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Researchers face the trade-off between publishing mobility data along with their papers while 
protecting the privacy of the individuals. In addition to the anonymization process, other techniques, 
such as spatial discretization and location concealing or removal, are applied to achieve these dual 
objectives. The primary research question is whether concealing the observation area is an adequate 
form of protection or whether human mobility patterns in urban areas are inherently revealing of 
location. The characteristics of the mobility data, such as the number of activity records in a given 
spatial unit, can reveal the silhouette of the urban landscape, which can be used to infer the identity 
of the city in question. The presented locating method was tested on multiple cities using different 
open datasets and coarser spatial discretization units. While publishing mobility data is essential for 
research, concealing the observation area is insufficient to prevent the identification of the urban area. 
Instead of obscuring the observation area, noise should be added to the trajectories to mitigate privacy 
risks regarding the individuals.
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In order to ensure the reproducibility of research findings, it is advisable for scholars to publish both data and 
code alongside their papers. Nevertheless, the publication of mobility data raises issues regarding privacy, as 
the process of anonymization is complex and challenging. It has been demonstrated on numerous occasions 
that the implemented anonymization process was inadequate. The users in the Netflix Prize dataset were re-
identified using IMDb as a source of background knowledge1. The taxi IDs of the NYC taxi data were also re-
identified, revealing the drivers’ identity due to poor anonymization technique2. In combination with paparazzi 
photographs from social media, which often capture the unique IDs of the cabs, celebrities can be tracked in 
the NYC dataset3. Similarly, the ticket IDs in the published data of the Riga public transport were easily de-
anonymized4, revealing the ticket type, which could lead to privacy attacks.

Mobile positioning data can be affected as well. As demonstrated by Sharad and Danezis in their analysis of 
the anonymization of the D4D challenge data5, was found to be inadequate6. Even if the anonymization process 
was performed correctly, and the user is not identifiable by any columns, the visited locations still provide 
some attack vectors based on the individuals’ behavior. De Montjoye et al. showed that the vast majority of 
the individuals could be distinguished from each other by only four spatial data points7. Another prevalent 
technique is spatial discretization8–10, which can limit the accuracy of geographic locations to a certain level.

This paper presents evidence that concealing the observation area of mobility data cannot be an effective 
solution to privacy concerns, because human activity are tightly connected to the urban areas, and it will reveal the 
observation area. To achieve this, I primarily use the ‘YJMob100K’ data set11, a metropolitan-scale, longitudinal, 
anonymized mobility trajectory data set that aims to serve as a benchmark dataset of human mobility12. The 
data provider is Yahoo Japan Corporation, and the data follows 100,000 individuals across a 90-day period 
in an undisclosed, highly populated metropolitan area in Japan11. In this data set the geographic locations of 
the individuals are discretized (into 500-meter by 500-meter cells), and the location of the observation area is 
undisclosed. Furthermore, the precise dates are not provided; instead, the days are numbered relatively (e.g., day 
1, day 2, etc., up to day 90) and the time is also discretized into 30-minute intervals.

The data has been discretized both spatially and temporally, and user IDs are sequential numbers. However, 
the main question is whether the undisclosed observation area provides sufficient protection. Alternatively, the 
characteristics of human mobility can reveal in which urban area the mobility data was captured. Despite the 
absence of geographic locations for the spatial grid cells, the activity distribution within the grid can be used 
to infer the city landscape. Once the urban area was deduced using a map, a template matching method was 
applied to find the exact grid location on the map, which is a technique in digital image processing for finding 
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the location of a template image in a larger image. The spatial grid used to discretize the mobility data can be 
reconstructed once the location of the observation area is known.

The presented approach was generalized in two directions. Initially, coarser discretization resolutions were 
simulated, demonstrating that city characteristics cannot be easily suppressed. Second, the location technique, 
based on template matching, was presented for four other cities from three additional data sets. Furthermore, 
in one of these cases, H3 hexagons were used instead of a grid, indicating that the discretization scheme is also 
irrelevant.

The majority of human activity takes place in urban environments. Therefore, if a sufficient amount of 
location data is available, it will inherently reveal the city in which the data was collected. By itself, the revealed 
observation area does not pose a threat to the privacy of individuals. However, it does make it easier to link other 
data sources to the mobility data for more detailed profiling. Estimation of home (and work) location estimation 
is a common part of the mobility data processing13–15, such as the income proxying by the real estate prices of the 
home location16,17. A possible attack vector is to look for people in the mobility data whose appearances are well 
known, such as celebrities or politicians, and use this information to infer which user is the given person. For 
example, the President of the United States18. The bottom line is that privacy by obscurity is not viable solution 
for ensuring true privacy. The privacy-preserving transformation applied to the mobility data should not depend 
on an obscured dimension of the data. Previous studies have shown that adding noise to the location trajectories 
can mitigate privacy issues2,19,20, when synthetic mobility data is not a viable option. In addition, the spatial 
dimension can be omitted completely from mobility data21.

Results
The urban area in which the activities were recorded was determined by analyzing the visible silhouette of the 
urban landscape in the activity heatmap11, Figure 6, and assuming that the low-activity areas are partly water 
surfaces. The urban area was identified as the Nagoya metropolitan area including Mikawa Bay and Ise Bay. 
Subsequently, the spatial grid, which was used to discretize the geographic locations of the individuals, was 
reconstructed. This section presents a mobility analysis, which serves as a validation of the grid reconstruction. 
The reverse-engineering process is detailed in the Methods section.

The first step in the validation process is to plot the reconstructed grid over the map, with each cell colored 
according to the number of activity records (Figure 1a) and unique users (Figure 1b). The number of unique 
users per cell more accurately reflects the road network, particularly the highest order of highways (motorway, 
trunk) from the OSM, which were displayed as a validation (Figure 1c). As the grid aligns with the map, it can 
be concluded that the grid geometry is considered good.

The amenity complexity, as defined by Juhász et al.22, can be calculated using the provided the information 
about the number of different POIs (POI) in each cell, which is provided for the YJMob100K data. The POIs are 
also anonymized otherwise it would help to locate the grid on the map. Only the cardinality of each anonymized 
category is provided in the YJMob100K dataset, which is sufficient to calculate the amenity complexity. 
Complex amenities attract socially diverse people22 and can indicate city centers. It is used in this paper as a 
part of the validation process, with the expectation that the highest values are clustered around the city centers. 
Figure 1d shows the Economic Complexity Index (ECI) in terms of amenities, and the highest ECI values indeed 
correspond to downtown Nagoya and the center of other cities.

Another direction of the grid validation could be the home detection. It is common practice13–15 to apply 
home detection algorithms to mobility data. In this case, the cell with the most activity after 21:00 and before 8:00 
is considered the home location. It should be noted that the home detection does not require the reconstructed 
grid it can be computed from the original data. The thresholds (21:00 and 8:00) are set as a rule of thumb and 

Fig. 1. The reconstructed grid is plotted over a map, with colors indicating the number of activity records 
(a) and unique users (b) on a log-scale, as well as the higher-order elements of the road network were also 
displayed (c) , and the amenity complexity (d) of the cells for additional details. To highlight the coastline, the 
cells were set to transparent if the activity value is below the same threshold as for Figure 7c. Generated with 
own code, available on GitHub.
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may require adjustment to align with Japanese societal norms. Furthermore, the home detection algorithm does 
not differentiate between workdays and weekends as the data does not contain dates. However, holidays could 
be inferred from the daily activity levels.

Without ground truth, the detected home locations cannot be validated, but their spatial distribution can be 
compared22,23to the census data24. Figure 2a compares the estimated number of inhabitants for the cities within 
the observation area with the 2020 census data. The Pearson correlation coefficient is 0.8879. It should be noted 
that cities with less than 30% of their area within the observation area have been excluded from the comparison. 
Interestingly, Kawagoe is still an outlier (denoted in Figure  2a) and appears to be underrepresented in the 
mobility data. Upon removing Kawagoe from the comparison, the city-level Pearson correlation coefficient 
increases to 0.9717. The results show that the data follows approximately 1% of the population. Figure 2b shows 
the correlation at the ward level in Nagoya (correlation coefficient is 0.8744).

The spatial distribution of the detected population correlates with the census data, thereby confirming the 
validity of the constructed grid geometry. In contrast, the correlations are notably worse in the case of the 
unstretched grid (Figure 7f), where Pearson correlation coefficient is 0.7536 for the municipality level and 0.4676 
for the ward level.

Robustness
It was previously demonstrated that the urban landscape can be inferred from mobility data even if the 
observation area is undisclosed. To what extent is the presented method robust to increases in the resolution of 
the discretization? The reconstructed grid was merged into grids of 1 km by 1 km, 2 km by 2 km, and 4 km by 4 
km grids by summing the activity records in 4, 16, and 64 cells, respectively. An increase in the cell size results 
in a reduction in the accuracy of user location, thereby increasing privacy. The first row of the Figure 3 shows 
the upscaled grids as heatmaps using the same color scheme as in Figure 6d. Although the rescaled grids notably 
compress the information and the figures lose details, the urban landscape remains more or less recognizable. 
The expectation is that the presented approach, utilizing template matching, will be able of accurately identifying 
the urban area.

The template was generated with the same threshold (75) as for the original grid (Figure 7c). Second row of the 
Figure 3 shows the location results. In the first two cases (Figure 3d and 3e), the locating was accurate. However, 
it failed for the 4 km by 4 km grid (Figure 3f). The threshold proved too low concerning the compressed image as 
the shape of Mikawa and Ise bays was lost, so the threshold was increased to 375. Upon increasing the threshold, 
the template matching algorithm was able to successfully locate the urban area (Figure 3g). This result proves 
that the characteristics of human mobility can reveal the urban landscape even when the mobility locations are 
discretized into 4 km by 4 km cells.

Another direction of the robustness checks is extending the presented method to other cities. The openly 
available Weeplaces data set25was used, presented in26, which was collected from LBSN including Facebook 
Places, Foursquare, and Gowalla. Two cities were selected from the Weeplaces database for further analysis: 
Toronto and London. The activity locations were discretized into a 500 m by 500 m grid over a 100 km by 100 
km by area, which also covers other settlements from the area similarly as in the YJMob100K data set27. Note 
that an area of this size covers other settlements outside Toronto from the shore of Lake Ontario. The Weeplaces 
data set contains a significantly lower number of activity records per city than the YJMob100K data set. In the 
case of Toronto, there are 110,829 activity records from 19,356 unique users in the selected area, whereas the 
YJMob100K data set contains 111,535,17 activity records from 100,000 users.

The Weeplaces data set is notable sparser, with significantly less activity concentrated outside the urban areas 
(Figure 4a), in contrast to the YJMob100K data set, where unpopulated areas still have some activity, even the 
ferry lines can be recognized. The sparseness of the available data for Toronto makes it more difficult to compare 
the activity heatmap to the land. Furthermore, cities without distinctive coastal regions, such as London 
(Figure 4b), may not work. Alternatively, land usage data was extracted from OSM, namely regions designated 

Fig. 2. The correlation between the population based on census data and the estimated number of inhabitants. 
The comparison is made at the municipal level (a) and also on the ward level of Nagoya (b). Cities whose area 
is covered by the observation area with less than 30% are excluded from the comparison.
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as residential, retail, or industrial (Figure 4e and 4f). This approach aligns with the functional classification of 
the urban areas with respect to land cover data presented in9. In this case, the template image contains black if 
the cell has any activity and white otherwise. Figure 4i and 4j illustrate that the urban area can be located using 
500 m, 1 km, 2 km, and 4 km squares using the same method as in the case of the Nagoya metropolitan area 
(Figure 3).

A temporal density dataset was published9 from the Helsinki Metropolitan Area. It uses a 250 m by 250 m 
grid for the spatial dimension, which contains the portion of the population that was present in a given cell by 
hours. For the template, the distribution values from the workday table at 21:00 were used, and the threshold 
value was 0.0025 (Figure4c). The template was compared to the land usage data from OSM (Figure 4g). Figure 4k 
shows the result of the template matching using 500 m, 1 km, 2 km, and 4 km grids.

Another data set was used to demonstrate the city landscape recognizability, covering the Dallas–Fort Worth 
metroplex28from the paper29, which contains hourly locations of people (Figure 4d). As opposed to the previous 
procedure, the coordinates are discretized using H3 hexagons30, and the activity aggregated to different sizes of 
H3 hexagons are compared to the land usage (Figure 4h). The H3 resolutions between 6 and 9 are tested. Larger 
resolutions represent smaller hexagons: a resolution-9 hexagon is about 0.1053 km2, a resolution-8 hexagon is 
about 0.7373 km2, a resolution-7 hexagon is about 5.1613 km2, and a resolution-6 hexagon is about 36.129 km2. 
The template matching algorithm determined the city location well in the three higher resolution cases, but 
slightly misplaced the template when using the resolution-6 hexagons (Figure 4l).

User traceability
It is worth testing how the user traceability changed by changing grid scales. A user is traceable, stands out from 
the crowd, if the top four locations are distinguishable7. For the traceability test, the 1 km, 2 km, 4 km, 8 km, and 
16 km square grids were used. The activities were remapped to the upscaled grids, and the top four locations 
were determined. A user is considered traceable in the upscaled grid if the most visited four locations can still 
be distinguished. Table 1 shows the number of traceable users by five upscaled grids. More than 35% of the users 
are still traceable using the 1 km by 1 km grid as the original top four locations are still distinguishable. 5% of 
the users are still traceable using the 4 km by 4 km grid, which also made the observation area recognizable 
(Figure 3g).

Discussion
The observation area of the mobile positioning data sets is usually communicated. However, a recently published 
data set11, did not disclose the geographic location of the mobility traces. This study examines how effective 

Fig. 3. Locating the upscaled grids. The upper row shows the upscaled grids plotted as heatmaps. Instead 
of the original 500 m by 500 m grid, a 1 km by 1 km (a), a 2 km by 2 km (b), and a 4 km by 4 km (c) cells 
are used, resulting 100 × 100, 50 × 50 and 25 × 25 element matrices. The second row shows the results of 
the template matching for the upscaled grids. In the first two cases the locating succeeded using the original 
template threshold (75) (d, e), but failed for the 4 km by 4 km case (f). Therefor, the threshold was increased to 
375 succeeding the template matching for the 4 km by 4 km grid as well (g).
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this step is in terms of user privacy. The main finding is that mobile positioning datasets describe the urban 
landscapes where the mobility took place, so the geographic location can be identified even if it is not disclosed. 
In addition to the ‘YJMob100K’ data set, this was demonstrated in four other cities from three other openly 
available data sets. Furthermore, this effect has some resilience to upscaling, so that the urban area can be 
identified even with lower resolution grids.

Distinguishable cells 1 km x 1 km 2 km x 2 km 4 km x 4 km 8 km x 8 km 16 km x 16 km

4 35469 12882 5090 1810 470

3 48228 42323 28457 16752 7438

2 15582 38548 50987 52608 44939

1 721 6247 15466 28830 47153

Table 1. Comparison of the top-four-location traceable users by upscaled grids.

 

Fig. 4. User activity from the Weeplaces data set discretized into a 500 m by 500 m grid around Toronto (a), 
London (b), Helsinki with a 250 m by 250 m grid from the population distribution data set (c), and pings from 
the Dallas–Fort Worth metroplex (d). The residential, retail, and industrial areas extracted from the OSM (e, f, 
g, and h, respectively). The located urban areas of Toronto (i), London (j) and Helsinki (k), using 500 m, 1 km, 
2 km and 4 km squares, and H3 hexagons at resolutions of 9, 8, 7 and 6 for the Dallas–Fort Worth metroplex 
(l) as the discretization method.
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It is important to emphasize that the goal of this work is not to demonstrate template matching on mobility 
data but to point out that human activity has a peculiar spatial distribution that makes the urban landscape 
recognizable even after discretization. With the uncovered metropolitan area, it is now possible to cluster the 
users based on home location (on a city, a ward, or even a neighborhood level), which information can be 
associated with real estate prices to profile mobility based on estimated income (e.g., as16,17 uses data from the 
Japanese statistical office). The revealed geographic location widen the possible applications of the YJMob100K 
data but at the same time it might increase privacy risks by making it easier to link additional data sources. 
Furthermore, may provide possibility to look for people in the mobility data whose appearances are well known, 
and use this information to infer which user could be the given person.

In cryptography, it is widely accepted that there is no security by obscurity31. Based on this principle, privacy 
through obscurity could not provide privacy. However, in this case, the obscured observation area was meant to 
provide another layer of protection in addition to the anonymization, and the spatial and temporal discretization. 
Zhang and Bolot argue that publishing location data is likely to lead to privacy risks, and the data must be coarse 
in either the time domain or the space domain32. Even partial location data can be used to infer the location. In33, 
the altitude information from fitness tracker applications was used to infer the location of users.

This discourse leads to a trade-off between privacy preservation and researchers’ interest in using more 
granular mobile positioning data to build better models. In addition to adding noise to the location data19, a 
possible solution for protecting user privacy when publishing mobility data is to exclude location information 
completely. For example, a mobility data set was published21, covering Changchun Municipality, Northeast 
China, revealing only distances between locations. In Section S1 of the supplementary information, it was 
shown that the urban landscape remains recognizable even if each location coordinate is transformed by adding 
random noise. Adding noise to (a part of) the locations, or adding fake appearances can mitigate attacks on user 
identification based on visitation patterns (e.g18.,).

This work is not without limitations. First, the reconstructed grid cannot be arbitrarily accurate. The accuracy 
of the grid anchor point is at most 500 meters in both directions (using the original resolution), because the 
template matching returns the coordinate of a pixel that represents a 500-meter by 500-meter cell. As with the 
upscaled grids, the larger the grid size, the greater the chance that the anchor point will be misplaced. The users’ 
geographic locations are discretized into 500-meter by 500-meter grid cells, so the accuracy is inherently limited, 
but the inaccuracy of the reconstructed grid placement increases it further. On the other hand, the presented 
validation process with the population counts at the ward and municipality level shows that the determined 
location of the grid is acceptable.

Note that the template matching was applied to the area surrounding the selected city with a limited size 
instead of the whole globe, which could be possible with sufficient computing capacity. Furthermore, the applied 
template matching solution cannot deal with scaling or rotation (it was not necessary), although there are 
rotation and scale invariant template matching algorithms (e.g34.,).

Originally, the visibility of the road network in the heatmap11 gave the idea that the urban landscape can be 
identified from mobility data, but using the road network with the presented template matching approach did 
not give satisfactory results. This may be mainly because the roads are much narrower than the grid cells. Also, 
the activity around the roads is not necessarily distributed proportionally to the priority or the order of a road. 
For example, a highway is considered higher order than a street in a shopping district, but the latter may contain 
more user activity. Thus, it is difficult to plot a map based solely on the cartographic features of the roads in a 
way that would be matched with the activity-weighted and spatially distorted templates. For these reasons, the 
road network-based template matching could not match the landscape-based approach with the algorithm used. 
However, this does not mean that only binary templates could work as it was demonstrated in Section S2 of the 
supplementary information.

The initial hypothesis of this study was that mobility trajectories can identify the urban area where the 
mobility took place, even if the location is not disclosed. This hypothesis was tested on the ‘YJMob100K’ data 
set, and is considered confirmed with the reconstructed grid. The results show that hiding the observation area 
does not provide significant privacy benefits. It was also shown that coarser grids can reveal the observation area.

Methods
Two pieces of information was required to deduce which city is in the focus of the data: (i) it was revealed that 
the metropolitan area is in Japan, and (ii) the urban area must be large as the observation area is 100 km x 100 
km. Taking into consideration the five largest cities of Japan35 (Figure 5), the observation area might be Tokyo, 
Yokohama, Osaka, Nagoya or Sapporo, which are all near the sea (or ocean), so the low-activity parts might be 
waterfaces.

First, Figure 6a and 6b show a 2-dimensional histogram of the number of pings and the number of observed 
unique users over the 75 days on a log scale, respectively which are analogous to the Figure 6of the data 
description paper11. The urban area is clearly visible with the road network, especially when the number of 
unique users is plotted (Figure 6b). The city silhouette from the heatmap is then compared with the cities from 
Figure 5, it is clear that the observation area is the Nagoya metropolitan area, but the figure is transformed. 
After rotating the image by 180◦ (Figure 6c) and flipping it horizontally (Figure 6d) (or flipping it vertically), it 
becomes clear that the large low-activity areas at the top of the untransformed heatmaps (Figure 6b) are actually 
Ise Bay and Mikawa Bay (denoted in Figure 6d).

The next problem is to find the exact location of the spatial grid that was used to discretize the spatial location 
of the mobility data. The basic idea is to fit the heatmap to a proportional map as an image, taking advantage of 
the fact that Ise Bay and Mikawa Bay have a peculiar shape. The plot of the log-scale activity (ping) heatmap using 
a grayscale palette is shown in Figure 7a, Figure 7b shows the activity histogram, as well as the selected threshold 
(75). Note that, since the threshold was applied directly to the data, the grayscale palette is not required, it is just 
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shown for better understanding. Figure 7c shows the binary image as a result of the thresholding. This process 
made the coastal area crisp by removing the activity at the ferry lines, although there are low-activity rural 
lands at the western part of the region, that may appear as water in the binary image. More details are presented 
about the impact of the threshold value on the template matching process in Section S2 of the supplementary 
information.

Six prefectures were downloaded from OSM via OSM-Boundaries36: Aichi, Gifu, Mie, Nagano, Shiga, 
Shizuoka. The coastline of the Japanese islands was also needed, the data is from OSM, as pre-processed land 
polygons from37, and the main islands of Japan were extracted manually. Figure 7d shows of a bounding box of 
the selected six prefectures, which will serve as the input for the template matching stage, which is a method to 
find the location of a template image in a larger image38. The land geometry should be scaled to be proportional 
to the template, the observation area, which is a 200 by 200 grid. The grid is plotted as a 200 by 200 pixel 
image, with each cell representing a 500 by 500 meter area. Consequently, the bounding box of the selected six 
prefectures area should be plotted with a scale of 1 pixel = 500 meters.

Figure 7e shows the result of the template matching, which determines the x and the y offset of the template 
image. In this case, the thresholded activity heatmap (Figure 7c). The resulting area of the land (blue square in 
Figure 7e) and its surroundings are shown in Figure 7f with the semitransparent template.

Figure 7f also highlights some obvious mismatches, although the matching is relatively correct. It appears 
that the template has been squeezed vertically and horizontally stretched. Since the template should not be 
transformed to maintain the conversion rate of ‘1 pixel equals to 500 meters’, the land image was transformed 
instead. To determine the exact horizontal and vertical stretching ratio, the background and the template were 
loaded into an image manipulation program, and the layer was manually stretched by trial and error. The final 
values are 10% horizontal stretching and 10% vertical shrinking. Figure 7g shows the same comparison after 
these transformations were applied to the background image, and the match is perfect.

The template matching returns the x and y offsets of the template (Figure 7e) in the input image, which was 
transformed and scaled to be proportional to the template. Applying the inverse transformations to the offset 
coordinates determines the top-left point of the grid in the geographic coordinate system. Using the reference 
point, a 200 by 200 grid should be generated with a 500-meter width and height.

The cell coordinates start from the upper left corner according to the description paper11 and increase to 
right and down. There are two possible ways to join the challenge data with the reconstructed grid: (i) transform 
the coordinates in the mobility data and start coordinates as described, or (ii) assign transformed coordinate 

Fig. 6. The heatmaps showing the number of activity records (a) and the number of unique users (b) in the 
observation area. The latter is rotated by 180◦ (c) and flipped horizontally (d).

 

Fig. 5. The administrative boundaries of Japan’s five largest cities: Tokyo (a top), Yokohama (a bottom), Osaka 
(b), Nagoya (c) and Sapporo (d). Generated with own code, available on GitHub.

 

Scientific Reports |        (2024) 14:30948 7| https://doi.org/10.1038/s41598-024-82006-5

www.nature.com/scientificreports/

https://github.com/pintergreg/reverse-engineering-YJMob100K-grid/blob/main/src/plot_cities.ipynb
http://www.nature.com/scientificreports


properties to the grid geometry and keep the mobility data as provided. This work uses the second option. The 
transformed grid coordinates are visualized in Figure 1a.

Data availibility
The ‘YJMob100K’ the ‘Weeplaces’, and the Helsinki data sets are also available on Zenodo25,27:, and39, respective-
ly. The ‘Dallas–Fort Worth metroplex’ data set is available from Dryad28. The census data was downloaded from 
the Portal Site of Official Statistics of Japan website (https://www.e-stat.go.jp/): Population, Households, Sex, Age 
and Marital Status, Population Census 2020, Table 1-1.

Code availability
 The code to reproduce this work is available on GitHub:  h t t p s :  / / g i t h  u b . c o m  / p i n t  e r g r e g / r e v e r s e - e n g i n e e r i n g - Y 
J M o b 1 0 0 K - g r i d      
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