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A B S T R A C T

We develop a systemic risk indicator approach using a structural GARCH option-based default
risk framework incorporating volatility clustering, variance risk premiums, along with distance-
to-capital features. We apply our model to the U.S. banking sector, testing its explanatory and
forecasting power. Our model successfully identifies the most systemically risky banks during
heightened systemic-risk episodes. Comparing our results to related approaches, especially the
respected indicator of the Federal Reserve Bank of Cleveland, we evidence markedly improved
performance. Given the recent implosion of Silicon Valley Bank, exploring new approaches to
constructing banking systemic risk indicators should be of great interest to regulators and policy
makers.

1. Introduction

Banks play a crucial role in an economy by financing businesses and households and implementing monetary policy strategies.
Central banks, through control of the money supply, utilize the banking industry to achieve ultimate objectives such as economic
expansion, inflation control, job creation, capital expenditures, and consumer spending. While executing these operations, banks are
exposed to significant risks that can threaten the health of the overall economy. The process of allocating funds from savers to bor-
rowers involves converting short-term deposits into long-term loans, creating a maturity mismatch. In addition to the interest rate risk
from this maturity gap, banks face other exposures such as credit, liquidity, and operational risks. These risks necessitate stringent
management requirements from both bank managers and regulators. Failure in a specific bank can trigger a collapse of the entire
economy due to the interconnected network of funding and payment obligations across various industries. The literature on systemic
risk provides substantial evidence supporting this interconnectedness and its potential consequences (see Atasoy et al., 2024; Cont
et al., 2013; Li et al., 2023; Markose et al., 2023; Paltalidis et al., 2015; Qi et al., 2022).

Cascading failures within the context of systemic risk are particularly associated with the banking industry due to its operational
mechanisms. Banks, which are intricately linked to the entire economic system—much like capillaries in the body—are involved in
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raising and supplying funds and are subject to obligations managed and regulated by policy bodies. Historical failures have highlighted
the importance of these regulations. The Basel Accords, developed in response to the Asian Crisis (1997), the Russian Crisis (1998), and
the Global Financial Crisis (GFC) (2008–09), exemplify how new lessons have led to modifications in capital adequacy management to
strengthen the industry’s infrastructure. Given the critical status of the banking system in an economy, policymakers are compelled to
mitigate market-wide risks and prevent potential economic catastrophes. The sophisticated role of banks in the economy not only poses
risks to other counterparts in the system but also affects investor expectations and market sentiment. Deterioration in these areas can
lead to panic among investors, directly impacting equity market supply and demand, and potentially resulting in stock market crashes
as an aftermath of systemic risk. Considering that banking shares account for 15% of the market cap on the New York Stock Exchange,
the highest of any industry, it is evident that the equity market risks originated in banking shares alone could incite panic in entire
market. Furthermore, the obligations related to bank operations, particularly through credit risk management, can spread and involve
other financial institutions, including the insurance sector, due to protection deals on credit derivatives like credit default swap (CDS)
agreements. In Q1-2024, the notional amount insured through credit derivatives for U.S. Commercial Banks and Savings Associations
reached four trillion US dollar, which is approximately 15% of the U.S. 2023 GDP (OCC, 2024). This ratio highlights the potential
systemic risk in the U.S. banking sector specifically related to credit derivatives. The GFC of 2008 illustrated such risks. As reported by
the Federal Reserve, the liquidity problems faced by AIG, the largest insurance company globally, were triggered by collateral calls on
CDS and other credit derivatives obligations, bringing AIG to the brink of collapse. The cost of preserving the stability of the US
economy, resulting from the AIG bailout, amounted to 117.5 billion US dollars under three facility programs. This shows that systemic
risk in the banking industry extends beyond its operational boundaries, posing a threat to the entire economy. Thus, as noted by Cerutti
et al. (2012), the banking system is often the primary focus in systemic risk analysis for any country.

The market downturns during the GFC of 2008 and the COVID-19 pandemic in 2020 demonstrate how cross-market linkages and
trade channels can exacerbate the adverse effects of systemic risk. The important securitization of credit instruments, coupled with the
subsequent collapse of subprime mortgage market obligations, rapidly triggered a liquidity crisis in the U.S. economy, fueled by the
unforeseen interconnectedness of toxic assets. This turmoil subsequently cascaded into a sovereign debt crisis in Europe. Despite
rigorous regulations enacted in response to the GFC, systemic risk remains a severe threat to market stability. During the GFC, toxic
assets and off-balance sheet items were major threats to financial institutions. However, the causes of systemic risk can vary and
present different drivers in each case. For instance, as discussed by Van Vo and Le (2023), overinvestment in fixed income securities
and changes in Federal Reserve interest rate policy were central to the failure of Silicon Valley Bank in 2023, which led to a series of
bank runs. The collapse of this relatively small bank had widespread effects; the perceived systemic risk caused a sharp decline in bank
shares and incited global panic in the banking industry. The market turmoil also contributed to the failure of Credit Suisse. This time,
authorities responded quickly to prevent the contagion and spread of systemic risk, resulting in short-lived risks and limited effects, as
discussed by Akhtaruzzaman et al. (2023). However, the Dow Jones U.S. Banks Index reaction to this event showed that the losses in
March 2023 were the second worst in the last decade, only surpassed by those experienced during the COVID-19 pandemic.

The market developments of the last two decades have exemplified the severe and unpredictable nature of systemic risk, under-
scoring the necessity for its proper identification, monitoring, measurement, and management. Consequently, many researchers have
sought to quantify the extent of systemic risk using various methodologies. Esteemed examples of these endeavors include the models
proposed by Adrian and Brunnermeier (2011) (Delta Conditional Value at Risk, ΔCoVaR), Acharya, Pedersen, Philippon, and
Richardson (2017) (Marginal Expected Shortfall, MES), Banulescu and Dumitrescu (2015) (Component Expected Shortfall, CES), and
Mihoci et al. (2020) (Financial Risk Meter, FRM). In this study, we propose a robust and novel approach for measuring systemic risk in
the US banking sector and identify systemically risky banks. Unlike previous literature and as an alternative to the Cleveland Fed Index
(CFI), we introduce a methodology that incorporates the stylized facts of financial time series with appropriate methodological
support. Our method includes volatility clustering, variance risk premiums, and a distance-to-capital approach as proposed by
Chan-Lau and Sy (2007), whereas the CFI utilizes Merton’s (1974) distance-to-default model. Bharath and Shumway (2008) have
pointed out that violations in Merton’s distance-to-default model can cause significant accuracy issues, empirically demonstrating its
insufficiency as a statistic for the probability of default. Chan-Lau and Sy (2007) argue that the distance-to-capital method is more
robust and can account for pre-default regulatory actions. Additionally, by considering the stylized facts of financial time series, we
estimate the volatility component of the probability of default through a GARCH model, specifically using the Heston, and Nandi
(2000) GARCH (HN-GARCH) option valuation model. This approach allows us to account for the time-varying and clustering nature of
volatility, as extensively reported in the literature (Cont, 2007; Daal et al., 2007; Lux & Marchesi, 2000; Ning et al., 2015).
Furthermore, we modify the stochastic processes to account for the presence of variance risk premia, following the approach of
Christoffersen, Jacobs, and Ornthanalai (2013). For consistency, we utilize the distance-to-capital methodology in estimating marginal
expected shortfall in systemic risk tests and connectedness analysis across various quantiles. This comprehensive setup offers reliable
and robust findings in measuring systemic risk in financial markets.

Considering the objectives of accurately measuring systemic risk and employing appropriate methodologies, we believe our study
will be useful for investors, financial managers, and policymakers. Our introduced Systemic Risk Indicator (SRI) demonstrates the
ability to capture growing tensions in the banking sector earlier than the CFI and VIX. The results reveal the potential of our meth-
odology as an early risk indicator for financial markets. The cases of LTCM, Lehman Brothers, and Silicon Valley Bank illustrate the
importance of accurately modeling systemic risk to select appropriate actions among alternatives. Underestimating or overestimating
risk can lead to inadequate or excessive resource allocations, as evidenced by these market failures. This situation violates the
fundamental economic principle of efficient resource use. Beyond the high performance of the introduced SRI, identifying systemically
risky banks allows policymakers to customize actions during financial turbulence instead of relying on one-size-fits-all solutions. The
network we generate to identify banks that play major roles in transmitting and receiving spillovers can be used for this purpose. For
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instance, authorities may prioritize banks identified in our study when adjusting the Stress Capital Buffer Requirement (SCBR). In a
dynamic framework, once the SRI shows persistent growth with lower standard deviation than the predetermined threshold, the SCBR
could be automatically adjusted for banks ranked with high sensitivity in the spillover network.

2. Literature review

The concept of systemic risk and its nature adapts to various markets and can be measured using alternative approaches. This
flexibility allows researchers to examine systemic risk across different asset types and methodologies. In addition to contingent claim
approaches, market-based methods have also garnered significant interest among researchers, as outlined below.

Estimating adequate capital is challenging as it requires both bank balance sheet data and forward-looking market-based data such
as stock prices and volatilities, credit default swaps, and leverage (Singh et al., 2015). The contingent claim approach (CCA) uses risk
indicators along with a comprehensive credit risk measurement using balance sheet and market-based data. In particular,
distance-to-default indicators measuring default risk for monitoring the default risk of financial firms have attracted the interest of
international and national institutions such as the International Monetary Fund (IMF), European Central Bank (ECB), and Office of
Federal Research (OFR). Furthermore, the Financial Stability Board (2009) emphasizes the importance of this approach in terms of
systemic risk analysis and determining systemically important financial institutions.

Allen et al. (2012) construct a macro index of systemic risk for the US banking sector by calculating value-at-risk CATFIN, along
with expected shortfall for the monthly excess return of individual banks. CATFIN refers to measuring the collective catastrophic (tail)
risk of banking systems and institutions. The authors evidence that incorporating their modeling improves CATFIN in forecasting real
economic activity. Researchers at the Cleveland Fed (Craig, 2020) have introduced a systemic risk indicator application following
Saldias (2013). This weekly updated indicator seeks to “represent market sentiments about the risk of extensive failure in the banking
sector.” The indicator calculates systemic risk as the difference between the default risk of a weighted portfolio for the same institutions
(portfolio distance-to-default, PDtD) and an average default risk across individual banking institutions (average distance-to-default,
ADtD). The underlying idea postulates that PDtD captures the correlations within components of the basket, unlike the ADtD
(Saldias, 2013). When the interdependence among financial institutions increases, the default risk for the portfolio is higher than the
average default risk of individual institutions, and hence the systemic risk increases. As it is outlined in our work, the literature
provides a great deal of evidence on the existence of negative and economically large variance risk premiums in equity markets [see for
example Bakshi, and Kapadia (2003), Carr andWu (2009), and Goodell et al. (2020).] Of particular relevance, Wang et al. (2013) finds
that variance risk premiums have prominent explanatory power for credit risk spreads. Kenc and Cevik (2021) find that a structural
model with volatility clustering and variance risk premium produces better performance measures compared to models without such
features.

There are many applications of the contingent claim approach to systemic risk measurement. Jobst and Gray (2013) produce
aggregate estimates of the joint default risk of multiple institutions as a conditional tail expectation using multivariate extreme value
theory based on a standard form of the Merton model. Saldias (2013) estimates individual contributions of European banks to the
European financial systemic risk using a basic structural default model. Adrian and Brunnermeier (2016), Brownlees and Engle (2017),
Engle and Siriwardane (2018) and Greenwood et al. (2015) incorporate the structural aspects of conditional value at risk (CoVaR),
time-varying correlations, leverage adjustments, and fire sale externalities, respectively. Alternative methods in the literature have
been proposed to measure systemic risk using market-based approaches. In one of the early studies, Adrian and Brunnermeier (2011)
proposed the ΔCoVaRmodel, which captures left tail co-movements between a specific financial institution and the entire system. This
methodology has garnered significant interest and has been employed by various researchers in different specifications (see Castro &
Ferrari, 2014; Mensi et al., 2017; Tiwari et al., 2022; Yang & Hamori, 2021). Among these studies, Sedunov (2016) explored the
performance of alternative systemic risk measures and concluded that CoVaR outperforms both causality-based and expected shortfall
methods. In a different study, Liu et al. (2022) employed a high-dimensional CoVaR approach to ascertain spillovers from oil markets
to G20 equity markets, comparing the results generated from Delta CoVaR and CoVaR methods. A similar comparison was conducted
by Trabelsi and Naifar (2017) to investigate the exposure of Islamic equity indices to systemic tail risk. Their results demonstrated the
moderate systemic risk effects experienced by GCC stock markets.

Banulescu and Dumitrescu (2015) state that a conventional market-based approach to measuring systemic risk involves using an
aggregate risk measure for the entire financial system. This approach, exemplified by the expected shortfall, quantifies the contribution
of each firm to the overall risk in the system, which is considered as a portfolio formed by financial institutions. Acharya et al.’s (2010)
MES analysis is a notable example of this approach, as it measures the sensitivity of systemic risk to a unit change in a firm’s weight
within the portfolio. Derbali and Hallara (2016) applied this methodology to examine systemic risk among European banks post-GFC
across 16 European economies. Banulescu-Radu et al. (2021) integrated this methodology into their backtesting procedures for sys-
temic risk, evaluating various measures including systemic expected shortfall (SES), systemic risk measure (SRISK), and ΔCoVaR. Their
results indicate that their proposed model effectively forecasts both MES and SRISK. Building on this methodology, Eckernkemper
(2018) proposed a copula-based framework to estimate MES. Unlike the original approach, this alternative approach captures
time-varying nonlinear dependencies, and its efficacy is empirically tested within the sectors of the Dow Jones Industrial Average.

Although MES is widely used in the literature, Banulescu and Dumitrescu (2015) argue that it fails to account for firm-specific
characteristics, such as leverage, and primarily focuses on institutional connectedness. Additionally, the sum of MES values does
not accurately reflect the system’s aggregate expected shortfall. To address these limitations, the authors propose CES, which measures
a firm’s “absolute” contribution to the system’s overall expected shortfall. Caliskan, Cevik, Cevik, and Dibooglu (2021) applied the CES
methodology to analyze systemic risk in the Turkish stock market, focusing on 54 financial firms. Their findings indicate that the top
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ten systemically important financial institutions dominate nearly the entire market’s systemic risk. In a study conducted for China, Liu
et al. (2021) utilized CES to investigate sectoral risk contributions to the equity market. Their results showed that the banking sector
was systematically the most significant contributor to systemic risk both before and during the GFC. In a more recent study, Gunay
et al. (2023) assessed systemic risk in the cryptocurrency market using both CES and Granger causality for the left tail of the distri-
bution. The results revealed that Bitcoin and Ethereum have the highest contributions to systemic risk in the cryptocurrency market,
while sectoral indices exhibit limited effects compared to the dominance of these two assets.

More recently, to capture the interconnectedness of tail events between financial institutions, Mihoci et al. (2020) introduced a new
market-based methodology called the FRM. This approach uses the least absolute shrinkage and selection operator (LASSO) quantile
regression to capture dependencies in tail events. Wang et al. (2024) utilized this methodology to examine interconnectedness among
tail events in the cryptocurrency market. Their study identified strong co-movements between CRIX and FRM@Crypto volatility and
reported that FRM@Crypto has significant short-term predictive ability compared to other measures. To explore systemic risk in
emerging economies, Amor et al. (2022) applied the FRM framework to Brazil, Russia, India, Mexico, South Africa, and Türkiye. Their
findings indicate that systemic risk was highest during the GFC and remained significant during the global pandemic period. Ren et al.
(2022) modified the FRMmethodology by extending it to expectiles using LASSO-based quantile regression. This enhancement allows
the model to not only estimate the probability of extreme events but also quantify the potential loss in a stressed environment within
the network. The authors tested this updated model in the US equity market.

3. Methodology

3.1. Structural credit risk model

Our approach to measuring systemic risk is to estimate the default probability indicators implied by the Merton structural credit
risk tradition. The Merton model starts with the conventional definition of a company (a bank in our case) default, which occurs when
the value of its assets A is less than the promised debt repayment D at its maturity time + T. The probability of this default at time t,
assuming D is a zero-coupon debt and does not change until t+ T, is given by

Pdef ,t =Prob(At+T ≤Dt \ F t)=Prob(ln(At+T)≤ log(Dt) \ F t) (1)

where F t denotes the information available at time t.1 To proceed, Merton (1974) assumes a geometric Brownian motion (GBM) that
specifies the dynamics of A:

dA= [μA − δ]Adt + σAAdW (2)

where δ is the payout rate to debt and equity holders, μA is the expected continuously compounded return on A, σA is the volatility of
firm value and dW is a standard Wiener process under the physical probability measure. The GBM implied log-normal distribution for
the company assets at any time t is written as:

ln At+T = ln At +
[

μA − δ −
1
2

σ2
A

]

T + σA
̅̅̅
T

√
zt+T (3)

where zt+T =
Wt+T − Wt̅̅̅

T
√ and zt+T ∼ N(0,1).

Substituting this last Equation (3) into Eq. (1) yields the following new expression for the default probability2

Pdef ,t =N
(

ln A − ln(Dt)+
[

μA − δ −
1
2

σ2
A

]

T+ σA
̅̅̅
T

√
≤0

)

Pdef ,t =N( − DtD≥ zt+T) (4)

where DtD represents the Distance-to-Default, which is defined as

DtD=

ln(A∕D) +
[

μA − δ − 1
2σ

2
A

]

T

σA
̅̅̅
T

√ (5)

This roughly measures the number of standard deviations the firm’s asset value would have to decrease to reach the default point
D.3

1 For ease of notation, in what follows, we drop time subscripts whenever those subscripts are obvious from the context.
2 As pointed out by Vassalou and Xing (2004) the theoretical distribution implied by the Merton model is the normal distribution. On the contrary,

the KMV approach utilizes their own default database to derive an empirical distribution relating the Distance-to-Default to a default probability. In
this regard, unlike the default probability calculated by KMV, the probability measure in Eq. (4) may not correspond to the true probability of
default in large samples.
3 N(− DtD) is then the corresponding implied probability of default and sometimes called the expected default frequency (or EDF).
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To allow for time variation in the volatility terms σA of theMertonmodel described above, we employ the Heston, and Nandi (2000)
GARCH (HN-GARCH) option valuation model. They use the NAGARCH (1, 1) process of Engle and Ng (1993) to model asset value and
its volatility dynamics4

ln At = ln At− 1 + r + λhAt − δ +
̅̅̅̅̅̅̅

hA,t
√

zt (2a)

while an additional stochastic process gives the return variance hA,t:

hA,t = β0 + β1

(
zt− 1 − γ

̅̅̅̅̅̅̅̅̅̅̅

hA,t− 1

√ )2
+ β2hA,t− 1 (2b)

with βi > 0 for i= 0, 1, 2 and λ can be interpreted as the unit risk premium.5 This model assumes that returns are drawn from a normal
distribution with time-dependent volatility. Because of this heteroscedasticity, the unconditional distribution is fat-tailed. To ensure
stationarity of the variance, it is required that the parameters satisfy β1

(
1 + γ2

)
+ β2 < 1. The long-run unconditional variance of the

process Eht is then given by (β0 + β1)/
[
1 − β1γ2 − β2

]
. The GARCH process defined in Eqs. (2a) and (2b) reduces to the standard

homoscedastic lognormal process of the Merton model given in Eq. (2) if β0 = 0 and β2 = 0. In other words, the Merton model is
obtained as a special case.

Following the method used in the derivation of Eq. (5), we obtain the Distance-to-Default under the NAGARCH (1, 1) based option
pricing model:

DtDG =
ln
(
At
Dt

)

+

[

r + λhA,t − δ − 1
2hA,t

]

T
̅̅̅̅̅̅̅
hA,t

√ ̅̅̅
T

√ (5’)

The theoretical probability of default can then be calculated as:

Pdef ,t =N(− DtDG)= − N

⎛

⎜
⎝

ln(At/Dt) +
[

r + λhA,t − δ − 1
2hA,t

]

T
̅̅̅̅̅̅̅
hA,t

√ ̅̅̅
T

√

⎞

⎟
⎠ (4’)

Calculating the default probability from Eq. (4) or Eq. (4’) is theoretically only possible if the Merton model or the Heston-Nandi
model is used to back out At and μA,t or r+ λhA,t from the observed values of equity and its volatility, since the equity in both models is
considered as a call option on the market value of the firm’s assets. Debt is also basically a put option written on the assets of the
borrowing firm. The strike price of both options is equal to the face value of the debt. Then, under the risk-neutral GBM assumption for
asset values as in the Merton model the value of equity as a function of the total value of the firm can be described by the Black-Scholes-
Merton formula:

E= e− δTAN
(
d+ σA

̅̅̅
T

√ )
− De− rTN(d) (6)

where E is the market value of the firm’s equity, N( • ) is the cumulative standard normal distribution function and d is given by

d=
ln(A/D) +

[

r − δ − 1
2σ

2
A

]

T

σA
̅̅̅
T

√ (7)

Note that under the risk-neutral GBM assumption, the drift term parameter μ disappears in the above option pricing formula and it
reduces to the risk-free rate r.

Under the NAGARCH assumption for asset values, the value of equity as a function of the total value of the firm can be described by
the Heston-Nandi formula:

E= e− δTAtP1 − De− rTP2 (8)

with

P1 =
1
2
+
e− r(T− t)

πe− δTAt

∫ ∞

0
Re

[
D− iϕf0(iϕ + 1)

iϕ

]

dϕ

4 Duan (1995) also developed a GARCH option pricing model which also follows this NAGARCH(1,1) process.
5 Note the system of equations in (2a) and (2b) takes the same forms under the physical and risk-neutral measures. The risk-neutral equations

come with λ=-0.5 and modified expressions for zt-1 and γ.
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P2 =
1
2
+
1
π

∫ ∞

0
Re

[
D− iϕf0(iϕ)

iϕ

]

dϕ

where P1 and P2 are the probability terms corresponding to the N
(
d+σA

̅̅̅
T

√ )
and N(d) terms of the Black-Scholes model, Re[] is the real

part of a complex number and f0(iϕ) is the conditional characteristic function of the log asset price using the risk-neutral probabilities
and i is the imaginary number,

̅̅̅̅̅̅̅
− 1

√
.

For this system of two unknowns, the solution requires a system of two equations, one of them being Eq. (6) (The basic Merton
model) or (8) (the HN-GARCH model) and the second being the following option hedge formula which is derived by equating the
equity volatility to the coefficient of the Brownian term obtained by applying Ito’s formula to (6) or (8),

σEEt =
∂E
∂AσAAt (9)

where σE is the volatility of equity returns. However, in practice following the KMVmethod an iterative procedure is often used instead
of solving the system of equations in Eq. (9). Finally, once the system has been solved for A and σA, the parameter μA can be easily
approximated using the values of A.

3.1.1. Variance risk premia
In the presence of variance risk premia, we modify the stochastic processes for A and h as follows:

ln (At)= ln (At− 1)+ r+ λh*t +
̅̅̅̅̅
h*

√
z*t (10)

h*t = β*
0 + β*

1

(
z*t− 1 − γ*

̅̅̅̅̅̅̅̅̅

h*t− 1

√ )2

+ β*
2h

*
t− 1 (11)

where z*t has a standard normal distribution and

h*t = ht / (1 − 2β0ξ)

β*
0 = β0 / (1 − 2β0ξ)

β*
1 = β1 / (1 − 2β0ξ)

γ* = γ − ϕ

ϕ= −

(

λ −
1
2
+ γ

)

(1 − 2β0ξ)+ γ −
1
2

with ϕ and ξ being the prices of equity return risk and variance risk, respectively.6

3.1.2. Distance-to-Capital
So far we have used the book value of total outstanding debt as the liability determining the default barrier for a company.

However, Daly et al. (2019) emphasize that the book value of total outstanding debt may not adequately gauge default risk because the
leverage pattern of financial institutions is different from each other. Hence the DtD approach yields a greater risk score to banks
regardless of their inherent leverage requirement. Also, the DtD employs the bank’s equity as a financial buffer, which is unacceptable
in modern risk management practice. Hence, Daly et al. (2019) suggest that the Distance-to-Capital (DtC) is a useful approach that
overcomes the constraints in the DtD by including the required capital threshold in default risk assessments. For banks, the problem is
beyond a default event and it is whether banks have adequate capital to function or not. Accordingly, we modify our distance to
formulas to incorporate regulatory capital requirements. We start with modifying the Distance-to-Default measure to obtain the
following Distance-to-Capital formula under time-varying volatility set up which will be explained below:

DtCi,t =
ln
(
Ai,t
κDi

)

+

[

μAi − δ − hi,t
2

]

T
̅̅̅̅̅̅
hi,t

√ ̅̅̅
T

√ where κ=
1

1 − PCARi,t
(13)

where Ai,t is the value of bank i’s assets at time t, μAi is the return on the asset, hi,t is the time varying volatility of the returns, Di is the
total liabilities of the bank and T is the average maturity of liabilities. The parameter κ captures the capital requirement and hence

6 The derivation of the above expressions is based on the following pricing kernel (M): M(t) = M(0)
(
At
A0

)

ϕ exp
(
δt+η

∑t
s=1 hs +ξ(ht +1 − hi)

)
(12)

where parameters δ and η govern the time-preference (Christoffersen, Heston, & Jacobs, 2013).
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converts the widely used Distance-to-Default (DtD) to the new Distance-to-Capital (DtC). In calculating κ we take into the account
capital adequacy threshold PCARi for each bank i, considering accounts in pre-default regulatory state.7

3.2. Measuring systemic risk

As in Saldias (2013) and Craig (2020), we calculate the average-distance-to-capital (DtC) as follows:

DtCt =
∑N

i=1
wi,tDtCi,t (14)

where DtCi,t is the Distance-to-Capital of bank i at time t and wi,t is its weight in the average Distance-to-Capital DtCt which may be
calculated using market capitalization ratios.

Armed with the default measure, we next deal with constructing a portfolio of defaults for the whole banking system
(
DtCP

)
using

the total value of the portfolio’s risky debt
(
Dpt =

∑P
i=1Di,t

)
, the equity market value of the portfolio

(
Ept =

∑P
i=1Ei,t

)
, and the implied

assets of the portfolio
(
Apt =

∑P
i=1Ai,t

)
. It is straightforward to modify Eq. (13) to calculate DtCP under the same assumptions. Finally,

we calculate the systemic risk for the banking sector as a spread between DtC and DtCP. If an economy-wide or sector-wide shock affects
the entire banking sector in the US, differences between DtCP and DtC should be positive, implying a systemic risk because the
calculated credit risk for the portfolio is higher than the average credit risk of individual institutions. On the other hand, if the impact
on the banking sector is coming from the failure of a specific institution, such as the collapse of the Lehman Brothers, the differences
between DtC and DtCP should be negative because while DtC will increase with the effect of the specific event, this effect on the
portfolio will be limited.

3.3. Marginal expected shortfall based on distance-to-capital

To determine systemically important financial institutions in the sample, we employ the Marginal Expected Shortfall (MES)
approach suggested by Banulescu and Dumitrescu (2015) using the weekly change of DtC (ΔDtC) for each bank in the sample.8 To
calculate the aggregate default risk of the financial system, theMES relies on the conditional Expected Shortfall (ES). Expected shortfall
is also called ‘conditional’ value at risk, average value at risk, expected tail loss, and super quantile. The expected market default
conditional on the Distance-to-Capital is less than the α quantile according to VaR determines the ES in this setting. In a more general
framework with the distress event defined by a threshold C, the conditional ES for the whole system of the distress event can then be
calculated as:

ESm,t− 1 = − Et− 1
(
ΔDtCi,t |ΔDtCm,t <C

)
(15)

where Et is the expectation operator and C is threshold value equals to VaR (5%). To determine the marginal contribution of an
institution to the risk of the financial system using the ES, we calculate the MES as follows:

MESi,t(C)=
∂ESm,t− 1(C)

∂wi,t
= − Et− 1

(
ΔDtCi,t |ΔDtCm,t <C

)
(16)

where wi,t is the weight for institution i based on its market capitalization ratio. To measure how the systemic risk would change if the
corresponding institution i’s default risk was deleted from the portfolio we calculate the Component Expected Shortfall (CES) as:

CESi,t(C)= − wi,t
∂ESm,t− 1(C)

∂wi,t
= − wi,tEt− 1

(
ΔDtCi,t |ΔDtCm,t <C

)
(17)

where ESm,t− 1(C) =
∑n

i=1CESi,t(C).
In terms of the multivariate GARCH framework, Banulescu and Dumitrescu (2015) showed that CES can be calculated as:

CESi,t(C)= − wi,t
[
σi,tρi,tEt− 1

(
εm,t

⃒
⃒εm,t <C

/
σm,t

)
+ σi,t

̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − ρ2
i,t

√

Et− 1
(
ζm,t

⃒
⃒εm,t <C

/
σm,t

)]
(17)

where εm,t and ζm,t are the standardized residuals obtained from bivariate GJR-GARCH model for ΔDtCm,t and ΔDtCi,t respectively. σm,t
and σi,t represent the time-varying standard deviation for the portfolio and the specific bank respectively and ρi,t is the time-varying
conditional correlation.

7 See Chan-Lau and Sy (2007).
8 Daly et al. (2019) indicated that weekly measurements of extreme financial events are more reliable in reducing noise than daily measurements.

Also, using the weekly change of ΔDtC helps to ensure stationarity condition for the data.
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3.4. Quantile connectedness approach based on distance-to-capital

TheMES approach provides the systemically important banks in the sample, showing the impact of individual banks onmarket risk.
On the other hand, the connectedness between the banks in the sample during the bad market conditions is important as well as
systemic risk. Hence, we employ the quantile connectedness approach suggested by Ando et al. (2022) to determine the connectedness
network among the banks at lower quantiles. The quantile connectedness approach depends on the estimation of the following quantile
vector autoregression (QVAR):

yt = μ(τ) +
∑p

j=1
Φj(τ)yt− j+ut(τ) (19)

where yt is k× 1 dimensional vector of endogenous variable, τ is the quantile and lies between [0, 1] and p is the lag length of the
QVAR model. In Eq. (19) μ(τ) indicates conditional means, Φj(τ) shows coefficients and ut(τ) is residuals with a k× k dimensional
variance-covariance matrix, τ. The moving average representation of the QVAR (p) model is written as follows using Wold’s theorem:

yt = μ(τ) +
∑∞

i=0
Ψi(τ)ut− i (20)

We calculate the H-step ahead Generalized Forecast Error Variance Decomposition (GFEVD) suggested by Koop et al. (1996) and
Pesaran and Shin (1998) to determine the effect of an unexpected shock in the jth variable on the ith variable. Chatziantoniou and
Gabauer (2021) proposed the total spillover index at the τ-th quantile can be calculated as follows:

TSI(τ)=
∑k

i,j=1,i∕=jψ̃
g
ij(τ)

k − 1
(21)

The total directional connectedness that indicates the directional spillover from the i-th variable to the all-other variables j, “TO”, is
represented as follows:

Cgi→j(τ)=

∑k

j=1,i∕=j
ψ̃g
ji(τ)

∑k

j=1
ψ̃g
ji(τ)

(22)

The total directional connectedness “FROM,” that indicates the directional spillover from the all-other variables j to the i-th variable
is represented as follows:

Cgi←j(τ)=

∑k

j=1,i∕=j
ψ̃g
ij(τ)

∑k

j=1
ψ̃g
ij(τ)

(23)

The net total directional spillover is calculated as the difference between the directional spillovers of TO and FROM as follows:

Cgi (τ)=C
g
i→j(τ) − C

g
i←j(τ) (24)

The positive value for the net total directional spillover indicates that i-th variable is the spillover transmitter otherwise it is called a
spillover receiver.

4. Data

Our sample covers large U.S. bank holding companies and investment banks trading in the stock exchange market. It consists of 182
institutions for the 2000-01-01 - 2023-12-31 sample period. Appendix A presents the list of banks covered in the sample. The data set
contains accounting variables such as short-term debt, long-term debt, and the number of shares outstanding and financial variables
such as daily stock prices and the risk-free rates for the sample span. All data comes from DataStream except the risk-free rate and
capital adequacy ratio, which are from Federal Reserve Economic Data (FRED) and the Federal Deposit Insurance Corporation (FDIC).
The accounting data are quarterly as, following in many articles, we employ the cubic spline method to obtain daily values. As in
Vassalou and Xing (2004) and Bharath and Shumway (2008), the face value of debt is calculated as the total of short-term debt plus
half of the long-term term debt. Nevertheless, a problem arises in calculating the face value of the debt for banks as the banking sector
utilizes different balance-sheet practices compared to the non-financial corporate sector, which necessitates a closer look at the
distinction between the short and long-term debt of banks. For example, Harada et al. (2010) argue that maturity is not economically
relevant for banks because, in the case of a bank run, the depositor tends to withdraw even if the maturity of the deposit is long-term.
As in Harada et al. (2010), we calculate the short-term liabilities as the sum of the total deposit and short-term debt. We use the daily
stock prices for each bank as the equity value and the one-year T-bill rate as the risk-free rate.
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5. Empirical results

We start with estimation of the parameters of the NAGARCH model, for which we use the quasi-maximum likelihood method.9

Upon the completion of this stage, we proceed to the estimation of capital shortfall (undercapitalization) probabilities using Eq. (4)
together with Eq. (13) and other dependent equations using daily data to obtain daily undercapitalization probabilities for each bank.
This phase of the work is quite comprehensive, involving iterative procedures to back out unobserved values and return volatility for
operating assets from the observed traded prices of bank stocks via calculating the prices of the GARCH options written on their assets.
In this regard, we closely follow the literature in implementing this stage except that in pricing GARCH options we use Mazzoni
(2010)’s cumulant-based analytical approximation method.10 For example, we calculate the market value of assets for each bank by
iteration as in To calculate the aggregate default risk of the financial system, the MES rCrosbie and Bohn (2019) and Vassalou and Xing
(2004), and convert the daily default probabilities into monthly data by using the maximum value for each month.

The critical step in calculating option prices with a variance risk premium is to estimate the variance risk premium parameter (ξ).
We follow previous the empirical work pricing variance risk premiums. We follow Christoffersen, Jacobs, and Ornthanalai (2013) and
adopt 117,438 for the variance risk premium parameter ξ.11 As demonstrated in Christoffersen, Jacobs, and Ornthanalai (2013), in the
presence of the time-varying GARCH volatility, the model generates time-varying variance-risk premiums despite the variance risk
premium parameter taking a constant value.

After calculating DtC for each bank in the sample, we compute DtC as the weighted average of individual DtC. The next stage
involves calculating the aggregated debt, equity, and asset and estimating DtCP for the bank portfolio. Table 1 presents descriptive
statistics for the average (DtC) and portfolio (DtCP) Distance-to-Capital ratios for 182 banks within the sample. More precisely, Table 1
reports the mean, median, maximum, and minimum values, the standard deviation of Distance-to-Capital for the average of individual
banks and the portfolio. The results in Table 1 indicate that the mean of DtCP is higher than the mean of DtC and this finding is
consistent with the empirical results of Saldias (2013) and Craig (2020). Saldias (2013) points out that DtCP is generally higher than
DtC, hence indicating the lower bound of distress.

Note that the difference between DtC and DtCP gives us the Systemic Risk Indicator (SRI) for the aggregate US banking sector. The
grey area in Fig. 2 shows the difference between DtC and DtCP, which we call the systemic risk indicator. As seen from the figure, at the
beginning of the distress periods, the gap between DtC and DtCP narrows and significantly increases during the financial turmoil
episodes. Hence, a rise in the index indicates higher systemic risk episodes because the Distance-to-Capital for the portfolio is higher
than that for the weighted average of individual banks. The result depicted in Fig. 1 emphasizes four significant periods in which the
systemic risk in the banking sector significantly increased, namely during the year 2000, the GFC of 2007–09, 2011–12, during 2020,
and 2023. These findings are consistent with the theoretical predictions as the mentioned dates correspond to heightened fragility
periods in the US financial sector. For instance, at the beginning of the sample, systemic risk increased due to the dot-com bubble in the
stock market. Although the origin of the dot-com bubble is not the financial sector, the substantial drop in the stock market affected the
U.S. banking sector at the beginning of the 2000s, leading to rises in the systemic risk indicator. In this vein, Bagliano and Morana
(2014), Wu et al. (2021) find that the dot-com crisis led to financial fragility in the US. The second period, as mentioned above, is the
global financial crisis, which was a systemic risk event in the banking sector with bankruptcies of several financial firms, including
banks, during this 2007-09 episode. The rising systemic risk of the 2011–12 period is consistent with the European debt crisis. We also
determine an episode corresponds to the beginning of the COVID-19 global pandemic. This finding is consistent with the empirical
results of Rizwan et al. (2020). Note that the findings shown in Fig. 1 indicate that systemic risk significantly increased in the early
stages of 2023 and reached levels similar to those seen during the global financial crisis. It is consistent with theoretical expectations
because the systemic risk increased significantly in the U.S. banking sector in 2023, mostly because of Silicon Valley Bank and
Signature Bank failing. The financial system experienced increased volatility and unpredictability as a result of this high-profile
bankruptcy. Our systemic risk indicator also increased in 2002, 2004, and 2016. These dates correspond to Sarbanes-Oxley Act, the
changing net capital rule by the SEC, the Chinese sell-off, and Brexit, respectively.

The time-varying volatility-associated variance risk premium is also a contributor to systemic risk. Given its richness, our GARCH
option pricing model likely yields more accurate default and systemic risk indicators during high-volatility and variance risk premium
episodes. In other words, the time-varying volatility and variance risk premium features better translate increasing default proba-
bilities during the high volatility clustering episodes to increasing systemic risk indicators. In this context, while Bianconi et al. (2015)
and Wu et al. (2021) identify a direct impact of the VIX on systemic risk, Stolbov et al. (2018) reveal that systemic risk increases when
the economic policy uncertainty is high. Also, Patro et al. (2013) documents that correlations between stock return increases due to the
idiosyncratic risk of banks during times of stress, leading to systemic risk in the banking system. In this context, the results highlighted
in Fig. 2 show that our systemic risk indicator increases when the implied volatility for the market (VIX) is high and hence our results
are consistent with the empirical results in the literature (the Spearman correlation between SRI and VIX is 0.590).

9 For details see Christoffersen, Jacobs, and Ornthanalai (2013) and the references cited therein.
10 For a detailed explanation, see Kenc and Cevik (2021).
11 In recent years, there has been a great deal of interest in incorporating variance risk premiums into financial valuation models. Financial
economists use different methods to estimate this premium, ranging from a joint estimation of variance risk premiums and return-risk premium
approach to a sequential approach. See Babaoglu et al. (2018), Christoffersen, Jacobs, and Ornthanalai (2013) and Papantonis (2016) among others.
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5.1. Measuring model accuracy

A well-designed systemic risk indicator should be capable of providing information for the financial distress events that occur on
future dates. Hence, we first examine whether our systemic risk indicator meets this criterion, and then compare it to the Cleveland Fed
systemic risk indicator.12 We start with predicting recessions in the U.S. economy. To this end, Fig. 3 presents monthly standardized
systemic risk indicators with the NBER recessions. Then, we create a recession dummy variable, taking on the value one in months of
the NBER recessions dates and zero otherwise.

Comparing our empirical results to the Cleveland Fed’s systemic risk indicator reveals differences in time patterns over the sample
period. There are at least four reasons behind the differences. First, the number of banks in the Cleveland Fed systemic risk indicator is
lower than in our systemic risk indicator. Second, while the Cleveland Fed uses a distance-to-default measure in calculating a systemic
risk indicator, we employ distance-to-capital. Third, the Cleveland Fed relies on the standard Merton model to calculate distance-to-
default. Finally, our time-varying volatility model also considers the priced variance risk case. The contribution of the small number of
banks in the sample may be negligible. However, the conceptual differences in modeling systemic risk between our way presented in
this paper and others can have significant impact on results. Using the distance-to-capital rather than a basic distance-to-default
measure is a more accurate approach to measuring the default risk of financial institutions since it considers the required capital

Table 1
Descriptive statistics.

DtC DtCP

Mean 0.484 0.579
Median 0.471 0.568
Maximum 0.972 1.235
Minimum − 0.097 − 0.138
Std. Dev. 0.205 0.246

Spearman Rank Correlation

DtC 1.00 
DtCP 0.990a 1.000

Notes: The table gives descriptive statistics such as mean, median, minimum,
maximum, and the standard deviation for distance-to-capital (DtC) scores for the
weighted average of individual banks and portfolio. In addition, the table gives
the Spearman rank correlation coefficient between DtC scores for the weighted
average of individual banks and portfolio.

a Indicates statistically significant correlation at 1% level.

Fig. 1. Systemic Risk Indicator
Notes: The black line represents the daily weighted average of the individual distance-to-capital (DtC) for each bank, while the red line illustrates the
distance-to-capital for the overall portfolio (DtCP

)
. The shaded areas indicate the systemic risk indicator, calculated as the difference between DtC

and DtCP.

12 The Cleveland Fed systemic risk indicator starts from the beginning of 2008.
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threshold in default risk assessments. The standard Merton model does not capture the real-world phenomenon of volatility clustering.
Indeed, Kenc et al. (2021) and Kenc and Cevik (2021) show that the standardMertonmodel underestimates the default risk during high
volatility periods. The findings presented in Fig. 3 provide a vivid illustration of this pattern. Interestingly, at the start of 2023, our
systemic risk index showed a notable jump that was mostly caused by Silicon Valley Bank’s failure. The collapse of Silicon Valley Bank,
which was the 16th-largest bank in the U.S. as of March 2023, prompted serious questions about systemic risk in the banking sector.

Next, we employ logistic regression and the Receiver Operating Characteristics (ROC) analyses. Implementing them involves
treating systemic risk indicators as independent variables and the dummy variable corresponding to events as the dependent variable.
The ROC analysis suggests that our model’s systemic risk indicators are more capable of predicting recessions than the Cleveland Fed
model. Fig. 4 depicts the ROC curves while Table 2 reports the AUC values for the respective ROC curves. Results from this figure and
table indicate that our systemic risk indicator outperforms the Cleveland Fed systemic risk indicator in predicting the recessions in the
U.S. Our model’s AUC value of 0.845, very close to 1, testifies to this. Moreover, this score is statistically higher than the Cleveland Fed
systemic risk indicator at the 5% level. This finding indicates that our systemic risk indicator provides better information about future

Fig. 2. Systemic Risk Indicator and VIX
Notes: The black line represents the daily VIX. The red line illustrates the systemic risk indicator, calculated as the difference between DtC and DtCP.

Fig. 3. Comparison of results with the Cleveland Fed Systemic Risk Indicator
Notes: The red line represents the monthly Cleveland Fed’s systemic risk indicator. The black line illustrates our systemic risk indicator, calculated
as the difference between DtC and DtCP. The shaded areas are the NBER recessions.
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recessions.13

Following Allen et al. (2012) and Giglio et al. (2016), we also examine the prediction performance of our systemic risk indicator for
economic activity in the US. In this vein, we use the Chicago Fed National Activity Index (CFNAI) and employ bivariate time-varying
parameter VAR (TVP-VAR) modeling to identify the impact of an unexpected shock in the systemic risk indicator to the CFNAI.14 Two
lags are determined as optimal lag length according to model information criteria.

Fig. 5 shows the one, three, and six periods ahead responses of the CFNAI to a one standard deviation shock in the SRI. Given
estimated time-varying coefficients over the sample, we calculate monthly impulse responses. The time-series average of the stochastic
volatility for each series determines the time-varying impulse responses. The impulse represents the impacts of average-sized structural
shock on the VAR system. Fig. 5 indicates that the responses of the CFNAI to an unexpected shock in the SRI are negative for all periods
during the sample period. These results show that our systemic risk index is successful in predicting economic activity over the 6
months ahead, with the impact of our systemic risk indicator on the CFNAI in the short term being evident. Specifically, the magnitude
of calculated responses reached its highest level in 2008. This finding emphasizes the importance of systemic risk on the national
activity during the GFC.

We also compare our systemic risk indicator to the Kansas City Fed Financial Stress Index and the Chicago Fed National Financial
Conditions Index. Fig. 7 presents the comparison outcomes. Fig. 6 shows that our systemic risk indicator yields comparably good
performance in tracking recession periods as those financial stress and conditions indices. The quality of performance of our systemic
risk indicator in tracking recessions is somewhat surprising because while the systemic risk indicator is only related in its construction
to the banking sector, while the financial stress and conditions indices also reflect developments in the bond market, stock market, and
other asset prices. Hence, one expects that those in-dices have greater explanatory power in predicting recessions than systemic risk
indicators. Also, our systemic risk indicator stands to be a successful early warning indicator because it successfully anticipates all
recessions in the US.

Fig. 4. ROC Curves for SRI and SRI-CF
Notes: The black line represents the ROC curve of Cleveland Fed’s systemic risk indicator. The red line illustrates the ROC curve of our systemic
risk indicator.

Table 2
Area under the ROC curves.

AUC χ2-stat p-value

SRI 0.845 4.630 [0.031]
SRI-CF 0.730  

Notes: The AUC values indicate the area under the ROC curve. χ2-Stat gives the test statistic where the null
hypothesis indicates that the AUC value for SRI is not different from the AUC value of SRI-CF and p-values
show the probability of rejecting the null hypothesis.

13 The AUC value of our systemic risk indicator for the whole sample is 0.803.
14 14The stochastic volatility-based TVP-VAR model proposed by Primiceri (2005) and updated by Nakajima (2011) has been widely used in the
literature to obtain time-varying impulse responses between the variables. Nakajima (2011) suggested that the TVP-VAR model allows for the
estimation of the prospective time-varying structure of the economy as flexible and accurate. In the model, a sample is taken from the posterior
distribution of the TVP-VAR model using the Markov Chain Monte Carlo (MCMC) algorithm, and hence we use M = 10,000 samples where the first
1000 samples are just used as a burn-in period to specify prior distributions.
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5.2. Determining systemically important institutions

After establishing the usefulness of distance-to-capital in measuring systemic risk, we deter-mine systematically important banks
during the sample period. To this end, we adopt the component expected shortfall (CES) approach (Banulescu & Dumitrescu, 2015),
calculating the individual contribution of each bank to the US financial systemic risk. Precisely, this work involves measuring the
systemic risk for the US financial system and then assessing the contribution of individual financial institutions to the systemic risk at
each point in time. Following the CES estimation procedure explained in Banulescu and Dumitrescu (2015), we forecast the

Fig. 5. Responses of CFNAI to an Unexpected SRI Shock
Notes: The figure illustrates the time-varying responses of the Chicago Fed National Activity Index to an unexpected shock in the systemic risk
indicator. The red line represents the one-period-ahead response of the Chicago Fed National Activity Index to this shock. The blue line shows the
three-period-ahead response, while the black line indicates the six-period-ahead response to the unexpected shock in the systemic risk indicator.

Fig. 6. Systemic Risk Indicator, Financial Stress Index and Financial Conditions Index
Notes: The figure shows Kansas City Fed Financial Stress Index (KCFSI), Chicago Fed National Financial Conditions Index (NFCI) and our systemic
risk indicator (SRI). The shaded areas are the NBER recessions.
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contribution of respective institutions to this risk over a given period. Needless to say, this step is crucial for government regulation and
supervision of large financial firms and markets to address systemic risks.

We estimate expected shortfalls for the end of each year from 2006 to 2023 (given in Table 3). To find out the risk profiles of
financial institutions at the end of each year, we use the weekly change of distance-to-capital for each bank in the sample and then the
weighted average distance-to-capital for the financial system as a whole by considering market capitalization ratios as weights.

We present the systematically important banks in the sample according to their component expected shortfall values in Tables 3
and 4. We display the 25 banks (the sum of the percentage CES of the 25 banks is higher than 90%) contributing the most to the total
default of the financial system for the sample periods indicated in Table 3. The result reveals that Bank of America, Citigroup, Wells
Fargo& Co, Goldman Sachs, the US Bancorp and JPMorgan were systemically important banks before the GFCwith their contributions
to the systemic default risk of 75.80% in 2006. The top ten systemically important banks contributed at least 78% of the overall default
risk between 2007 and 2009, reaching 86.3% in 2009. Note that the contribution of Goldman Sachs, Bank of America and Citigroup to
the overall default risk exceeded 43% in 2007. While the contribution of each three financial institutions (JP Morgan, Wells Fargo &
Co, and the US Bancorp) to the overall default risk was higher than 10% in 2008, the four financial institutions (Bank of America,
Goldman Sachs, Citigroup, and Wells Fargo & Co) came to the fore as a systemically important. During the European debt crisis in
2011, Wells Fargo& Co came to the forefront of systemic risk, and 21.61% of the overall systemic default risk was due to this financial
institution. As of 2020, due to the global Covid-19 pandemic, JP Morgan, Bank of America, and Morgan Stanley have been identified as
the most systemically important financial institutions, and 28.02% of the overall systemic default risk has been due to them. Note that
Silicon Valley Bank has been ranked among the top 25 systemically significant banks since 2019. It initially held the 21st position in
2019, advanced to 13th in 2020, and further climbed to 11th by 2021. Its continued presence on this critical list in 2022 highlighted its
growing influence within the U.S. banking sector. The summary of the CES results points out that Bank of America, Morgan Stanley, JP
Morgan, Wells Fargo & Co, Citigroup, Goldman Sachs, US Bancorp, Bank of New York, Truist Financial, PNC Financial Services, State
Street Corp., Fifth Third Bancorp, and Regions Financial rank among the top thirteen systemically important financial institutions. On
the other hand, their rank and contribution to the overall default risk of these financial institutions vary during the sample period.
These results are not surprising since the financial institutions were classified as distressed as well as global systemically important
financial institutions (GSIFI) by the Financial Stability Board15 during the Global Financial Crisis of 2008–09.

5.3. Tail connectedness among systematically important financial institutions

After identifying the top thirteen systematically important financial institutions, we also employ a quantile connectedness
approach to determine the relationship among the financial institutions when distance-to-capital is low. We note that the quantile
connectedness approach is related to systemic risk measurement as a strand of the systemic risk literature uses this method to
determine the systemic risk indicator (Mbarki et al., 2022; Jena et al., 2022, see). We estimate the QVAR model using the weekly
change of the distance-to-capital for the 13 financial institutions. In the estimation, we set the optimal lag length at 6 per the Schwarz
information criterion. Using generalized error variance decomposition and considering a 10-day forecast horizon, we perform a
directional spillover analysis at a 5% quantile level based on the forecast error variances. We present the analysis results in Table 4.

The results in Table 4 show that the total connectedness among the financial institutions is high during elevated default risk periods
as the overall spillover index is 95.4%. The finding points out that the 13 financial institutions identified in the previous subsection

Fig. 7. The Dynamic Total Connectedness Index
Note: The figure indicates the dynamic total spillover index that is obtained from Quantile spillover analysis at a 5% quantile level.

15 The Financial Stability Board, in consultation with the Basel Committee on Banking Supervision (BCBS) and national authorities, has identified
global systemically important banks (G-SIBs) since 2011.
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Table 3
CES% based rankings of banks.

CES% 2006 CES% 2007 CES% 2008 CES% 2009 CES% 2010 CES% 2011 CES% 2012 CES% 2013 CES% 2014

BAC 20.977 GS 17.924 WFC 16.974 GS 19.420 WFC 17.516 WFC 21.613 WFC 23.220 WFC 25.238 WFC 17.934
C 15.368 BAC 13.628 JPM 12.586 WFC 15.811 C 14.666 USB 11.749 C 13.450 C 11.008 BAC 12.696
WFC 14.050 C 12.215 USB 10.331 BAC 10.788 BAC 11.436 JPM 11.513 USB 10.882 USB 10.018 C 11.574
GS 10.290 USB 10.220 GS 9.877 C 9.987 JPM 9.621 C 8.712 BAC 10.801 BAC 9.311 GS 9.569
USB 9.351 JPM 8.179 BAC 7.264 JPM 9.440 USB 9.512 PNC 6.681 JPM 8.048 GS 7.189 USB 9.463
JPM 5.770 MS 6.119 PNC 5.391 USB 7.459 GS 8.887 GS 5.678 GS 7.502 PNC 5.451 JPM 6.208
PNC 4.534 BK 4.940 TFC 5.022 BK 5.138 PNC 6.358 BAC 4.997 PNC 5.130 JPM 5.074 PNC 5.687
TFC 3.136 WFC 4.734 BK 4.905 MS 3.797 BK 2.057 BK 2.859 MS 3.260 MS 3.794 MS 4.326
MS 1.924 TFC 4.446 C 3.730 PNC 3.011 MS 1.920 MS 2.168 BK 2.816 BK 2.922 TFC 2.061
STT 1.465 PNC 3.169 MS 2.091 STT 1.536 NYCB 1.397 STT 1.874 FITB 2.136 FITB 2.030 BAP 1.923
ZION 1.205 STT 2.150 STT 1.617 TFC 1.266 STT 1.274 BAP 1.738 STT 1.696 NYCB 1.827 BK 1.690
FITB 1.161 FITB 1.089 CFR 1.153 NYCB 1.118 FITB 1.180 FITB 1.686 TFC 1.598 STT 1.779 STT 1.566
NYCB 1.075 NYCB 0.905 CBSH 1.137 BAP 0.821 CFR 0.991 NYCB 1.250 NYCB 1.279 MTB 1.151 NYCB 1.114
KEY 1.074 BAP 0.899 VLY 0.978 MTB 0.693 BAP 0.975 MTB 1.075 BAP 0.862 CMA 1.051 FITB 0.988
CMA 0.996 CMA 0.883 NYCB 0.831 FITB 0.627 CMA 0.960 CFR 0.994 CMA 0.669 HBAN 0.981 CMA 0.880
MTB 0.754 MTB 0.598 FITB 0.665 CFR 0.610 HBAN 0.912 CMA 0.874 HBAN 0.591 BAP 0.816 CFR 0.690
BAP 0.539 KEY 0.594 MTB 0.625 CMA 0.507 MTB 0.877 CBSH 0.809 KEY 0.492 CFR 0.777 HBAN 0.672
RF 0.495 RF 0.538 CCBG 0.570 CBSH 0.368 KEY 0.674 KEY 0.806 PB 0.307 KEY 0.646 MTB 0.605
CCBG 0.473 CFR 0.519 WABC 0.527 BOKF 0.331 CBSH 0.623 TFC 0.774 MTB 0.299 CBSH 0.558 KEY 0.590
CBSH 0.451 HBAN 0.511 UMBF 0.513 HBAN 0.314 TFC 0.553 HBAN 0.723 CCBG 0.273 ZION 0.490 CBSH 0.449
FHN 0.379 CBSH 0.446 BOH 0.496 KEY 0.285 ZION 0.552 HWC 0.466 CBSH 0.272 BOKF 0.489 ZION 0.444
VLY 0.374 ZION 0.409 KEY 0.487 HWC 0.280 WABC 0.421 ZION 0.465 FHN 0.254 TFC 0.321 SVB 0.392
SNV 0.357 ASB 0.326 CMA 0.454 TRMK 0.278 FHN 0.421 BOKF 0.436 WABC 0.240 RF 0.309 BOKF 0.357
ASB 0.305 NRIM 0.310 FULT 0.448 BOH 0.271 RF 0.412 VLY 0.376 CBU 0.239 PB 0.286 OZK 0.309

CES% 2015 CES% 2016 CES% 2017 CES% 2018 CES% 2019 CES% 2020 CES% 2021 CES% 2022 CES% 2023

WFC 19.863 WFC 19.183 BAC 19.301 WFC 25.886 BAC 14.540 JPM 14.179 BAC 15.527 BAC 15.78 JPM 14.835
C 11.073 JPM 10.224 WFC 12.932 BAC 14.536 WFC 13.140 BAC 13.844 JPM 9.019 JPM 12.12 BAC 12.092
BAC 8.640 GS 9.816 JPM 9.589 USB 11.326 JPM 12.876 MS 9.065 PNC 8.005 WFC 10.09 MS 11.383
GS 8.304 BAC 9.358 USB 9.359 JPM 8.952 PNC 8.337 TFC 7.784 MS 7.929 PNC 7.902 WFC 8.147
JPM 8.256 USB 8.689 C 8.029 C 6.432 USB 7.514 USB 7.750 WFC 7.841 USB 6.604 GS 7.145
USB 8.049 C 7.827 PNC 6.511 TFC 5.928 C 6.785 C 7.079 TFC 7.696 GS 5.142 PNC 6.265
PNC 6.094 PNC 4.309 MS 4.965 PNC 4.672 GS 5.737 GS 6.726 GS 7.015 MS 4.498 USB 5.124
MS 4.291 BK 4.136 BK 3.113 GS 4.501 MS 5.460 PNC 6.527 USB 6.153 TFC 3.541 TFC 4.668
BK 3.441 TFC 1.934 TFC 2.821 MS 2.313 TFC 4.598 WFC 5.777 C 3.678 C 3.337 C 3.489
TFC 2.865 STT 1.435 BAP 2.391 BK 1.128 BK 1.855 BK 2.296 BK 1.902 BK 2.327 BK 1.625
STT 1.678 FITB 1.432 FITB 1.641 FITB 1.117 HBAN 1.235 STT 1.331 SVB 1.654 FITB 1.809 HBAN 1.343
FITB 1.197 HBAN 1.230 STT 1.538 BAP 0.774 FITB 1.157 FITB 1.235 FITB 1.596 HBAN 1.763 FITB 1.074
NYCB 1.024 MTB 1.140 CMA 1.227 PB 0.773 STT 1.122 SVB 1.083 HBAN 1.475 CBSH 1.534 STT 1.028
MTB 0.928 NYCB 1.130 MTB 1.051 MTB 0.748 MTB 0.932 HBAN 0.938 STT 1.299 CFR 1.31 MTB 0.857
HBAN 0.667 KEY 0.768 HBAN 0.987 CBSH 0.711 CBSH 0.850 MTB 0.781 FFIN 1.124 STT 1.291 CFR 0.856
BAP 0.645 BAP 0.711 KEY 0.830 WBS 0.579 CFR 0.812 KEY 0.687 CBSH 0.887 FFIN 0.996 WBS 0.851
CMA 0.642 CMA 0.655 NYCB 0.732 KEY 0.547 KEY 0.755 CBSH 0.636 KEY 0.886 SVB 0.955 CBSH 0.769
CBSH 0.582 CBSH 0.630 GS 0.687 CFR 0.497 FFIN 0.707 CMA 0.623 CFR 0.805 MTB 0.951 WTFC 0.696
CFR 0.466 CFR 0.626 CBSH 0.677 STT 0.443 CMA 0.678 BAP 0.614 CMA 0.775 PB 0.845 BOKF 0.657
ZION 0.426 SVB 0.534 ZION 0.648 HBAN 0.421 NYCB 0.632 CFR 0.523 MTB 0.636 KEY 0.813 FBP 0.641
SVB 0.413 FFIN 0.510 WTFC 0.472 CMA 0.365 SVB 0.594 ZION 0.447 ZION 0.495 CBU 0.631 FFIN 0.603
KEY 0.389 ZION 0.509 WBS 0.468 FFBC 0.343 BAP 0.561 WBS 0.431 WTFC 0.488 CMA 0.627 FCNCA 0.567
WBS 0.348 WBS 0.490 CFR 0.465 WTFC 0.331 ZION 0.541 RF 0.386 BOKF 0.483 RF 0.621 PB 0.526
RF 0.324 UMBF 0.449 BOKF 0.396 NYCB 0.330 CBU 0.523 BOKF 0.342 OZK 0.474 NYCB 0.537 SSB 0.523
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JPM: JP Morgan Chase & Co., BAC: Bank of America, WFC: Wells Fargo & Co, C: Citigroup, USB: US Bancorp, PNC: PNC Financial. Services., TFC: Truist Financial, FITB: Fifth Third Bancorp, MTB: M&T
Bank, CBSH: Commerce Bancshares, GS: Goldman Sachs, STT: State Street Corporation, KEY: Keycorp, CMA: Comerica, MS: Morgan Stanley, BK: Bank of New York Mellon, HBAN: Huntington Bancshares,
CFR: Cullen/Frost. Bankers, NYCB: New York Community Bancorp, BAP: Credicorp, ZION: Zions Bancorp., BOKF: BOK Financial Corporation, RF: Regions Financial Corporation, SVB: SVB Financial
Group, WBS: Webster Financial, PB: Prosperity Bancshares, First Financial Bankshares Inc., WTFC: Wintrust Financial, CBU: Community Financial System, FHN: First Horizon, VLY: Valley National,
Capital City Bank Group Inc., WABC: Westamerica Bancorp., ASB: Associated Banc-Corp, BOH: Bank Of Hawaii, OZK: Bank OZK, HWC: Hancock Whitney, UMBF: UMB Financial, FBP: First BanCorp.,
FCNCA: First Citizens Bancshares, FFBC: First Financial Bancorp., FULT: Fulton Financial, SSB: SouthState Corporation, SNV: Synovus Financial, TRMK: Trustmark, NRIM: Northrim Bancorp.
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Table 4
Spillover analysis results.

JPM BAC WFC C USB PNC TFC FITB KEY MTB CBSH GS STT FROM

JPM 12.72 8.36 7.72 8.23 6.77 6.55 5.92 6.80 7.49 7.94 6.39 7.29 7.82 87.28
BAC 7.83 11.98 7.48 7.95 7.20 7.61 6.20 6.93 7.88 7.61 6.91 7.02 7.41 88.02
WFC 7.03 8.24 11.88 7.62 7.85 7.66 6.55 7.10 7.09 7.46 7.14 7.12 7.27 88.12
C 8.02 8.31 7.47 11.92 7.26 7.10 6.15 6.97 7.08 7.43 6.64 7.52 8.12 88.08
USB 6.59 7.78 7.63 7.33 12.49 7.85 6.73 7.53 7.07 7.62 7.30 6.74 7.34 87.51
PNC 7.03 7.84 7.83 7.38 7.69 11.68 6.66 7.01 7.23 7.71 7.59 7.00 7.36 88.32
TFC 8.09 7.54 7.39 7.65 7.22 7.18 10.36 7.22 7.78 8.14 7.08 7.03 7.33 89.64
FITB 6.43 7.67 7.41 7.28 8.27 7.69 6.66 11.36 7.17 7.79 7.54 7.14 7.59 88.64
RF 7.53 7.96 7.31 7.64 7.48 7.17 6.32 7.45 11.26 7.92 7.08 7.08 7.82 88.74
MS 7.37 7.91 7.31 7.60 7.42 7.12 6.58 7.06 7.39 12.47 7.33 6.98 7.46 87.53
GS 6.84 7.64 7.09 7.17 7.49 7.85 6.92 7.13 7.36 7.81 11.89 7.33 7.47 88.11
BK 7.69 7.81 7.47 8.11 7.23 7.33 6.36 6.64 7.18 7.48 7.24 11.69 7.77 88.31
STT 6.97 7.65 7.19 7.62 7.31 7.35 6.44 7.36 7.30 7.69 7.18 7.41 12.52 87.48

TO 87.41 94.72 89.30 91.56 89.18 88.47 77.48 85.18 88.03 92.60 85.41 85.67 90.77 1145.78

NET 0.13 6.71 1.18 3.48 1.67 0.14 − 12.17 − 3.46 − 0.72 5.07 − 2.70 − 2.64 3.30 TSI:
95.48%

NPT 5 12 6 10 7 5 0 3 4 10 3 3 10

Note: The column “FROM” shows received spillovers from others. The column “TO” indicates transmitted spillover to others. NET is the net spillover that is the difference between TO and FROM. NPT is
the number of positive net pairwise spillovers for each variable. BAC: Bank of America Corp, JPM: JPMorgan Chase& Co, WFC: Wells Fargo& Co, USB: US Bancorp, TFC: Truist Financial, C: Citigroup Inc,
GS: Goldman Sachs Group, PNC: PNC Financial Services Group, STT: State Street Corp, FITB: Fifth Third Bancorp, CBSH: Commerce BCSH, KEY: Key Corp, MTB: M&T Bank Corporation.
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generate 95.4% of total forecast errors, implying that the systemic risk is very high among these financial institutions during extreme
distress periods. In this context, the elevated default risk of one financial institution spill over to another financial institution in the
sample. The results also reveal that JP Morgan, Bank of America, Wells Fargo, Citibank, the US Bancorp, PNC Financial, M&T Bank
Corp. And State Street Corp. Are net default risk spillover transmitters, whereas the rest of those 13 financial institutions are net default
risk spillover receivers. Furthermore, while Bank of America ranks first as a net risk spillover transmitter among the financial in-
stitutions, Truist Financial is the first as a net risk spillover receiver.

We also carry out dynamic spillover analysis using a rolling-window approach for the QVARmodel in which the window size is 200.
To this end, we employ a generalized variance decomposition approach to determine the variance forecast error in each subsample.
The dynamic spillover index presented in Fig. 7 shows that the total connectedness among the financial markets is very high in each
subsample (above 95%). During the heightened financial stress periods such as the GFC, the European Debt crisis, and the global
Covid-19 pandemic, the index reached 100%, implying that these financial institutions explain all forecast error variances pointing to
elevated high systemic risk.

Fig. 8 depicts the time-varying net total directional connectedness results. The figure determines whether a financial institution is a
net risk transmitter, or receiver varies across the subsamples. Comparing the results reported in Table 4 and presented in Fig. 8 reveals
a contrasting outcome: Goldman Sachs is a net risk receiver according to the results in Table 4 while it is a net risk during some
subsamples such as the GFC, and the Covid- 19 global pandemic in Fig. 8. It reflects that the connectedness among the financial in-
stitutions represents time-varying properties.

Finally, we visualize the network topology among the financial institutions in Fig. 9 according to the difference between values in
the row and column for each pairwise financial institution in Table 4. For instance, examining the relationship between Bank of
America and Truist Financial, we see that although Bank of America receives 6.20 spillovers from Truist Financial, it also transmits
7.24 spillovers to the latter. Regarding the spillover relationship between Truist Financial and Bank of America, as Bank of America is a
net transmitter, the arrow in Fig. 9 points in that way, from Bank of America to Truist Financial.

The financial institutions in the blue circle are the net transmitter, while the yellow-colored ones imply that the financial in-
stitutions are the net receiver, and their size increases according to the number of net pairwise transmitters. Accordingly, while Bank of
America is the chief risk spillover transmitter during high default risk episodes, the Truist Financial is the major risk spillover receiver.
Furthermore, in line with the results in Table 4, the results in Fig. 9 show that Citibank, Wells Fargo, JPM, US Bank, PNC Financial,
State Street Bank, and M&T Bank are determined as net default risk transmitters among the 13 most systemically important financial
institutions over the sample period.

Fig. 8. The Dynamic Net Total Directional Connectedness
Note: The figure indicates the time-varying net total directional connectedness results. Positive values in the figure indicate that the bank acts as a
net spillover transmitter, whereas negative values suggest that the bank is a net spillover receiver.
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These results hold significant implications for policymakers and market regulators, highlighting the need for closer monitoring of
institutions like those mentioned. Enhanced scrutiny is essential to prevent a recurrence of concerns like those that emerged following
the collapse of Silicon Valley Bank.

6. Conclusions

Unlike in the past, the dissemination of information through financial technologies is now considerably faster, leading to more
immediate incorporation into asset prices. While this rapid information transfer enhances market efficiency during stable periods, it
can exacerbate the adverse effects of panic during market downturns and heightened tension. This shows the need for accurate
measurement of systemic risk in the market. An index that accurately reflects market developments would enable regulators to
implement appropriate policies and allow market professionals to develop effective strategies for investment and hedging. Historical
events, such as the 1998 LTCM crisis, highlight the severe consequences of failing to capture the true extent of financial risk, which led
to a costly bailout operation by the Fed amounting to over three billion dollars. Similarly, despite legal limitations, the American
government, through the Fed and FDIC (Federal Deposit Insurance Corporation), has provided full coverage for depositors’ losses to
maintain financial stability. In line with these considerations, this study introduces a systemic risk measure for the US banking sector
and identifies systemically risky banks using CES and connectedness methodologies.

We develop a comprehensive framework to estimate systemic risk indicators and examine it for US banks and their contributions.
The framework extends the conventional structural credit risk model to capture volatility clustering and priced variance risk premia.
Our structural GARCH option pricing model also makes novel use of distance-to-capital to capture the under capitalization of bank
balance sheets. We test the explanatory and forecasting power of the framework for systemic risk by applying it to US banking and
market data, from the beginning of 2000 to the end of 2023. This period covers prominent heightened systemic risk episodes, including
the GFC of 2007–09, the COVID-19 pandemic and recent turmoil in the U.S. banking sector. The testıng procedure involved the
application of various most recent and popular financial and econometric methods to measure and predict overall systemic risk and
individual systemic risk of each bank. These procedures include the difference between the portfolio and the average distance-to-

Fig. 9. Connectedness Network Results
Note: The figure shows the network topology among the financial institutions according to the difference between values in the row and column for
each pairwise financial institution in the spillover analysis result. The financial institutions in the blue circle are the net transmitter, while the
yellow-colored ones imply that the financial institutions are the net receiver, and their size increases according to the number of net pairwise
transmitters.
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capital (a measure of overall systemic risk), ES (contribution of each bank), ROC (prediction of systemic risk), and tail connectedness
analysis using a QVAR model.

Our general model successfully identifies the most systemically risky banks during heightened systemic risk episodes, especially the
GFC of 2008–09. Further, our expected shortfall framework determines each bank’s contribution with an outcome of 25 banks ac-
counting for more than 95 per cent of the estimated default of the financial system and with a correct identification of the institutions
labelled as Systemically Important Financial Institutions at the height of the GFC by the Financial Stability Board. Finally, comparing
our results to the competitor approaches, such as the Cleveland Fed systemic risk indicator, we find that our approach offers significant
improvement in predicting recessions, systemic risk and default events, and systemically important financial institutions.

Although the empirical analysis in this study is grounded in a robust methodological framework and offers a thorough examination,
several limitations warrant consideration for future research. Future studies might explore incorporating additional stylized facts of
financial time series, such as long memory and asymmetric volatility, alongside volatility clustering in constructing systemic risk
index. Additionally, applying a similar framework to other economies could provide valuable insights. While our investigation focused
on the US banking sector, considering factors such as economic development level, market capitalization, and market depth, exploring
systemic risk in other economies may help reveal its patterns on a global scale. Increasing the frequency of CES calculations or adapting
it to a time-varying framework could offer dynamic insights into its behavior during significant market developments. Finally, a
fruitful future research direction would be to allow jumps in stock prices and liquidity premium.
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Appendix

Table A1
List of the Banks

Bank Name Ticker Bank Name Ticker Bank Name Ticker Bank Name Ticker

JP MORGAN CHASE & CO. JPM COLONY BANKCORP CBAN RENASANT RNST BANK OF MARIN
BANCORP

BMRC

BANK OF AMERICA BAC COMERICA CMA SANDY SPRING
BANCORP

SASR BANK OF SOUTH
CAROLINA

BKSC

WELLS FARGO & CO WFC COMMERCE BCSH. CBSH SIMMONS 1ST.NAT.’A’ SFNC BAR HARBOR
BANKSHARES

BHB

CITIGROUP C CREDICORP BAP SOUTHSTATE SSB BROOKLINE BANCORP BRKL
PROSPERITY BCSH. PB CULLEN FO. BANKERS CFR SYNOVUS FINANCIAL SNV C&F FINL. CFFI
US BANCORP USB CVB FINANCIAL CVBF TRUSTMARK TRMK CAMDEN NAT. CAC
PNC FINL.SVS.GP. PNC FIRST BANCORP PRICO. FBP UMB FINANCIAL UMBF CAP.CITY BK.GP. CCBG
TRUIST FINANCIAL TFC FIRST CTZN. BCSH FCNCA UNITED BANKSHARES UBSI CAPITOL FED.FINL. CFFN
FIFTH THIRD BANCORP FITB FIRST FINL.BANC. FFBC VALLEY NATIONAL VLY CHEMUNG FINL. CHMG
HUNTINGTON BCSH. HBAN FIRST FINL.BKSH. FFIN WAFD WAFD CITIZENS HLDG. CIZN
KEYCORP KEY FIRST HORIZON FHN WEBSTER FINANCIAL WBS CITY HLDG. CHCO
M&T BANK MTB FIRST MERCHANTS FRME WESBANCO WSBC CIVISTA BANCSHARES CIVB
REGIONS FINL.NEW RF FNB FNB WINTRUST FINANCIAL WTFC CNB FINL. CCNE
EAST WEST BANCORP EWBC FULTON FINANCIAL FULT WSFS FINANCIAL WSFS CODORUS VLY.BANC. CVLY
AMERIS BANCORP ABCB HANCOCK WHITNEY HWC ZIONS BANCORP. ZION COMMUNITY TRUST

BANC.
CTBI

ASSOCIATED BANC-CORP ASB HEARTLAND FINL.USA HTLF 1ST SOURCE SRCE CONNECTONE BANCORP CNOB
ATLANTIC UNION BANK. AUB INDEPENDENT BANK

MASS.
INDB ACNB ACNB CTZN & NTHN CZNC

BANK OF HAWAII BOH INTERNATIONAL BCSH. IBOC AMERICAN NAT.BKSH. AMNB DIME COMMUNITY
BANC.

DCOM

BANK OZK OZK NEW YORK COM
BANCORP

NYCB AMERISERV FINL. ASRV EAGLE BANC. EGBN

BANNER BANR OLD NATIONAL
BANCORP

ONB AMES NAT. ATLO EVANS BANCORP EVBN

BOK FINL. BOKF PAC.PREMIER BANC. PPBI ARROW FINANCIAL AROW FARMERS NAT.BANC FMNB
CATHAY GEN.BANCORP CATY PARK NATIONAL PRK AUBURN NAT.

BANCORP.
AUBN FIDELITY D&D BANC. FDBC

COMMUNITY FIN. SYSTEM CBU POPULAR BPOP BANCFIRST BANF FINANCIAL
INSTITUTIONS

FISI

Bank Name Ticker Bank Name Ticker Bank Name Ticker Bank Name Ticker
FIRST BANCORP FNLC HMN FINANCIAL HMNF PATRIOT NAT.BANCORP PNBK TRUSTCO BANK NY TRST

(continued on next page)
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Table A1 (continued )

Bank Name Ticker Bank Name Ticker Bank Name Ticker Bank Name Ticker

FIRST BUSEY BUSE HOPE BANCORP HOPE PEAPACK-GLADSTONE
FINL.

PGC UNITED BANCORP OH. UBCP

FIRST CAP. FCAP HORIZON BANCORP HBNC PENNS WOODS BANC. PWOD UNITED BANCSHARES UBOH
FIRST CMTY. FCCO INDEPENDENT BANK IBCP PEOPLES BANC.OF

NOCA.
PEBK UNITY BANCORP UNTY

FIRST COMMONWEALTH
FINL.

FCF LAKELAND BANCORP LBAI PEOPLES BANCORP PEBO UNIVEST FINANCIAL UVSP

FIRST COM. BANKSHARES FCBC LAKELAND FINANCIAL LKFN PLUMAS BANC.QUINCY
CAL.

PLBC WASHINGTON TST.
BANC.

WASH

FIRST FINANCIAL THFF LCNB LCNB PREMIER FINANCIAL PFC WEST
BANCORPORATION

WTBA

FIRST MID BANCSHARES FMBH MACATAWA BANK MCBC PROVIDENT FINL.HDG. PROV WESTAMERICA
BANCORP.

WABC

FIRST NAT.CAP.STK. FXNC MERCANTILE BANK MBWM QCR HDG. QCRH MORGAN STANLEY MS
FIRST OF LONG ISLAND FLIC MID PENN BANCORP MPB REP. BANCORP OF

KENTUCKY
RBCAA GOLDMAN SACHS GP. GS

FIRST US BANCSHARES FUSB NATIONAL
BANKSHARES

NKSH RIVERVIEW BANCORP RVSB BANK OF NEW YORK
MEL.

BK

FIRST UTD. FUNC NBT BANCORP NBTB S & T BANCORP STBA STATE STREET STT
FLUSHING FINANCIAL FFIC NORTHEAST BANK NBN SB FINANCIAL GROUP SBFG AMB FINL. AMFC
FNCB BANCORP FNCB NORTHRIM BANCORP NRIM SEACOAST BKG.OF FLA. SBCF CADENCE BANK CADE
FRANKLIN FINL.SVS. FRAF NORTHWEST

BANCSHARES
NWBI SIERRA BANCORP BSRR CARVER BANCORP CARV

GERMAN AMERICAN
BANC.

GABC NORWOOD FINANCIAL NWFL SOUTHERN FIRST BCSH. SFST CENTRAL PAC.FINL. CPF

GLEN BURNIE BANCORP GLBZ OCEANFIRST FINL. OCFC SOUTHERN MO.
BANCORP

SMBC CF BANKSHARES CFBK

GREAT STHN.BANCORP GSBC OFG BANCORP OFG SOUTHSIDE
BANCSHARES

SBSI COLUMBIA BKG.SYS. COLB

GREENE COUNTY BANC. GCBC OHIO VALLEY BANC OVBC STOCK YARDS BANCORP SYBT COMMUNITY WEST
BANC.

CWBC

HANMI FINANCIAL HAFC OLD POINT FINANCIAL OPOF SUMMIT FINL.GP. SMMF GLACIER BANCORP GBCI
HERITAGE COMMERCE HTBK OLD SECOND BANCORP OSBC TIMBERLAND BANCORP TSBK SVB FINANCIALS SVB
HERITAGE FINANCIAL HFWA ORRSTOWN FINL.SVS. ORRF TOMPKINS FINANCIAL TMP  
HINGHAM INSTN.FOR

SVG.
HIFS PATHFINDER BANCORP PBHC TRICO BANCSHARES TCBK  

Data availability

Data will be made available on request.
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