′∈� πi (si |ω′)λ0(ω′)
, i ∈ N , ω ∈ �.

That is, λsi (ω) is receiver i’s posterior belief that the state is ω upon observing si .
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2.2 Weighted voting

Given a set of receivers N , let (wi )i∈N denote a weight profile, where wi ∈ N and let
the vote total be τ = ∑

i∈N wi . For each i ∈ N , let Ai = {x, y} be the set of actions
of receiver i . Let A = ∏

i∈N Ai be the space of action profiles and Z = {x, y} the set
of voting outcomes.

Let zq : A → Z be a map, where zq(a) is the outcome of the vote when the action
profile is a and the quota is q ∈ N such that

zq(a) =
{
x if

∑
i∈N :ai=x wi ≥ q,

y otherwise.

In words, the outcome x is implemented if the sum of the weights of the agents who
are voting for x is at least q (out of the vote total τ ).

We assume that the sender’s utility function U : Z → {0, 1} has value 1 if x is
implemented and 0 otherwise. For each i ∈ N , let ui : Z × � → {0, 1} be the utility
function of receiver i such that ui (x, X) = ui (y,Y ) = 1 and ui (x,Y ) = ui (y, X) =
0. That is, each receiver wants the implemented outcome to match the true state. A
voting problem is a tuple P = (N , λ0, q, (wi )i∈N , (ui )i∈N ,U ).

Throughout the paper we assume that λ0(X) < λ0(Y ), since otherwise there is
no need of persuasion. For any π ∈ �, let απ

i : Sπ
i → Ai be agent i’s strat-

egy. Define the set of signals which implement x under π and απ as Zq
x (π) =

{s ∈ Sπ |zq (απ (s)) = x}. Let a ∈ A be an action profile and z = zq(a) be a vot-
ing outcome. The value of an experiment π ∈ � for quota q is defined as the sender’s
expected utility under π :

Vπ
q (λ0) = Eλ0

[
Eπ

[
U (zq

(
απ (s)

)]] = λ0(X)
∑

s∈Zq
x (π)

π(s|X) + λ0(Y )
∑

s∈Zq
x (π)

π(s|Y ).

Thus, the value of an experiment is equal to the probability of implementing x under
π and quota q. An experiment π∗ is optimal in � if V π∗

q (λ0) = supπ∈� V π
q (λ0).

2.3 Voting behavior

Throughout the paper, we consider naive and sophisticated agents. Behavioral/naive
agents choose action x if they believe the true state is X with at least probability
1/2. For any π ∈ �, i ∈ N , and s ∈ Sπ , it holds that απ

i (si ) = x if λsi (X) ≥ 1/2
and απ

i (si ) = y otherwise, i.e. receivers vote sincerely. Note that when there is no
communicationbetween the sender and receivers, the receivers donot have an incentive
to vote against their belief when there are only two possible outcomes of the vote, i.e.
if their posterior belief that the state is X is greater than 1/2, it is optimal for them
to vote for x . However, as we will argue later, this might not be true when they are
informed by the sender via an observable information structure.

While sincere voting is important as a standalone analysis, it also alleviates the
study of sophisticated voters, who take into account the probability of being pivotal.

123



Information design for weighted voting

Receiver i is pivotal in s ∈ Sπ if for any ai ∈ Ai , zq(ai , απ
−i (s−i )) = ai . That is, i is

pivotal following realization s if i’s vote determines the voting outcome given that all
j �= i follow απ

j .
Two trivial equilibria of the voting game always exist: (i) all agents vote in favor

of x and (i i) all agents vote in favor of y, regardless of their private information.
Hence to exclude such equilibria, as in Kerman et al. (2024), we follow the voting
literature (Osborne and Slivinski 1996; Banks and Duggan 2000; Levy 2004) and
consider equilibria in which agents vote sincerely.10 We consider the sender’s gain
from persuasion both when agents are behavioral and when the sender implements
sincere voting as a BNE.

Denote by G(P, π) a game of incomplete information defined by a voting problem
P and an experiment π .

Definition 1 (Sincere BNE) Let π ∈ �. The sincere strategy profile απ constitutes a
Bayes-Nash equilibrium (BNE) of G(P, π) if for all i ∈ N , s′ ∈ Sπ , and ai ∈ Ai it
holds that

∑

ω∈�

λs
′
i (ω)

∑

s∈Sπ :si=s′i

π((s′
i , s−i )|ω)

πi
(
s′
i |ω

) ui
(
zq

(
απ
i (s′

i ), α
π
−i (s−i )

)
, ω

)

≥
∑

ω∈�

λs
′
i (ω)

∑

s∈Sπ :si=s′i

π((s′
i , s−i )|ω)

πi
(
s′
i |ω

) ui
(
zq

(
ai , α

π
−i (s−i )

)
, ω

)
.

Let �e be the set of experiments such that the induced sincere strategy profile consti-
tutes a BNE of the game of incomplete information.

3 Simplifying the problem

One can easily establish that it is without loss of generality for the sender to send
recommendations to vote in favor of an alternative. This is known as straightforward-
ness.11 Moreover, in our framework it is also still optimal for the sender to truthfully
recommend x in state X , i.e. for all i ∈ N it holds that πi (x |X) = 1. Henceforth, �
denotes the set of all straightforward experiments to ease the notation.

It is possible to further simplify the search for an optimal experiment by restricting
the set of signals that the sender can employ in state Y tominimal winning coalitions.12

Let W = {T ⊆ N |∑i∈T wi ≥ q} be the set of winning coalitions and define the set
of minimal winning coalitions as Wmin = {T ∈ W |∀R � T : R /∈ W }.
10 This is, in spirit, similar to Brams and Fishburn (1978, 2002) in which the authors design a mechanism
to implement sincere voting in equilibrium. There are studies that employ Bayes correlated equilibrium
in similar setups, see for example Forges (1993), Bergemann and Morris (2016), Arieli and Babichenko
(2019), Taneva (2019).
11 An experiment π ∈ � is straightforward if for all i ∈ N : (i) Sπ

i ⊆ Ai and (ii) απ
i (ai ) = ai for all

ai ∈ Ai (Kamenica and Gentzkow 2011).
12 This is in line with the approach of Alonso and Câmara (2016b), Arieli and Babichenko (2019), Chan
et al. (2019), Kerman et al. (2024).
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For any R ⊆ N , let χ(R) denote the signal in which all agents in R observe x and
agents not in R observe y. That is, for all i ∈ R it holds that χi (R) = x and for all
j /∈ R it holds that χ j (R) = y. In this case we say that the agents in R are targeted
by the sender.13 Define Smin = {

χ(R) ∈ S|R ∈ Wmin
}
as the set of signals that target

minimalwinning coalitions. Let x̄ = χ(N ) = (x, . . . , x) and ȳ = χ(∅) = (y, . . . , y).
Let Smin+ = Smin ∪ {x̄, ȳ}. A table with the most relevant notation can be found in
“Appendix A”.

In stateY , an optimal experiment targets eitherminimalwinning coalitions or no one
(i.e. the signal ȳ is realized with positive probability). We formalize this observation
below. All proofs can be found in “Appendix C”.

Lemma 1 Let π ∈ �. Then there exists π∗ ∈ � with π∗(x̄ |X) = 1 and Sπ∗ ⊆ Smin+
such that V π∗

q (λ0) ≥ V π
q (λ0).

Lemma 1 ensures the tractable representation of the the sender’s optimal signaling
problem.14 Set Smin = {s1, . . . , sm}, where m ∈ N. For any i ∈ N , define Smin

x (i) =
{s ∈ Smin|si = x}, i.e. the set of signals in Smin which send x to agent i . Given π ∈ �

and j ∈ {1, . . . ,m}, let p j = π(s j |Y ) and p0 = π(ȳ|Y ).

Proposition 1 Suppose voters are behavioral. An optimal experiment is a solution to

max
p1,...,pm

1 − λ0(Y )p0 subject to

p j ≥ 0, ∀ j ∈ {0, . . . ,m}, (1)
m∑

j=0

p j = 1, (2)

∑

j∈Smin
x (i)

p j ≤ λ0(X)/λ0(Y ), ∀i ∈ N . (3)

Inequality (1) represents the non-negativity constraints for the signals, equation (2)
ensures that an optimal experiment is a probability distribution, and inequality (3)
provides the obedience constraints for all agents (i.e. it ensures agents follow the
recommended action). Inequality (3) implies that there are potentially n different obe-
dience conditions, unlike the case of unitary weights.15 In particular, unitary weights
allow the sender to devise anonymous experiments, which target every minimal win-
ning coalition with the same probability. Therefore, the obedience constraint in this
case boils down to only one condition as inKerman et al. (2024). The lack of anonymity

13 For example, if N = {1, 2, 3} and R = {1, 2}, then χ(R) = (x, x, y).
14 Note that Lemma 1 has a direct implication about the optimal value for particular weight profiles. An
agent i ∈ N is a dummy player if for all T ∈ Wmin it holds that i /∈ T . That is, a dummy player is never in
a minimal winning coalition. Examples of dummy players can be found in politics; in almost every country
there are many small parties that only have a very small fraction of the total vote. Since it is optimal for
the sender to only target minimal winning coalitions, by Lemma 1 a dummy player is never targeted by the
sender. Therefore, it is as if the persuasion problem consists of n − 1 agents, which decreases the optimal
value.
15 Note that this is the case also when receivers have heterogeneous priors. See Sect. 5.1.
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in our framework significantly complicates the sender’s optimal signaling problem.
Nevertheless, since the objective function is continuous and all inequalities are weak
inequalities a solution always exists but it is not unique in general.

Given two voting problems, it is possible that the sender’s optimization yields the
same representation (i.e. the same winning coalitions) as provided by Proposition 1.
We call such voting problems equivalent.

Corollary 1 Let P and P ′ be equivalent voting problems under which optimal values
are V and V ′, respectively. Then V = V ′.

While Corollary 1 is intuitive, it provides a powerful insight: a weight profile that
represents a voting problem is not unique.

Example 1 (Equivalence) Let λ0(X) = 1/3, and let (wi )i∈N = (2, 1, 1, 1)with q = 3
and (w′

i )i∈N = (3, 2, 1, 1) with q = 4 represent two voting problems (Taylor and
Zwicker 1999). Since the minimal winning coalitions in both cases have an identical
structure, the voting problems are equivalent, i.e. the constraints of the two optimiza-
tion problems as defined above are identical. By Proposition 1 and Corollary 1 it holds
that V = V ′ = 8/9. �

An important aspect about Proposition 1 is that under an optimal experiment agents
are not pivotal in state X , while they are pivotal in state Y upon observing x . This
leads to the swing voter’s curse (Feddersen and Pesendorfer 1996), i.e. voters are
better off voting against their beliefs and therefore sincere voting is not a BNE under
an optimal experiment obtained via Proposition 1. To circumvent the swing voter’s
curse, we follow the approach in Kerman et al. (2024) and consider agents who play
the sincere BNE introduced in Definition 1. We incorporate this as an additional
constraint into the sender’s maximization problem. In this case, the sender’s problem
is to find π ∈ �e that maximizes her expected utility, i.e. her maximization problem
is supπ∈�e V π

q (λ0). The sender can restrict her search to straightforward experiments
and truthfully recommend x in state X also within the set of experiments such that the
induced sincere strategy profile constitutes a BNE, i.e. �e.

The analysis of equilibrium in this case differs from the one about behavioral voters
in only one significant dimension (and is therefore relegated “Appendix B”), which
is the type of coalitions that are targeted in state Y . In particular, it is optimal for the
sender to target coalitions in which no agent is pivotal.16 Hence, the summation in
inequality (3) is no longer over Smin

x (i), but over the set of signals that target coalitions
that are slightly larger than minimal ones in which i observes x . Moreover, to ensure
optimality, these signals need to be minimal in size, i.e. there exists at least one pair of
agents such that removing themmakes the coalition losing.17 Note that these coalitions
are not minimal winning coalitions, i.e. they are not in Wmin. For example, when the
weights are unitary removing any pair from such a coalition makes it losing. For
arbitrary weights, having at least one such pair ensures that the size of the coalition is
minimal. In this way, under the optimal experiment, no agent is pivotal either in state

16 Note that when wi = 1 for all i ∈ N , this corresponds to targeting q + 1 agents.
17 Notice that if for some R ∈ W there is no i, j ∈ R such that R\{i, j} /∈ W , then there exists k ∈ R who
is unnecessarily targeted and therefore, not targeting him weakly increases the value.
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X or in state Y . Thus, no agent has an incentive to deviate from his recommendation
and therefore the sincere strategy profile constitutes a BNE.

Notice that in Proposition 1, voting weights are implicitly included in Smin
x (i), the

set of signals which target minimal winning coalitions. Given a weight profile, how-
ever, several combinations of agents with different weights may constitute a minimal
winning coalition. Since the derivation of an optimal experiment crucially depends on
the number and constitution of minimal winning coalitions, it is not possible to find
a closed-form solution for an arbitrary weight profile. A similar observation holds if
we consider the optimal experiment under sincere BNE. We illustrate this below and
outline why some potential further simplifications do not hold in general.

Example 2 (Behavioral vs. Sophisticated Voters) Let w = (6, 6, 6, 5, 5, 5) and
λ0(X) = 1/3. Let the quota be q = 17 and the vote total be τ = 33. An optimal
experiment π∗ is given below.18

π∗ X Y πe X Y

(x, x, x, x, x, x) 1 0 (x, x, x, x, x, x) 1 0
(x, x, y, y, y, x) 0 1

10 (x, x, x, x, y, y) 0 1
14

(x, y, x, y, y, x) 0 1
10 (x, x, x, y, x, y) 0 1

14

( y, x, x, x, y, y) 0 2
10 (x, x, x, y, y, x) 0 1

14

( y, x, x, y, x, y) 0 2
10 (x, x, y, x, x, x) 0 2

14

(x, y, y, x, x, x) 0 3
10 (x, y, x, x, x, x) 0 2

14

( y, y, y, y, y, y) 0 1
10 ( y, x, x, x, x, x) 0 2

14

( y, y, y, y, y, y) 0 5
14

The optimal value is V π∗
q (λ0) = 14/15. However, if we consider strategic agents, to

obtain an equilibrium the sender has to adjust the experiment as to make no agent
pivotal in state Y . This gives rise to πe ∈ �e, which leads to a sincere BNE and has
value V πe

q (λ0) = 16/21.19 Thus, V πe

q (λ0) < V π∗
q (λ0).

There are a few notable aspects of π∗ and πe. First, it might not be optimal to
employ all signals that target minimal winning coalitions, but a subset of them. This
is also implied by the possibility of multiple solutions of the problem outlined in
Proposition 1. Second, when the total weights of the agents who observe x are the
same in two signals, they need not have equal probability in state Y . Finally, the
number of x-observations for each voter in the employed signals is not the same. �
A benchmark that we are going to use in the following sections is public communi-
cation. We call an experiment public if all agents observe the same message within a

18 We provide a Matlab and Mathematica code on https://www.sites.google.com/view/aptenev/research
that computes an optimal experiment for a specified weight profile.
19 Recall that in constructing πe , the sender targets coalitions in which there exists a pair such that when
removed the coalition is losing. If this condition is imposed for every pair, then the coalitions such as
{1, 2, 3, 4, 5} are not targeted, leading to a lower value.
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signal. That is, π ∈ � is public if for all i, j ∈ N and s ∈ Sπ it holds that si = s j .
We denote the optimal public experiment by πpub, where the value is

V pub(λ0) = min{2λ0(X), 1},

which follows from Kamenica and Gentzkow (2011) since voters are homogeneous.
This provides a lower bound of what the sender can achieve, since V pub(λ0) is inde-
pendent of the underlying weight profile. Hence, we denote it by V pub(λ0) = V .

In the next proposition, we also provide the upper bound of the sender’s value,
which is achieved when all voting weights are equal to 1 and voters vote sincerely.
For λ0 ∈ �(�) and θ, κ ∈ Z+ define the function

V (θ, κ, λ0) = min

{
θ + κ

κ
λ0(X), 1

}

.

Note that given a vote total τ , if n = τ (which implies that all weights are equal to
one), it holds that the upper bound of the value is V (τ, q, λ0), hence we denote it
by V (τ, q, λ0) = V . The observations about the bounds of the value are formalized
below.

Proposition 2 (Bounds) For any optimal π ∈ � it holds that

V = min{2λ0(X), 1} ≤ V π
q (λ0) ≤ min

{
τ + q

q
λ0(X), 1

}

= V .

Note that the bounds hold also for experiments that lead to aBNE.An illustration of the
bounds together with the optimal values when voters are behavioral and sophisticated
in Example 2 can be seen in Fig. 1. In particular, if n = 33 and agents have unitary
weights, then the upper bound of the optimal value is V = V (τ, q, λ0) = 50/51. So,
2/3 = V < V πe

q (λ0) < V π∗
q (λ0) < V = 50/51. Note that the optimal equilibrium

value is always (weakly) lower than the optimal value for behavioral voters.
The intuition behind establishing the upper and lower bounds follows immediately

from Lemma 1. In particular, when all agents have the same unitary weight, the sender
can fully utilize private communication by targeting the maximum number of minimal
winning coalitions in state Y . When the voting weights of two agents are merged,
ceteris paribus the number of minimal winning coalitions weakly decreases. This
process exhibits weak monotonicity. That is, as the weights of agents are combined,
the optimal value approaches V . However, it should be emphasized that this property
does not hold strictly; the upper bound V can still be achieved when not all voting
weights are 1 as the illustrative example shows.

The discussion above prompts a surprising observation.When comparing the values
of two weight distributions with the same vote total τ , it is possible that the more
equal one makes the receivers worse off. Suppose that the measure of inequality that
is applied to the weight distribution follows the Pigou-Dalton principle of transfers
(Hindriks andMyles 2013) and one of the distributions can be obtained from the other
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Fig. 1 Optimal Values in Example 2

one via a vote transfer.20 In our motivating example, where q = 4, (4, 1, 1, 1) is the
most inequitable distribution (as it contains a dictator). Weight profiles (3, 2, 1, 1) and
(3, 1, 1, 1, 1) each are the result of a progressive transfer of one vote (in the latter case
to someone who initially had no votes) rather than a merging the voting weights of two
agents. As a result, the value of the sender increases, while the votes are distributed
more equally among the receivers. This makes the receivers worse off due to the
fact that the optimal value is higher: since it is optimal for the sender to truthfully
recommend x in state X , a higher value corresponds to y being implemented in state
Y with a lower probability (as the sender wishes to implement x), i.e. the outcome of
the vote matches the true state less often.

However, it must be noted that a more inequitable distribution of votes is not always
better for the sender, i.e. the relationship between equality and the sender’s gain from
persuasion is non-monotonic. As an example, recall that moving from weight profile
(4, 1, 1, 1) to (3, 2, 1, 1) makes the sender better off (the optimal value changes from
2/3 to 8/9), while making the votes more equitable. Now suppose that in (3, 2, 1, 1), 1
vote is transferred from receiver 1 to receiver 3, so that the weight profile is (2, 2, 2, 1),
which againmakes the votes more equitable. In this case, receiver 4 becomes a dummy
player (i.e. he is not in any minimal winning coalition) and the optimal value is lower
than in the case of (3, 2, 1, 1) (it changes from 8/9 to 5/6). Hence, increasing equality
in this case results in a lower gain from persuasion for the sender.21

20 Informally, the Pigou-Dalton principle states that an inequality index must decrease if there is a transfer
from the ones who have more to the ones who have less. It holds for inequality indices like the Gini
coefficient or the Theil entropy measure.
21 This non-monotonicity persists under different measures, e.g. the Herfindahl-Hirschman index, which
estimates industry concentration and is used as a proxy for market power. An alternative way to obtain a
ranking of weight distributions would be using mean-preserving spreads. However, this is a special case of
ranking by second order stochastic dominance, which is equivalent to the Pigou-Dalton transfer principle
for distributions with equal means (Aaberge et al. 2021).
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Nevertheless, we can state simple sufficient conditions such that transferring votes
to make a weight profile more/less equitable strictly increases/decreases the optimal
value. Suppose that given aweight profilew,π ∈ � is optimalwithV < V π

q (λ0) < V .
Then, it is clear that if the votes are transferred to obtain the most equitable vote
distribution (i.e. unitary weights), the sender benefits from it as now she can achieve
the upper bound V . On the other hand, if the votes are transferred to obtain a less
equitable vote distribution, for example by creating a veto player, the sender is worse
off since the optimal value is now V , as we will show in Lemma 2 in the next section.

4 Results

The generic setup in the previous section considers a space of weight profiles which is
very large and does not produce a closed-form solution. To be able to analyze real-life
voting situations, our approach in this section is to split this space of voting weights
using general characteristics of games such as properness or the existence of a veto
player (Von Neumann and Morgenstern 1944; Shapley 1962). This allows a more
comprehensive analysis, which characterizes optimal communication within concrete
bounds but without imposing specific weights.

Interpreting the voting game agents play after observing their private message as
a weighted majority game allows inferring some immediate results depending on the
voting weights.22 Recall that W is the set of winning coalitions.

Definition 2 (Weighted Majority Game) A weighted majority game (WMG) g is a
tuple (N , q, (wi )i∈N ) with quota q > 0 and weights wi ≥ 0 for all i ∈ N . We denote
a WMG with weights (wi )i∈N and quota q by [q;w1, . . . , wn].23

WMGs fit the general framework of voting applications of information design, espe-
ciallywhen the sender has a state-independent utility function. In the following sections
we denote the value of an experiment π on a weighted majority game g by V π

q (g).
This section requires the intermittent introduction of notation which will be useful
for specific statements, so we would like to refer the reader to “Appendix A”, which
presents an overview of most relevant notation.

4.1 Public communication

We start by considering WMGs that contain a player who has considerably more
power than others (e.g. veto player, dictator). This hinders the persuasion capabilities
of the sender very substantially since a veto player is in all winning coalitions.24 For
example, it is common in presidential systems for the president to be the veto player

22 Henceforth we borrow most definitions from Peleg and Sudhölter (2007).
23 Note that every voting problem P induces a WMG g.
24 Tsebelis (1995) studies different political systems in terms of their capacities to induce policy change,
using a framework based on veto players.
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or in parliamentary systems for some parties to be veto players.25 We now introduce
a lemma, which shows that the sender cannot improve upon public communication
whenever there is an agent with sufficiently high voting power,26

Lemma 2 If a WMG has a veto player, then (i) πpub is optimal and (ii) πpub ∈ �e.

Intuitively, since a veto player is in all winning coalitions, the situation is equivalent
to persuading all agents, making public communication optimal. It is interesting to
note that this result is independent of the voter type (behavioral or sophisticated); the
presence of a veto player nullifies the strategic considerations of other agents.

Note that veto players relate to our discussion of inequality. Voting situations with
a veto player refer to some of themost unequal distributions of votes, yet the receivers
benefit themost when the optimal value is public since the probability of implementing
the correct outcome is highest among all optimal experiments under any WMG.27 In
fact, public communication is optimal when voters are behavioral only if there is a
veto player.

Theorem 1 (Public Communication) Suppose voters are behavioral. Then, πpub is
optimal if and only if there is a veto player.

The ‘if’ part follows immediately from Lemma 2. Showing the ‘only if’ part employs
insights from Proposition 4 and Proposition 6 that we introduce later, which broadly
consider majority and minority voting. Thus, we postpone the discussion for it to
Sect. 4.2. It is, however, easy to see why Theorem 1 holds when receivers have unitary
weights. In this case, a receiver is a veto player if and only if q = n (in fact, all receivers
are veto players). Moreover, when voters are behavioral, unanimity is the only voting
rule that does not allow the sender to improve upon public communication. Hence,
public communication is optimal if and only if there is a veto player.

An important requirement of Theorem 1 is that voters are behavioral. However,
note that if πpub is the optimal strategy when voters are sophisticated, this does not
necessarily mean that there is a veto player. Intuitively, sophisticated voters limit the
persuasion capabilities of the sender and hence, if the sender wishes to implement a
sincere BNE, she might need to employ public communication in a broader set of
cases.

It is a well-known result that a game has a nonempty core if and only if there is a veto
player. Therefore, we can relate Theorem 1 to Theorem 3 in Arieli and Babichenko
(2019). However, while both results indicate public communication is optimal if and
only if the core of the game in the respective setup is nonempty, their result holds

25 If the set of veto players is not a singleton, then it is called an oligarchy A WMG is dictatorial if there
exists j ∈ N (“the dictator”) such that T ∈ W if and only if j ∈ T . Veto players, oligarchies, and dictators
are blocking coalitions, since their complements are losing.
26 If a WMG is convex then it is a unanimity game, in which case optimal communication is also public.
Lemma 2 also relates to big-boss games (Muto et al. 1988) and clan games (Potters et al. 1989) since they
contain veto players.
27 An intuition for this observation, which is outside of the scope of this paper, is that an agent with a
high voting weight might be more informed about the state of the world, which in turn would increase
the probability of implementing the correct outcome. Following a similar logic, if the receivers could
strategically and costlessly form coalitions, then they would form the grand coalition.
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if the sender’s utility function is singleton-positive. In our setup, this corresponds to
any voter singlehandedly being able to implement the proposal. This is a very strong
requirement in a voting setup since it implies that the proposal is not implemented if
and only if everyone votes against it.

Finally, when there is a veto player the sincere BNE has an interesting property;
while veto players who vote for x are pivotal in both states, the others are never pivotal.
This provides an intermediate case between (Chan et al. 2019) where all agents are
pivotal in equilibrium with positive probability and Kerman et al. (2024) where none
of them are. We illustrate this in the next example.

Example 3 (Veto players in BNE) Suppose a lobbyist wishes to persuade the United
Nations Security Council to pass a proposal. The council consists of 15 countries
with a corresponding WMG [39; 7, 7, 7, 7, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1].28 The coali-
tion comprising all agents with weight 7 consists of only veto players (i.e. it is an
oligarchy). Therefore, it is optimal for the lobbyist to employ public communication,
which constitutes a sincere BNE. Note that while all veto players are pivotal under
the sincere BNE induced by πpub, the agents with weight 1 are never pivotal. �

4.2 Private communication

We showed in the previous section that when the voters are behavioral, the sender
can improve upon public communication if and only if there is no veto player. When
voters are sophisticated, the sender can benefit from private communication less often.
In this section, we determine the minimal improvement upon public communication
for both voter types, i.e. we determine lower bounds for the sender’s value. In most
parts, we do not impose a particular structure on the voting weights, rather our focus
lies on different voting quotas. More precisely, we consider optimal communication
for minority, simple majority, and qualified majority voting rules.

Before imposing structure on the voting quota, we consider a WMG that is struc-
turally closest to the unitary voting weights setup: A WMG is symmetric if for any
T ∈ W and R ⊆ N it holds that |T | = |R| implies R ∈ W . In such games the
sender can restrict attention to anonymous experiments, which allows for a specific
characterization of the value.29 In other words, every minimal winning coalition con-
sists of the same number of agents k (irrespective of their voting weights) and the
situation is equivalent to persuading k out of n agents who have voting weights
equal to one. The symmetry ensures that agents are pivotal with equal probability,
i.e. they appear in minimal winning coalitions the same number of times. Recall that
V (θ, κ, λ0) = min

{
θ+κ
κ

λ0(X), 1
}
.

28 Note that while the voting system in the UN Security Council states that each member has one vote,
since permanent members have the right to veto, the voting system is equivalent to a WMG with a voting
weight of 7 for permanent and 1 for non-permanent members with a fixed quota of 39. https://www.un.org/
securitycouncil/content/voting-system.
29 This result is similar to Proposition 4.7 in Kerman and Tenev (2021). However, while there it is assumed
that all minimal winning coalitions have the same cardinality, in this case this is implied by the symmetry
of the WMG.

123

https://www.un.org/securitycouncil/content/voting-system
https://www.un.org/securitycouncil/content/voting-system


T. T. Kerman, A. P. Tenev

Proposition 3 (Equal Representation) Let g be a symmetric WMG and k = |T | for
any T ∈ Wmin. Then there exist (i) π ∈ � with V π

q (g) = V (n, k, λ0) and (ii) π ∈ �e

with V π
q (g) = V (n, k + 1, λ0) is optimal.

For a simple illustration of Proposition 3, consider theWMG [5; 4, 3, 2] and λ0(X) =
1/3. In this case every T ∈ Wmin has |T | = 2 and V π

q (g) = V (3, 2, 1/3) = 5/6 for
behavioral voters and V π

q (g) = V (3, 3, 1/3) = 2/3 = V pub for sophisticated voters.
Now we impose structure on the voting quota and start by considering majority

voting.

Majority voting

We define majority voting as q ≥ (τ + 1)/2, i.e. it encompasses both simple and
qualified majority. When the quota is at least simple majority, it follows that the
complement of any winning coalition is losing. WMGs with this property are known
as proper.

Definition 3 (Proper Game) A WMG is proper if T ∈ W implies N \ T /∈ W .

Note that assuming majority voting imposes a very mild restriction on the structure
of the game, as it does not explicitly determine voting weights. Since finding the
optimal experiment is contingent on specific voting weights, we provide lower bounds
instead and demonstrate that the sender can improve upon public communication even
without knowing the exact specification of the WMG.

If there is no veto player, then the voting rule is not unanimity, which implies
that there are multiple minimal winning coalitions. Properness of the game ensures
that the intersection of any two minimal winning coalitions is nonempty. To improve
upon public communication, the sender must target at least three different winning
coalitions (not necessarily minimal) in state Y such that no agent is in all of them
(which is satisfied since there is no veto player). By Lemma 1, it follows that the fewer
non-minimal winning coalitions the sender targets in state Y , the (weakly) higher the
value. The experiment in the proof of Proposition 4 determines which non-minimal
winning coalitions to target by a construction that uses the smallest intersection of two
winning coalitions. In the case of behavioral voters this intersection is of twominimal
winning coalitions and we denote its cardinality by ϕ; for sophisticated voters it is the
intersection of two winning coalitions in W np = {T ∈ W |∀i ∈ T : T \{i} ∈ W } (i.e.
no agent is pivotal) and we denote its cardinality by β. Let

• vP(ϕ) = min
{
2ϕ+3
ϕ+1 λ0(X), 1

}
, where ϕ = min

{|T ∩ T ′| : T , T ′ ∈ Wmin
}
,

• v̂P(β) = min
{
2β+3
β+1 λ0(X), 1

}
if |W np| ≥ 2 and v̂P(β) = V otherwise, where

β = min
{|T ∩ T ′| : T , T ′ ∈ W np

}
.

We use the superscript P to specify that the value is for proper games, where v and v̂

are the values for behavioral and sophisticated voters, respectively.

Proposition 4 (Majority Voting) If a WMG is proper and there is no veto player, the
value is at least vP(ϕ) for behavioral voters and at least v̂P(β) for sophisticated voters.
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Moreover, if the prior belief is sufficiently high, the sender can implement her preferred
outcome with certainty.

Note that if |W np| ≥ 2, then the sender can improve upon public communication
even with sophisticated voters. Secondly, if the prior belief is at least (β+1)/(2β+3),
then the sender can implement x with probability 1. For example, if β = 3, then the
value is 1 for any λ0(X) ≥ 4/9.30 This leads to another interpretation of the lower
bounds; if agents have heterogeneous priors such that the lowest prior belief among
the receivers is above this threshold, then the sender can still implement her preferred
outcome with probability 1. In fact, even if the only information the sender has is that
the lowest prior is above this threshold (i.e. if there is ambiguity about the priors), the
sender can achieve the upper bound of the value.

Recall Example 2, where the game is proper and has no veto player. The parameters
of the game induceϕ = 1andβ = 3, so the lower boundon thevalue isvP(1) = 5/6 for
behavioral voters and v̂P(3) = 3/4 for sophisticated voters. Note that the lower bound
for sophisticated voters, 3/4, is very close to the optimal value of V πe

q (λ0) = 16/21.
The construction of the experiment which provides the lower bound in Proposition

4 relies on the game being proper, i.e. the complement of any winning coalition is
losing. Alternatively, if the sender also knows that the complement of a losing coali-
tion is winning, then she can achieve a higher lower bound than the one provided in
Proposition 4. These particular types of games are known as strong.31

Definition 4 (Strong WMG) A WMG is strong if T /∈ W implies N \ T ∈ W .

Suppose that g is strong and fix a minimal winning coalition T and an agent i ∈
T . Since T ∈ Wmin it follows that T \ {i} /∈ W . But as g is strong, it holds that
(N \T )∪{i} ∈ W . Note that since i ∈ T , there exist |T |many such coalitions. Hence,
in state Y the sender can target |T | + 1 many winning coalitions, just by knowing that
g is strong. In constructing the experiment which provides the lower bound for strong
games, we choose the T with the highest cardinality, which increases the number
of winning coalitions that are targeted in state Y . Let vS(δ) = min

{ 3δ−1
δ

λ0(X), 1
}
,

where δ = max
{|T | : T ∈ Wmin

}
. We use the superscript S to specify that the value

is for strong games.

Proposition 5 (Strong (Simple Majority) Voting) If a WMG is strong, then the sender
can achieve vS(δ) for behavioral voters. Moreover, if the common prior is sufficiently
high, then the sender can implement her preferred outcome with certainty.

Note that Proposition 5 does not rely on the game being proper. However, if a game
is both proper and strong observe that vS(δ) improves upon vP(ϕ) since

3 − 1

δ
= 3δ − 1

δ
≥ 2ϕ + 3

ϕ + 1
= 2 + 1

ϕ + 1
⇐⇒ 1 − 1

δ
≥ 1

ϕ + 1
,

30 To give a simple example, take [4; 1, 1, 1, 1, 1, 1, 1]. Here the smallest overlap between two winning
coalitions such that no agent is pivotal isβ = 3.The lower boundof the value is v̂P(β) = min{9/4·λ0(X), 1},
which is (weakly) lower than the optimal value V (7, 4, λ0) = min{11/4 · λ0(X), 1}.
31 The game we considered previously after Proposition 3, [5; 4, 3, 2], is proper and strong. As an example
of a game which is proper but not strong, consider [6; 4, 3, 2]. In this case, the complement of the losing
coalition {2, 3} is not winning.
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which holds for any δ > 1 and ϕ ≥ 1.32 We should note that if agents are sophisticated
then the game being strong is too weak a condition to guarantee the existence of an
equilibrium in which the sender improves upon public communication. This stems
from the fact that in this case, a similar construction to the one in Proposition 5 would
require to fix a coalition T ∈ W np so that no agent is pivotal upon observing x in state
Y . However, being strong does not rule out the possibility of W np only consisting of
the grand coalition, in which case the optimal value is V pub(λ0).

An additional insight of Proposition 5 is that as the number of receivers tends to
infinity, the size of the minimal winning coalitions tend to infinity as well and thus
vS(δ) approaches min{3λ0(X), 1}. Therefore, at the limit the sender can implement x
with probability 1 for any λ0(X) ≥ 1/3.

Note that if a game is strong, then the voting rule cannot be supermajority (i.e.
with a quota greater than simple majority). Proposition 5 provides a bridge between
majority and minority voting because it also applies to minority voting.33 We show
in the next section that if there is a minority voting rule then the sender can improve
upon the lower bound vS(δ).

Minority voting

Now suppose that q ≤ (τ + 1)/2. While minority voting is less prominent than
majority voting, it has multiple real-world applications. For example, the European
Council has a blocking minority provision, whereby 4 out of 27 council members can
block a particular proposal, even if it fulfils a qualifiedmajority.34 Hence, we can think
of the sender as a lobbyist who wishes to block a proposal and therefore attempts to
persuade a certain number of council members. An example of minority voting can
also be found in the procedure of having a case heard by the U.S. Supreme Court,
where it needs to be approved by at least four out of nine Justices. This approval is
called a grant of certiorari (Taylor and Zwicker 1999).

Under minority voting, the complement of a winning coalition is not necessarily
losing, i.e. the WMG with minority voting can be either proper or improper.35 In
case it is proper, then the lower bounds provided in Proposition 4 hold. If the game is
improper, then the sender can target mutually exclusivewinning coalitions and achieve
another lower bound, which again strictly improves upon public communication. For
example, if the WMG is [5; 3, 2, 2, 1, 1, 1], then the sender can target two disjoint
winning coalitions, {1, 2} and {3, 4, 5, 6}, to pass a certain proposal. For this purpose,
let γ = max{|R| : R ⊆ W s.t. i /∈ C1 ∩ C2,∀i ∈ N and C1,C2 ∈ R} be the
maximum number of disjoint winning coalitions. Let vI(γ ) = min{(γ + 1)λ0(X), 1}
and v̂I(γ ) = min{V (γ, 2, λ0), 1}. We use the superscript I to specify that the value is
for improper games.

32 Note that δ = 1 is possible if either there is a dictator or if the game is improper. We exclude the former
since otherwise there exists a veto player and we exclude the latter as we will consider improper games in
the next subsection.
33 The quota in the WMG [4; 4, 3, 2] represents minority voting, but [4; 4, 3, 2] is a strong game.
34 https://www.consilium.europa.eu/en/council-eu/voting-system/qualified-majority/.
35 An example of a proper WMG with minority voting is [4; 3, 3, 3].
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Proposition 6 (Improper Minority Voting) If a WMG is improper, then the value is at
least vI(γ ) for behavioral voters and at least v̂I(γ ) for sophisticated voters.

Note that in the case of behavioral voters the value is at least 3λ0(X) under private
communication since γ ≥ 2.36 On the other hand, the optimal public communication
value is V pub(λ0) = min{2λ0(X), 1}. Hence, the sender can implement x at least
50% more efficiently compared to the case of public communication. However, when
voters are sophisticated the sender can improve upon public communication only if
γ > 2, since v̂I(2) = V (2, 2, λ0) = min{2λ0(X), 1}.

Interestingly, Proposition 6 implies that the sender can improve upon public com-
munication even when she possesses much less information about the receivers. In
particular, to achieve this, the sender would not need to know the exact voting weight
profile, but only the total number of votes within certain groups of voters. More pre-
cisely, it is sufficient for the sender to know that there are two distinct groups of voters
that can implement x on their own, to be able to benefit from private communication.

Now we can revisit Theorem 1 and provide intuition about the ‘only if’ part, i.e.
optimal communication is public only if there exists a veto player. Assume to the
contrary that there is no veto player. There are two options for the type of game,
which are proper and improper. If the game is proper, then Proposition 4 implies that
public communication is not optimal, a contradiction. In particular, assuming there
is no veto player implies that there are sufficiently many (not necessarily minimal)
coalitions that the sender can target in state Y to improve upon public communication.
If the game is improper, then Proposition 6 implies that public communication is not
optimal, once again a contradiction. Specifically, improperness of the game implies
that there exist disjoint winning coalitions (which precludes the existence of a veto
player). So, targeting these coalitions instead of the grand coalition improves upon
public communication.

An application

Previously, we have first imposed no structure on voting weights or the quota and
then only imposed some structure on the quota. This section considers a class of
games which is known as apex games, that exhibits most of the characteristics that
were analyzed so far and also imposes a particular weight structure. Apex games
provide a natural concrete illustration of the general insights in the previous sections.
In addition, because of their specific structure, apex games allow us to provide a
complete characterization of optimal communication.

An apex game involves an apex player (e.g. a large political party or the chair of
a committee) who generally has a higher voting weight than the minor players (e.g.
smaller political parties or committeemembers).37 In an apex game,winning coalitions
consist of either: (i) the apex player and at least one minor player or (ii) at least all
minor players. Apex games have been studied in the context of coalition formation
(Von Neumann and Morgenstern 1944; Haller 1994; Bloch and Rottier 2002; Karos

36 It is easy to see that vI(γ ) also improves upon vS(δ) since 3 > 3 − (1/δ) for δ ≥ 1.
37 The chair in committees often has a slightly larger voting power than the committeemembers (Chappell Jr
et al. 1995; Chappell et al. 2004).
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2014) and bargaining (Montero 2002), as well as within the experimental literature
(Funk et al. 1980; Montero et al. 2016).

Definition 5 (Apex Game) We say that a WMG is an apex game with apex player
i ∈ N and minor players N \ {i} if T ∈ W when (i) i ∈ T and T \{i} �= ∅, or (ii)
T = N \ {i}, and T /∈ W otherwise.

Henceforth, we fix i ∈ N to be the apex player.
First, note that apex games do not have a veto player and hence, with behavioral

voters the sender can always improveuponpublic communication. Second, apexgames
are proper and therefore, the sender can achieve the lower bound vP(ϕ) given by
Proposition 4. However, as apex games are also strong, the lower bound vS(δ) provided
in Proposition 5 also applies. It turns out that vS(δ) is the optimal value in an apex game
as δ = n− 1, so that vS(n− 1) = min{ 3(n−1)−1

n−1 λ0(X), 1} = min{ 3n−4
n−1 λ0(X), 1}. We

omit the proof of this result, since it will immediately follow from Theorem 2. It is
not surprising that the optimal experiment and value are not explicitly dependent on
the quota, since the quota is embedded in the definition of an apex game.

It is easy to see that the sender cannot improve upon public communication while
ensuring a sincere BNE in apex games: the only coalition in which no agent is pivotal
is the grand coalition. It is possible to generalize the idea of apex games to cover
situations where a minimal winning coalition consists of either: (i) the apex player
andmultiple minor players or (ii) a strict subset of the minor players.38 This intuitively
connects to naturally occurring political situations. For example, a subset of the smaller
parties could be a serious contender in elections or a party with a relatively larger voter
base could need to form a coalition with several smaller parties to win.39

Definition 6 (General Apex Game) We say that a WMG is a general apex game with
apex player i ∈ N and minor players N \ {i} with 0 < ca < cm ≤ n − 1 if T ∈ W
when (i) i ∈ T and |T \{i}| = ca , or (ii) i /∈ T and |T | = cm , and T /∈ W otherwise.

In words, when a coalition contains the apex player, it requires at least ca minor players
to be a winning coalition. On the other hand, if a coalition does not contain the apex
player, then at least cm minor players are required to form a winning coalition.40 For
example, [5; 3, 1, 1, 1, 1, 1, 1] defines a general apex game, where ca = 2 and cm = 5.

Unlike in a simple apex game, it is not immediate that assigning positive probability
to all minimal winning coalitions is in fact optimal. However, a restricted version of
anonymity holds in this case: under an optimal experiment, when fixing the message
the apex player observes, it does not matter which minor players observe message x ,
but only the number of minor players who observe x . Therefore, it is optimal for the
sender to employ all minimal winning coalitions under a general apex game.

Let Sa = Smin
x (i) be the set of all signals that target minimal coalitions which

include the apex player and Sm = Smin \ Sa be the set of all signals that target
minimal winning coalitions which consist of only minor players.

38 Our definition is a special case of general apex games introduced by Karos (2014).
39 The former was the case in recent elections held in Hungary, Israel, and Turkey.
40 The definition of a general apex game implies that minor players are symmetric: given a WMG, j and
k are symmetric if for all T ⊂ N \ { j, k} it holds that T ∪ { j} ∈ W if and only if T ∪ {k} ∈ W .
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Theorem 2 (General Apex Game) Let voters be behavioral and g be a general apex
game. Then an optimal experiment is given by

π∗(s|ω) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 if s = x̄ and ω = X ,

λ0(X)

λ0(Y )

(n−1
ca

)−1
if s ∈ Sa and ω = Y ,

λ0(X)

λ0(Y )

n−1−ca
n−1

( n−2
cm−1

)−1
if s ∈ Sm and ω = Y ,

1 − λ0(X)

λ0(Y )

n−1−ca+cm
cm

if s = ȳ and ω = Y .

The optimal value is V π∗
q (g) = min

{
n−1−ca+2cm

cm
λ0(X), 1

}
.

Note that if we set ca = 1 and cm = n−1, then it is reduced to an apex game andwould

yield an optimal experiment with value min
{
3n−4
n−1 λ0(X), 1

}
. Additionally, Theorem

2 allows us to derive a known result.41

Corollary 2 (Majority of Unit Votes) Suppose that the voting rule is at least simple
majority, the receivers are behavioral, and there is a coalition of receivers who have
unitary voting weights. If this coalition can implement x, then the sender can achieve
V with private communication.

Note that Corollary 2 is demonstrated by π in our illustrative example, where the
upper bound on the value, V (7, 4, 1/3), is achieved.42 Thus, the higher voting weight
of agent 1 does not impede the CEO’s gain from persuasion, compared to a case where
there are seven shareholders with one vote each.

Aswementioned before, the sender can improve upon public communication under
general apex games while ensuring that sincere voting is a BNE. The structure of an
optimal experiment in this case is similar to the structure of π∗ in Theorem 2, but
differs by targeting more minor players in state Y so as to make the apex player non-
pivotal. For this purpose, letWa = {T ∈ W |i ∈ T } be the set of all winning coalitions
that include the apex player and defineQ = {T ∈ Wa ∩ W np|T \{i, j} /∈ W ,∀ j �= i}.
That is, the apex player is not pivotal in any coalition in Q. We omit the proof as it
immediately follows from Theorem 2.

Corollary 3 (BNE inGeneral ApexGames) Let g be a general apex game, T ∈ Wmin∩
Wa, and k = |Q|−|T |. Then π∗ ∈ �e with V π∗

q (g) = min
{
n+1−k−ca+2cm

cm+1 λ0(X), 1
}

is optimal.

41 This result shows in a different context in Kerman and Tenev (2021) and hence Theorem 2 generalizes
their result. Note also that all results in the current paper would be robust to limited information spillovers
if agents are considered to be voter blocs instead of individuals From the same paper it follows that the
sender can strictly gain from persuasion as long as information does not spill over to all members in a voter
bloc. However, if we consider information spillovers between single receivers with different voting weight,
the result would not apply.
42 To obtain the upper bound with private communication from the value in Theorem 2, take cm = q
agents with unit weights. This is equivalent to a WMG in which there are n − 1 agents with weight
1 and one agent with weight τ − n + 1. Hence, ca = q − (τ − n + 1). Substituting in the formula:

min{ n−1−ca+2cm
cm

λ0(X), 1} = min{ n−1−q+τ−n+1+2q
q λ0(X), 1} = min{ τ+q

q λ0(X), 1}, which is the

upper bound on the sender’s value specified in Proposition 2, V .
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Finally, we provide an example of a general apex game and illustrate that while the
optimal value decreases under sincere BNE compared to behavioral voting, it still
improves upon public communication.

Example 4 (Improving Upon Public Communication in BNE) Recall our illustrative
example. Suppose the shareholder with the highest weight sells one share to a new
investor, which induces a WMG [4; 2, 1, 1, 1, 1, 1]. This represents a general apex
game, where shareholder 1 is the apex player, ca = 2, and cm = 4. By Theorem 2, the
optimal value is 1

3 · 1
4 (6 − 1 − 2 + 2 · 8) = 11/12 = V (7, 4, 1/3).

To achieve an equilibrium under sincere BNE, in every signal that implements x in
state Y , the sender targets four minor players in addition to the apex player, i.e. k = 2.
Thus, by Corollary 3 it follows that the optimal value is 11/15 > 2/3 = V pub(1/3).

�

5 Extensions and discussion

The literature on information design with multiple receivers considers heterogeneity
in terms of either prior beliefs (Alonso and Câmara 2016a; Laclau and Renou 2017;
Shimoji 2022; Senkov and Kerman 2024) or preferences (Alonso and Câmara 2016b;
Bardhi and Guo 2018; Arieli and Babichenko 2019; Chan et al. 2019; Heese and
Lauermann 2021). Allowing for such heterogeneity is also natural in our model, since
receivers with different voting weights might have different priors or preferences; for
example voters with a high voting weight might have a “bias” for a certain state. More
precisely, each receiver might receive a different utility from matching state X and
matching state Y , and the same might hold for mismatching them.We show that this is
similar to a situation where agents have homogeneous preferences but hold different
prior beliefs, and extend our main result to the heterogeneous priors case.43

Second, we consider allowing for abstention. We first show that in the current
framework, not allowing for abstention is without loss of generality. Then, we provide
alternative versions for the option to abstain and discuss how these affect the sender’s
gain from persuasion.

5.1 Heterogeneous preferences/priors

Suppose that for each i ∈ N the payoff is of the following type: ũi (x, X) =
ai , ũi (y,Y ) = bi and ũi (x,Y ) = ci , ũi (y, X) = di , where ai > di and bi > ci .
That is, receivers prefer matching the state to mismatching it but have heterogeneous
payoffs. This implies that receivers have different posterior belief thresholds for voting
in favor of x , i.e. some agents are more difficult to persuade. This can be thought of
as receivers having homogeneous preferences but different prior beliefs, since agents
with lower priors are more difficult to persuade.

To show how the two problems relate to each other, let (ūi )i∈N be the vector of
utility functions such that ai = a, bi = b, ci = c, di = d for each i ∈ N , where

43 A similar observation has also been made in a recent paper by Doval and Smolin (2024).
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a > d and b > c. That is, all receivers have the same utility function. Define two
voting problems:

• P = (N , λ0, q, (wi )i∈N , (ũi )i∈N ,U ) and
• P ′ = (N , λ0, λ0R, q, (wi )i∈N , (ūi )i∈N ,U )

With slight abuse of notation, let λ0R = (λ0i )i∈N denote the vector of heterogeneous
priors of receivers. Note that P ′ contains the sender’s prior λ0, as well as the additional
parameter λ0R . Hence,G(P, π) is a game of incomplete information inwhich receivers
share a common prior but have heterogeneous preferences, whereas G(P ′, π) is a
game of incomplete information in which receivers have identical preferences but
have heterogeneous priors. Denote the value of π ∈ � under voting problem P by
V [G(P, π)].
Lemma 3 Let π ∈ � and suppose voters are behavioral. Then for any voting prob-
lem P = (N , λ0, q, (wi )i∈N , (ũi )i∈N ,U ) there exists P ′ = (N , λ0, λ0R, q, (wi )i∈N ,

(ūi )i∈N ,U ) such that V [G(P, π)] = V [G(P ′, π)].
Therefore, from now on we assume that receivers have identical preferences but

heterogeneous priors. In general, it is possible to formulate the problem of finding
the optimal experiment with heterogeneous voting weights and heterogeneous priors.
Once again, the only adjustment is the formulation of inequality (3) of Proposition 1.
Namely, it should incorporate the heterogeneous prior beliefs of the voters:

∑

j∈Smin
x (i)

p j ≤ λ0i (X)/λ0i (Y ), ∀i ∈ N . (4)

This is still a tractable problem. However, as in the case of a common prior, it is very
dependent on the specific beliefs to allow for a closed-form formulation of the value.

Similar to the bounds we provide in Sect. 4.2, in the case of heterogeneous priors
we can establish lower bounds, which marginally improve upon public communi-
cation (see the proof of Theorem 3). However, if the common prior is λ0(X) and
min

{
λ0R(X)

} ≥ λ0(X), then the bounds we established in Sect. 4.2 still hold. This
could provide an advantage to a sender who faces a great amount of uncertainty about
the prior beliefs of the voters: only knowing the prior belief of the most pessimistic
voter is sufficient to obtain the lower bounds and substantially improve upon public
communication.

Finally, we state the generalization of Theorem 1 to receivers with heterogeneous
priors.

Theorem 3 Suppose voters are behavioral and have heterogeneous prior beliefs. Then
πpub is optimal if and only if there is a veto player.

Note that since Lemma 2 does not depend on the receivers’ priors, the ‘if’ part imme-
diately follows. For the ‘only if’ part, similar to the proof of Theorem 1, we assume
to the contrary that there exists a veto player despite that optimal communication is
public and construct experiments that improve upon public communication to reach a
contradiction. The constructions of experiments we provide differ from the ones in the
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proof of Theorem 1, since optimal public communication now depends on the prior
of a particular receiver. More precisely, for the optimal public experiment the sender
targets a winning coalition that consists of receivers with the highest possible priors,
where we call the receiver with the lowest prior in the coalition the “cutoff” receiver.
Therefore, under an optimal public experiment, the sender does not necessarily per-
suade all receivers, but only a subset of them. This way, the sender achieves a higher
probability of persuasion relative to the case where she persuades all receivers, who
potentially have lower priors. We show that in this case the sender can still gain from
private persuasion by targeting multiple coalitions, which are slightly smaller than the
grand coalition.

If we consider a model which has heterogeneity not only in weights but also in
priors, it is natural to ask how the voting power and the preferences/prior beliefs of
the receivers trade off. We explore this in the following example.

Example 5 Consider the apex game defined by [3; 2, 1, 1, 1]. First, note that if the
sender and receivers share a common prior λ0(X) = 1/3, then the value of the optimal
signal prescribed by Theorem 2, call it π , is 8/9. To see the difference between the
effects of the apex player and one minor player having a higher/lower prior than
others, we will consider four different prior belief distributions for the receivers (while
fixing the sender’s prior to λ0(X) = 1/3): (i) λ1(X) = (1/3, 2/9, 1/3, 1/3), (i i)
λ2(X) = (2/9, 1/3, 1/3, 1/3), (i i i) λ3(X) = (1/3, 4/9, 1/3, 1/3), and (iv) λ4(X) =
(4/9, 1/3, 1/3, 1/3). While in distributions λ1 and λ2 a minor player (receiver 2)
and the apex player, respectively, has a slightly lower prior than others (i.e. 2/9), in
distributions λ3 and λ4 a minor player (receiver 2) and the apex player, respectively,
has a slightly higher prior than others (i.e. 4/9).

The table below outlines the optimal strategies for each case. Since the same set of
minimalwinning coalitions are used in all cases and in state X the experiment truthfully
recommends x , the only difference is in state Y . Denote the optimal experiments in
cases (i) − (iv) by π ′

m, π ′
a, π

′′
m , and π ′′

a , respectively.

π π ′
m π ′

a π ′′
m π ′′

a

X Y Y Y Y Y
(x, x, x, x) 1 0 0 0 0 0
(x, x, y, y) 0 1

6
1
42

2
21

11
30

3
10

(x, y, x, y) 0 1
6

5
21

2
21

1
15

3
10

(x, y, y, x) 0 1
6

5
21

2
21

1
15

1
5

( y, x, x, x) 0 1
3

11
42

17
42

13
30

1
5

( y, y, y, y) 0 1
6

5
21

13
42

1
15 0

λ0(X) λ1(X) λ2(X) λ3(X) λ4(X)

Overall, we observe that

V
π ′′
a

3 (g) > V
π ′′
m

3 (g) > V π
3 (g) > V

π ′
m

3 (g) > V
π ′
a

3 (g).
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That is, more influential voters (e.g. the apex player) affect the value more positively
if they have a higher belief, all else equal. In contrast, when such a player has a lower
prior this decreases the value of the sender more than a minor player would. Here
it is worth noting that the most influential player does not necessarily have a higher
weight. A player can also have the lowest voting weight but equal voting power (e.g.
in [3; 2, 2, 1]).

As the example illustrates, starting from a common prior and decreasing the prior
belief of one voter to obtain heterogeneous priors, all else equal, the value should
(weakly) decrease. The explanation is intuitive: the set of possible solutions shrinks
as one of the conditions specified by inequality (4) becomes more restrictive, all else
equal. Conversely, if one prior increases relative to the common prior case, the value
(weakly) increases.

5.2 Abstention

Now suppose that voters have the option to abstain.44 That is, the action set of agent
i ∈ N is given by Ai = {x, y,∅}, where ∅ stands for abstention.

Let s ∈ S be such that si = x . Note that while receiver i’s expected utility of voting
sincerely in favor of x is λsi (X) · 1 + (1 − λsi (X)) · 0 = λsi (X), his expected utilities
of voting sincerely in favor of y and abstaining are equal and given by λsi (X) · 0 +
(1 − λsi (X)) · 1 = 1 − λsi (X). Thus, i is indifferent between voting in favor of y and
abstaining since they lead to the same expected utility.45 Hence, excluding abstention
is without loss of generality in our model, i.e. we can restrict attention to action sets
only consisting of choosing x and choosing y.

Alternatively, suppose that voting is costly and voters have heterogeneous voting
costs, where the cost of voting for agent i is ci > 0. This leads to agents having
different thresholds for voting in favor of x . In particular, agent i votes in favor of x
if λsi (X) ≥ (1 + ci )/2. Therefore, the situation is similar to voters having different
preferences or different prior beliefs, which is covered by our discussion in Sect. 5.1.
One aspect to note is that in this case, an agent would never vote for y when they think
state Y is more likely, since abstaining leads to the same outcome and is costless.

Finally, we consider a broader interpretation of abstention. Suppose that prior to
communication, voters can commit to abstain, which is observed by the sender. For
example, The U.S. recently abstained from the vote calling for more humanitarian aid
in Gaza (see https://www.pbs.org/newshour). It is likely that a lobbyist who wishes to
influence the outcomeof the votewould have insider information and knowbeforehand
that the U.S. is going to abstain. In this case, the lobbyist would direct her resources
to the persuasion of the remaining countries.

As in the UN Security Council, assume that the quota is fixed, i.e. it is not pro-
portional to the number of active voters (the ones who have not abstained).46 In this

44 While the analysis would hold for heterogeneous beliefs, we assume a common prior for simplicity.
45 This is intuitive given that x is implemented when the number of x votes reaches the quota; without any
additional assumptions abstaining is equivalent to voting for y.
46 Note that assuming a proportional quota does not have an effect on the equilibrium outcome. Since
receivers are obedient in equilibrium, voting for x upon observing x yields a (weakly) higher payoff than
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case, this type of abstention will be detrimental to the sender, as she now needs to per-
suade a sufficient number of countries (who satisfy the quota) from a smaller pool. To
illustrate, consider the same game in Example 5 and suppose agents share a common
prior of λ0(X) = 1/3. Suppose that the apex player commits to abstaining before the
vote. Then, the optimal value decreases from 8/9 to 2/3, as optimal communication
becomes public.

Recall that the upper bound of the value is V = min
{

τ+q
q λ0(X), 1

}
. If voter i

abstains, then the upper bound becomes min
{

τ+q−wi
q λ0(X), 1

}
. In fact, the decrease

in the upper bound is monotonic in the number of voters who commit to abstaining.47

6 Conclusion

This paper considers a voting application of information design in which voters have
heterogeneous voting weights. The model is applicable to different setups such as
achieving a critical mass of consumers in a marketing campaign, securing a certain
level of crowdfunding investment, and persuading voter blocs. Determining how a
sender optimally communicates with receivers in this framework does not readily
generalize on the basis of previous research. While the sender’s optimization task
remains tractable, a closed-form solution for an optimal communication protocol given
arbitrary voting weights is not obtained with the standard tools. Instead, to deal with
this issue we first impose some structure on the quota and then also on the voting
weights.

Throughout the paper we consider both behavioral and sophisticated voters. We
first show that when voters are behavioral public communication is optimal if and only
if there is a veto player. This is not necessarily true when they are sophisticated, as
sophisticated voters also condition their actions on being pivotal, which requires the
sender to divulge more information. Next, while keeping the voting weights generic,
we consider different quotas and provide lower bounds for the sender’s gain from
persuasion. We show that the sender can often improve upon public communication
even when voters are sophisticated. Finally, we consider an application (apex games)
which illustrates the previous results and makes them more concrete. In particular, we
show that the lower bounds we provided before improve upon public communication
significantly and can even coincide with the upper bound of the sender’s expected
utility.

Finally, we extend the model in two different directions. First, we consider receiver
who have heterogeneous payoff functions and show that from the sender’s perspec-
tive, this is as if the receiver’s have heterogeneous prior beliefs. We show that public
communication is optimal if and only if there is a veto player, even when receivers

Footnote 46 continued
any other action. Suppose x is being implemented. If an agent abstains instead of voting for x , then either
the outcome of the vote does not change (which gives the same expected utility) or it changes to y (which
makes the agent worse off).
47 Notice that this type of pre-commitment is an effective way to restrict the sender which is reminiscent
of Tsakas et al. (2021), but different in its implementation as our framework has multiple receivers.
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have heterogeneous priors. Second, we consider abstention and show that excluding
it is without loss of generality.

This model opens several avenues for research. Given that in the current setup
the most equitable representation is the most manipulable, future research can also
analyze a policymaker who designs a voting system and wishes to balance equitable
representation and robustness to propaganda. Furthermore, the current framework
could be extended to incorporate frequently observed phenomena such as a finite and
arbitrarily large state space and state-dependent utility functions.

Appendix A: Notation guide

Notation Definition Explanation

β min
{|T ∩ T ′| : T , T ′ ∈ W np} Minimal overlap of two winning

coalitions without pivotal agents
γ max{|R| : R ⊆ W s.t. i /∈

C1 ∩ C2,

∀i ∈ N and C1,C2 ∈ R}

The maximum number of disjoint
winning coalitions

δ max
{
|T | : T ∈ Wmin

}
The maximum cardinality of a
minimal winning coalition

ϕ min
{
|T ∩ T ′| : T , T ′ ∈ Wmin

}
Minimal overlap of two minimal
winning coalitions

λ0(X) Sender’s prior/ common prior

λ0a(X) Apex player’s prior

λ0m (X) Minor player’s prior

λsi (ω)
π(si |ω)λ0(ω)

∑
ω′∈� π(si |ω′)λ0(ω′) Posterior of voter i

πpub Optimal public experiment
� Set of all experiments
�e Experiments whose induced sincere

strategy profile constitutes a BNE
Sπ {s ∈ S|∃ω ∈ � : π(s|ω) > 0} Signals in S which are sent with

positive probability by π

Sπ
i {si ∈ Si |∃ω ∈ � : πi (si |ω) > 0} Messages receiver i observes with

positive probability under π

Smin
{
χ(R) ∈ S|R ∈ Wmin

}
Signals that target minimal winning
coalitions

Smin+ Smin ∪ {x̄, ȳ}
Smin
x (i) {s ∈ Smin|si = x} Signals in Smin which send x to

agent i
Snp {χ(R) ∈ S|R ∈ W np and

∃i, j ∈ R s.t. R \ {i, j} /∈
W }

Signals targeting the smallest
winning coalitions without pivotal
agents
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Notation Definition Explanation

S
np
+ Snp ∪ {x̄, ȳ}
S
np
x (i) {s ∈ Snp|si = x} Signals in Snp which send x to agent

i

Sa Smin
x (i) Signals targeting minimal coalitions

which include the apex player

Sm Smin \ Sa Signals targeting winning coalitions
consisting of only minor players

V (θ, κ, λ0) min
{

θ+κ
κ λ0(X), 1

}
Value of private experiment (common
prior λ0(X), unitary weights)

V V (τ, q, λ0) Upper bound of the value

V pub(λ0) min{2λ0(X), 1} Value of the public experiment with
common prior λ0(X)

V V pub(λ0) Lower bound of the value

Vπ
q (λ0) λ0(X)

∑
s∈Zqx (π)

π(s|X)+
λ0(Y )

∑
s∈Zqx (π)

π(s|Y )

Value (general definition)

Vπ
q (g) Value of an experiment π on a

weighted majority game g

vP(ϕ) min
{
2ϕ+3
ϕ+1 λ0(X), 1

}
lower bound of the value for proper
games with behavioral voters

v̂P(β) min
{
2β+3
β+1 λ0(X), 1

}
Lower bound of the value for proper
games with sophisticated voters

vI(γ ) min{(γ + 1)λ0(X), 1} Lower bound of the value for
improper games with behavioral
voters

v̂I(γ ) min{V (γ, 2, λ0), 1} Lower bound of the value for
improper games with sophisticated
voters

vS(δ) min
{
3δ−1

δ λ0(X), 1
}

Lower bound of the value for strong
games with behavioral voters

W {T ⊆ N | ∑i∈T wi ≥ q} The set of winning coalitions

Wmin {T ∈ W |∀R � T : R /∈ W } The set of minimal winning
coalitions

W np {T ∈ W |∀i ∈ T : T \ {i} ∈
W }

Set of coalitions in which no agent is
pivotal

Wa {T ∈ W |i ∈ T } Set of winning coalitions that include
the apex player

χ(R) χi (R) = x, ∀i ∈ R and
χ j (R) = y, ∀ j /∈ R

The signal which targets coalition R
with message x

Appendix B: Sincere BNE

One way to ensure that agents vote sincerely in equilibrium is to target (in state Y )
winning coalitions of non-pivotal agents, that are minimal in size. Lemma 4 shows
that this is without loss of generality. Formally, recall that W np = {T ∈ W |∀i ∈ T :
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T \{i} ∈ W } is the set of coalitions in which no agent is pivotal. Further, let Snp =
{χ(R) ∈ S|R ∈ W np and ∃i, j ∈ R s.t. R\{i, j} /∈ W } and Snp+ = Snp∪{x̄, ȳ}.48 That
is, Snp includes signals in which no agent is pivotal, but there exists at least one pair
of agents such that removing them makes the coalition losing.49 Note that when the
weights are unitary, then removing any pair from such a coalition makes it losing.
However, for arbitrary weights this condition is too restrictive, as under some weight
profiles this leads to Snp = ∅, whereas requiring the existence does not.50

Lemma 4 Let λ0 ∈ �(�) and π̂ ∈ �e. There exists π ∈ �e with Sπ ⊆ Snp+ such that
V π
q (λ0) ≥ V π̂

q (λ0).

In short, the lemma captures the following logic: if π̂ ∈ �e, then either all agents
are pivotal or non-pivotal in both states. Since setting π̂(x̄ |X) = 1 is without loss, in
the former case we can transform π̂ into an experiment in which no agent is pivotal
without decreasing the value. In the latter case, the construction follows from Lemma
1.

Let Snp = {s1, . . . , sm} where m ∈ N and for any i ∈ N , let Snpx (i) = {s ∈
Snp|si = x}. For a given experiment π ∈ �, let probabilities p j be as in Proposition
1. The solution of the following constrained optimization problem yields an optimal
experiment under which sincere voting is a BNE.

Proposition 7 (Sincere BNE) Suppose that the voters are sophisticated. An optimal
experiment under which sincere voting is a BNE is a solution to

max
p1,...,pm

1 − λ0(Y )p0 subject to

p j ≥ 0, ∀ j ∈ {1, . . . ,m}, (5)
m∑

j=0

p j = 1, (6)

∑

j∈Snpx (i)

p j ≤ λ0(X)/λ0(Y ), ∀i ∈ N . (7)

We omit the proof as it follows directly from the proof of Proposition 1. The main
difference of Proposition 7 from Proposition 1 is the obedience constraint given by
inequality (7), i.e. we employ signals in Snpx (i) instead of Smin

x (i). Since this ensures
that no agent is pivotal in either state, it is guaranteed that the solution leads to a BNE.

48 Notice that for every T ∈ W np we have T \ {i} ∈ W and not necessarily T \ {i} ∈ Wmin. In fact, if we
require the latter, then the signals in Snp target coalitions such that removing any two agents makes them
losing, which is too restrictive and not necessarily optimal. See also footnotes 17 and 19.
49 Notice that if there is no i, j ∈ R such that R\{i, j} /∈ W , then there exists k ∈ R who is unnecessarily
targeted and therefore, not targeting him weakly increases the value.
50 Intuitively, Snp balances two effects. To ensure sincere BNE, the coalitions need more votes than a
minimal winning coalition, which means that they should involve more agents. This decreases the number
of coalitions. However, to guarantee a higher value the sender wants to have as many winning coalitions as
possible at their disposal. In that sense the sender wants to have as few agents as possible in a coalition of
non-pivotal agents, which increases the number of possible coalitions.
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Appendix C: Proofs

Proof of Lemma 1 It readily follows that assuming π is straightforward and π(x̄ |X) =
1 is without loss. Define π∗ ∈ � via π as follows:

(i) Remove all s ∈ Sπ with |i ∈ N : si = x | < q and transfer its probability to ȳ,
(ii) for any signal not in Smin, replace x messages of arbitrary agents with y so that

it is transformed into a signal in Smin.

For each R ∈ W \ Smin define R′
� R such that χ(R′) ∈ Smin. Thus, π∗ is given by

π∗(x̄ |X) = π(x̄ |X) and

π∗(s|Y ) =

⎧
⎪⎨

⎪⎩

π(χ(R)|Y ) if s = χ(R′),
π(s|Y ) if s ∈ Smin,
∑

s′ /∈Zq
x (π) π(s′|Y ) if s = ȳ.

Clearly, for any i ∈ N and s ∈ Sπ with si = x and λsi (X) ≥ 1/2, it holds that for any

s′ ∈ Sπ∗
with s′

i = x we have λs
′
i (X) ≥ 1/2. Therefore, Zq

x (π
∗) = Zq

x (π) and hence,
V π∗
q (λ0) = V π

q (λ0). ��
Proof of Proposition 1 First, recall that under an optimal experiment π∗ ∈ �, it holds
that π∗(x̄ |X) = 1. Second, under a straightforward experiment, all signals in state Y
except for ȳ implement x . Thus, the total probability of x being implemented in state
Y is 1 − p0. Hence, the objective function is obtained by rewriting the value of π∗:

λ0(X)π∗(x̄ |X) + λ0(Y )(1 − p0) = 1 − λ0(Y ) + λ0(Y ) − λ0(Y )p0 = 1 − λ0(Y )p0.

Since p j ≥ 0 for all j ∈ {1, . . . ,m} by (1) and
∑m

j=0 p j = 1 by (2), it follows
that the solution to the optimization problem is an experiment. Since all p j ’s are
probabilities of signals that are contained in Smin, an optimal experiment only assigns
positive probability to minimal winning coalitions in state Y . Finally, (3) ensures that
the solution is a straightforward experiment, i.e. all agents vote for x upon observing
message x . ��
Proof of Lemma 2 Let j ∈ N be a veto player. Then for any π ∈ �, and for all
s ∈ Zq

x (π), it holds that απ
j (s j ) = x .

By definition, an experiment π ∈ �with Sπ ⊆ {x, y}n is straightforward if for any
i ∈ N and s, t ∈ Sπ with si = x and ti = y, we have λsi (X) ≥ 1/2 and λti (Y ) > 1/2.
Hence, π is straightforward if and only if for all i ∈ N

λ0(X)πi (x |X) ≥ λ0(Y )πi (x |Y ) . (8)

Thus,
∑

s∈Zq
x (π) π(s|Y ) ≤ λ0(X)/λ0(Y ). Therefore, the optimal value is at most

min{2λ0(X), 1}. Part (i i) follows immediately. ��
Proof of Proposition 3 From the symmetry of g it follows that for any T ∈ Wmin, it is
true that |T | = k. Assume to the contrary that T , T ′ ∈ Wmin, |T | = k, and |T ′| > k.
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By symmetry, for any T ′′
� T ′ with |T ′′| = k it holds that T ′′ ∈ W , a contradiction

since T ′ ∈ Wmin.
Since it is optimal to target all minimal winning coalitions by Lemma 1 and by

definition of symmetry, it follows that an optimal experiment π has value V (n, k, λ0)
for behavioral voters. Part (i i) immediately follows by Lemma 4. ��
Proof of Proposition 4 We first state the result formally.
Proposition 4. Let g be a proper WMG that has no veto player. There exists

(i) π ∈ � such that V π
q (g) ≥ vP(ϕ) = min{ 2ϕ+3

ϕ+1 λ0(X), 1} > V for ϕ = min{|T ∩
T ′| : T , T ′ ∈ Wmin},

(ii) π ∈ �e such that V π
q (g) ≥ v̂P(β) = min{ 2β+3

β+1 λ0(X), 1} for β = min{|T ∩T ′| :
T , T ′ ∈ W np} for |W np| ≥ 2.

We assume that |W np| ≥ 2, since otherwise in case (i i) we have v̂P(β) = V . We
only prove part (i), as the proof of part (i i) follows directly from (i).

First assume thatλ0(X) ≤ (ϕ+1)/(2ϕ+3). Letϕ = min{|T∩T ′| : T , T ′ ∈ Wmin}.
In words, ϕ is the cardinality of the smallest intersection of two minimal winning
coalitions, which allows the sender to effectively target coalitions that are constructed
via the agents in the intersection. Pick R, R′ ∈ Wmin. Since g is proper, it holds that
R ∩ R′ �= ∅. Assume without loss of generality that |R ∩ R′| = ϕ. Let R ∩ R′ = T .
For each i ∈ T define Di = N \ {i}. Since there is no veto player, Di ∈ W . We show
that the sender can achieve the lower bound by targeting R, R′, and all Di ’s in state
Y . Define π ∈ � as

π(s̃|ω) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if s̃ = x̄ and ω = X ,
λ0(X)

(ϕ+1)λ0(Y )
if s̃ ∈ {χ(R), χ(R′), χ(Di )} for all i ∈ T and ω = Y ,

1 − (ϕ+2)λ0(X)

(ϕ+1)λ0(Y )
if s = ȳ and ω = Y .

The value of π is

Vπ
q (g) = 1 − λ0(Y )

(

1 − (ϕ + 2)λ0(X)

(ϕ + 1)λ0(Y )

)

= λ0(X) + ϕ + 2

ϕ + 1
λ0(X) = 2ϕ + 3

ϕ + 1
λ0(X).

Now suppose that λ0(X) > (ϕ + 1)/(2ϕ + 3). In this case, define π ′ ∈ � as

π ′(s̃|ω) =
{
1 if s̃ = x̄ and ω = X ,
1

ϕ+2 if s̃ ∈ {χ(R), χ(R′), χ(Di )} for all i ∈ T and ω = Y .

For any i ∈ N , it holds thatπ ′
i (x |Y ) = (ϕ+1)/(ϕ+2). Sinceλ0(X) > (ϕ+1)/(2ϕ+3)

and λ0(Y )(ϕ+1)/(ϕ+2) < (ϕ+1)/(2ϕ+3), we have λ0(X) > λ0(Y )(ϕ+1)/(ϕ+2)
so that π ′ is straightforward. In this case, we have V π ′

q (g) = 1.

Hence, the optimal value is min{ 2ϕ+3
ϕ+1 λ0(X), 1}. Note that the lower bounds we

provide strictly improve upon public communication, since g being proper implies
that ϕ ≥ 1. ��
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Proof of Proposition 5 We first state the result formally.
Proposition 5. Let g be a strong WMG and δ = max{|T | : T ∈ Wmin}. Then there
exists π ∈ � such that V π

q (g) ≥ min{ 3δ−1
δ

λ0(X), 1}.

Here, δ is the maximum cardinality of a minimal winning coalition. First assume
that λ0(X) ≤ δ/(3δ −1). Pick T ∈ Wmin, fix i ∈ T , and assume that |T | > 1.51 Since
T ∈ Wmin, it holds that T \ {i} /∈ W . Then, since g is strong, (N \ T ) ∪ {i} ∈ W .

Therefore, for any strong game two types of winning coalitions always exist: (i)
the minimal coalition T and (ii) the complement of T together with one agent i ∈ T ,
(where |T | many such coalitions exist). Overall, there are at least |T | + 1 winning
coalitions, excluding the grand coalition. The sender can achieve the lower bound
by targeting these coalitions in state Y . Since the variation in the minimal winning
coalitions will be exploited, taking T ∈ Wmin such that |T | = max{|R| : R ∈
Wmin} = δ, i.e. the minimal winning coalition with the most members, benefits the
sender the most. Define π ∈ � as

π(s̃|ω) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 if s̃ = x̄ and ω = X ,
λ0(X)

δλ0(Y )
if i ∈ T , s̃ = χ({i} ∪ N \ T ) and ω = Y ,

(δ−1)λ0(X)

δλ0(Y )
if s̃ = χ(T ) and ω = Y ,

1 − (2δ−1)λ0(X)

δλ0(Y )
if s̃ = ȳ and ω = Y .

The value of π is

Vπ
q (g) = 1 − λ0(Y )

(

1 − (2δ − 1)λ0(X)

δλ0(Y )

)

= λ0(X) + 2δ − 1

δ
λ0(X) = 3δ − 1

δ
λ0(X).

Now suppose that λ0(X) > δ/(3δ − 1). Define π ′ ∈ � as

π(s̃|ω) =

⎧
⎪⎨

⎪⎩

1 if s̃ = x̄ and ω = X ,
1
2δ if i ∈ T , s̃ = χ({i} ∪ N \ T ) and ω = Y ,
δ−1
2δ if s̃ = χ(T ) and ω = Y .

It follows easily that π ′ is straightforward and thus V π ′
q (g) = 1. Hence, the optimal

value is min{ 3δ−1
δ

λ0(X), 1}. In particular, the sender can implement x with probability
1 if λ0(X) ≥ 2/5. ��
Proof of Proposition 6 We first state the result formally.
Proposition 6. Let g be a WMG and γ = max{|R| : R ⊆ W s.t. i /∈ C1 ∩ C2,∀i ∈
N and C1,C2 ∈ R}. If g is improper, then there exists

(i) π ∈ � such that V π
q (g) ≥ min{(γ + 1)λ0(X), 1} > V ,

51 Note that if |T | = 1, then either the game has a dictator or the game is improper. For the former optimal
communication is public (which gives the lower bound) and for the latter we provide a lower bound in
Proposition 6.
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(ii) π ∈ �e such that V π
q (g) ≥ max{V ,min{V (γ, 2, λ0)}}.

Suppose that g is improper. Let Q = {T ∈ W : T ∩ R = ∅, ∀R ∈ W\T }. Let
π ∈ � be given by π(x̄ |X) = 1, π(χ(R)|Y ) = min{λ0(X)/λ0(Y ), 1/γ } for any
R ∈ Q, and π(ȳ|Y ) = max{1 − γ λ0(X)/λ0(Y ), 0}. Thus, V π

q (g) = 1 − λ0(Y )(1 −
γ λ0(X)/λ0(Y )) = min{(γ + 1)λ0(X), 1}.

In words, γ is the number of mutually exclusive winning coalitions the sender can
target.52 Part (i) implies that even when there are only two disjoint winning coalitions
(γ = 2) and λ0(X) ≥ 1/3, the sender can implement her preferred outcome with
probability 1. It is easy to see that when the sender targets more than one mutually
exclusive coalitions in a signal, no agent is pivotal. Using all pairs of these coalitions
provides the lower bound of the value in equilibrium, given in part (i i). Here, it must
be noted that if γ = 2, the lower bound will be V . However, in all other cases (i.e.
γ > 2) the lower bound in equilibrium improves upon public communication. ��
Proof of Theorem 1 First, suppose g is such that there is a veto player. By Lemma 2 it
follows that πpub is optimal.

Now, suppose that πpub is optimal. We need to prove that the WMG has a veto
player. Assume to the contrary that g has no veto player. Then, there are two options:

(i) g is proper. Then g is both proper and has no veto player and Proposition 4
applies.

(ii) g is improper. Then Proposition 6 applies.

Hence, the sender can always improve upon public communication and πpub is not
optimal, a contradiction. ��
Proof of Theorem 2 We first start by giving the definition of pseudo-anonymity and
proving a lemma.

A permutation is a bijection defined by b : N → N . Denote the set of all permu-
tations by B. We consider a restricted set of permutations B̃ � B, which we define
as the set of all permutations that keeps the apex player fixed; that is, any b ∈ B̃ only
permutes the remaining n−1minor players. Givenπ ∈ �, for each s ∈ Sπ and b ∈ B̃,
let sb be such that sbi = sb(i). We call π ∈ � pseudo-anonymous if π(s|ω) = π(sb|ω)

for all b ∈ B̃ and ω ∈ �.53 ��
Lemma 5 Let v be a general apex game and let π̂ ∈ �. There exists a pseudo-
anonymous π ∈ � such that V π

q (g) = V π̂
q (g).

Proof For each ω ∈ �, s ∈ S, and b ∈ B̃, define πb by πb(s|ω) = π̂(sb|ω), so

Sπb =
{
sb

−1 : s ∈ Sπ̂
}
. Let π ∈ � be defined by

π (s|ω) = 1

(n − 1)!
∑

b∈B
πb (s|ω) , ω ∈ �, s ∈ S.

52 If a WMG is proper, then γ = 0, since the intersection of any two winning coalitions is nonempty.
53 Note that pseudo-anonymity can be related to the concept of symmetric players.
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In words, given the signals in Sπ̂ , Sπ includes all permutations of those signals (in
which the apex player is kept fixed) and π assigns equal probability to them. Clearly,
π is pseudo-anonymous.

All that is left to show is that π is straightforward: if all agents who observe x
continue to vote for x , the value of π will be the same as the value of π̂ since the total
probability of signals that implement x will remain the same. Fix i ∈ N . Then

πi (x |X) =
∑

s∈Sπ :si=x

π (s|X) =
∑

s∈Sπ :si=x

1

(n − 1)!
∑

b∈B
πb (s|X)

= 1

(n − 1)!
∑

b∈B

∑

s∈Sπ :si=x

π̂
(
sb|X

)
= 1

(n − 1)!
∑

b∈B

∑

s∈Sπ :sb(i)=x

π̂ (s|X)

= 1

(n − 1)!
∑

b∈B
π̂b(i) (x |X) .

Since π̂ is straightforward, one has λ0(X)π̂b(i) (x |X) ≥ λ0(Y )π̂b(i) (x |Y ) for all b ∈
B. Therefore,

λ0(X)πi (x |X) = λ0(X)
1

(n − 1)!
∑

b∈B
π̂b(i) (x |X) ≥

λ0(Y )
1

(n − 1)!
∑

b∈B
π̂b(i) (x |Y ) = λ0(Y )πi (x |Y ) .

Thus, π satisfies (8). Therefore, π is straightforward. It immediately follows that
V π
q (g) = V π̂

q (g). ��

Now we prove the theorem. Let π∗ ∈ �. By Lemma 1 and Lemma 5, it is without
loss of generality to assume that π∗(x̄ |X) = 1 and that π∗ is pseudo-anonymous. This
implies that it is optimal for the sender to assign positive probability to all signals that
target minimal winning coalitions in state Y .

First, note that there are
(n−1
ca

)
signals in Sa . Since all signals in Sa target the apex

player, the total probability of these signals must add up to λ0(X)/λ0(Y ), so that
obedience constraint (8) is satisfied (and is binding) for the apex player. Thus, for any

s ∈ Sa let π∗(s|Y ) = λ0(X)

λ0(Y )

(n−1
ca

)−1
.

Next, note that a minor player observes x
( n−2
ca−1

)
times in all signals in Sa . So, the

probability of observing x for messages profiles in Sa is

(
n − 2

ca − 1

)
λ0(X)

λ0(Y )

(
n − 1

ca

)−1

= ca
n − 1

λ0(X)

λ0(Y )
.
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Thus, in order to satisfy (8), a minor player can observe x in signals in Sm with
probability at most

λ0(X)

λ0(Y )
− ca

n − 1

λ0(X)

λ0(Y )
= λ0(X)

λ0(Y )

(

1 − ca
n − 1

)

.

Moreover, note that a minor player observes x in signals in Sm
( n−2
cm−1

)
many times.

Hence, for any t ∈ Sm , let π∗(t |Y ) = λ0(X)

λ0(Y )

(
1 − ca

n−1

) ( n−2
cm−1

)−1
.

So, the total probability of signals in Sa is λ0(X)/λ0(Y ) and the total probability

of signals in Sm is λ0(X)

λ0(Y )

(
1 − ca

n−1

) ( n−2
cm−1

)−1(n−1
cm

)
. Subtracting the sum of all signals

in Sa ∪ Sm yields π∗(ȳ|Y ), as given in the statement of the theorem.
Finally, the value of π∗ is given by

1 − λ0(Y )

(

1 − λ0(X)

λ0(Y )

n − 1 − ca + cm
cm

)

= λ0(X) + λ0(X)

(
n − 1 − ca + cm

cm

)

= λ0(X)
n − 1 − ca + 2cm

cm
.

Proof of Corollary 2 We first state the result formally.
Corollary 2. Let q ≥ τ/2. For any weight profile (wi )i∈N , if |{i ∈ N : wi = 1}| ≥ q
then the optimal value is V .

Let N 1 = {i ∈ N |wi = 1}, Nh = {i ∈ N |wi > 1}, and S = {x, y}n . Moreover, let
|N 1| = k. Define

R =
{
s ∈ S′ : ∀i ∈ Nh, si = x and |

{
j ∈ N 1 : s j = x

}
| = q − (τ − k)

}
,

which is the set of signals in which all receivers with weight higher than 1 and q−τ +k
receivers with weight equal to 1 observe x . Similarly, define

T =
{
t ∈ S′ : ∀i ∈ Nh, ti = y and |

{
j ∈ N 1 : t j = x

}
| = q

}
,

which is the set of signals in which all receivers with weight higher than 1 and k − q
receivers with weight equal to 1 observe y, while q receivers with weight equal to
1 observe x . Let λ0(Y )/λ0(X) = �. It follows from the proof of Proposition 4.3 in
Kerman and Tenev (2021), that an optimal experiment is given by

π (s|ω) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 if s = x̄ and ω = X ,

1 − τ
q�

if s = ȳ and ω = Y ,

τ−q
k�

(k−1
q−1

)−1
if s ∈ T and ω = Y ,

1
( k
q−τ+k)�

if s ∈ R and ω = Y .

��
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Proof of Lemma 3 Let P = (N , λ0, q, (wi )i∈N , (ũi )i∈N ,U ) be a voting problem. Let
π ∈ �, fix i ∈ N and let s ∈ Sπ be such that si = x . An agent i ∈ N votes in favor
of x upon observing x if the expected utility of choosing x is higher than choosing y,
i.e.

λsi (X) · ai + (1 − λsi (X)) · ci ≥ λsi (X) · di + (1 − λsi (X)) · bi ,
which simplifies to

λsi (X) = λ0(X)

λ0(X) + λ0(Y )πi (x |Y )
≥ bi − ci

ai + bi − ci − di
.

We can rewrite the above inequality in terms of λ0(X):

λ0(X) ≥ (bi − ci )πi (x |Y )

ai − di + (bi − ci )πi (x |Y )
. (9)

Note that the right-hand side of the inequality is less than 1.
Now consider a voting problem with heterogeneous beliefs and identical prefer-

ences, i.e. P ′ = (N , λ0, λ0R, q, (wi )i∈N , (ūi )i∈N ,U ). Agent i votes in favor of x upon
observing x if

λ0i (X) ≥ (b − c)πi (x |Y )

a − d + (b − c)πi (x |Y )
. (10)

Hence, for any π ∈ �, ai , bi , ci , di ∈ R with ai > di and bi > ci , and λ0 ∈ �(�)

that satisfies (9) one can find a, b, c, d ∈ R with a > d and b > c, and λ0i ∈ �(�)

for each i ∈ N such that (10) is satisfied. Therefore, V [G(P, π)] = V [G(P ′, π)]. ��
Proof of Theorem 3 First, assume that g contains a veto player. By Lemma 2 it follows
that πpub is optimal.

Now suppose that πpub is optimal. We start with a trivial observation, which we
provide without proof as it is straightforward. ��
Lemma 6 Letπ ∈ �be apublic experiment and s ∈ Sπ . Ifαπ

i (s) = x, thenαπ
j (s) = x

for any j ∈ N with λ0j (X) ≥ λ0i (X).

In words, if an agent with a lower prior belief is persuaded under a public experiment,
then all agents with a weakly higher prior are also persuaded. Therefore, the optimal
public value depends on the “cutoff” receiver’s prior, whichwe denote by λ0c(X).More
precisely, λ0c(X) is the highest possible prior belief such that the coalition consisting
of the cutoff receiver and receivers with weakly higher priors is a winning coalition.

Recall that λ0R is the vector of heterogeneous priors. Let the value of the optimal
public experiment when the sender has prior λ0 and the receivers have heterogeneous
priors be denote by V pub(λ0, λ0R). So, the sender’s expected utility under the optimal
public experiment is

V pub(λ0, λ0R) = min

{

1, λ0(X) + λ0(Y )
λ0c(X)

λ0c(Y )

}

.54

54 Note that the value of the optimal public experiment might be higher or lower than in the common prior
case, min{2λ0(X), 1}, depending on whether the cutoff receiver has a lower or higher prior than the sender.
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Let λ0�(X) = min{λ01(X), λ02(X), . . . , λ0n(X)}. Assume to the contrary that g has
no veto player. We consider two cases.
Case 1. λ0c(X) = λ0�(X). Since all receivers vote in favor of x whenever the cutoff
receiver does by Lemma 6, the sender may use private communication by treating λ0�
as the common prior, in which case all receivers vote for x upon observing x under the
optimal experiment. Since there is no veto player, private communication improves
upon public by Theorem 1, a contradiction.
Case 2. λ0c(X) > λ0�(X). Since the optimal communication is public, there exists a
coalition R � N such that R ∈ W , i.e. there is a winning coalition which is not the
grand coalition. In particular, agents in R have priors that are weakly greater than
λ0c(X). The public experiment in this case has the following form.55

πpub(s̃|ω) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if s̃ = x̄ and ω = X ,
λ0c (X)

λ0c (Y )
if s̃ = x̄ and ω = Y ,

1 − λ0c (X)

λ0c (Y )
if s = ȳ and ω = Y .

We will construct a strategy which modifies πpub and increases the value beyond
V pub(λ0, λ0R). More precisely, the sender can effectively target coalitions that are
constructed via the agents in R. We consider two subcases.
Case 2.1. |R| > 1. For each i ∈ R define Di = N \ {i}. Since there is no veto
player, Di ∈ W for each i ∈ N . We show that the sender can improve upon public
communication by targeting R and all Di ’s in state Y . Define π ∈ � as

π(s̃|ω) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 if s̃ = x̄ and ω = X ,
λ0c (X)

λ0c (Y )
− ε if s̃ = χ(R) and ω = Y ,

ε
|R|−1 if s̃ = χ(Di ) for all i ∈ R and ω = Y ,

1 − λ0c (X)

λ0c (Y )
+ ε − |R| ε

|R|−1 if s = ȳ and ω = Y .

Note that while all j ∈ N with λ0j (X) ∈ [λ0�(X), λ0c(X)) do not vote for x upon

observing x under πpub, they do vote for x upon observing x under π since

λ0j (X) · 1
λ0j (X) · 1 + λ0j (Y )|R| ε

|R|−1

≥ 1

2
,

for sufficiently small ε. Moreover, all receivers with higher priors than λ0c(X) still vote
for x as in πpub. Thus, the value of π is

Vπ
q (g) = 1 − λ0(Y )

(

1 − λ0c(X)

λ0c(Y )
+ ε − |R| ε

|R| − 1

)

55 When the realization is x̄ , only receivers who have a prior of at least λ0c (X) vote for x . Hence, the optimal
public experiment is not straightforward.
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= 1 − λ0(Y )

(

1 − λ0c(X)

λ0c(Y )
− ε

|R| − 1

)

= λ0(X) + λ0(Y )
λ0c(X)

λ0c(Y )
+ λ0(Y )

ε

|R| − 1

> V pub(λ0, λ0R).

Hence, when |R| > 1 the sender can always improve upon public communication and
thus πpub is not optimal, a contradiction.
Case 2.2. |R| = 1. Let R = { j}. By the same argument as in Case 2.1, Di = N \{i} ∈
W for all i ∈ N , as otherwise i is a veto player. However, here we need to take into
account the fact that Di ∩ R = ∅ for all i �= j , thus the construction we use is different
than in Case 2.1. Define π ∈ � as

π(s̃|ω) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 if s̃ = x̄ and ω = X ,
λ0c (X)

λ0c (Y )
if s̃ = χ(R) and ω = Y ,

ε if s̃ = χ(Di ) for all i ∈ R and ω = Y ,

1 − λ0c (X)

λ0c (Y )
− ε if s = ȳ and ω = Y .

Observe that there always exists a sufficiently small ε that can be taken from ȳ in πpub

and reallocated to s̃ = χ(Di ), as long as λ0c(Y ) > λ0c(X), which holds by assumption.
We can make a similar check as above and conclude that when |R| = 1 the sender

can always improve upon public communication and thus πpub is not optimal, a con-
tradiction. This concludes the proof.

Acknowledgements The authors gratefully acknowledge funding by the Hungarian National Research,
Development and InnovationOffice, ProjectNumberK-143276. The authorswould like to thankVyacheslav
Arbuzov, Yakov Babichenko, Márton Benedek, Berno Büchel, Bas Dietzenbacher, Dinko Dimitrov, Josep
Freixas, P. Jean-Jacques Herings, Joongsan Hwang, Dominik Karos, László Á. Kóczy, Jasmine Maes,
Ronald Peeters, Hans Peters, Miklós Pintér, Doron Ravid, Dov Samet, Arseniy Samsonov, Tamás Solymosi,
Christopher Stapenhurst, Thomas Streck, Leanne Streekstra, Christian Trudeau, Elias Tsakas, Péter Vida,
Kemal Yıldız, and the participants of the 17th European Meeting on Game Theory (SING17), Budapest
University of Technology and Economics Research Seminar at QSMS, Corvinus University Game Theory
Seminar, 26th Coalition Theory Network (CTN)Workshop, 13th Conference on Economic Design (CoED),
34th Stony Brook International Conference on Game Theory, and 17th Meeting of the Society for Social
Choice and Welfare for their helpful feedback and suggestions.

Funding Open access funding provided by Corvinus University of Budapest.

Declarations

Conflict of interest The authors have no relevant financial or non-financial interests to disclose.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/


Information design for weighted voting

References

Aaberge, R., Havnes, T., Mogstad, M.: Ranking intersecting distribution functions. J. Appl. Econom. 36(6),
639–662 (2021)

Acharya, A., Meirowitz, A.: Sincere voting in large elections. Games Econom. Behav. 101, 121–131 (2017)
Alonso, R., Câmara, O.: Bayesian persuasion with heterogeneous priors. J. Econ. Theory 165, 672–706

(2016a)
Alonso, R., Câmara, O.: Persuading voters. Am. Econ. Rev. 106(11), 3590–3605 (2016b)
Arieli, I., Babichenko, Y.: Private Bayesian persuasion. J. Econ. Theory 182, 185–217 (2019)
Aziz, H., Paterson, M.: Computing voting power in easy weighted voting games (2008). arXiv preprint

arXiv:0811.2497
Baharad, R., Nitzan, S., Segal-Halevi, E.: One person, one weight: When is weighted voting democratic?

Soc. Choice Welfare 1–27 (2022)
Banks, J.S., Duggan, J.: A bargaining model of collective choice. Am. Polit. Sci. Rev. 94(1), 73–88 (2000)
Banzhaf, J.F., III.: Weighted voting doesn’t work: a mathematical analysis. Rutgers L. Rev. 19, 317 (1964)
Bar-Isaac, H., Shapiro, J.: Blockholder voting. J. Financ. Econ. 136(3), 695–717 (2020)
Barbera, S., Jackson, M.O.: On the weights of nations: Assigning voting weights in a heterogeneous union.

J. Polit. Econ. 114(2), 317–339 (2006)
Bardhi, A., Guo, Y.:Modes of persuasion toward unanimous consent. Theor. Econ. 13(3), 1111–1149 (2018)
Bassi, A.: Voting systems and strategic manipulation: An experimental study. J. Theor. Polit. 27(1), 58–85

(2015)
Benoit, K., Giannetti, D., Laver, M.: Strategic voting in mixed-member electoral systems: The Italian case.

In: Annual Meeting of the American Political Science Association (2000)
Bergan, D.E.: Does grassroots lobbying work? A field experiment measuring the effects of an e-mail

lobbying campaign on legislative behavior. Am. Politics Res. 37(2), 327–352 (2009)
Bergemann, D., Morris, S.: Information design, Bayesian persuasion, and Bayes correlated equilibrium.

Am. Econ. Rev. 106(5), 586–591 (2016)
Bhattacharya, S., Duffy, J., Kim, S.: Voting with endogenous information acquisition: Experimental evi-

dence. Games Econom. Behav. 102, 316–338 (2017)
Bhattacharya, S., Duffy, J., Kim, S.-T.: Compulsory versus voluntary voting: an experimental study. Games

Econom. Behav. 84, 111–131 (2014)
Bloch, F., Rottier, S.: Agenda control in coalition formation. Soc. Choice Welfare 19(4), 769–788 (2002)
Bouton, L., Ogden, B.: Ethical voting in multicandidate elections (2017)
Brams, S.J., Fishburn, P.C.: Approval voting. Am. Polit. Sci. Rev. 72(3), 831–847 (1978)
Brams, S.J., Fishburn, P.C.: Voting procedures. Handb. Soc. Choice Welfare 1, 173–236 (2002)
Burden, B.C., Jones, P.E.: Strategic voting in the United States. Unpublished paper, Harvard University

(2006)
Cabral, L.M., Salant, D.J., Woroch, G.A.: Monopoly pricing with network externalities. Int. J. Ind. Organ.

17(2), 199–214 (1999)
Carmona, G.: A votingmodel generically yielding sincere voting in large elections. University of Cambridge

mimeo (2012)
Chalkiadakis, G., Elkind, E., Wooldridge, M.: Weighted voting games. In: Computational Aspects of Coop-

erative Game Theory, pp. 49–70. Springer, Berlin (2012)
Chan, J., Gupta, S., Li, F., Wang, Y.: Pivotal persuasion. J. Econ. Theory 180, 178–202 (2019)
Chappell, H.W., Jr., Havrilesky, T.M., McGregor, R.R.: Policymakers, institutions, and central bank deci-

sions. J. Econ. Bus. 47(2), 113–136 (1995)
Chappell Jr, H.W., McGregor, R.R., Vermilyea, T.: Majority rule, consensus building, and the power of the

chairman: Arthur Burns and the FOMC. J. Money Credit Bank. 407–422 (2004)
Choi, J.J., Genc, O.F., Ju, M.: Is anM&A self-dealing? Evidence on international and domestic acquisitions

and CEO compensation. J. Bus. Finance Account. 47(9–10), 1290–1315 (2020)
Dasgupta, S., Randazzo, K.A., Sheehan, R.S., Williams, K.C.: Coordinated voting in sequential and simul-

taneous elections: some experimental evidence. Exp. Econ. 11(4), 315–335 (2008)
Davidovitch, L., Ben-Haim,Y.: Robust satisficing voting: why are uncertain voters biased towards sincerity?

Public Choice 145(1), 265–280 (2010)
Degan, A., Merlo, A.: Do voters vote sincerely? Technical report, National Bureau of Economic Research

(2007)
Doval, L., Smolin, A.: Persuasion and welfare. J. Polit. Econ. 132(7), 2451–2487 (2024)

123

http://arxiv.org/abs/0811.2497


T. T. Kerman, A. P. Tenev

Dressler, E., Mugerman, Y.: Doing the right thing? The voting power effect and institutional shareholder
voting. J. Bus. Ethics 183(4), 1089–1112 (2023)

Eguia, J.X.: Endogenous parties in an assembly. Am. J. Polit. Sci. 55(1), 16–26 (2011a)
Eguia, J.X.: Voting blocs, party discipline and party formation. Games Econom. Behav. 73(1), 111–135

(2011b)
Elkind, E., Chalkiadakis, G., Jennings, N.R.: Coalition structures in weighted voting games. In: ECAI, vol.

8, pp. 393–397 (2008)
Elkind, E., Goldberg, L.A., Goldberg, P.W., Wooldridge, M.: On the computational complexity of weighted

voting games. Ann. Math. Artif. Intell. 56, 109–131 (2009)
Esponda, I., Vespa, E.: Hypothetical thinking and information extraction in the laboratory. Am. Econ. J.

Microeconom. 6(4), 180–202 (2014)
Evans, J., Tonge, J.: Social class and party choice in Northern Ireland’s ethnic blocs. West Eur. Polit. 32(5),

1012–1030 (2009)
Fang, E., Palmatier, R.W., Steenkamp, J.-B.E.: Effect of service transition strategies on firm value. J. Mark.

72(5), 1–14 (2008)
Feddersen, T.J., Pesendorfer, W.: The swing voter’s curse. Am. Econ. Rev. 408–424 (1996)
Felsenthal, D.S., Brichta, A.: Sincere and strategic voters: an Israeli study. Polit. Behav. 7(4), 311–324

(1985)
Fernández-i Marín, X.: The impact of e-Government promotion in Europe: internet dependence and critical

mass. Policy Internet 3(4), 1–29 (2011)
Forges, F.: Five legitimate definitions of correlated equilibrium in games with incomplete information.

Theor. Decis. 35, 277–310 (1993)
Freixas, J., Molinero, X.: Simple games and weighted games: a theoretical and computational viewpoint.

Discrete Appl. Math. 157(7), 1496–1508 (2009)
Funk, S.G., Rapoport, A., Kahan, J.P.: Quota vs positional power in four-person apex games. J. Exp. Soc.

Psychol. 16(1), 77–93 (1980)
Ginzburg, B.: Sincere voting in an electorate with heterogeneous preferences. Econ. Lett. 154, 120–123

(2017)
Gormley, I.C., Murphy, T.B.: Exploring voting blocs within the Irish electorate: a mixture modeling

approach. J. Am. Stat. Assoc. 103(483), 1014–1027 (2008)
Grimmer, J.,Marble,W., Tanigawa-Lau, C.:Measuring the contribution of voting blocs to election outcomes

(2022)
Groseclose, T., Milyo, J.: Sincere versus sophisticated voting in congress: theory and evidence. J. Polit.

72(1), 60–73 (2010)
Grosser, J., Seebauer, M.: The curse of uninformed voting: an experimental study. Games Econom. Behav.

97, 205–226 (2016)
Guo, Y.: Information transmission and voting. Econ. Theory 72(3), 835–868 (2021). https://doi.org/10.

1007/s00199-019-01191-x
Hall, R.L., Reynolds, M.E.: Targeted issue advertising and legislative strategy: the inside ends of outside

lobbying. J. Polit. 74(3), 888–902 (2012)
Haller, H.: Collusion properties of values. Int. J. Game Theory 23(3), 261–281 (1994)
Heese, C., Lauermann, S.: Persuasion and information aggregation in elections. Technical report, Econ-

tribute Discussion Paper (2021)
Herzberg, R.Q., Wilson, R.K.: Results on sophisticated voting in an experimental setting. J. Polit. 50(2),

471–486 (1988)
Hindriks, J., Myles, G.D.: Intermediate Public Economics. The MIT Press, Cambridge (2013)
Hix, S., Hortala-Vallve, R., Riambau-Armet, G.: The effects of district magnitude on voting behavior. J.

Polit. 79(1), 356–361 (2017)
Hobolt, S.B., Spoon, J.-J.: Motivating the European voter: parties, issues and campaigns in European

Parliament elections. Eur. J. Polit. Res. 51(6), 701–727 (2012)
Jakulin, A., Buntine,W., La Pira, T.M., Brasher, H.: Analyzing the U.S. senate in 2003: similarities, clusters,

and blocs. Polit. Anal. 17(3), 291–310 (2009)
Kamenica, E., Gentzkow, M.: Bayesian persuasion. Am. Econ. Rev. 101(6), 2590–2615 (2011)
Karos, D.: Coalition formation in general apex games under monotonic power indices. Games Econom.

Behav. 87, 239–252 (2014)
Kerman, T., Tenev, A.P.: Persuading communicating voters. Available at SSRN 3765527 (2021)

123

https://doi.org/10.1007/s00199-019-01191-x
https://doi.org/10.1007/s00199-019-01191-x


Information design for weighted voting

Kerman, T.T., Herings, P.J.-J., Karos, D.: Persuading sincere and strategic voters. J. Public Econ. Theory
26(1), e12671 (2024)

Kleiner, A.,Moldovanu, B.: Content-based agendas and qualifiedmajorities in sequential voting. Am. Econ.
Rev. 107(6), 1477–1506 (2017)

Kleiner, A., Moldovanu, B.: Abortions, Brexit and Trees. Centre for Economic Policy Research, London
(2019)

Krishna, V., Morgan, J.: Voluntary voting: costs and benefits. J. Econ. Theory 147(6), 2083–2123 (2012)
Kurz, S., Maaser, N., Napel, S.: On the democratic weights of nations. J. Polit. Econ. 125(5), 1599–1634

(2017)
Laclau, M., Renou, L.: Public persuasion. Manuscript [1079] (2017)
Lebon, I., Baujard, A., Gavrel, F., Igersheim, H., Laslier, J.-F.: Sincere voting, strategic voting a laboratory

experiment using alternative. The Many Faces of Strategic Voting: Tactical Behavior in Electoral
Systems Around the World, 203 (2018)

Levy, G.: A model of political parties. J. Econ. Theory 115(2), 250–277 (2004)
Lindner, I.: A generalization of Condorcet’s Jury Theorem to weighted voting games with many small

voters. Econ. Theory 35(3), 607–611 (2008). https://doi.org/10.1007/s00199-007-0239-2
Masulis, R.W., Wang, C., Xie, F.: Agency problems at dual-class companies. J. Financ. 64(4), 1697–1727

(2009)
Mayer, A., Napel, S.: Weighted voting on the IMF Managing Director. Econ. Governance 21(3), 237–244

(2020)
Meirowitz, A., Pi, S.: Voting and trading: the shareholder’s dilemma. J. Financ. Econ. 146(3), 1073–1096

(2022)
Montero, M.: Non-cooperative bargaining in apex games and the kernel. Games Econom. Behav. 41(2),

309–321 (2002)
Montero, M., Possajennikov, A., Sefton, M., Turocy, T.L.: Majoritarian Blotto contests with asymmetric

battlefields: an experiment on apex games. Econ. Theory 61(1), 55–89 (2016). https://doi.org/10.1007/
s00199-015-0902-y

Mouritsen, H.: Plebs and Politics in the Late Roman Republic. Cambridge University Press, Cambridge
(2001)

Muto, S., Nakayama, M., Potters, J., Tijs, S.: On big boss games. Econom. Stud. Q. 39(4), 303–321 (1988)
Osborne, M.J., Slivinski, A.: A model of political competition with citizen-candidates. Q. J. Econ. 111(1),

65–96 (1996)
Peleg, B., Sudhölter, P.: Introduction to the Theory of Cooperative Games, vol. 34. Springer, Berlin (2007)
Peng, G.: Critical mass, diffusion channels, and digital divide. J. Comput. Inf. Syst. 50(3), 63–71 (2010)
Potters, J., Poos, R., Tijs, S., Muto, S.: Clan games. Games Econom. Behav. 1(3), 275–293 (1989)
Puppe, C., Rollmann, J.: Mean versus median voting in multi-dimensional budget allocation problems. A

laboratory experiment. Games Econom. Behav. 130, 309–330 (2021)
Rich, T.S.: Staying sincere: an experimental analysis of non-strategic voting in South Korea. Asian J. Polit.

Sci. 25(3), 350–364 (2017)
Schnakenberg, K.E.: Expert advice to a voting body. J. Econ. Theory 160, 102–113 (2015)
Schnakenberg, K.E.: Informational lobbying and legislative voting. Am. J. Polit. Sci. 61(1), 129–145 (2017)
Senkov, M., Kerman, T.T.: Changing simplistic worldviews. arXiv preprint arXiv:2401.02867 (2024)
Shapley, L.S.: Simple games: an outline of the descriptive theory. Behav. Sci. 7(1), 59–66 (1962)
Shimoji, M.: Bayesian persuasion in unlinked games. Int. J. Game Theory 51(3–4), 451–481 (2022)
Snyder, J.M., Jr., Ting, M.M., Ansolabehere, S.: Legislative bargaining under weighted voting. Am. Econ.

Rev. 95(4), 981–1004 (2005)
Spirling, A., Quinn, K.: Identifying intraparty voting blocs in the UK House of Commons. J. Am. Stat.

Assoc. 105(490), 447–457 (2010)
Strand, J.R., Rapkin, D.P.: Regionalizing multilateralism: Estimating the power of potential regional voting

blocs in the IMF. Int. Interact. 31(1), 15–54 (2005)
Taneva, I.: Information design. Am. Econ. J. Microecon. 11(4), 151–85 (2019)
Taylor, A., Zwicker, W.: A characterization of weighted voting. Proc. Am. Math. Soc. 115(4), 1089–1094

(1992)
Taylor, A., Zwicker, W.: Weighted voting, multicameral representation, and power. Games Econom. Behav.

5(1), 170–181 (1993)
Taylor, A.D., Zwicker, W.S.: Simple Games: Desirability Relations, Trading, Pseudoweightings. Princeton

University Press, Princeton (1999)

123

https://doi.org/10.1007/s00199-007-0239-2
https://doi.org/10.1007/s00199-015-0902-y
https://doi.org/10.1007/s00199-015-0902-y
http://arxiv.org/abs/2401.02867


T. T. Kerman, A. P. Tenev

Terpstra, V.: Critical mass and international marketing strategy. J. Acad. Mark. Sci. 11(3), 269–282 (1983)
Tsakas, E., Tsakas, N., Xefteris, D.: Resisting persuasion. Econ. Theory 72(3), 723–742 (2021). https://

doi.org/10.1007/s00199-020-01339-0
Tsebelis, G.: Decision making in political systems: Veto players in presidentialism, parliamentarism, mul-

ticameralism and multipartyism. Br. J. Polit. Sci. 25(3), 289–325 (1995)
Van der Straeten, K., Laslier, J.-F., Sauger, N., Blais, A.: Strategic, sincere, and heuristic voting under four

election rules: an experimental study. Soc. Choice Welfare 35(3), 435–472 (2010)
Von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior. Princeton University Press,

Princeton (1944)
Wang, Y.: Bayesian persuasion with multiple receivers. Available at SSRN https://ssrn.com/

abstract=2625399 (2013)
Wright, J.R.: Contributions, lobbying, and committee voting in the USHouse of Representatives. Am. Polit.

Sci. Rev. 84(2), 417–438 (1990)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1007/s00199-020-01339-0
https://doi.org/10.1007/s00199-020-01339-0
https://ssrn.com/abstract=2625399
https://ssrn.com/abstract=2625399

	Information design for weighted voting
	Abstract
	1 Introduction
	Illustrative example
	Related literature

	2 The model
	2.1 Communication and beliefs
	2.2 Weighted voting
	2.3 Voting behavior

	3 Simplifying the problem
	4 Results
	4.1 Public communication
	4.2 Private communication
	Majority voting
	Minority voting
	An application

	5 Extensions and discussion
	5.1 Heterogeneous preferences/priors
	5.2 Abstention

	6 Conclusion
	Appendix A: Notation guide
	Appendix B: Sincere BNE
	Appendix C: Proofs
	Acknowledgements
	References


