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Abstract
Partial least squares structural equation modeling (PLS-SEM) is a popular method of 
data analysis in marketing, information systems research, and related fields. Unfortu-
nately, the literature on PLS-SEM contains a number of misstatements that ascribe char-
acteristics to PLS-SEM that it does not possess. In our study, we consider why these mis-
statements continue to be made and reinforced. We show how inaccuracies, omissions, 
repetitions of past misconceptions, and the introduction of additional misconceptions 
lead to the so-called Woozle effect. As an example, we use perhaps the most serious mis-
conception about PLS-SEM namely its alleged suitability for estimating the parameters 
of reflective measurement models. The Woozle effect is a cumulative process by which 
falsehoods become established as fact, and the self-correcting mechanisms of science are 
suspended. Through a literature review, we identify a number of factors that are likely to 
have contributed to the Woozle effect in the PLS-SEM literature. For the Woozle effect 
to disappear, researchers need to acknowledge that PLS-SEM, in its current incarnation, 
is not suitable for scientific work with reflective measurement models.

Keywords  Reflective measurement · Composite model · Measurement error · 
Consistent PLS · Scientific self-correction · Belief perseverance

1  Introduction

Partial least squares structural equation modeling (PLS-SEM) is a method that 
has gained increasing popularity in marketing, information systems, and related 
fields of business research [cf. 39].1 It is widely characterized as a technique for 

Extended author information available on the last page of the article

1  We recognise that there is some debate on whether it is correct to refer to PLS-SEM as a structural 
equation modeling technique [88, 90]. We agree with Rönkkö et al. that, whatever its technical correct-
ness, the use of the PLS-SEM term has been a net negative because it has misled researchers to incor-
rectly assume that PLS-SEM and covariance-based structural equation modeling methods (e.g. such 
as that implemented in LISREL [63], lavaan [91] or Mplus [78]) are interchangeable. Addressing this 
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causal-predictive research [11]. Researchers use it as a tool for estimating the rela-
tionships between latent variables, i.e., unobserved variables that were only indi-
rectly measured by means of a set of indicator variables [45].

Unfortunately, the PLS-SEM literature contains a number of misconceptions, 
ascribing characteristics to PLS-SEM that it does not possess [8, 37, 88–90, 97, 98, 
101, 102]. Probably the most severe misconception is PLS-SEM’s alleged suitabil-
ity to estimate the parameters of reflective measurement models. Although many 
authors claim that PLS-SEM can handle reflective measurement models [cf. 34, 45], 
this claim has never been supported by inductive or deductive reasoning, and it has 
been known for more than four decades that it is actually false [17]. To be clear: 
PLS-SEM is not suitable for estimating reflective measurement models. It estimates 
the parameters of composite models, not reflective measurement models. [see e.g. 
16, 18, 54, 94]. If analysts interpret the PLS-SEM output as the coefficients of a 
reflective measurement model, they will end up with biased estimates that “may be 
wide of the mark” [16, p. 51]. As a result, analysts using PLS-SEM may find effects 
that do not exist [20, 100], may not find effects that do exist [97, 101], or may even 
find effects of the opposite sign [51, 98].

While many studies have already shown that there are misconceptions in the 
PLS-SEM literature [cf. 37, 88, 89, 90], the question remains why do these miscon-
ceptions exist in the first place, and why do these misconceptions continue to be dis-
seminated and persist in the literature?

In this paper, we propose a mechanism that has already served other domains of 
social science to explain the occurrence and dissemination of misconceptions: the 
so-called Woozle effect [35]. In the remainder of our article, we make readers aware 
of the Woozle effect and its frequent companion, belief perseverance. To illustrate, 
we zoom in on the misconception that PLS-SEM is suitable for estimating reflec-
tive measurement models and identify contributing factors that facilitate the emer-
gence of the Woozle effect. One implication of this analysis is that researchers using 
PLS-SEM for reflective measurement models are operating as if scientific-appearing 
but false claims were true, a characteristic of pseudoscience [81]. Awareness of the 
mechanisms at hand can help prevent other Woozle effects in the future.

2 � Background

2.1 � The Woozle effect

The phenomenon referred to as the Woozle effect, also known as evidence by 
citation, arises when (a) a source, or sources, make claims that are unfounded or 
that, at best, do not have sufficient evidence to support them, and (b) the claims 

debate is outside the specific scope of this article. Nevertheless, readers should understand that we con-
tinue to use the term PLS-SEM here for consistency with the relevant literature only, and our use here 
should not be taken as an endorsement of the usefulness of the term.

Footnote 1 (continued)



717

1 3

Beware of the Woozle effect and belief perseverance in the PLS‑SEM…

gain credibility merely because they are frequently cited, not because they are 
true. The term was coined by Beverly D. Houghton in 1979 at an annual meet-
ing of the American Society of Criminology based on a Winnie-the-Pooh story 
[35]. A.A. Milne, in his beloved children’s book Winnie-the-Pooh, describes 
how Winnie and Piglet, while believing they are hunting increasing numbers of 
an imaginary creature called a Woozle, are actually walking in circles, following 
the tracks they themselves have left behind (as visualized in Fig. 1). The latter, 
which they believe are woozle tracks, provide them with all the evidence they 
need to support and strengthen their belief in the existence of the woozle. Gelles 
and Straus [36] use the Woozle story to illustrate how poor practice in research 
and self-referential studies cause error and bias. An unchallenged citation of the 
source hiding competing well-argued and qualified views with phrases such as 
“Every one knows … ”, “It is clear that … ”, “It is obvious that … ”, “It is gener-
ally agreed that … ” gives way to the Woozle effect; if we hear something often, 
we assume it is true [32]. The statements are made more certain than the original 
author intended by omitting essential qualifiers from the original article [21]. The 

Fig. 1   Piglet and Winnie go in circles hunting a woozle—but the tracks they follow are merely their own 
(illustration by Ernest Howard Shepard, 1926)
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Woozle effect can also be caused by the failure to trace references to their original 
source in a research study [64].

To sum up, the Woozle effect is a cognitive bias that can cause individuals to 
believe a statement or conviction to be accurate because of repeated citation rather 
than because they are presented with actual evidence or critical analysis. According 
to Dutton [21], the Woozle effect is a manifestation of confirmation bias and is asso-
ciated with belief perseverance and groupthink. Woozling is the process by which 
research is misrepresented, creating myths and misconceptions [79].

2.2 � Belief perseverance

In the original text, Winnie-the-Pooh learns from Christopher Robin that he has cir-
cled a bush several times, and thus realizes the truth, which is that he has only been 
following his own tracks. Unfortunately, in the practice of research, arriving at the 
right insight is not guaranteed. Rather, even when researchers challenge prior state-
ments and citations, and even when they provide empirical evidence of flaws in the 
research process, beliefs may continue to prevail over all doubt. This is the stage of 
belief perseverance.

Belief perseverance can be interpreted as a form of a researcher’s subjective bias 
that is potentially involved in all phases of the research process. Management sci-
ence, just as many other sciences, has been largely criticized for such subjective bias 
that “is systematically introduced into research findings through the particular ana-
lytical perspectives, methodologies, and value assumptions that researchers choose 
to impose upon data and inject into theoretical interpretations, and that such bias 
distorts empirical reality, creatively transforming it through the perceptual filtering 
which is an ineradicable part of the research process” [2, p. 260].

This subjective bias, either conscious or unconscious, can lead to a never-ending 
and self-reinforcing cycle as other researchers begin to cite biased processes and 
results. Citation circles emerge reinforcing and repeating known or unknown errors. 
Ultimately, for example, constraints or assumptions are defined away and neglected 
so that error and bias becomes an incremental part of the research. Belief is trans-
formed into pseudo-facts.

If the Woozle effect remains unconscious from researchers’ points of view, those 
researchers will just continue the biased loop without recognizing their error, thus 
strengthening the self-enforcement effect.

In contrast, when researchers become aware of their error, different options 
emerge. Different theoretical frameworks seem to be useful to analyse the behav-
ioral alternatives for researchers becoming aware of error. Real options theory 
analyses the value of different options when individuals have to make irrevers-
ible investments (such as time and effort) under uncertainty (such uncertainty of 
research results and publications). Real options include the options to grow or 
contract, to defer, switch or abandon an investment [109]. Transferred to research-
ers’ options, PLS-SEM software developers’ and literature-based advocates’ 
commitments to the approach involve personal investments and self-sacrifices 
[73] comprising intrinsic and extrinsic resources such as emotions, intellectual 
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endeavor, time, and social status [69]. Researchers faced with evidence that 
contradicts their existing beliefs about certain aspects of their methodological 
approach may: choose to be overly dismissive of the ideas and data upon which 
the evidence stands [79] and engage in defensive activity and further commit-
ments to the research approach, or; they may reduce their commitment to that 
research path, defer commitment to the path, or exit and switch to a new path.

Alternatively, Hirschman’s exit, voice, and loyalty framework [56] may serve 
as a further guideline for the analysis. When individuals observe a decrease in 
quality regarding an organization, a political systems or any other grouping, such 
as research groups, the individual’s options are to exit from this group, to voice 
dissatisfaction for potential change or to stay loyal and to further support the 
group.

Based on these two frameworks, we subsequently discuss the different behav-
ioral options of researcher’s reactions when recognizing error according to their 
likelihood of occurrence: 

1.	 stay loyal and to further invest or commit to the research path;
2.	 defer exit from the research path until more information is available, with a pos-

sible switch to a new path in the future;
3.	 timely exit and switch to a new path.

Usually, scientists are very committed to specific theories, methods or positions, 
since otherwise they may be disregarded or ignored by their peers in the scien-
tific community [77]. Therefore, a very likely first option for researchers recog-
nizing an error is the conscious pursuit of the Woozle cycle. They would stay 
loyal to the research group and further commit their research towards their pre-
vious path  – even if an error has been recognized. In this sense [77, p.  B-614; 
emphasis in the original] states: “Thus, … the scientist may consider ‘rational’ 
not to give up his favored theses at the first signs of ‘negative’ evidence, no mat-
ter how strong that evidence may appear at the time. Indeed, he may even persist 
in his scientific beliefs for years in the face of considerable opposition”. As a 
consequence, belief perseverance may occur (what [68] describes as pathologi-
cal science). As researchers are social beings, belief perseverance may even be 
strengthened if a group of researchers reinforces biased research [110]. Research-
ers’ desire for harmony and conformity could then lead to groupthink [61] sup-
porting the decision to continue the Woozle path.

A second option could be the deferral of the decision to exit from the Woozle 
cycle. In this way, a researcher gains more time to leave the existing path or para-
digm when errors are acknowledged. When researchers acknowledge errors, it is 
unlikely that they will immediately renounce an earlier path, but they will start 
looking for alternatives. Once such an alternative is available, they may declare 
earlier knowledge as invalid [67]. In this way, Kuhn [67] suggests a transition 
period from one paradigm in crisis to a new paradigm. The search for alternatives 
will take time, so that the exit decision from the Woozle path is deferred until a 
new path is found.
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A third possibility, which is the most desirable from a scientific point of view, 
would be for researchers to acknowledge their errors (e.g., in theories, methods, 
and/or results) and to exit the existing path in order to search for a new, less errone-
ous path of science. However, Mitroff [77, B-614] found in his study that an over-
whelming response regarding how researchers actually conduct their research was 
related to researchers’ own commitments. He states “a scientist has to be ‘commit-
ted’ to (and sometimes even ‘biased’ in favor of) his favorite theory, pet hypothesis 
or position if it is to be given a fair hearing by the scientific community” [B-614 77 
emphasis in the original]. Therefore, this option is probably the least likely option 
and probably the most difficult one from an individual researcher’s point of view.

The latter two options are likely to be accompanied by “voice”, i.e., with a debate 
on the quality of the current research path and simultaneous search for solutions to 
change the situation. As Kuhn [67, 90–91] puts it: “Confronted with anomaly or 
with crisis, scientists take a different attitude towards existing paradigms, and the 
nature of their research changes accordingly. The proliferation of competing artic-
ulations, the willingness to try anything, the expression of explicit discontent, the 
recourse to philosophy and to debate over fundamentals, all these are symptoms of 
a transition”.

2.3 � Moving from science to pseudoscience

The Woozle effect and belief perseverance—particularly if they occur in combina-
tion—are far from harmless for scientific progress. Kuhn [31] associates the Woo-
zle effect with the mechanisms that generate pseudoscience. Pseudoscience shares 
procedures, norms, and habitus with science, but does not contribute to knowledge 
generation, because it is decoupled from the search for truth or utility.

Figure  2 illustrates a path toward pseudoscience made up of three phases: ini-
tialization of the Woozle effect, Woozle effect in full swing, and belief perseverance. 
Remarkably, this path can emerge without a researcher consciously doing anything 
bad. The point of departure is typically a normal step in the research process, namely 
that researchers report findings accompanied by a qualification. For instance, this 
could be statement in the form “Finding F holds under Condition C.”

A Woozle effect can be initiated when subsequent researchers refer to the find-
ings, but without the qualification. For instance, they would simply state that “Find-
ing F holds.” Making claims without evidence, committing logical errors, drawing 
premature conclusions, omitting inconvenient details, overgeneralizing findings, or 
even deliberately lying are other ways to initiate a Woozle effect. Sometimes, the 
cause can be poor research practice, but not always.

The Woozle effect gets into full swing once the subsequent researchers are cited 
in later publications, and the unsubstantiated claims or findings without qualification 
gain the status of generalizable “truth” by virtue of being cited in the scientific record.

An important part of the scientific enterprise and a way to counteract the Woo-
zle effect is the correction of error. Researchers do this by raising objections and 
“setting the record straight” [see 106]. This may mean redoing empirical studies 
and correcting previous findings. However, this scientific self-correction can be 
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seriously hampered if scientists engage in belief perseverance. This means that they 
continue to promulgate the wrong findings despite the evidence to the contrary. In 
its most severe form, they even do this against their better judgment.

While the right track in Fig. 2 ultimately leads to pseudo-science, researchers who 
started to follow this track do not have to stay on this track. In every encounter with 
the Woozle effect, they have the option to change their position and thus switch tracks.

3 � An objection: PLS‑SEM does not estimate reflective measurement 
models

Arguably, the most severe misconception of PLS-SEM is its alleged suitability for 
estimating reflective measurement models. This misconception seems like a perfect 
instance of an established Woozle, in combination with belief perseverance. This 

Objection

Original 
finding with a 
qualification

A researcher reports findings, 
and he or she may provide 
qualifications to the findings.

A second researcher refers to 
the first researcher, but without 
the qualification.

Other researchers will then cite 
both reports, and the findings 
without the qualification gain the 
status of generalizable “truth”.

Some researchers provide 
conceptual, logical, and/or 
empirical counter-evidence 
against the findings without the 
qualification.

Some researchers keep on 
promulgating the findings without 
the qualification despite the 
counter-evidence.

Science

Fig. 2   Moving from science to pseudoscience: when belief perseverance joins the Woozle effect
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particular Woozle is rather easily shown to be false, for instance by means of algebra 
[cf. 16, 20, 101], scenario analyses [cf. 51, 97, 98] or Monte Carlo simulations [cf. 
19, 100, 108]. However, this woozle is so deeply ingrained in the beliefs of many 
PLS-SEM researchers and those who rely on their research results that attempting to 
correct the falsehood seems like something of a Sisyphean task. The woozle is such 
an entrenched factoid that even when it has been killed by the evidence it refuses to 
die: it becomes in essence a ‘zombie Woozle’.2 Owing to the severity of this Woozle 
effect, we look at it in more detail.

3.1 � What PLS‑SEM does

PLS-SEM estimates composite models [see the proof by 18], i.e., it creates construct 
scores as composite variables [71, 107]. Based on a Monte Carlo simulation, also 
Hair et al. [44, p. 618] conclude that PLS-SEM is actually a “consistent [estimator] 
of composite-based models”.

Composite models represent the situation in which a construct is made up of its 
observed variables [14, 52]. For a construct and three observed variables, a compos-
ite would take the form of Fig. 3. The model equation would be as follows [cf. 45]:

This composite model contains four variables: the three observed variables x1 to x3 
and the composite � . Model parameters include the three weights w1 to w3 (next to 
the variances and covariances of the observed variables).

However, there is a large body of literature that takes a different stance by declar-
ing that PLS-SEM estimates reflective measurement models [cf. 15, 26, 34, 70, 82, 
93, 104, 117]. Hair et al. [45, p. 16] state this with crystal clarity: “Researchers can 
include reflectively and formatively specified measurement models, which PLS-
SEM estimates without any limitations.”

(1)� = w1 ⋅ x1 + w2 ⋅ x2 + w3 ⋅ x3

Fig. 3   A composite model with 
three observed variables

ξx2

x1

x3

w1

w2

w3

2  Krugman [66] coined the term “zombie idea—an idea that should have been killed by evidence, but 
refuses to die.”
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Reflective measurement models typically assume that a latent variable is the only 
common cause of a set of observed variables or scale items. “Reflective measure-
ment represents the classical approach to measuring an underlying concept. Scale 
items are assumed to be a function of the underlying variable and measurement 
error. Items of this type intercorrelate to the extent they are mutually dependent on 
an underlying variable” [57, p. 132]. Fornell et al. [29, pp. 316–317; typo corrected, 
equation numbers added] describe reflective measurement in the following formal 
terms using true score reasoning3:

If O is the observed measure, T, the true score and e an error component, it is 
well-known that the reflective specification is:

with the assumptions that

For a latent variable and three observed variables, a reflective measurement model 
would take the form of Fig. 4. The model equations would be as follows4:

(2)O = T + e

(3)E(e) = 0

(4)Cov(T , e) = 0

(5)Cov
(

ei, ej
)

= 0

(6)x1 = �1 ⋅ � + �1

(7)x2 = �2 ⋅ � + �2

(8)x3 = �3 ⋅ � + �3

Fig. 4   A reflective measure-
ment model with three observed 
variables

ξ x2

x1

x3

λ1

λ2

λ3

ε1

ε2

ε3

3  Borsboom [6] argues that classical test theory (with its true score concept) is heavily dependent on an 
operationalist view, and presents a latent variable theory that is more realist in nature. For the purposes 
of the current discussion, however, the philosophical differences between classical test theory and latent 
variable theory are irrelevant.
4  For simplicity, we assume that the observed variables are mean-centered.
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This reflective measurement model contains seven variables: The three observed 
variables x1 to x3 , the latent variable � , and the three measurement errors �1 to �3 . 
Model parameters include the three loadings �1 to �3 (next to the variances of the 
latent variable and the measurement errors). As a consequence of the assumptions 
formulated in Eqs. 4 and 5, the three measurement errors �1 to �3 are orthogonal to 
the latent variable and each other:

Obviously, the composite model differs from the reflective measurement model (see 
Fig. 3 vs. Fig. 4). It differs with respect to the underlying assumptions and the num-
ber of variables. If J is the number of observed variables, then a reflective measure-
ment model will contain 2J + 1 variables: one latent variable, J observed variables, 
and J error terms. In contrast, a composite model only contains J + 1 variables: one 
composite and J observed variables. This difference is obfuscated in the PLS-SEM 
literature because the measurement errors are typically not depicted in the graphi-
cal representation of reflective measurement models. Not surprisingly, the results 
obtained differ as well: Applying PLS-SEM in a situation in which the world func-
tions according to a reflective measurement model introduces “substantial research 
design bias” [44, p. 626]. In conclusion, there are two conflicting statements in the 
PLS-SEM literature5: 

1.	 PLS-SEM estimates composite models.
2.	 PLS-SEM estimates reflective measurement models.

Because composite models are different from reflective measurement models, the 
two statements cannot be true at the same time. Of these two statements, the second 
can easily be identified as the false one, since it has neither algebraic nor empirical 
support, but plenty of evidence to the contrary (see Table 1).

3.2 � What the PLS‑SEM literature says

Originally, the PLS-SEM literature was clear about PLS-SEM’s suitability for esti-
mating reflective measurement models: PLS-SEM is consistent at large, i.e., given 
the model is correctly specified PLS-SEM parameter estimates converge in prob-
ability to the true parameter if next to the sample size also the number of indicators 
tend to infinity [60, 115, 116]. Thus, there is a clear qualification to the suitability of 
PLS-SEM, namely, “the model builder must have reliable data on a large number of 
indicators for each latent variable” [115, p. 34]. Empirical research shows that if an 

(9)cov
(

�, �1
)

= cov
(

�, �2
)

= cov
(

�, �3
)

= 0

(10)cov
(

�1, �2
)

= cov
(

�2, �3
)

= cov
(

�3, �1
)

= 0

5  We are referring here always to PLS-SEM Mode A, which uses correlation weights to create construct 
scores [85].
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analyst wanted a parameter value to be within two decimal places of the true value, 
he or she would need more than 20 reliable indicators [115].

The Woozle effect in the PLS-SEM literature was initialized by dropping the 
qualification that a large number of reliable indicators are needed. One influential6 
early publication which partially dropped this important qualification and thereby 
contributed to the Woozle effect is [26], which stated that PLS Mode A is “most 
suitable” (p. 441) for reflective indicators, while neglecting to explain the qualifica-
tion made by Wold. Moreover, it visualized PLS-SEM Mode A as a reflective meas-
urement model like the one in our Fig. 4 (see their Figure 5). While [26] mentioned 
later that “[i]f the theoretical model is correct and the indicators are valid measure-
ments of the constructs (despite low correlations) the LISREL estimate would be 
correct whereas the PLS estimate would be biased downward” (p. 450), for casual 
readers of [26], Wold’s qualification effectively got discarded.

Several years later, the Woozle effect got into full swing: Gefen et al. [34, p. 30; 
emphasis discarded] explicitly stated that “PLS supports two types of relationship, 
formative and reflective,” and Hair et al. [46, p. 141] explained with absolutely no 
qualification that “PLS-SEM can handle both formative and reflective measurement 
models.” The notion that PLS-SEM is suitable for estimating reflective measure-
ment models appears now to be so well-established that many authors refrain from 
providing any evidence, arguments, or even citations for this claim.

Most likely, the dissemination of the Woozle was also facilitated by the release of 
user-friendly graphical PLS-SEM software. For instance, the manuals of PLS-Graph 
[9], SmartPLS [48], and VisualPLS [30] mention the respective software’s feature 
to estimate reflective measurement models, but do not present any qualification that 
PLS-SEM requires a large number of reliable indicators for that purpose.

Many researchers objected against this view, and demonstrated that PLS-SEM is 
not suitable for estimating reflective measurement models, because it delivers incor-
rect predictions [cf. 8, 20, 37, 44, 55, 88, 97, 98, 101]. Many of these papers provide 
scientific reasoning, proof, and/or empirical evidence such that the truth status of the 
statement PLS-SEM is not suitable for estimating a reflective measurement model 
can be considered sufficiently supported.

Unfortunately, despite of the plethora of scientific research demonstrating the 
unsuitability of PLS-SEM for estimating reflective measurement models, many 
authors continue to disseminate the false claim that PLS-SEM is suitable for esti-
mating reflective measurement models [e.g. 70, 93]. It is particularly worrying that 
even current editions of leading textbooks on PLS-SEM promulgate this false claim: 
“Researchers can include reflectively and formatively specified measurement mod-
els, which PLS-SEM estimates without any limitations” [45, p. 16]. Overall, we can 
see clear evidence in the PLS-SEM literature of belief perseverance.

Tables  1, 2, and 3  show how different claims about PLS-SEM’s suitability for 
estimating reflective measurement models have meandered through the PLS-SEM 
literature. Moreover, they  indicate which form of reasoning was employed by the 
authors. We distinguish between three kinds of reasoning: scientific, anecdotal, and 

6  In January 2024, this paper had more than 6,000 citations according to Google Scholar.
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flawed. As types of scientific reasoning, we found cases of deductive reasoning such 
as proofs or chains of arguments, cases of inductive reasoning using empirical evi-
dence, and citations to scientific work that used deductive or inductive reasoning. 
Anecdotal reasoning comprises statements without any explanations or arguments, 
hearsay such as referral to unspecified ‘advocates’, or citations to work of this kind. 
Flawed reasoning includes statements based on wrong conclusions or invalid find-
ings as well as citations to flawed work.

By and large, three different claims can be distinguished: (1) PLS-SEM requires 
many reliable indicators to be suitable for estimating reflective measurement mod-
els    (for the according evidence base, see Table  1). (2) PLS-SEM is suitable for 
estimating reflective measurement models   (for the according evidence base, see 
Table 2). (3) PLS-SEM is not suitable for estimating reflective measurement models  
(for the according evidence base, see Table 3).

Table 2 clearly shows that there is no scientific support for the second claim, that 
PLS-SEM is suitable for estimating reflective measurement models. In contrast to 
literature regarding the first and third claims  (see Tables 1 and 3, respectively), the 
literature claiming that PLS-SEM is suitable for estimating reflective measurement 
models has never provided any form of scientific reasoning, a situation that runs 
counter to demands for methodological researchers to provide strong evidence to 
support claims they make regarding research methods [111].

3.3 � Factors facilitating the emergence of the Woozle effect

The initialization of the Woozle effect of PLS-SEM’s alleged suitability for esti-
mating reflective measurement models cannot be attributed to a single publication. 
Rather, there were several circumstances that contributed to the emergence of the 
Woozle effect. Reason [84] developed a model to explain the breakdown of a com-
plex socio-technical system such as methodological research, the so-called swiss 
cheese model. Based on the observation that accidents often result from a variety of 
delayed-action human failures committed long before a state of emergency is rec-
ognized, this model identifies as the central cause the adverse confluence of many 
causal factors, each of which is necessary but singly insufficient to cause a system 
failure.

The scientific enterprise can be understood as a system that tries to produce truth 
[7]. A number of scientific norms, principles, and standards have been established 
to help the scientific enterprise safeguard its role as a producer of truth and weigh 
out falsehoods, facilitating what is generally understood as good research practices. 
For instance, Merton [75] formulated the norm of disinterestedness, among oth-
ers, which asks scientific institutions to act for the benefit of a common scientific 
enterprise instead of personal gain. As Fig.  5 shows, scientific norms, principles, 
and standards can be compared to slices of swiss cheese containing holes. While in 
most cases, falsehoods are intercepted by at least one slice, there can be instances in 
which a falsehood passes all safeguarding mechanisms of science.

In this spirit, we identify a number of factors that have facilitated the emer-
gence of the Woozle effect in the PLS-SEM literature: Prioritizing dissemination, 
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academic dependency, model misrepresentation, flawed reasoning, lack of referenc-
ing, and belief perseverance.

Prioritizing dissemination On many occasions, statements made in the PLS-SEM 
literature suggest that maximising the dissemination of the method was the prior-
ity, rather than what may have been better for the disinterested pursuit of the truth. 
For example, instead of stating outright the truth that PLS-SEM is not consistent 
unless there is a large number of reliable reflective indicators, the inventor of PLS-
SEM, H. Wold, ascribed consistency to PLS-SEM with a qualification: “PLS rests 
content with consistency [ … ], albeit in the qualified sense of consistency at large” 
[116, p. 28]. The term “consistency at large”, which H. Wold introduced especially 
for this occasion, can be regarded as a clear euphemism. Had H. Wold opted for 
the correct characterization of PLS-SEM as an inconsistent estimator for reflective 
measurement models, much confusion could have been avoided. However, at the 
same time, it is likely that such a clear qualification would have hindered the dis-
semination of the method. “Although not all useful estimators are unbiased, virtually 
all economists agree that consistency is a minimal requirement for an estimator. The 
Nobel Prize-winning econometrician Clive W. J. Granger once remarked, ‘If you 
can’t get it right as n goes to infinity, you shouldn’t be in this business.’ The implica-
tion is that, if your estimator of a particular population parameter is not consistent, 
then you are wasting your time” [118, p.  169]. Euphemistic terminology such as 
‘consistency at large’ appears to have no other obvious purpose than to gloss over 
the true characteristics of PLS-SEM, in an attempt to ensure wide dissemination of 
the method. It appears that the wish for dissemination of one’s ideas outweighed the 
critical scientific virtue of “a kind of utter honesty”, the principle that if there are 
“[d]etails that could throw doubt on your interpretation”, then they “must be given, 
if you know them” [24, p. 11].

Academic dependency Several of H. Wold’s Ph.D. students, in particular B. Hui 
and T. Dijkstra, have worked extensively on the characteristics of PLS-SEM. The 
dependencies and academic ties may have led to a more favorable assessment of 
PLS-SEM than might otherwise have been expected. B. Hui emphasizes the ‘close 
personal relationship with professor Wold’ [59, p. iii], and his dissertation is quite 
uncritical about PLS-SEM’s ability to estimate reflective measurement models. For 
instance, there is a rather positive description of the term ‘consistency at large’: “An 
index estimating a latent variable is consistent at large if (i) this index is constructed 
as a function of all the available observed indicators generated by this latent variable; 
and (ii) as the number of available observed indicators generated by this latent vari-
able increases, the index approaches the underlying unobserved case value of this 
generating latent variable” [59, p. 14]. In contrast, T. Dijkstra, who obtained his doc-
torate somewhat later than B. Hui, took a more critical view of PLS-SEM: “‘Con-
sistency at large’ is a phrase due to H. Wold and it means that the PLS estimators 
will not be consistent [ … ] (indeed, they may be wide of the mark [ …])” [16, p. 51]. 
Still, Dijkstra [16, p. 42] leaves an obviously untenable assumption of his promo-
tor uncommented: “H. Wold assumes furthermore that the measurement errors are 
uncorrelated with each other and with all latent variables.” In fact, unless perfectly 
reliable indicators are available, PLS-SEM cannot produce uncorrelated indicator 
residuals. Without the dependency inherent in a master-apprentice relationship, it 
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would have been easier to express even more fundamental critique. Obviously, we 
are aware that the explosion of growth in the use of PLS-SEM in business research 
is also due to more recent authors who have no obvious academic dependencies or 
ties with H. Wold. However, it is equally clear that the majority of work supportive 
of PLS-SEM in the early development of the method was conducted by those within 
the academic network of H. Wold.

Model misrepresentation Visual elements play an important role in forming atti-
tudes and beliefs [76]. This mechanism has played a critical role in the dissemination 
of the misconception that PLS-SEM is suitable for estimating reflective measure-
ment models. Many figures in a large portion of literature on PLS-SEM [1, 12, 34, 
38, 41, 46, 82, 92, 105, 113, 115, 116, cf.] as well as the graphical user interface of 
many software implementations (in particular, PLS-Graph, SmartPLS, SPAD-PLS, 
and VisualPLS) make readers and analysts believe that PLS-SEM estimates a reflec-
tive measurement model, although PLS-SEM in fact estimates a composite model 
[51]. Figure 6 shows a typical visualization of a ‘reflective’ measurement model in 
PLS-SEM and contrasts it with the reflective measurement model that PLS-SEM 
pretends to estimate and with a composite model expressed in terms of the Hense-
ler–Ogasawara specification [120].7 It becomes clear that the graphical representa-
tion of a measurement model is incomplete and ambiguous when only one construct 
and its indicators are plotted. In particular, the graphical representation of ‘reflec-
tive’ measurement models in PLS-SEM software obscures the fact that PLS-SEM 
estimates composite models, not reflective measurement models Thus, the claim that 
PLS-SEM and covariance-based SEM estimate the “same model” [Sarstedt, Adler, 

Falsehood

Interest in
dissemination

Academic
dependency

Model
misrepresentation

Flawed
reasoning

Lack of
referencing

Belief
perseverance

Fig. 5   A swiss cheese model of system breakdown in the PLS-SEM literature

7  The Henseler–Ogasawara (H–O) specification [53, 99] expresses part–whole relationships in terms of 
loadings, not weights. The model shown at the right in Fig. 6 is equivalent to the model shown in Fig. 3.
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et  al. 2024] is obviously  untrue.  The incomplete and ambiguous  graphical repre-
sentation of ‘reflective’ measurement models paves the way for the Woozle effect. 
Full transparency of the actual model specification in PLS-SEM could have worked 
against the Woozle effect.

Flawed reasoning One of the earliest publications stating that PLS-SEM is suit-
able for estimating the parameters of reflective measurement models is [26], which 
is based on a working paper published the year before. Fornell and Bookstein [26] 
observe that reflective measurement models require a parameterization in terms of 
loadings and error variances, and that the covariances between measurement errors 
should be zero. At first sight, Fornell and Bookstein [26] seem to provide thorough 
argumentation. They observe that PLS-SEM expresses the relationships between 
latent and observed variables in the form of Eq. 2, and therefore conclude that “[a]s 
is evident from [the] equations [ … ], the unobserved constructs can be viewed either 
as underlying factors or as indices produced by the observable variables. That is, the 
observed indicators can be treated as reflective or formative” [26, p. 441]. However, 
the conclusion was flawed, because as explained in Sect. 3.2 this is only the case if 
the number of indicators tend to infinity.

In later PLS-SEM literature, a particular pattern of flawed reasoning can be 
observed, namely inferring the suitability of PLS-SEM for a particular type of 
research problem from the fact that PLS-SEM is already used for that purpose. For 
example, Henseler et al. [50] infer PLS-SEM’s suitability from the fact that 30 stud-
ies in international marketing used PLS-SEM to estimate the parameters of reflec-
tive measurement models. Similarly, from the fact that certain evaluation criteria are 
used in empirical research, Hair et al. [47] conclude that the use of these evaluation 
criteria is a best practice. An argument by Sarstedt et  al. [93] falls into the same 
pattern: They conclude that since users rarely apply a correction for attenuation to 
PLS-SEM results, users do not need such a correction. Such a statement is obviously 
flawed. Here we see PLS advocates committing a kind of naturalistic fallacy, draw-
ing an ought from an is.

All of these inferences implicitly assume that the cited or counted users of the 
method were able to make an informed choice and selected an appropriate research 
method for the problem at hand – i.e. that they had made the correct choice them-
selves. However, if analysts based their choice on misinformation, such as the 

Fig. 6   The graphical visualization of measurement models in the PLS-SEM literature and PLS-SEM 
software conveniently leaves vague which model is actually estimated [51]
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alleged suitability of PLS-SEM for estimating the parameters of reflective measure-
ment models, or themselves simply based on precedence, or poor reasoning, then the 
choice behavior says nothing about the suitability of a method. 30 people who did 
something wrong is not evidence that doing that thing is right.

Lack of references As Table 1 showed, there is a large amount of publications 
[cf. 13, 15, 25, 27, 34, 45, 46, 50, 86, 93, 103, 104, 107, 117] that ascribe PLS-
SEM the suitability for estimating reflective measurement models, but do not cite 
any evidence. Had any of these authors had more doubts about PLS-SEM’s suit-
ability for estimating the parameters of reflective measurement models and tried 
to find evidence for it in the methodological literature, they could have noticed 
that there is no evidence. Certainly, there is rhetoric—in that many authors state 
explicitly that PLS-SEM can model reflective measures—but at no point is any 
of that rhetoric backed up by evidence, either empirical example or mathematical 
proof.

Belief perseverance Belief perseverance can be thought of as the last hole in the 
swiss cheese model that allows a falsehood to remain in the scientific records. In 
the PLS-SEM literature, belief perseverance looms large. For instance, how can 
researchers who are on record saying that PLS-SEM estimates are only consist-
ent-at-large [46], that PLS-SEM “will produce biased estimates if the common 
factor model holds” [44, p. 618], that PLS-SEM requires a correction for attenu-
ation to obtain consistent results [43], and that the use of PLS-SEM for reflective 
measurement models without any correction for attenuation results in an inordi-
nate amount of Type I errors [108], also then state that “[r]esearchers can include 
reflectively and formatively specified measurement models, which PLS-SEM esti-
mates without any limitations” [45, p. 16]? There are many possible explanations 
for such inconsistency among published statements by the same authors. How-
ever, we suggest that belief perseverance may be a very likely explanation for this 
contradiction.

It is often said that the final barrier to the proliferation of falsehood in the sci-
entific record is that of the naturally self-correcting nature of the scientific method. 
That is, if incorrect statements are published and used, counter-arguments and new 
information can be used with the intention of “setting the record straight” [cf. 106]. 
This may mean that empirical studies must be redone and prior findings must be 
corrected, or even that incorrect papers are retracted. All these activities are normal 
procedures of scientific self-correction, and are essential within the research meth-
odology literature, where it is known that “it is relatively easy to make a method 
appear better than it actually is [ … and] that overoptimistic statements regarding 
a method’s performance may be partly attributed to the nonneutral attitude of the 
authors, who are naturally interested to present their method in a positive light” [80, 
p.  2]. Bearing these observations in mind, statements such as “efforts to ‘set the 
record straight’ have no place in serious science” [95, p. 269] appear worrying. It 
seems that belief perseverance does not only prevent researchers from having an 
unbiased look at the subject matter at hand, but it also reduces the acceptance of 
general scientific norms and principles.
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4 � Conclusions and implications

There is a myth in the PLS-SEM literature that PLS-SEM is suitable for esti-
mating reflective measurement models. However, analysts using PLS-SEM may 
draw wrong conclusions if their models include reflective measurement. One 
could easily imagine situations in which firms have invested millions of dollars 
or researchers have invested years of work into developing a promising inter-
vention, and purely because PLS-SEM makes incorrect predictions, they would 
erroneously conclude that the intervention is ineffective. As things stand, PLS-
SEM is unsuitable for structural equation models containing latent variables, and 
researchers applying PLS-SEM for this purpose face the risk of conducting pseu-
doscience: It looks like scientific principles are being followed, when in fact they 
are not. The core issue here is that even the most recent PLS-SEM literature [cf. 
45, 93] reiterates and reinforces the false narrative that PLS-SEM is useful as 
a tool for scientists seeking the truth, when it can lead the researcher to draw 
entirely false conclusions simply because it does not produce consistent estimates 
for reflective measurement models.

Our paper presented the Woozle effect as a worrying phenomenon in the scien-
tific literature that provides a viable explanation for why authors repeat and rein-
force false narratives. Using the PLS-SEM literature as a case study, we showed 
how a euphemism planted the seed for the Woozle effect; an omission of a qualifi-
cation contributed to the initialization of the Woozle effect; and incorrect graphi-
cal representations, flawed reasoning, and lack of references brought the Woozle 
effect into full swing. Belief perseverance was identified as a mechanism that hin-
ders scientific self-correction, the last resort in the scientific search for truth.

It cannot be ruled out that the PLS-SEM literature contains more Woozle 
effects than the one we used as an illustration. For instance, large parts of the 
PLS-SEM literature also reinforces the false claim that PLS-SEM has alarm bells 
and whistles that warn the researchers when measurement is problematic [cf. 42], 
when it is clear that problematic issues go unnoticed [leading to false conclusions, 
see e.g. 51, 98] that could have easily been detected by more appropriate meth-
ods. Therefore, as far as reflective measurement is involved, we unfortunately 
cannot reject the notion formulated by Westland [112, p. 38] that PLS-SEM “is 
an ideal tool for unscrupulous or lazy researchers interested in bogus theories 
with random data.”

So what could PLS-SEM proponents do to resolve the contradiction in the 
PLS-SEM literature? The obvious solution is to refrain from making the incorrect 
claim that PLS-SEM is suitable for estimating reflective measurement models and 
to explain that it simply estimates composite models [cf. 8, 55]. If for whatever 
reason analysts want to use the PLS-SEM algorithm to estimate reflective meas-
urement models, they should employ a correction for attenuation as for instance 
done in consistent PLS [PLSc, see 19, 20, 83]. Preferably, analysts should make 
use of covariance-based SEM (CB-SEM) by default. While CB-SEM does not 
seem to have a substantial advantage in terms of parameter accuracy in case of 
well-specified models [100], it allows the analyst to constrain or fix parameters, 
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and it offers a larger variety of model assessment tools. Henseler and Schuberth 
[49] conjecture that PLSc might be advantageous in some special cases of model 
misspecification, such as unmodelled covariances between measurement errors 
within a block of observed variables. However, more methodological research is 
needed to precisely identify which (if any) cases where PLSc excels over CB-
SEM and vice versa. In any case, analysts relying on PLS-SEM should make sure 
to adhere to guidelines that are free from the Woozle effect [e.g., 5, 53].
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