Douhard, J. and Van Pottelsberghe De La Potterie, Bruno (2024) The cost of sustainability in the construction sector : the case of family houses in Belgium. Working Paper. Times2, Brussels. DOI 10.1016/j.jclepro.2024.144240
PDF
- Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
2MB |
Abstract
What is the return to investment in sustainable materials for houses? This research question is addressed through Life Cycle Assessments and Life Cycle Cost analyses of two reference houses and their “sustainable” alternatives in Belgium. The most striking results are that (1) the operational stage accounts for about 65% of the total impact of a house; (2) a 1 € investment in sustainable materials induces a drop of 1 to 1.3 KgCO2eq; (3) this impact fluctuates across elements, with higher returns for widows (-3 to -6 KgCO2eq) and for external walls (-6 KgCO2eq) and the lowest for ground floor (-0.3 KgCO2eq).
Item Type: | Monograph (Working Paper) |
---|---|
Uncontrolled Keywords: | Life Cycle Assessment (LCA), Life Cycle Cost (LCC), single family house, sustainability, carbon footprint |
Divisions: | Corvinus Doctoral Schools |
Subjects: | Ecology Environmental economics Finance |
DOI: | 10.1016/j.jclepro.2024.144240 |
References: | Allacker, K. (2010). Sustainable building: the development of an evaluation method. Dissertation Abstracts International, 71(12).
Asdrubali, F., Baldassarri, C., and Fthenakis, V. (2013). Life cycle analysis in the construction sector: Guiding the optimization conventional Italian buildings. Energy and Buildings, 64, 73-89. https://doi.org/10.1016/j.enbuild.2013.04.018
Association Belge des experts (ABEX) consulted 2021: https://www.abex.be/fr/indice-abex/
Ben-Alon, L., Loftness, V., Harries, K. A., & Hameen, E. C. (2021). Life cycle assessment (LCA) of natural vs conventional building assemblies. Renewable and Sustainable Energy Reviews, 144, 110951. https://doi.org/10.1016/j.rser.2021.110951
Callmepower – Engie consulted 2021 https://callmepower.be/fr/energie/guides/tarifs/gaz
Cuéllar-Franca, R. M., and Azapagic, A. (2012). Environmental impacts of the UK residential sector: Life cycle assessment of houses. Building and Environment, 54, 86-99. https://doi.org/10.1016/j.buildenv.2012.02.005.
EcoInvent data base consulted 2021: https://www.ecoinvent.org/home.html
Eeb Guide project, consulted 2021. https://www.eebguide.eu/eebblog/?page_id=704ct
EN, B. (2011). 15978: 2011. Sustainability of construction works. Assessment of environmental performance of buildings. Calculation method.
État de l’environnement Wallon. (2019). Production de nouveau logements. Consulté le 2 juin 2021 sur http://etat.environnement.wallonie.be/contents/indicatorsheets/MEN%202.html
État de l’environnement Wallon. (2020). Émission de gaz a effet de serre. Consulté le 2 juin sur http://etat.environnement.wallonie.be/contents/indicatorsheets/AIR%201.html#
Fouquet, M., Levasseur, A., Margni, M., Lebert, A., Lasvaux, S., Souyri, B., ... & Woloszyn, M. (2015). Methodological challenges and developments in LCA of low energy buildings: Application to biogenic carbon and global warming assessment. Building and Environment, 90, 51-59. https://doi.org/10.1016/j.buildenv.2015.03.022
Gervasio, H., & Dimova, S. (2018). Model for life cycle assessment (LCA) of buildings. Publications Office of the European Union: Brussels, Belgium. p85
Grygierek, K., & Ferdyn-Grygierek, J. (2022). Analysis of the Environmental Impact in the Life Cycle of a SingleFamily House in Poland. Atmosphere, 13(2), 245. https://doi.org/10.3390/atmos13020245
Hasan, A., Vuolle, M., & Sirén, K. (2008). Minimisation of life cycle cost of a detached house using combined simulation and optimisation. Building and environment, 43(12), 2022-2034. https://www.eebguide.eu/eebblog/?page_id=704
Islam, H., Jollands, M., & Setunge, S. (2015). Life cycle assessment and life cycle cost implication of residential buildings — A review. Reviews. Renewable and Sustainable Energy 42, 129-140. https://doi.org/10.1016/j.rser.2014.10.006.
ISO: 14044. (2006). International Organization of Standardization. Environmental management—life cycle assessment—requirements and guidelines (ISO 14044: 2006). https://www.iso.org/obp/ui/#iso:std:iso:14040:ed-2:v1:en
Lechón, Y., de la Rúa, C., & Lechón, J. I. (2021). Environmental footprint and life cycle costing of a family house built on CLT structure. Analysis of hotspots and improvement measures. Journal of Building Engineering, 39, 102239. https://doi.org/10.1016/j.jobe.2021.102239.
Leskovar, V. Ž., Žigart, M., Premrov, M., & Lukman, R. K. (2019). Comparative assessment of shape related crosslaminated timber building typologies focusing on environmental performance. Journal of Cleaner Production, 216, 482-494.
Maison Compere (2021). Consulted June 3 2021. https://www.maisonscompere.be (MC13,MC464)
Motuzienė, V., Rogoža, A., Lapinskienė, V., & Vilutienė, T. (2016). Construction solutions for energy efficient single-family house based on its life cycle multi-criteria analysis: a case study. Journal of Cleaner production, 112, 532-541.https://doi.org/10.1016/j.jclepro.2015.08.103.
National inventory Report Submitted under the United Nations Framework Convention on Climate change. Belgium’s greenhouse gas inventory (1990-2020), April 15, 2022. https://cdr.eionet.europa.eu/be/eu/mmr/art07_inventory/ghg_inventory/envylgyba/NIR_120422.pdf
OVAM, SPW, Bruxelles Environnement (2021). FAQ-Foire aux questions pour l’utilisation de l’outil TOTEM. https://www.totem-building.be/pages/download/list.xhtml
OVAM, SPW, Bruxelles Environnement. (2020). Environmental Profile of Building elements. https://www.totembuilding.be/pages/download/list.xhtml
OVAM, SPW, Bruxelles Environnement. (July 9, 2021). TOTEM Version 2.3 [Logiciel]
OVAM, SPW, Bruxelles Environnement. https://www.totem-building.be/pages/welcome.xhtml
Pal, S. K., Takano, A., Alanne, K., & Siren, K. (2017). A life cycle approach to optimizing carbon footprint and costs of a residential building. Building and Environment, 123, 146-162.
Pernetti, R., Garzia, F., & Oberegger, U. F. (2021). Sensitivity analysis as support for reliable life cycle cost evaluation applied to eleven nearly zero-energy buildings in Europe. Sustainable Cities and Society, 103139. https://doi.org/10.1016/j.scs.2021.103139
Petrovic, B., Myhren, J. A., Zhang, X., Wallhagen, M., & Eriksson, O. (2019). Life cycle assessment of a wooden single-family house in Sweden. Applied Energy, 251, 113253 https://doi.org/10.1016/j.apenergy.2019.05.056
Petrović, B., Zhang, X., Eriksson, O., & Wallhagen, M. (2021). Life Cycle Cost Analysis of a Single-Family House in Sweden. Buildings, 11(5), 215.
Peuportier, B. L. P. (2001). Life cycle assessment applied to the comparative evaluation of single family houses in the French context. Energy and buildings, 33(5), 443-450. https://doi.org/10.1016/S0378-7788(00)00101-8.
Röck, M., Saade, M. R. M., Balouktsi, M., Rasmussen, F. N., Birgisdottir, H., Frischknecht, R., ... & Passer, A. (2020). Embodied GHG emissions of buildings – The hidden challenge for effective climate change mitigation. Applied Energy, 258, 114107. https://doi.org/10.1016/j.apenergy.2019.114107
Rossi, B., Marique, A. F., & Reiter, S. (2012). Life-cycle assessment of residential buildings in three different European locations, case study. Building and Environment, 51, 402-407.
Service Public Wallonie. (2020) Stratégie wallonne de rénovation énergétique à long terme du bâtiment. P27. https://energie.wallonie.be/servlet/Repository/gw-201112-strategie-renovation-2020-rapport-completfinal.pdf?ID=60498
Soust-Verdaguer, B., Llatas, C., & García-Martínez, A. (2016). Simplification in life cycle assessment of singlefamily houses: A review of recent developments. Building and Environment, 103, 215-227. https://doi.org/10.1016/j.buildenv.2016.04.014.
SPF Economie, P.M.E., Classes moyennes et Energie, (2022). Analyse de la consommation énergétique des ménages en Belgique en 2020. https://economie.fgov.be/fr/publications/analyse-de-la-consommation-0
Tavares, V., Soares, N., Raposo, N., Marques, P., & Freire, F. (2021). Prefabricated versus conventional construction: Comparing life-cycle impacts of alternative structural materials. Journal of Building Engineering, 41, 102705. https://doi.org/10.1016/j.jobe.2021.102705
UPA. (2017). Bordereau des prix unitaires 2017. https://upa-bua-arch.be/fr/ressources/le-bordereau-des-prixunitaires |
ID Code: | 10660 |
Deposited By: | MTMT SWORD |
Deposited On: | 11 Dec 2024 10:54 |
Last Modified: | 11 Dec 2024 10:56 |
Repository Staff Only: item control page