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A B S T R A C T

The best–worst method is an increasingly popular approach to solving multi-criteria decision-making problems.
However, the usual prioritisation techniques may result in an ordinal violation if the best (worst) alternative
identified in the first step does not receive the highest (lowest) weight. The current paper gives two sufficient
conditions for the logarithmic least squares method, applied to an incomplete best–worst method matrix,
to guarantee the lack of ordinal violations. Our results provide another powerful argument for using the
logarithmic least squares priorities in the best–worst method.
‘‘Statistical results show that BWM performs significantly better than AHP
with respect to the consistency ratio, and the other evaluation criteria:
minimum violation, total deviation, and conformity (Rezaei, 2015, p. 49).’’

1. Introduction

Pairwise comparisons are widely used in multi-criteria decision-
making (MCDM) if the decision-maker cannot directly determine the
weights of the alternatives/criteria. For example, the Analytic Hierar-
chy Process (AHP), one of the most popular MCDM methodologies,
is based on pairwise comparisons (Saaty, 1980). While focusing on
pairwise comparisons allows the decomposition of the original problem
into subproblems that are easier to deal with, this simplification has
a price. First, the pairwise comparisons may be inconsistent, making
the derivation of the priorities far from trivial. Second, the number of
pairwise comparisons needed for 𝑛 alternatives is 𝑛(𝑛− 1)∕2, which can
be costly and cumbersome to obtain if 𝑛 is relatively high.

To address these problems, Rezaei (2015) has introduced the best–
worst method: after the identification of the best (most desirable, most
important) and the worst (least desirable, least important) alternatives,
all other alternatives are compared to the best and the worst alterna-
tives, respectively. This approach requires only 2𝑛− 3 comparisons. Due
to its efficiency in reducing the number of pairwise comparisons and
its ability to maintain consistency, the best–worst method has attracted
the attention of several researchers and has been applied to solve many
real-world problems (Mi, Tang, Liao, Shen, & Lev, 2019).

∗ Correspondence to: Institute for Computer Science and Control (SZTAKI), Hungarian Research Network (HUN-REN), Laboratory on Engineering and
Management Intelligence, Research Group of Operations Research and Decision Systems, Budapest, Hungary.

E-mail address: laszlo.csato@sztaki.hun-ren.hu.

1.1. Prioritisation techniques in the best–worst method

Besides introducing the best–worst method, Rezaei (2015) sug-
gested the least worst absolute error method to derive the priority
vector. However, it has two shortcomings. First, it is a nonconvex
optimisation problem without a closed-form solution. Second, it might
have multiple optimal solutions. To address the first issue, Brunelli
and Rezaei (2019) defined a new metric, which is mathematically
more sound and leads to an optimisation problem that can be simply
linearised and solved. However, similar to the method of Rezaei (2015),
the approach of Brunelli and Rezaei (2019) usually has multiple op-
timal solutions (Tu, Wu, & Pedrycz, 2023). Hence, the most popular
prioritisation technique for the best–worst method is the linear model
of Rezaei (2016), which guarantees the uniqueness of the weights.

Nonetheless, the above procedures (Brunelli & Rezaei, 2019; Rezaei,
2015, 2016) fail to take indirect comparisons into account. Thus,
recent studies have proposed to consider the implied incomplete pair-
wise comparison matrix, and derive priorities from this best–worst
method matrix by the well-established techniques of multi-criteria
decision-making (Tu et al., 2023; Xu & Wang, 2024). In particular, the
logarithmic least squares method is found to be a reasonable technique
since it (a) is simple to calculate as the solution of a linear system
of equations (Bozóki, Fülöp, & Rónyai, 2010); (b) leads to unique
weights (Bozóki et al., 2010); and (c) accounts for indirect comparisons,
too (Tu et al., 2023). Furthermore, Xu and Wang (2024) show that the
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corresponding priority vector is efficient, which is a crucial property
f the weights (Blanquero, Carrizosa, & Conde, 2006; Bozóki & Fülöp,

2018; Furtado & Johnson, 2024c; Szádoczki & Bozóki, 2024).

1.2. The issue of ordinal violations

The best–worst method requires pairwise comparisons concerning
he best and the worst criteria. However, the priorities derived from a
est–worst method matrix might exhibit an ordinal violation (Tu et al.,

2023): the best (worst) alternative identified in the first stage does not
receive the highest (lowest) weight in the final stage, which necessitates
the re-examination of the pairwise comparisons.

According to our knowledge, the issue of ordinal violation has
been considered first for the best–worst method by Tu et al. (2023).
Nevertheless, it has been widely analysed in the literature on pairwise
omparison matrices since the pioneering work of Golany and Kress

(1993). Siraj, Mikhailov, and Keane (2012) present a heuristic algo-
rithm that improves ordinal consistency by identifying and eliminating
intransitivities in pairwise comparison matrices. Chen, Kou, and Li
(2018) propose a procedure based on linear programming to update
he weight vector obtained by popular prioritisation methods with
 better one to minimise the number of rank violations. Faramondi,

Oliva, and Bozóki (2020) extend the logarithmic least squares method
or incomplete pairwise comparison matrices (Bozóki et al., 2010)
ith a procedure composed of two complementary steps. The first

tage maximises the number of ordinal constraints satisfied, while the
second phase optimises cardinal preferences with additional restrictions
determined in the first stage. Tu and Wu (2021) study the elimination
of rank violations in fuzzy preference relations by deriving a system
f constraints to ensure that this requirement is explicitly controlled
n the optimisation model. Wang, Peng, and Kou (2021) design a
wo-stage ranking method in order to minimise ordinal violations,

the number of conflicts between the ranking and the dominance re-
ationship for pairwise comparison matrices. Yuan, Wu, and Tu (2023)
uggest an optimisation model that considers both cardinal consistency
nd ordinal consistency to estimate unknown preferences in the case
f incomplete fuzzy preference relations. Csató (2024) shows that
he lexicographically optimal completion of missing pairwise compar-
sons (Ágoston & Csató, 2024) combined with any reasonable weighting

method eliminates all ordinal violations for incomplete pairwise com-
parison matrices represented by a weakly connected directed acyclic
graph.

1.3. The research gap

It is already known that the usual prioritisation techniques of the
best–worst method (Brunelli & Rezaei, 2019; Rezaei, 2015, 2016) can
lead to an ordinal violation (Tu et al., 2023, Table 4). In particular, the
Monte Carlo simulation method of Tu et al. (2023) shows the following
robabilities of an ordinal violation: (1) 0.95% for the preference
eighted least worst absolute error of Rezaei (2016); (2) 14.97% for

he least worst absolute error of Rezaei (2015); and (3) 19.24% for the
ultiplicative optimisation problem of Brunelli and Rezaei (2019) that

an be easily linearised.
However, the thorough numerical experiment of Tu et al. (2023)

ails to identify any best–worst method matrix where the logarithmic
east squares method shows an ordinal violation. This implies important
uestions that have not been answered by the existing literature: What
onditions can guarantee the lack of ordinal violation by the loga-
ithmic least squares method? What is the probability that an ordinal
iolation emerges in a best–worst method matrix?

As an analogy, consider Pareto (in)efficiency of Saaty’s eigenvector
ethod (Saaty, 1980) for multiplicative pairwise comparison matri-

ces. Blanquero et al. (2006) have revealed that the eigenvector method
does not always yield an efficient weight vector. According to Bozóki
(2014), inefficiency occurs for a class of pairwise comparison matrices
2 
with arbitrarily small inconsistency. In recent years, several sufficient
conditions have been proved for the efficiency of the right Perron
eigenvector (Ábele-Nagy & Bozóki, 2016; Ábele-Nagy, Bozóki, & Rebák,
2018; da Cruz, Fernandes, & Furtado, 2021; Fernandes & Furtado,
2022; Fernandes & Palheira, 2024; Furtado, 2023; Furtado & Johnson,
2024b), and further families of matrices for which the Perron vector is
nefficient have also been found (Furtado & Johnson, 2024a).

1.4. Main contributions

The current paper investigates ordinal violations in the best–worst
method. We provide sufficient conditions for the logarithmic least
squares method to guarantee the lack of ordinal violations in a best–
worst method matrix. The relatively general conditions contain a uni-
form lower bound for the dominance of the best alternative over all
other alternatives, as well as for the dominance of all other alterna-
tives over the worst alternative. The maximal numerical preference is
restricted by a polynomial of this uniform lower bound.

Our first theorem explains why the logarithmic least squares method
hows no ordinal violation in the dataset analysed by Tu et al. (2023):
heir procedure used to generate random best–worst method matrices
lmost satisfies the conditions derived here. Nonetheless, the proof of
he theorem uncovers some best–worst method matrices for which the
ogarithmic least squares method does not avoid an ordinal violation.

According to our second result, if the Saaty scale is applied to a
best–worst method matrix and the best alternative is preferred to the

orst alternative at least as much as the preference between any two
lternatives, then the logarithmic least squares priorities are always
ompatible with the preference order given by the decision-maker if
he number of alternatives does not exceed 26.

Fig. 1 presents a graphical representation of the significance of these
results. The left-hand side outlines the main steps of the best–worst
method. However, if the derived priorities contain an ordinal violation,
hen the feedback mechanism indicated on the right-hand side should
e used, and the necessary reconsideration of the preferences involves
urther interaction with the decision-maker who thinks the task is al-
eady finished. The conditions provided in Theorems 1 and 2 guarantee

that this additional loop is never reached.

1.5. The significance of the results and their practical relevance

The best–worst method has been developed to substantially reduce
he number of pairwise comparisons required to solve a multi-criteria
ecision-making problem. However, the derived priorities may contain
n ordinal violation that could be disturbing and difficult to accept

by the decision-maker: sometimes, either the originally identified best
alternative does not have the highest weight, or the originally identified
worst alternative does not have the lowest weight. Such a result calls
for a cumbersome re-examination of the preferences, which seriously
threatens the main advantage of this approach, its simplicity.

Our theorems provide sufficient conditions to eliminate the possi-
bility of an ordinal violation if the logarithmic least squares method
is applied to a best–worst method matrix. These constraints can be di-
rectly built into any decision-making software to guarantee the lack of
ordinal violations. Hence, imposing the additional restrictions derived
in the paper will prevent the use of an extensive feedback mechanism
that is needed to treat a severe shortcoming of the most popular
prioritisation techniques suggested for the best–worst method.

1.6. Structure

The paper is organised as follows. Section 2 presents the logarithmic
least squares priority deriving technique in the context of the best–
worst method. The main results on ordinal violations are verified in
Section 3. Finally, Section 4 discusses our findings and concludes.
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Fig. 1. Our main contribution to the theoretical background of the best–worst method.
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2. The logarithmic least squares priorities in a best–worst method
atrix

A pairwise comparison matrix 𝐀 =
[

𝑎𝑖𝑗
]

is an 𝑛 × 𝑛 positive (𝑎𝑖𝑗 > 0
for all 1 ≤ 𝑖, 𝑗 ≤ 𝑛) matrix that satisfies reciprocity: 𝑎𝑖𝑗𝑎𝑗 𝑖 = 1 for all
1 ≤ 𝑖, 𝑗 ≤ 𝑛. As the number of pairwise comparisons is a quadratic
function of the number of alternatives 𝑛, there are several suggestions
to reduce the number of questions asked by the decision-maker. In the
best–worst method (BWM), only the pairwise comparisons concerning
the best (𝐵) and the worst (𝑊 ) alternatives should be obtained (Rezaei,
2015). This results in a best–worst method matrix 𝐀 =

[

𝑎𝑖𝑗
]

, where 𝑎𝐵 𝑗 ,
𝑎𝑗 𝐵 , 𝑎𝑊 𝑗 , and 𝑎𝑗 𝑊 are known for all 1 ≤ 𝑗 ≤ 𝑛.

Following Tu et al. (2023, Section 5.2), we assume in the following
that 𝑎𝐵 𝑗 > 1 and 𝑎𝑗 𝑊 < 1 for all 𝑗 ≠ 𝐵 , 𝑊 . Furthermore, the matrix
entries are real numbers – but not necessarily integers or reciprocals of
integers – between 1/9 and 9 in accordance with the recommendation
of Saaty (Saaty, 1980).

Pairwise comparisons are primarily used to derive a reliable priority
ector. This is trivial if the matrix is consistent, that is, 𝑎𝑖𝑗𝑎𝑗 𝑘 = 𝑎𝑖𝑘 for
ll 1 ≤ 𝑖, 𝑗 , 𝑘 ≤ 𝑛, when a unique priority vector 𝐰 =

[

𝑤𝑖
]

exists such that
𝑖𝑗 = 𝑤𝑖∕𝑤𝑗 holds for all 1 ≤ 𝑖, 𝑗 ≤ 𝑛. However, pairwise comparison

matrices are usually inconsistent. Brunelli (2018) and Kułakowski and
alaga (2020) survey inconsistency measures used for complete and

incomplete pairwise comparison matrices, respectively.
The most prominent inconsistency index is the inconsistency ratio

 𝑅 proposed by Saaty (Saaty, 1980). It is a linear transformation
of the dominant eigenvalue of the pairwise comparison matrix. The
value of 𝐶 𝑅 depends on the so-called random index 𝑅𝐼 that has
been calculated for complete pairwise comparison matrices (Bozóki &
Rapcsák, 2008), as well as for incomplete matrices (Ágoston & Csató,
2022) and, specifically, for the best–worst method (Tu et al., 2023).
 i

3 
Analogously, a number of prioritisation techniques have been sug-
gested in the literature for complete pairwise comparison matrices
Choo & Wedley, 2004). One of the most popular procedures is the

logarithmic least squares method (LLSM) (Crawford & Williams, 1985;
Williams & Crawford, 1980), partially due to its favourable axiomatic
roperties (Barzilai, 1997; Bozóki & Tsyganok, 2019; Csató, 2018,

2019; Fichtner, 1984, 1986; Lundy, Siraj, & Greco, 2017). LLSM has
been extended to the case of incomplete pairwise comparison matri-
es (Kwiesielewicz, 1996; Takeda & Yu, 1995).

According to Bozóki et al. (2010, Theorem 4), the optimal solution
of the incomplete LLSM problem is unique if the undirected graph
associated with the pairwise comparison matrix is connected (which is
uaranteed in the best–worst method) and can be calculated as follows:

𝐋𝐲 = 𝐫 and
𝑛
∑

𝑖=1
𝑦𝑖 = 0, (1)

where

• 𝐋 =
[

𝓁𝑖𝑗
]

is the Laplacian matrix of the associated graph (𝓁𝑖𝑖 is
the degree of node 𝑖; 𝓁𝑖𝑗 = −1 if 𝑖 ≠ 𝑗 and 𝑎𝑖𝑗 is known; 𝓁𝑖𝑗 = 0 if
𝑖 ≠ 𝑗 and 𝑎𝑖𝑗 is unknown);

• 𝐲 =
[

𝑦𝑖 = log𝑤𝑖
]

is the vector derived by taking the elementwise
logarithm of the priority vector 𝐰 =

[

𝑤𝑖
]

; and
• 𝐫 =

[

𝑟𝑖 = log
(

∏𝑛
𝑗=1 𝑎𝑖𝑗

)]

is the vector given by logarithms of the
multiplied entries in each row.

Note that Bozóki et al. (2010, Theorem 4) uses the normalisation 𝑤𝑛 = 1
𝑦𝑖 = log𝑤𝑖 = 0) instead of ∑𝑛

𝑖=1 𝑦𝑖 = 0 to treat the singularity of
aplacian matrix 𝐋, and delete the last columns and row of 𝐋. We think
hat the equivalent normalisation of ∑𝑛

𝑖=1 𝑦𝑖 = 0 (Csató, 2015, Lemma 2)
s more convenient as it does not differentiate between the alternatives.
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Formula (1) has appeared in Kaiser and Serlin (1978) and Čaklović
and Kurdija (2017), too, independently of Bozóki et al. (2010).

The logarithmic least squares method has recently been suggested
as a promising technique to derive priorities from a best–worst method
matrix in Tu et al. (2023) and Xu and Wang (2024).

A priority vector 𝐰 =
[

𝑤𝑖
]

shows an ordinal violation of preferences if
𝑤𝑖 ≤ 𝑤𝑗 but the pairwise comparison matrix contains the entry 𝑎𝑖𝑗 > 1.
The number of violations has been introduced by Golany and Kress
(1993) as an important criterion to evaluate prioritisation techniques,
and has been widely accepted in the literature (Chen et al., 2018; Csató,
2024; Csató & Rónyai, 2016; Faramondi et al., 2020; Tu & Wu, 2021,
2023; Tu et al., 2023; Wang et al., 2021; Yuan et al., 2023).

3. The main results

In the following, two theorems are provided that guarantee the
lack of any ordinal violation if the logarithmic least squares method
is applied to a best–worst method (incomplete pairwise comparison)
matrix. Both contain a lower bound for the preferences between the
best alternative and all other alternatives, as well as between all
other alternatives and the worst alternative. In other words, the best
(worst) alternative should be ‘‘sufficiently’’ good (bad). Furthermore,
a higher bound is required for all pairwise comparisons to avoid that
an alternative is excessively dominant over (dominated by) the worst
(best) alternative.

The proofs strongly exploit the closed-form solution of the loga-
ithmic least squares method, given by a system of linear equations.
oth the mathematical equivalence of the geometric mean of weight
ectors calculated from all spanning trees and the logarithmic least
quares problem (Bozóki & Tsyganok, 2019) and the determination of

uncertainty bounds for pairwise comparisons (Faramondi, Oliva, Setola,
 Bozóki, 2023) are based on this favourable property of the incomplete

ogarithmic least squares method.

Theorem 1. Assume that the best alternative is at least 𝑝 times better than
ll other alternatives, and the worst alternative is at least 𝑝 times worse than
ll other alternatives. Furthermore, the maximal numerical preference is at
ost 𝑝3. Then the logarithmic least squares priorities do not contain any
rdinal violation in a best–worst method matrix.

Proof. Note that the best and worst alternatives are compared to all
ther alternatives, thus, 𝓁𝐵 𝐵 = 𝓁𝑊 𝑊 = 𝑛 − 1 in Eq. (1). On the other

hand, 𝓁𝑗 𝑗 = 2 for any third alternative 𝑗 ≠ 𝐵 , 𝑊 .
Due to (1), the logarithmic least squares priorities satisfy the fol-

lowing equation for the best alternative 𝐵:

(𝑛 − 1)𝑦𝐵 − 𝑦𝑊 −
∑

𝑘≠𝐵 ,𝑊
𝑦𝑘 = log

( 𝑛
∏

𝑘=1
𝑎𝐵 𝑘

)

(2)

Due to (1), the logarithmic least squares priorities satisfy the following
equation for the worst alternative 𝑊 :

(𝑛 − 1)𝑦𝑊 − 𝑦𝐵 −
∑

𝑘≠𝐵 ,𝑊
𝑦𝑘 = log

( 𝑛
∏

𝑘=1
𝑎𝑊 𝑘

)

(3)

Due to (1), the logarithmic least squares priorities satisfy the following
equation for any third alternative 𝑗 ≠ 𝐵 , 𝑊 :

2𝑦𝑗 − 𝑦𝐵 − 𝑦𝑊 = log (𝑎𝑗 𝐵𝑎𝑗 𝑊
)

. (4)

Since the sum of the logarithmic weights is normalised to 0 in (1), by
adding ∑

𝑖=1 𝑛𝑦𝑖 = 0 to the expression on the right hand-side of (2) and
(3), respectively:

𝑛𝑦𝐵 = log
( 𝑛
∏

𝑘=1
𝑎𝐵 𝑘

)

; (5)

𝑛𝑦𝑊 = log
( 𝑛
∏

𝑘=1
𝑎𝑊 𝑘

)

. (6)
4 
An ordinal violation occurs if 𝑦𝑗 > 𝑦𝐵 or 𝑦𝑗 < 𝑦𝑊 for 𝑗 ≠ 𝐵 , 𝑊 . Let
us consider the first case when 𝑦𝑗 > 𝑦𝐵 . On the basis of Eqs. (4), (5),
6), this is equivalent to

log

( 𝑛
∏

𝑘=1
𝑎𝐵 𝑘

)

< log

( 𝑛
∏

𝑘=1
𝑎𝑊 𝑘

)

+ 𝑛 log
(

𝑎𝑗 𝐵𝑎𝑗 𝑊
)

. (7)

Since 𝑎𝑊 𝑗𝑎𝑗 𝑊 = 1, we get
𝑛
∏

𝑘=1
𝑎𝐵 𝑘 <

( 𝑛
∏

𝑘=1,𝑘≠𝑗
𝑎𝑊 𝑘

)

𝑎𝑛𝑗 𝐵𝑎𝑛−1𝑗 𝑊 . (8)

If the best alternative is at least 𝑝 times better than all other alter-
atives, then the left hand side of (8) is at least 𝑝𝑛−1. If the worst
lternative is at least 𝑝 times worse than all other alternatives and the
aximal preference is smaller than 𝑝3, then the right hand side of (8)

cannot be higher than
(

1
𝑝

)𝑛−2 (1
𝑝

)𝑛
𝑝3(𝑛−1) = 𝑝𝑛−1, (9)

which results in a contradiction.
The calculation for the second case of 𝑦𝑗 < 𝑦𝑊 is analogous. □

Remark 1. Interestingly, the upper bound 𝑝3 in Theorem 1 does not
depend on the number of alternatives 𝑛.

The proof of Theorem 1 helps construct a best–worst method ma-
trix for which the logarithmic least squares method shows an ordinal
violation.

Example 1. Assume that the best–worst method is used with the Saaty
scale of

{1∕9, 1∕8,… , 1∕2, 1, 2,… , 8, 9}.

In the matrix below, the first alternative is the best (which is better
han all other alternatives by a factor of at least 2) and the last, sixth
lternative is the worst (which is worse than all other alternatives by a

factor of at least 2):

𝐀 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 2 2 2 2 2
1∕2 1 ∗ ∗ ∗ 9
1∕2 ∗ 1 ∗ ∗ 2
1∕2 ∗ ∗ 1 ∗ 2
1∕2 ∗ ∗ ∗ 1 2
1∕2 1∕9 1∕2 1∕2 1∕2 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

where ∗ denotes a missing comparison as usual. The priorities accord-
ing to the logarithmic least squares method are:

𝐰 =
[

0.2645 0.2778 0.1310 0.1310 0.1310 0.0648
]⊤ .

Consequently, the second alternative has the highest weight even
though the first has been identified as the best. Therefore, the pref-
erences need to be reconsidered.

In the best–worst method, it is reasonable to assume that 𝑎𝐵 𝑊 ≥ 𝑎𝑗 𝑊
nd 𝑎𝐵 𝑊 ≥ 𝑎𝐵 𝑗 hold for any third alternative 𝑗 ≠ 𝐵 , 𝑊 , namely, the best
lternative is preferred to the worst alternative at least as much as the
reference between any two alternatives.

Theorem 2. Assume that the best alternative is at least 𝑝 times better than
all other alternatives, and the worst alternative is at least 𝑝 times worse
than all other alternatives. In addition, the best alternative is preferred to
he worst alternative at least as much as the preference between any two
lternatives. Finally, the maximal numerical preference is at most 𝑝4∕(𝑛−3)+3.
hen the logarithmic least squares priorities do not contain any ordinal
iolation in a best–worst method matrix.

Proof. The steps of the proof of Theorem 1 can be followed until
formula (8) is reached:

𝑎𝐵 𝑊
𝑛
∏

𝑎𝐵 𝑘 < 𝑎𝑊 𝐵
( 𝑛

∏

𝑎𝑊 𝑘
)

𝑎𝑛𝑗 𝐵𝑎𝑛−1𝑗 𝑊 . (10)

𝑘=1,𝑘≠𝑊 𝑘=1,𝑘≠𝑗 ,𝑊



L. Csató

t

a

f

f
v
a

t

u
a
t
t

b
b

i
t
(

c

𝑎
𝑗

𝑗

a
C
n

𝐾
s

l
u
i
b

c
t

Expert Systems With Applications 265 (2025) 125966 
If the best alternative is at least 𝑝 times better than all other alterna-
ives, then the left hand side of (10) is at least 𝑎𝐵 𝑊 𝑝𝑛−2. If the worst

alternative is at least 𝑝 times worse than all other alternatives, then the
right hand side of (10) is at most

𝑎𝑊 𝐵
(

1
𝑝

)𝑛−3 (1
𝑝

)𝑛
𝑎𝑛−1𝑗 𝑊 . (11)

From (10), we get

𝑎2𝐵 𝑊 𝑝3𝑛−5 < 𝑎𝑛−1𝑗 𝑊 . (12)

Since 𝑎𝐵 𝑊 ≥ 𝑎𝑗 𝑊 , (12) implies

𝑝3𝑛−5 < 𝑎𝑛−3𝑗 𝑊 . (13)

However, 𝑎𝑗 𝑊 < 𝑝4∕(𝑛−3)+3 according to the conditions of Theorem 2,
which results in a contradiction.

The calculation for the second case of 𝑦𝑗 < 𝑦𝑊 is analogous. □

Remark 2. Since 𝑝4∕(𝑛−3)+3 → 𝑝3 if 𝑛 → ∞, the additional restriction
in Theorem 2 compared to Theorem 1 does not make ordinal violations
less likely for best–worst method matrices with a high number of
alternatives.

Remark 3. Example 1 does not satisfy the conditions of Theorem 2
because the preference between the best and the worst alternatives (2)
is weaker than the preference between the best (first) and the second
alternatives (9).

The following result uncovers that Theorem 2 can be useful in
practice, although it is not more powerful than Theorem 1 if 𝑛 → ∞
according to Remark 2.

Corollary 1. Assume that the elements of a pairwise comparison matrix
belong to the Saaty scale of {1∕9, 1∕8,… , 1∕2, 1, 2,… , 8, 9}, and the best
alternative is better than all other alternatives and the worst alternative
is worse than all other alternatives. Furthermore, the best alternative is
preferred to the worst alternative at least as much as the preference between
ny two alternatives. Then 𝑝 = 2 in Theorem 2, and our result guarantees

the avoidance of ordinal violations if 24∕(𝑛−3)+3 > 9, that is, for all 𝑛 ≤ 26.

4. Discussion

The current paper has proved two sufficient conditions for the
logarithmic least squares priorities to avoid any violation of ordinal
preferences in a best–worst method matrix. Our results provide a
urther argument for using the LLSM to derive priorities from best–

worst pairwise comparison matrices since no similar guarantees exist
or other prioritisation techniques. Thus, they may lead to ordinal
iolations, which require further interaction with the decision-maker
s presented in the Introduction.

4.1. A comparison of the main theorems

In the previous literature, there are no analogous sufficient condi-
ions that guarantee the lack of an ordinal violation. On the other hand,

Theorems 1 and 2 are worth comparing to each other. Both require a
niform lower bound 𝑝 on the preference between the best alternative
nd all other alternatives, as well as between all other alternatives and
he worst alternative. The maximal numerical preference is allowed
o be 𝑝3 in Theorem 1 but 𝑝4∕(𝑛−3)+3 > 𝑝3 in Theorem 2. However,

Theorem 2 contains an additional constraint: the best alternative should
e preferred to the worst alternative at least as much as the preference
etween any two alternatives, that is, the pairwise comparison between

the best and worst alternatives needs to be the highest one. This
supplementary restriction can be seen as the ‘‘price’’ to pay for having

Theorem 2 than in Theorem 1.
a less restrictive upper bound in

5 
4.2. Finding ordinal violations via numerical experiments

Recall that the thorough Monte Carlo experiment of Tu et al. (2023)
has not resulted in any ordinal violation by the logarithmic least
squares method. They have generated 10 thousand random best–worst
pairwise comparison matrices with six alternatives based on the Saaty
scale. It is possible to exactly determine the probability that an ordinal
violation occurs under these assumptions.

Proposition 1. Assume that the elements of a best–worst method matrix
of size six belong to the Saaty scale of {1∕9, 1∕8,… , 1∕2, 1, 2,… , 8, 9}, the
best alternative is better than all other alternatives and the worst alternative
s worse than all other alternatives. The number of different matrices with
his property is 89 = 134,217,728. Among them, 79 = 40,353,607 matrices
30.1%) satisfy the sufficient conditions of Theorem 1. The logarithmic least

squares method yields an ordinal violation for only 56 matrices.

Proof. It can be assumed without loss of generality that the best
alternative is the first and the worst is the sixth as in Example 1. The
onditions of Theorem 1 hold if 𝑎16 ≤ 8 = 23, 𝑎1𝑖 ≤ 8 and 𝑎𝑖6 ≤ 8 for all
2 ≤ 𝑖 ≤ 5. However, an ordinal violation occurs if 𝑎16 = 2, 𝑎1𝑖 = 2 and
𝑖6 = 9 for 2 ≤ 𝑖 ≤ 5, as well as 𝑎1𝑗 = 2 and 𝑎𝑗6 = 2 for all 2 ≤ 𝑗 ≤ 5,
≠ 𝑖 according to Example 1. The number of these matrices is four as

2 ≤ 𝑖 ≤ 5.
Furthermore, from the set of six comparisons 𝑎1𝑖 and 𝑎𝑖6 (2 ≤ 𝑗 ≤ 5,

≠ 𝑖), at most one can equal 3 rather than 2 such that the weight
of alternative 𝑗 remains higher than the weight of the best (first)
lternative. This gives six additional matrices for each 2 ≤ 𝑖 ≤ 5.
onsequently, the number of matrices where the best alternative does
ot have the greatest weight is 4 + 4 × 6 = 28.

Finally, there are 28 analogous matrices where the worst alternative
does not have the smallest weight. □

Corollary 2. If 𝐾 matrices are generated with the method of Tu et al.
(2023), the probability that the logarithmic least squares method does not
show an ordinal violation is 𝑞 =

(

1 − 56∕89)𝐾 . Tu et al. (2023) use
= 10,000, which implies 𝑞 ≈ 0.9958. 𝑞 < 0.5 requires at least 1,661,297

imulation runs in this framework.

4.3. Limitations

Even though our paper has provided the first sufficient conditions to
avoid ordinal violations in a best–worst method matrix, the results have
substantial limitations. First, the theorems are only sufficient but not
necessary conditions; one can easily find an example where the uniform
ower bound 𝑝 is close to one, which makes our findings essentially
seless. Second, the restriction on the maximal numerical preference
s also universal, but allowing the pairwise comparison between the
est and the worst alternatives to be higher than other comparisons

may lead to further theorems of a similar flavour. Third, the sufficient
onditions are given only for one particular prioritisation technique,
he logarithmic least squares method.

Finally, the issue of ordinal violations has been approached from a
purely theoretical perspective. A large database of best–worst method
matrices provided by different decision-makers is worth studying in
order to estimate the probability of an ordinal violation under several
weighting methods.

4.4. Open questions

Several promising directions exist for future research. First, if the
conditions of Theorem 1 or Theorem 2 are not satisfied, then even
the logarithmic least squares method may exhibit ordinal violations.
It remains to be seen how the probability of an ordinal violation is
related to the level of inconsistency in this case. Second, it would
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also be interesting to see similar theoretical results for other priority
models proposed by Xu and Wang (2024) in the case of best–worst

ethod matrices. Third, some experiments are needed to check how
he decision-makers who evaluate a problem by the best–worst method
eact to the additional restrictions required by our theorems.
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