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A B S T R A C T

Effective risk management requires discernment of volatility interaction patterns across assets. Our study
examines the level of interconnectedness amongst nine major commodity futures across precious metals,
energy, industrial and agricultural sectors and the US S&P 500 index from 1990 to 2022. Spillover indices are
constructed by combining the Time-Varying Parameter (TVP)-Vector Autoregression (VAR)-Stochastic Volatility
(SV) model with the DY- spillover index. We analyse the fluctuating dynamics of the extent and directionality
of the volatility transmissions across various crises. Our results indicate that SPX is the largest net transmitter
of volatility information, predominantly affecting crude oil, heating oil, and gold futures, with spillovers
intensifying during crises. Gold futures receive heightened volatility transmissions during crises, alluding to
the ‘‘flight to quality’’ characteristic displayed by investors. The COVID-19 crisis and the consequent supply
chain disruptions uniquely heightened volatility transmissions from lumber to natural gas futures, unseen in
previous economic crises. We posit that natural gas futures could be a viable asset for risk diversification
as they show limited interaction with SPX and minimal within-sector transmissions with crude and heating
oil futures. We substantiate our findings on potential hedge assets by constructing dynamic portfolio weights
based on minimising pairwise volatility interactions between assets in the portfolio.
1. Introduction

Historically, investors sought commodity futures to hedge against
inflation and optimise portfolio strategies. The prices of commod-
ity futures positively correlate with inflation, making them a hedge
against unexpected inflation fluctuations (Gorton and Rouwenhorst,
2006; Spierdijk and Umar, 2010; Liu et al., 2023). Commodity fu-
tures also negatively correlate with equity and bond returns, making
them valuable tools for strategic asset allocation (Erb and Harvey,
2006; Miffre and Rallis, 2007). The ‘‘flight to quality’’ by speculators
to precious metal futures, especially during crises, has given them the
distinction of being safe-haven assets (Baur and McDermott, 2010; Lucey
and Li, 2014; Baur and Kuck, 2020). Consequently, trading volumes in
commodity futures have increased significantly in recent years.1

The rise in speculative investment in commodity futures (a feature
referred to as financialisation) has facilitated price discovery and risk-
sharing among market participants. However, it has also led individual

∗ Corresponding author.
E-mail addresses: shietal.ramesh@student.bond.edu.au (S. Ramesh), rlow@bond.edu.au (R.K.Y. Low), rfaff@bond.edu.au (R. Faff).

1 The average annual trading volume for the U.S. commodity futures markets from 1990–1999, 2000–2009, and 2010–2019 was 2.1, 7.6, and 14.1 trillion
dollars, respectively. In 2021, the annual trading volume on U.S. commodity futures markets reached an all-time high of 40.6 trillion dollars, which was equivalent
to about half of the overall trading volume of the U.S. stock market (Kang et al., 2023).

commodity futures’ prices to depend on factors beyond supply–demand
dynamics. As more investors hold commodity futures and conventional
securities concurrently, the risk of exposure to common volatility fac-
tors increases (i.e., bad news in one market has a contagion effect
on the other and vice versa). Crisis periods further exacerbate the
degree of inter-connectedness between various asset markets (Bekaert
and Harvey, 2003; Xiao et al., 2019; Joo et al., 2020). Identifying these
dynamic linkages contains significant information that will aid in price
discovery and improve forecast accuracy (Zhong et al., 2004; Sehgal
et al., 2013).

Assessing systemic risk transmissions across asset classes is a critical
research area. Successive economic, financial and geo-political crises
meant that there is now a greater interest in disentangling the mag-
nitude and nature of cross-asset volatility spillover effects (Caporale
et al., 2006; Akca and Ozturk, 2015; Syriopoulos et al., 2015; Ahmed
and Huo, 2021; Serra, 2011; Cabrera and Schulz, 2016). Several studies
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focus on analysing volatility interactions of commodity futures both
ithin Lin and Tamvakis (2001), Gong et al. (2021) and across sec-

ors (Chen et al., 2023; Yıldırım et al., 2020; Kang et al., 2017; Liu et al.,
2021). Studies also investigate integrations between mixed portfolios
omprising commodity futures and stock markets (Jebabli et al., 2022;

Sarwar et al., 2020; Smales, 2021; Batten et al., 2019).
Current research on volatility spillovers is subject to several limita-

tions. First, most studies focus on two or three sectors and are usually
estricted to timelines of under a decade due to computational con-

straints. Broadening the scope to include a wider range of sectors over
 longer timeframe would yield more comprehensive insights into the
xtent and directionality of spillovers, particularly in capturing trans-

mission patterns during periods of heightened uncertainty. Second,
there is limited research analysing differences in volatility spillover
behaviours among futures belonging to a similar category,such as the
spillover trends between gold and silver futures and between energy
futures like crude oil and natural gas futures. Third, there is limited
research analysing differences in volatility transmissions depending on
he nature of the crises. An economic crisis like the GFC is characterised
y illiquidity and a general lack of confidence in the stock market (Xu

et al., 2018). Stock markets transmit the increase in volatility to en-
rgy futures due to exposure to common shocks. The uncertainty also
ncreases the volatility of precious metal futures as investors seek more
table hedge assets. Alternatively, the COVID-19 pandemic-induced
risis and the consequent lockdowns triggered unprecedented volatility
rends in futures unobserved during earlier crises. Lumber futures, for
xample, experienced record levels of price increases unseen during
revious crises.2 Meanwhile, oil futures experienced historic lows, with

WTI crude oil futures even reaching negative levels for the first time in
recorded history.3 These unique volatility situations could potentially
translate to unique spillovers currently under-explored in the literature.

Motivated by these aforementioned limitations, our study adopts
the TVP-VAR model with SV (Primiceri, 2005; Nakajima, 2011) to
apture the dynamic volatility interactions across major commodity
utures and SPX. The model uses Bayesian Markov Chain Monte Carlo
MCMC) sampling techniques to estimate the posterior estimates of the
ime-varying parameters. To construct the dynamic volatility spillover
ndices, we incorporate the generalised Forecast Error Variance Decom-
osition (FEVD)-based DY-spillover index (Diebold and Yilmaz, 2008,

2012; Diebold and Yılmaz, 2014). The TVP-VAR-SV model effectively
captures underlying patterns by accommodating both the directional-
ty and time-varying nature of spillovers, unlike typical multivariate
ARCH models (Maghyereh et al., 2016; Gozgor et al., 2016; Khalfaoui

et al., 2019; Filis et al., 2011). Additionally, the time-varying posterior
stimates of the model eliminate the need for rolling windows and offer
reater robustness to outliers compared to DY-spillover estimates de-
ived from standard VAR models (Balcilar et al., 2019; Liow, 2015). The
se of time-varying VAR models combined with the DY-connectedness
easure to estimate volatility spillovers has been gaining increasing

raction in recent research (Korobilis and Yilmaz, 2018; Gong et al.,
2021, 2022a,b; Liu et al., 2021; Yıldırım et al., 2020; Bouri et al.,
2021b; Sun et al., 2023).

Our contributions are three-fold. First, our study aims to provide a
omprehensive analysis of dynamic volatility spillover effects among
ine major commodity futures, spanning precious metals, energy, in-
ustrial, and agricultural sectors over a 32-year period from January
990 to February 2022. The basis for selecting the futures includes
arket capitalisation, academic relevance, safe-haven abilities, and

heir potential for intra-sector and inter-crisis analysis. To account
or the effects of financialisation on futures, we include the S&P 500

2 Lumber futures traded at around $407 at the start of 2020 and hit a record
high of $1670.50 in May 2021.

3 On April 20, 2020, WTI crude oil futures saw the most significant drop
n its history when prices dropped by 306% and settled at −37.63$ a barrel.
2

1

index in our analysis.4 Second, our timeline covers multiple high-
volatility periods, including the AFC, the DBC, the GFC, the ESDC,
the oil price crash and the COVID-19 pandemic-induced crisis; we
aim to provide a nuanced understanding of how these events shape
volatility transmission across major commodity futures markets and
SPX whilst also analysing differences in transmissions patterns across
crises. Third, we identify hedge-asset potential for non-conventional
assets based on analysing inter-asset volatility interactions. Fourth,
we construct dynamic weighted portfolios with the objective to min-
imise volatility interactions amongst them and check their profitability
levels in comparison with traditional portfolio construction strategies
(minimum variance and equally weighted). Our findings are crucial
for investors in assessing the added sensitivity of their portfolios to
external factors and using this insight to predict future asset volatility
more accurately. Policymakers can also better gauge the impacts of
heightened overall asset volatility trends due to exacerbated inter-asset
volatility interactions, particularly during crises.

Overall, SPX remains the most dominant transmitter of volatility
information, actively transmitting to energy and gold futures, exacer-
bating during crises. The increased contagion risks from SPX to energy
utures allude to the financialisation aspect of these futures. Volatility

shocks in the SPX market automatically translate to volatility shocks
in crude and heating oil futures. In contrast, natural gas futures and
SPX do not significantly influence each other. Natural gas futures
also do not interact significantly with crude and heating oil futures
consistent with literature that their prices have partially decoupled
from other energy futures (Mensi et al., 2021c; Erdős, 2012; Ramberg
nd Parsons, 2012; Gong et al., 2021). Gold futures receive increased

volatility information from SPX and energy futures during crises, which
s consistent with being safe-haven assets. However, we note a reduc-
ion in the magnitude of spillovers received during the COVID crisis

compared to earlier crises. The pandemic-induced crisis was by far the
ost pervasive in inducing heightened volatility transmissions across

ll sectors, including record volatility transmissions from lumber to
atural gas futures unobserved during previous crises. Additionally, we
est the profitability of our findings over time by adopting the MVP
trategy (Broadstock et al., 2020) to construct portfolios minimising the

risk of cross-asset volatility interactions.
The novelty of our research lies in the non-trivial extension of

existing studies which allows investors and policymakers to discern
differences in the volatility spillover trends over multiple crises, and
allowing for identification of potential alternative hedge assets across
a range of sectors. Previous research using the TVP-VAR-SV frame-
work has generally focused on smaller systems (i.e., 3–5 variables
over less than a decade) due to computational challenges associated
with parameter proliferation. To the best of our knowledge, this is
the largest TVP-VAR-SV exercise conducted to date (10 asset classes
across a 32 year period). We developed a scalable, cluster-optimised
Python codebase capable of expanding across any number of variables.
Additionally, we provide a more nuanced understanding of the TVP-
VAR-SV algorithm by disentangling the impacts of the time-varying
contemporaneous and lag propagation terms along with the effects
of exogenous shocks into visualisations matching their corresponding
matrix computations.

2. Literature review

Volatility spillovers refer to the impacts, both simultaneous and
lagged, that volatility in one market has on the volatility of other mar-
ets (Chang et al., 2010). The literature on spillover analyses initially

4 To the best of our knowledge, this is the largest TVP-VAR-SV exercise
onducted to date. Data and associated custom cluster-optimised Python code
ill be available upon request. We ran the algorithm on the ARDC Nectar

luster on a 32-core node with 64 GB RAM. The run-time was approximately
5 h.
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centred on examining the degree of regionalisation (fragmentation),
in global oil markets. While Adelman (1984) believed that global oil
markets operate as a unified entity, subsequent studies by Weiner
(1991) and Gülen (1997) used correlation and regression analyses to
emonstrate that the markets were, in fact, fragmented, and even
xhibited co-movement behaviour.

The increasing popularity of commodity futures, owing to their role
as an inflation hedge and safe-haven asset, has reinforced their appeal
to investors. This financialisation has significantly transformed how
commodity futures interact with other assets (Yang et al., 2021; Basak
nd Pavlova, 2016; Mensi et al., 2021d). Consequently numerous stud-

ies have dissected volatility transmissions between commodity futures
both within and across sectors along with analysing the commodity
futures-stock market nexus. Lin and Tamvakis (2001) examine the
extent of spillovers between New York Mercantile Exchange (NYMEX)
and International Petroleum Exchange (IPE) crude oil futures during
both overlapping and non-overlapping trading hours. Their findings
eveal significant spillovers during overlapping trading hours, as well as
ext-day lagged effects on the morning prices of IPE. Gong et al. (2021)
nalyse time-varying directional spillovers among crude oil, heating oil,

and natural gas futures, concluding that volatility transmission peaks
during crises, such as the GFC and the oil price crash. Additionally,
studies investigating volatility interactions between energy futures and
precious metal futures also note the presence of heightened volatility
interactions from energy futures to precious metals futures during
crises (Kang et al., 2017; Mensi et al., 2020, 2023). These intensified
ransmission effects raise concerns about the effectiveness of precious
etal futures as hedging instruments (Yıldırım et al., 2020). Corbet

et al. (2021) analyse shifts in the direction of volatility transmissions
etween WTI oil prices and US stock market during various oil supply
hocks. They find that during the 2014–2016 oil price crash, WTI
rimarily acted as a net receiver of volatility from the U.S. stock
nd currency markets. However, this dynamic shifted at the onset of
he pandemic-induced crisis, with WTI becoming a net-transmitter of
olatility as oil prices turned negative. The pandemic-induced crisis

led to production shutdowns that affected industrial and agricultural
futures in unprecedented ways compared to previous financial or tech-
nological crises. Kamal et al. (2021) noted the increase in dependence
in agricultural futures early on during the pandemic unlike the GFC.
Studies also document heightened volatility interactions during the
pandemic between agricultural and energy futures (Tiwari et al., 2022;
Hung, 2021), between industrial and precious metal markets (Liu et al.,
2021) and between energy and financial markets (Szafranek et al.,
2024). Gong et al. (2022a) provided substantial evidence of signifi-
cant pure contagion effects pervasive across energy, precious metals
and agricultural markets observed during the GFC and the pandemic-
nduced crisis not observed during non-crisis periods. Our research
omplements existing literature (Mensi et al., 2021d; Kang and Yoon,

2019; Mensi et al., 2023; Bouri et al., 2021b) to provide a compre-
hensive dynamic overview of volatility transmissions amongst major
commodity futures across precious metals, energy, industrial and agri-
ultural futures and the US Stock market index to discern differences
n transmissions across crises and test diversification potential of assets
n the overall portfolio.

From a methodological perspective, several studies employ variants
of the hybrid Multivariate Generalized Autoregressive Conditional Het-
eroskedasticity (MGARCH) models to quantify the inter-connectedness
amongst different asset classes (Mensi et al., 2018; Mandacı et al.,
2020; Benlagha et al., 2022). These studies are limited to either cap-
turing the directionality (Gozgor et al., 2016) of the volatility spillover
or its time-varying aspect (Filis et al., 2011; Khalfaoui et al., 2019)
ut not both. Studies also employ constant VAR models with rolling
indows to estimate the dynamic interrelations of the variables in

he model system (Zhang and Broadstock, 2020; Lovcha and Perez-
Laborda, 2020). However, the results from this approach are dependent
on window size and are susceptible to the presence of outliers (Liu and
3

Gong, 2020). The estimated constant VAR model might not necessarily
capture the underlying heteroskedasticity, nor can the pre-specified lag
model always maintain the necessary stationarity conditions.

Enforcing a pre-defined model may not provide the flexibility to
capture exceptional circumstances accurately. Allowing a model to
have time-varying coefficients gives it enough flexibility (by enabling a
data-generating process) to capture its underlying characteristics. This
is the essence of the TVP-VAR with SV (developed by Cogley and Sar-
ent, 2005 and Primiceri, 2005). The time-varying VAR model captures

the dynamic interrelationships amongst multiple variables, allowing
or the analysis of their mutual dependencies and the transmission of

shocks across the system. Adding a stochastic volatility (SV) component
(introduced by Black, 1976) to the TVP-VAR approach allows the

odel to account for the changing volatility conditions caused by
xogenous shocks. The TVP-VAR-SV model is thus better equipped to
apture the shifts in inter-relationships among variables and evolv-
ng volatility patterns. Studies have documented the superiority of
ime-varying parameter models with SV over their constant parameter
ounterparts (Nakajima, 2011; Chan and Eisenstat, 2018). Constructing

time-varying VARs and estimating volatility spillover measures using
connectedness measures is increasingly gaining traction (Gong et al.,
2021, 2022a; Liu and Gong, 2020; Liu et al., 2021; Yıldırım et al., 2020;
Bouri et al., 2021b; Sun et al., 2023; Gong and Xu, 2022; Gong et al.,
2022b). The inherent nature of lagged VAR models accommodates
he lagged effects of the volatility spillovers. Most empirical work is,
owever, limited to implementing smaller systems due to complexities
n giant parameter estimations and their associated computational
ifficulties (4–5 asset classes over 10–15 years). These challenges are
urther intensified when we allow for flexible co-variances in error
tructures (stochastic volatility)

Our study adopts the TVP-VAR with SV approach to capture the dy-
amic interrelationships across multiple asset classes. We follow Primice

(2005) and Nakajima (2011) and use Bayesian MCMC sampling tech-
niques to estimate the posterior estimates of the time-varying param-
eters. To construct the volatility spillover index, we incorporate the
generalised time-varying forecast error variance decompositions esti-
mated from the TVP-VAR-SV model to construct the DY- connectedness
index (Diebold and Yilmaz, 2008, 2012; Diebold and Yılmaz, 2014).5
We also calculate the average volatility spillover contribution from/to
sset class 𝑖 to/from the remaining asset classes 𝑗 over various crises to

investigate the inter-crisis variations in volatility transmissions. Finally,
we test the implications of constructing portfolios based on minimising
olatility interactions amongst them and test their profitability over
ime.

3. Method

Assessing interconnectedness across asset classes is crucial for eval-
uating market stability and contagion risk. A typical measure of inter-
connectedness is the transfer of Realised Volatility (RV) between asset
classes (Baele, 2005; Diebold and Yilmaz, 2008; Bhar and Nikolova,
2009; Malik and Hammoudeh, 2007). RV is defined as the squared root
of the sum of weekly squared returns (Andersen and Bollerslev, 1998;
Andersen et al., 2003):

𝑅𝑉𝑡 =

√

∑𝑀
𝑖=1 𝑟

2
𝑡,𝑖

𝑀
(1)

5 The initial version of the DY-connectedness index developed by Diebold
and Yilmaz (2008) was based on decomposing the forecast error variances
sing the Cholesky technique to quantify contributions from specific exogenous
hocks. However, the decompositions relied on the ordering of variables in the
AR (Heiden, 2015). The connectedness measure only accounted for aggregate

spillovers (i.e., from/to each market i, to/from all other markets, added across
i) (Diebold and Yilmaz, 2012). To overcome these limitations, Diebold and
Yilmaz (2012) use a generalised VAR framework invariant to variable ordering
to calculate the directional and net spillover indices across various sectors.



Energy Economics 143 (2025) 108225S. Ramesh et al.

𝑖
d

p

s

t
e

v

w

i

H

F
f

n

c

t
w
f

t
r

e

where 𝑅𝑉𝑡 is the weekly realised volatility, 𝑟𝑡,𝑖 is the return of weekday
calculated as ln𝑃𝑡 − ln𝑃𝑡−1 (where 𝑃𝑡,𝑖 is the closing price of week-
ay 𝑖) and 𝑀 represents the number of trading days in week 𝑡. To

accommodate for the possibility of varying number of trading days in
any given week, we normalise the RV value by dividing the number
of trading days in that particular week. Finally, we annualise 𝑅𝑉𝑡 by:
100 ×

√

52𝑅𝑉𝑡. RV effectively measures the variance in the prices, a high
value implies instability in that asset class. To measure the spillover
effect of instability to other asset classes, we use the TVP-VAR-SV
framework to model the underlying time series. We use the resulting
posterior means to calculate the spillover indices between asset classes.

3.1. Model framework

The TVP-VAR-SV framework, developed by Primiceri (2005), incor-
porates time-varying components into the coefficients and the
variance–covariance matrix of the additive innovations. This approach
allows the model to capture the underlying non-linearities in the time
series whist maintaining the flexibility of a standard VAR model. The
arameters follow a random walk specification to approximate the

underlying data-generating process (Cogley and Sargent, 2005). The
SV component captures the effects of heteroskedastic external shocks
on the simultaneous relationships among model variables (Kim et al.,
1998). This model thus differentiates between the impacts of external
hocks and changes in the propagation mechanism (Primiceri, 2005;

Negro and Primiceri, 2015; Lubik and Matthes, 2016).
For our study, 𝑦𝑡 will represent weekly RV. The basic Structural

Vector Autoregression (SVAR) model is given by:

𝐀𝑡𝑦𝑡 = 𝐶𝑡 +
𝑘
∑

𝑚=1
(𝐏𝑚,𝑡𝑦𝑡−𝑚) + 𝑢𝑡, 𝑡 = 1,… , 𝑇 𝐿 (2)

where [𝑦𝑡]𝑛×1 is the vector of the observed variable, [𝐶𝑡]𝑛×1 is a scalar
offset, [𝐀𝑡]𝑛×𝑛 captures the contemporaneous impact, and [𝐏𝑚,𝑡]𝑛×𝑛 cap-
ures the impact of the previous data points (𝑘 lags). The unobserved
rror term 𝑢𝑡 follows 𝑁(0,𝜮′

𝑡𝜮𝑡) where [𝜮𝑡]𝑛×𝑛 is a diagonal matrix of
time-varying standard deviations. We rearrange the equation to be: 𝑦𝑡 =
𝑐𝑡 +

∑𝑘
𝑚=1(𝐁𝑚,𝑡𝑦𝑡−𝑚) + 𝐀−1

𝑡 𝜮𝑡𝜀𝑡, 𝑡 = 1,… , 𝑇 where [𝑐𝑡]𝑛×1 = 𝐀−1
𝑡 𝐶𝑡 and

[𝐁𝑚,𝑡]𝑛×𝑛 = 𝐀−1
𝑡 𝐏𝑚,𝑡. Finally, 𝐀−1

𝑡 𝑢𝑡 = 𝐀−1
𝑡 𝜮𝑡𝜀𝑡, where [𝜀𝑡]𝑛×1∼𝑁(0, 𝐈𝑛).6

Packing the vectors 𝑦𝑡−𝑚 horizontally into a single row we define a new
ariable [𝑋′

𝑡 ]𝑛×𝑛(𝑘𝑛+1) which is given by:

𝑋′
𝑡 = 𝐈𝑛 ⊗ [1, 𝑦′𝑡−1,… , 𝑦′𝑡−𝑘]

=
⎛

⎜

⎜

⎝

1 𝑦′𝑡−1 ... 𝑦′𝑡−𝑘 0 0 ... 0 ...
0 0 ... 0 1 𝑦′𝑡−1 ... 𝑦′𝑡−𝑘 ...

⋮ ⋱

⎞

⎟

⎟

⎠

. (3)

That is, 𝑋′
𝑡 just arranges the 𝑘𝑛 + 1 entries along the block diagonal.

Additionally, define [𝛽𝑡]𝑛(𝑘𝑛+1)×1, which is packed as:

𝛽′𝑡 = ((𝑐𝑡)1, (𝐁1,𝑡)1∗,… (𝐁𝑘,𝑡)1∗, (𝑐𝑡)2, (𝐁1,𝑡)2∗,… (𝐁𝑘,𝑡)2∗,… ,

… , (𝑐𝑡)𝑛, (𝐁1,𝑡)𝑛∗,… (𝐁𝑘,𝑡)𝑛∗), (4)

where (𝐁𝑝,𝑡)𝑞∗ denotes row 𝑞 of 𝐁𝑝,𝑡. Thus, the model equation can be
ritten as:

𝑦𝑡 = 𝑋′
𝑡𝛽𝑡 + 𝜉𝑡, 𝑡 = 1,… , 𝑇 (5)

where [𝜉𝑡]𝑛×1 = 𝐀−1
𝑡 𝜮𝑡𝜀𝑡. So in summary note the following:

• 𝑋𝑡 can be constructed from the observed data 𝑦𝑡.
• 𝛽𝑡 is the time-varying coefficient on all the lagged vectors. 𝛽𝑡 has
𝑚𝑛2 + 𝑛 values per time step.

6 Using the variance property of Gaussian processes.
4

• Without loss of generality, 𝐀𝑡 can be represented as a lower
triangular matrix with its diagonals being ones. General con-
temporaneous interactions can still exist under this constraint.
Intuitively, the lower triangular matrix captures the co-variation
amongst the external shocks affecting the model system. Thus,
there are 𝑛(𝑛 − 1)∕2 values to be estimated per time step.

𝐀𝑡 =

⎡

⎢

⎢

⎢

⎢

⎣

1 0 ... 0
𝛼21,𝑡 1 ⋱ ⋮
⋮ ⋱ ⋱ 0

𝛼𝑛1,𝑡 ... 𝛼𝑛𝑛−1,𝑡 1

⎤

⎥

⎥

⎥

⎥

⎦

(6)

• 𝜮𝑡 is a 𝑛 × 𝑛 diagonal matrix representing the impact of the 𝑛
exogenous shocks per time step: 𝜮𝑡 = diag(𝜎1,𝑡, 𝜎2,𝑡,… , 𝜎𝑛,𝑡).

• The noise term 𝜉𝑡 ≡ 𝐑𝑡𝜀𝑡 = 𝐀−1
𝑡 𝜮𝑡𝜀𝑡 has 𝑛(𝑛 + 1)∕2 unique values

per time step. The variance–covariance matrix of 𝐑𝑡 is given by:

𝐑𝑡 = 𝐀−1
𝑡 Σ𝑡(𝐀−1

𝑡 Σ𝑡)′ (7)

We take the coefficients in Eq. (5) to follow a first-order random-walk
process, i.e, 𝛽𝑡 = 𝛽𝑡−1 + 𝑡, 𝛼𝑡 = 𝛼𝑡−1 + 𝜁𝑡 and log 𝜎𝑚,𝑡 = log 𝜎𝑚,𝑡−1 + 𝜂𝑡.
The innovations of the random walk processes are assumed to be jointly
normally distributed with the block-diagonal covariance matrix repre-
sented as: 𝐕 = 𝑉 𝑎𝑟(diag[𝜀′𝑡 , ′

𝑡 , 𝜁 ′𝑡 , 𝜂′𝑡 ])′ = diag(𝐈𝑛,𝐐,𝐒,𝐖). Estimation of
the TVP-VAR-SV model is computationally intensive due to the high
dimensionality of the matrices involved. We adopt Bayesian MCMC
algorithms, as developed by Primiceri (2005) and Nakajima (2011), to
estimate the posterior values of the parameters and variances, given the
model’s non-linear and time-varying nature.7

3.1.1. Calculating the forecast error variance decomposition-based spillover
ndices

Diebold and Yilmaz define volatility spillovers as fractions of the
-step ahead forecast error variance in 𝑦𝑖 due to a shock in 𝑦𝑗 (Diebold

and Yilmaz, 2008, 2012; Diebold and Yılmaz, 2014). In order to es-
timate the spillover index, we first compute the Impulse Response
unction (IRF). Writing the VAR(k) model in its associated VAR(1)
orm, we get:

𝑌𝑡 = 𝑣𝑡 + 𝐹𝑡𝑌𝑡−1 + 𝐞𝑡 (8)

where [𝑌𝑡]𝑘𝑛×1 = [𝑦′𝑡 , 𝑦′𝑡−1,… , 𝑦′𝑡−𝑘+1]′ is the vector of lagged 𝑦𝑡, [𝑣𝑡]𝑘𝑛×1 =
[𝑐′𝑡 , 𝑐′𝑡−1,… , 𝑐′𝑡−𝑘+1]′, [𝐹𝑡]𝑘𝑛×𝑘𝑛 is the transition matrix and [𝐞𝑡]𝑘𝑛×1 is the
oise vector:

𝐹𝑡 =
(

𝐁1,𝑡 𝐁2,𝑡 … 𝐁𝑘,𝑡
𝐈𝑛(𝑘−1) [𝟎]𝑛(𝑘−1)×𝑛

)

(9)

𝐞𝑡 =
(

𝐀−1𝜮𝑡𝜀𝑡
[𝟎]𝑛(𝑘−1)×1

)

. (10)

At time 𝑡, an exogenous shock 𝜀𝑡 affects the next state via 𝐹𝑡 (the
onstant term 𝑣𝑡 does not affect the shock term). Thus, the effect of

a unit-impulse on variable 𝑚 after ℎ time-steps is simply 𝐹𝑡+ℎ...𝐹𝑡+1𝐹𝑡
imes the unit-impulse vector where 𝜀𝑡 is substituted with zeroes every-
here except position 𝑚 where it is 1 (the first 𝑛 components gives the

inal state 𝑦𝑡+ℎ). The IRF is given by:

𝐼 𝑅𝐹𝑡(ℎ) = 𝐹ℎ,𝑡𝐀−1
𝑡 𝜮𝑡 (11)

where [𝐹ℎ,𝑡]𝑛×𝑛 = (𝐹𝑡+ℎ...𝐹𝑡+1𝐹𝑡)1∶𝑛,1∶𝑛 takes the first 𝑛 × 𝑛 block of
he matrix product. The matrix [𝐼 𝑅𝐹𝑡(ℎ)]𝑛×𝑛 gives the total impulse
esponse; i.e., the response of a variable on a row given a shock of a

variable on a given column.8 The FEVD computed from orthogonalised

7 A detailed explanation of the posterior sampling technique of the param-
ters and hyper-parameters, along with their prior estimations, are given in

Appendix B. Appendix C provides the visualisations of the posterior means of
the model parameters and their corresponding convergence tests.

8 To ensure stability, the 𝐼 𝑅𝐹𝑡(ℎ) must decay to zero, i.e, be a stationary
process with eigenvalues less than one.
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IRFs are not order invariant (Lütkepohl, 2005). To overcome this issue,
Diebold and Yilmaz developed the generalised FEVD (Diebold and

ilmaz, 2012) computed as:

𝜃𝑖𝑗 ,𝑡(𝐻) =
𝜎−2𝑗 ,𝑡

∑𝐻−1
ℎ=0 (𝐼 𝑅𝐹𝑡(ℎ) ⋅ 𝛴′

𝑡 ⋅ 𝐀
−1′)2𝑖𝑗

∑𝐻−1
ℎ=0 (𝐼 𝑅𝐹𝑡(ℎ) ⋅ 𝐼 𝑅𝐹𝑡(ℎ)′)𝑖𝑖

where (...)𝑖𝑗 represents component (𝑖, 𝑗) in the matrix. FEVDs generated
hrough orthogonalised impulse responses, normalise to one. However

in the case of generalised FEVDs 𝛴𝑘
𝑗=1𝜃𝑖𝑗 ,𝑡(𝐻) ≠ 1. Normalising the

FEVDs across the rows, satisfies the condition 𝛴𝑘
𝑗=1𝜃𝑖𝑗 ,𝑡(𝐻) = 1. The

normalised generalised FEVD is estimated as:

𝜃𝑖𝑗 ,𝑡(𝐻) = 𝜃𝑖𝑗 ,𝑡(𝐻)
∑𝑛

𝑗=1 𝜃𝑖𝑗 ,𝑡(𝐻)
(12)

The net pairwise directional spillover is given by:

𝑉 𝑆𝑖𝑗 ,𝑡(𝐻) = 𝜃𝑗 𝑖,𝑡(𝐻) − 𝜃𝑖𝑗 ,𝑡(𝐻), 𝑖 ≠ 𝑗 (13)

When 𝑉 𝑆𝑖𝑗 ,𝑡(𝐻) is positive, market 𝑖 is transmits volatility to market
, negative value indicates that market 𝑖 is a receiver of volatility
nformation from market 𝑗. For the case where 𝑖 = 𝑗, we calculate the
et volatility spillover from market 𝑖 to all other markets via:

𝑉 𝑆𝑖𝑖,𝑡(𝐻) = 𝛴𝑁
𝑗=1,𝑗≠𝑖𝜃𝑗 𝑖,𝑡(𝐻) − 𝛴𝑁

𝑗=1,𝑗≠𝑖𝜃𝑖𝑗 ,𝑡(𝐻). (14)

When 𝑉 𝑆𝑖𝑖,𝑡(𝐻) is positive (negative), market 𝑖 transmits (receives)
volatility to (from) all other markets. From the definition it is also
evident that 𝑉 𝑆𝑖𝑖,𝑡(𝐻) is the sum of 𝑉 𝑆𝑖𝑗 ,𝑡(𝐻) across all 𝑗 for 𝑖 ≠ 𝑗

3.2. Portfolio construction strategies

Our study estimates the magnitude and directionality of volatil-
ty spillover indices amongst major commodity futures and the SPX.
ighly interconnected sectors in a portfolio could exacerbate contagion

isks when held concurrently during crises. Conversely, futures with
imited volatility interactions could serve as alternative hedge assets.

Assigning higher portfolio weights to futures with limited volatility
nteractions could yield more stable returns during periods of ex-
reme uncertainty. We test our implications by constructing dynamic
eighted portfolios of the selected nine commodity futures and SPX

ollowing the MCP (Broadstock et al., 2020) strategy. We compare
he performance of the MCP strategy against the following baseline
trategies — MVP (Markowitz, 1959) and EWP. In the interest of
implicity and to facilitate the extrapolation of implications, we restrict
ur analysis to long-only portfolios with no transaction costs.

3.2.1. Minimum connectedness portfolio
The MCP strategy Broadstock et al. (2020) minimises volatility

pillover between assets within a portfolio. By reducing dependencies
mong the included assets, this approach enhances diversification,
hereby the investment portfolio is able avoid severe drawdowns during
arket turmoil. To estimate the degree of interaction between variables

n a bilateral level, we estimate the Pairwise Connectedness Index (PCI)
iven by:

𝑃 𝐶 𝐼𝑖,𝑗 ,𝑡(𝐻) = 2 ∗
(

𝜃𝑖𝑗 ,𝑡(𝐻) + 𝜃𝑗 𝑖,𝑡(𝐻)

𝜃𝑖𝑖,𝑡(𝐻) + 𝜃𝑖𝑗 ,𝑡(𝐻) + 𝜃𝑗 𝑖,𝑡(𝐻) + 𝜃𝑗 𝑗 ,𝑡(𝐻)

)

0 <= 𝑃 𝐶 𝐼𝑖,𝑗 ,𝑡(𝐻) <= 1 (15)

where 𝜃𝑖𝑗 ,𝑡 is the normalised FEVD (see Eq. (12)).9 The strategy min-
imises volatility interconnectedness across the variables to build a
ortfolio more resilient to contagion shocks by assigning greater weight
o less interconnected sectors over those with higher volatility intercon-
ectedness. The weights are calculated using the following formula:

𝑊𝑡 =
𝑃 𝐶 𝐼−1𝑡 𝐼

𝐼 𝑃 𝐶 𝐼−1𝑡 𝐼
(16)

9 The 𝑃 𝐶 𝐼𝑖,𝑗 ,𝑡 matrix is symmetric and capable of reaching the global
minimum in the convex optimisation problem.
5

Table 1
Entities used in the study.

Asset class Data Source

Gold Gold CMEa

Silver Silver CMEa

Equity S&P 500b

Crude Oil WTI Crudea

Heating Oil NY Harbora

Natural Gas Henry Huba

Lumber Lumber CMEa

Copper Copper CMEa

Corn Corn CMEa

Wheat Chicago SRW Wheata

Rows 1–2 represent precious metals, row 3 represents equity, rows 4–
6 represent energy, rows 7–8 represent industrial goods, rows 9–10
represent agriculture.
a Data sourced from Datastream.
b Data sourced from Bloomberg.

3.2.2. Minimum variance portfolio
The MVP strategy (Markowitz, 1959) strategy weighs sectors with

lower covariances more heavily than those with higher covariances.
We use the estimated time-varying conditional variance–covariance
matrices from Eq. (7). The MVP weights are calculated as follows:

𝑊𝑡 =
𝐑−1
𝑡 𝐼

𝐼𝐑−1
𝑡 𝐼

(17)

3.2.3. Equally-weighted portfolio
The EWP strategy (DeMiguel et al., 2007) weighs all the constituent

sset classes equally. The EWP weights are given by:

𝑊𝑡 =
1
𝑁

(18)

where 𝑁 is the total number of asset classes.

4. Data

This study investigates fluctuations in the interconnectedness of
weekly RV amongst major commodity futures and the US stock market
across financial, economic and public health emergency-induced supply
chain crises. We analyse nine highly traded commodity futures span-
ning key sectors: Energy, Agriculture, Precious Metals, and Industrial
Goods (see Table 1)10 The dataset comprises 1,938 weekly RV obser-
vations spanning over three decades, from January 1990 to February
2022.11 This period includes several major economic crises, commodity
price crashes, and the pandemic-induced crisis. For details on the crises
overed in this study, see Table 2.12

Fig. 1 plots the price and return series of the data considered in the
study. Gold, SPX and copper futures consistently depict an increasing

10 Drawing on a comprehensive review of relevant literature (Rehman and
Vo, 2021; Umar et al., 2021; Kang et al., 2017; Farid et al., 2021), we
identify key commodity futures for our study, prioritising those with high
market capitalisation, significant financialization, strong safe-haven attributes,
and potential for intra-sector and inter-crisis variations. The selected futures
epresent some of the most actively traded commodities in their respec-
ive categories: Preciousmetals, Energy, Agriculture, Copper(Industrialgoods),

Lumber(Industrialgoods).
11 This analysis focuses on asset classes from the same geographical region,

and by calculating weekly RV from daily closing prices, we minimise the
impact of variations in trading hours. We appreciate the anonymous reviewer
or suggesting this clarification.
12 Justifications for the start and end dates of the crises are provided in

Appendix A.1.

https://www.cmegroup.com/markets/metals/precious.html
https://www.cmegroup.com/markets/energy.html#overview
https://www.cmegroup.com/markets/agriculture.html?redirect=/trading/agricultural/index.html#overview
https://www.cmegroup.com/markets/metals.html
https://www.cmegroup.com/markets/agriculture.html#products
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a

Fig. 1. Price and Return trends
he LHS of the figure plots the price trends for the asset classes under consideration in the study from Jan 1990 to Feb 2022. The various crisis periods are shaded as reported

in Table 2. The RHS of the figure plots the return trends for the asset classes under consideration in the study from Jan 1990 to Feb 2022.
price trend. The prices of Natural gas futures declined significantly post-
009, coinciding with the glut in shale oil production (Kilian, 2016;

Caporin and Fontini, 2017). Increased price volatilities correspond
with extreme crisis events, especially after 2005. The return trends
lso exhibit higher variance during crisis periods. The COVID-19 crisis

and the consequent lockdowns, in particular, had differing impacts on
6

h

the prices of various futures. Lumber futures experienced historical
price increases during the pandemic.13 However, these rapid price

13 Lumber futures traded at around $407 at the start of 2020 and hit a record
igh of $1670.50 in May 2021.
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Table 2
Crises timeline.

Crisis event Timeline

Asian Financial crisis Jul 1997–Dec 1998
Dot-com bubble crash Mar 2000–Oct 2002
Global Financial crisis Jun 2007–Feb 2009
European Sovereign Debt crisis Jan 2010–May 2012
Oil price crash Sep 2014–Nov 2016

COVID-19 pandemic crisis Mar 2020–Feb 2022

This table indicates the range of dates for the various crises considered
in the study. Figs 1 to 10 will follow the shading scheme as represented
in this table to differentiate the various crises.

increases were more indicative of pent-up demand from a previously
nder-inventoried sector and inflationary pressures than actual growth.
ubsequently, prices declined significantly,14 further increasing their

volatility. Crude oil futures, on the other hand, experienced massive
rice drops at the onset of the crisis15 before experiencing massive price
ikes later, with economies re-opening and further increasing volatility.

Table 3 depicts the descriptive statistics of the RVs for the nine
commodity futures and SPX for the overall data from Jan 1990 to Feb
022.16 Energy futures and SPX have the widest range in their RVs. The
kewness and kurtosis results indicate that the data series for the RVs of

all the asset classes are positively skewed and fat-tailed, implying the
existence of a high proportion of high-volatility events. The Jarque–
Bera test statistics are consistent with the data series drawn from a
non-normal distribution.

5. Results

5.1. Analysing the time-varying characteristics of realised volatility and
stochastic volatility

Realised Volatility (RV) is the second-order moment-based measure
efined as the squared root of the sum of weekly squared returns (see
q. (1)). We aim to assess the interconnectedness between major com-
odity futures and the SPX by quantifying the transfer of RV, providing

nsights into shared volatility exposures across these asset classes. The
HS of Fig. 2 plots the weekly RV of the selected commodity futures

and the SPX index from Jan 1990 to Feb 2022. We highlight the major
crisis periods across the plots as mentioned in Table 2. The RV plot
ives us an insight into the extent of price fluctuations across various
utures and the SPX index. Generally, we observe heightened fluctua-

tions in the RV values of the futures and equity index corresponding
o different crisis periods. Coinciding with the Gulf War of 1990–
1 and the resultant embargo on Iraq and Kuwait, crude oil futures
xhibit significant perturbations in the RV. Crude oil prices doubled
ithin a few months until Saudi Arabia intervened to restore world
il production by November 1990 (Hamilton, 2011). The RV trends
or natural gas, copper and wheat futures show significant volatility
round 1996 (as seen by the spikes before the AFC), coinciding with
he Enron collapse and the subsequent decline in the trading of natural

gas futures (Pindyck, 2004).
The GFC marked a period of heightened volatility in the RV values

for major equity indices and commodity futures. Financialisation of
commodity futures, particularly energy futures, increased the risk of
otential contagion effects as shocks from the equity markets affect
ommodity markets and vice versa (Wen et al., 2012; Nguyen et al.,

14 Lumber futures prices fell by 64% to trade at around $410 in September
2020, trading at pre-COVID levels again.

15 On April 20, 2020, WTI crude oil futures saw the largest drop in history
when its prices dropped by 306% and settled at −37.63$ a barrel.

16 Tables A.6–A.16 provide detailed descriptive statistics for the dataset,
segmented by each specific crisis considered in the study.
7

2020; Wang et al., 2021). Even precious metal futures like gold and sil-
ver display considerable volatility owing to increased ‘‘flight to quality’’
behaviour by speculators/investors exacerbated by overall uncertainty
and liquidity concerns (Klein, 2017; Miyazaki and Hamori, 2013).

Energy futures experience another increase in volatility during the
rice slump from 2014 to 2016. This was primarily due to a supply glut

caused by increased technological efficiency in shale gas production
and OPEC’s refusal to restrain production, leading to a more than 70%
reduction in oil prices (Zhang et al., 2017; Fantazzini, 2016; Gong
t al., 2021). Consequently, the RV trends for energy futures during

this period were marked by heightened volatility.
The COVID-19 pandemic-induced lockdowns from March 2020

gain created a highly chaotic situation with varying impacts on
ifferent futures. Prices of energy futures plummeted. The RV trends
or crude oil and heating oil futures capture the chaos brought about

by historical lows in oil futures’ prices. In contrast, the RV trends
of corn and lumber futures capture the increased volatility in their
prices brought about by massive price increases caused by supply chain
disruptions.

To estimate the magnitude and direction of the spillover effects,
we feed the RV data into our TVP-VAR-SV model as given in Eq. (5).

etails of prior selection and calculation of the posterior means are
provided in Appendix B. The TVP-VAR-SV model outputs the posterior
means for the time-varying parameters 𝛼̂𝑡, 𝛽𝑡 and ℎ̂𝑡, which capture
the time-variation in the contemporaneous terms, the lag propagation
nd the impact of the exogenous shocks affecting the model system
espectively.

The RHS of Fig. 2 plots the SV component of the model ℎ̂𝑡 for
the different futures and SPX. By incorporating the time-varying SV
term, we account for the dynamic variances in the exogenous shocks
that impact the model system. Standard VAR and TVP-VAR models
ssume homoskedastic (constant) variances for the intrinsic Gaussian
oise terms across the entire time period (McMillan and Speight, 2010;

Bouri et al., 2021b). Our SV plots show that allowing for time vari-
ation in the variances of the exogenous shock terms (heterogeneity)
better captures the dynamic nature of the exogenous model shocks. We
bserve substantial spikes in the SV term corresponding with various
risis periods. For instance, the significant perturbation in ℎ̂𝑡 in crude

and heating oil futures during the onset of the COVID crisis coincides
with the largest drop in energy futures prices in history.

Modelling time-varying error variances helps us understand the
differences in the nature of shocks and their varying impact on different
futures. While economic crises like GFC and ESDC primarily increase
variation in volatility levels of energy futures, precious metal futures
and SPX, the pandemic-induced crisis and the resulting supply chain
disruptions affected other commodity futures that were so far isolated
from shocks in the energy futures or equity market. Our results capture
the unique impact on lumber futures’ volatility (as seen by the increase
in its SV value) that was not necessarily observed during previous
crisis periods. This analysis reiterates the importance of capturing
the heteroskedasticity in error variances while accounting for time-
variation within the VAR model (Sims and Zha, 2006; Koop, 2011; Chan
and Eisenstat, 2018).

5.2. Analysing the time-varying directional volatility spillover indices

We calculate the net pair-wise volatility spillover indices to ob-
serve the direction and magnitude of volatility transmissions across
major commodity futures and SPX. We use the generalised FEVD based
spillover index (developed by Diebold and Yilmaz, 2008, 2012) as
explained in Section 3.1.1. Eq. (13) calculates the time-varying net pair-
wise directional spillover index from commodity future i to commodity
future j. Eq. (14) calculates the time-varying net spillover index from
commodity future i to the remaining commodity futures. To determine
the optimal forecasting horizon, we compute the net pair-wise and
overall net spillover indices for horizons from H = 1 to 16. We select
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Table 3
Descriptive Statistics.

Asset class Mean Median Min Max Skew Kurtosis Jarque–Bera Test

Gold 6.13 5.34 0.44 36.11 2.09 8.11 6723.51∗∗∗

Silver 10.82 9.09 0.72 72.55 2.21 8.52 7432.95∗∗∗

SPX 6.6 5.45 0.52 81.79 4.51 40.41 138424.23∗∗∗

Crude oil 13.61 11.74 0.71 211.04 6.99 98.25 795204.78∗∗∗

Heating oil 12.56 11.17 1.89 122.35 3.44 31.19 82392.38∗∗∗

Natural gas 15.4 14.54 0.0 89.13 1.04 3.4 1286.13∗∗∗

Lumber 11.99 11.47 0.72 50.13 1.2 3.58 1499.14∗∗∗

Copper 9.03 8.29 0.0 55.85 1.57 6.29 3990.0∗∗∗

Corn 9.35 8.12 0.45 41.95 1.52 3.35 1654.75∗∗∗

Wheat 10.81 9.64 1.28 54.88 1.85 6.62 4644.72∗∗∗

This table presents the descriptive statistics for the Realised Volatility (RV) of the asset classes considered in the study from Jan 1990–Feb
2022. The Jarque–Bera test is for the following significance levels: *** indicates significance at 1% level, ** indicates significance at 5% level
and * indicates significance at 10% level.
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H = 8 as the optimal horizon, as spillover values stabilise at their
teady-state maximum beyond this point.17

We plot the spillover indices in Fig. 3, where we have again high-
lighted the crisis periods. The lines are red in regions where the values
are positive, while being blue otherwise. The off-diagonal plots show
the net pair-wise spillover index as defined in Eq. (13), where a red
blue) line implies that the row asset class transmits (receives) volatility
nto (from) the column asset class. We note that the off-diagonals
irror one another up to a sign of −1 by symmetry. The diagonal plots

show the net volatility spillover to the remaining asset classes defined
in Eq. (14), where a red (blue) line implies that the asset class transmits
(receives) volatility in net to (from) all other asset classes considered
in this study.

Our results indicate that the nature of spillovers is not static for
the period under consideration. Commodity futures continually interact
with other futures/SPX by transmitting/ receiving volatility informa-
tion. The nature of inter-relationships is dynamic and prone to change.
Commodity futures that transmit volatility information in some peri-
ods become net receivers of volatility information in others. During
crises, spillover of volatility information can potentially exacerbate,
sometimes impacting commodity futures that previously had minimal
interactions with the transmitting asset class. Volatility transmitting as-
set classes exert significant influence to the receiver, propagating risks
and potentially triggering contagion effects during crises. Conversely,
volatility receivers must account for their sensitivity to external factors
when evaluating future performance.

SPX is the dominant volatility transmitter in our model, primarily
affecting crude and heating oil futures. During crises, these transmis-
sions intensify, highlighting potential contagion effects. Historically,
heightened volatility in SPX has consistently led to increased trans-
mission effects to crude and heating oil futures, as corroborated by
existing studies (Mensi et al., 2021d; Asadi et al., 2022). During crises,
investors often flock to more stable assets, resulting in increased volatil-
ity transmissions to precious metals futures (Farid et al., 2021; Umar
t al., 2021; Kang et al., 2017). Additionally, our results indicate

that copper, lumber, and wheat futures also predominantly transmit
volatility, while gold, crude oil, and corn futures predominantly receive
volatility. Silver and heating oil futures alternate between being net
transmitters and receivers of volatility information. Natural gas futures
are predominantly net transmitters of volatility but continually receive
volatility from lumber futures. The COVID-19 pandemic-induced lock-
downs however led to a complete shutdown of production processes,
exacerbating the volatility in the already under-inventoried lumber sec-
tor. This resulted in record levels of volatility transmission from lumber
to natural gas futures during this period, causing natural gas futures
to completely transition to net receivers of volatility. Understanding
inter-asset interconnectedness is thus essential for market practitioners
and policymakers to accurately gauge potential sensitivity risks that a

17 Details of horizon saturation are given in Appendix C.1.
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particular asset class might face.
To measure the differences in impacts of volatility spillover con-

tribution to/from the futures/SPX across various crises, we calculate
he average volatility spillover contributed to/from commodity future
from/to the remaining asset classes j during a particular crisis using

𝐶 𝑜𝑛𝑡𝑟𝑖𝑏𝑖,𝑗 (𝐻) =
|

|

|

|

|

|

|

1
𝑇

𝑇
∑

𝑡=1

𝑉 𝑆𝑖𝑗 ,𝑡(𝐻)
∑

𝑗≠𝑖
|

|

|
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𝑖 ≠ 𝑗 , 𝐻 = 8, 𝑇 = [𝑐 𝑟𝑖𝑠𝑖𝑠 𝑝𝑒𝑟𝑖𝑜𝑑] (19)

where 𝑉 𝑆𝑖𝑗 ,𝑡(𝐻) is the net volatility spillover from(to) market i to(from)
market j when the value is positive(negative). Sections 5.2.1 to 5.2.5
contain bar plots representing the sector-wise average volatility spillover
contribution across crises. The bar plots are colour-coded to represent
various crises consistent with Table 2. The positive(negative) signs on
he bar plots indicate if a particular asset class is a net transmitter
receiver) of volatility during a particular crisis.

5.2.1. Volatility spillovers of precious metal futures
We consider gold and silver futures to represent the precious metals

ector. Theory suggests that precious metals futures serve as hedge as-
sets, insulating investors/speculators from global financial volatility by
propagating a ‘‘flight to quality’’ behaviour, increasing the demand for
precious metals during extreme risk scenarios (Klein, 2017; Miyazaki
and Hamori, 2013). We hypothesise that precious metal futures are
ominant receivers of volatility information with spillovers deepening,

especially during crises.
Despite this reasoning, gold futures were predominantly a net trans-

itter of volatility until the mid-2000s, transmitting significant volatil-
ity information to energy futures like crude and heating oil as seen in
Fig. 3 (1R4C and 1R5C)18 Volatility transmissions from gold to crude
and heating oil futures extended during both the AFC and DBC.

Gold futures however consistently receive volatility from SPX keep-
ing in line with the ‘‘safe-haven asset’’ perception (Bouri et al., 2021a;
Buccioli and Kokholm, 2021; Mensi et al., 2021d). We observe height-
ened volatility transmissions from SPX to Gold futures (28%) on av-
erage during the dotcom bubble crash19 (see Fig. 4). Post-2005, gold
futures transition to become net receivers of volatility with spillovers
xacerbating during crises. As shown in Fig. 4, gold receives substantial

volatility information on average from SPX(22%), natural gas (17%)
and silver (17%) during the GFC. During the oil price crash, Gold
futures receive significant volatility from SPX (32%) and Natural gas
futures (14%) whilst still transmitting volatility to Copper (16%) and
Corn futures (12%). Similarly, during COVID, gold futures receives
significant volatility information on average from SPX (21%), natural
gas (17%) and transmits volatility to corn futures (18%). Our results

18 Note: 1R4C refers to the first row and fourth column of Fig. 3.
19 The Dotcom crash saw close to 800 internet based companies going

bankrupt with SPX losing nearly 49% of its value (Rovenpor, 2003).
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Fig. 2. Realised Volatility and Stochastic Volatility (ℎ̂𝑡)
The LHS of the Figure plots the realised volatility of the asset classes under consideration in the study from Jan 1990 to Feb 2022. The various crisis periods are shaded as
reported in Table 2. The RHS of the Figure plots the stochastic volatility component from the TVP-VAR-SV model from Nov 93 to Feb 2022, excluding the data period considered
for training the priors of the model (ℎ̂𝑡 = exp(log 𝜎̂𝑡)).
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align with literature alluding to gold futures being a net receiver of
volatility information due to functioning as a safe haven asset (Balcilar
t al., 2019; Mensi et al., 2017, 2021a; Bouri et al., 2021a).

Silver is a more robust transmitter of volatility than gold until the
mid-2000s. For instance, we observe in Fig. 3 that, from Mar 95 to May
95, silver transmits close to 33% of its volatility to SPX (2R3C), 15% of
its volatility to corn (2R9C), 16% to wheat (2R10C) and 10% to copper
(2R8C). Silver ceases to be a transmitter of volatility to SPX after this
9

period and transitions completely to become a net receiver of volatility
rom SPX . Silver futures transmit significant volatility information on
verage to agricultural futures during AFC and Oil price crash and
OVID (see Fig. 4). Our results also highlight the dynamic nature of

integration that silver shares with other energy and industrial futures.
Silver and copper alternate between transmitting/receiving volatility
to/from each other (consistent with Qiao and Han, 2022). Natural gas,
lumber and SPX remain net transmitters of volatility information to
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Fig. 3. Net pair-wise volatility spillover index
he Figure illustrates the net pairwise spillover index for variance decomposition period H= 8. Details of the shaded crisis periods are mentioned in Table 2. The X axes show

the dates from Nov 93 to Oct 2021. The Y axes show the extent of volatility spillover. The red lines represent positive net spillover (net transmitter) from row 𝑖 to column 𝑗.
The blue lines represent negative net spillover (net receiver) from row 𝑖 to column 𝑗. The off-diagonal elements plot the net pairwise spillover index defined in Eq. (13). The
diagonal elements plot net volatility spillover to the remaining asset classes defined in Eq. (14). The off-diagonals mirror one another up to a sign of −1. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
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silver (consistent with Mensi et al., 2017 and Farid et al., 2021).

5.2.2. Volatility spillovers of SPX
SPX is a leading indicator variable to forecast volatility changes

n crude oil, heating oil and gold futures consistent with Farid et al.
(2021), Wang and Wu (2018) and Balcilar et al. (2018). Despite that,
SPX experiences brief periods where it transitions to become a net
eceiver of volatility information. From March to May 95, there is a
ne-off perturbation in volatility transmission from silver to SPX (36%)

(see Fig. 3 (3R2C).20)

20 Note: 3R2C refers to the third row and second column of Fig. 3.
10
Volatility transmissions from SPX are exacerbated during various
rises, further cementing the significance of accounting for volatility
ransmissions from SPX in studies primarily focused on commodity
utures. The integration between crude and heating oil with SPX exacer-
ates during crises post-2004, alluding to the increasing financialisation
f energy futures and the consequent contagion shocks from SPX (see

Fig. 5) (Mensi et al., 2021d). Volatility transmissions from SPX reached
historical levels on Sep 08, transmitting about 32% volatility to crude
il and 46% volatility to heating oil futures. During the onset of the
andemic, SPX remained a net transmitter of volatility information.

However, coinciding with the largest drop in oil futures prices in Apr
020, SPX briefly transitions to become a net receiver of volatility,

receiving volatility information from crude (24%) (see Fig. 3 3R4C) and
heating oil futures (17%) (see Fig. 3 3R5C).
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Fig. 4. Average volatility spillover contribution to/from precious metal futures during crises.
he colours represent different crises given in Table 2: AFC, DBC, GFC, ESDC and COVID. The X-axes indicate the commodity futures/SPX that are in net transmitting/receiving

volatility to/from the precious metal future. The percent contribution of mean volatility spillover is given in Eq. (19). The + sign indicates that the precious metal future was
in net transmitting volatility to that future/SPX during that particular crisis period. The − sign indicates that the precious metal future was in net receiving volatility from that
uture/SPX during that particular crisis period. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 5. Average volatility spillover contribution proportion to/from SPX during
crises.
The colours represent different crises given in Table 2: AFC, DBC, GFC, ESDC
and COVID. The 𝑋-axis indicates the commodity futures that are in net transmit-
ting/receiving volatility to/from SPX. The percentage contribution of mean volatility
spillover is given in Eq. (19). The + sign indicates that the SPX was in net transmitting
olatility to that future during that particular crisis period. The − sign indicates that
PX was in net receiving volatility from that future during that particular crisis period.
For interpretation of the references to colour in this figure legend, the reader is referred
o the web version of this article.)

Overall, SPX continues to be deeply integrated with gold and oil
futures, transmitting significant volatility information to them. Natural
gas futures have, however, remained isolated from volatility shocks
from SPX, making them an exciting hedging alternative. Our results
align with Jebabli et al. (2022) and Niu and Hu (2024) who report
limited interactions between natural gas futures and SPX and support
he hedging abilities of natural gas futures against shocks in SPX.

5.2.3. Volatility spillovers of energy futures
We consider crude oil, heating oil and natural gas futures to rep-

resent the energy sector in our study. The financialization of energy
futures has made crude oil and heating oil more vulnerable to stock
market fluctuations. Similarly, the increased speculative investment
in energy futures has ensured that periods of heightened volatility
in energy futures coincide with extreme volatility shocks in equity
markets (Creti and Nguyen, 2015; Yang et al., 2024).

Our results indicate that crude oil futures are predominantly a net
receiver rather than a transmitter of volatility information (see Fig. 3
4R4C). They predominantly receive volatility information from other
nergy, industrial futures and SPX. In the aftermath of the 1991 Gulf
ar, crude oil futures remained especially susceptible to volatility

hocks from other energy futures despite oil production reaching previ-
us levels. Between Nov 93 and Mar 96, crude oil futures experienced
11
record levels of volatility spillover from heating oil (25%) (4R5C),21

SPX (20%) (4R3C), lumber (16%) (4R7C), gold (15%) (4R1C) and
opper futures(14%) (4R8C). The GFC, further heightened volatility

dependence of crude oil futures, reaching unprecedented levels by Sep
8. From Sep 08 to Aug 10, crude oil received 38% of its volatility
nformation from SPX (4R3C), 17% from copper (4R8C), 12% from
umber (4R7C) and 12% from natural gas (4R6C). Crude oil remained
et receivers of volatility during the 2014–16 oil price crash despite
ransmitting around 12% volatility information to natural gas futures
see Fig. 6) . During the onset of the COVID-19 pandemic, coinciding

with the largest single-day price drop in oil futures in April 2020,
crude oil futures, transition from net receiver to transmit around 19%
olatility to SPX (4R3C). These results are in line with Corbet et al.

(2021), who document the transition of crude oil futures from net
receivers to net transmitters of volatility to the SPX during the early
stages of the pandemic. Our results align with literature that find strong
integration between crude oil futures and stock market indices with
rude oil futures predominantly behaving as net volatility receivers
Gong et al., 2021; Xu et al., 2019, 2024; Mensi et al., 2021b).

Like crude oil futures, heating oil futures primarily function as net
receivers of volatility information (see Fig. 3 row 5). Heating oil futures
however, consistently transmit volatility to crude oil futures. The brief
periods where heating oil transition to become overall net volatility
transmitters are due to substantial volatility transmissions to crude oil
futures. For instance, heating oil transmits close to 60% of its volatility
information to crude oil during August 2005 (5R4C). Our results are
consistent with Gong et al. (2021). We observe a pattern where heating
oil futures are brief net transmitters of volatility at the onset of various
rises before becoming net receivers of volatility. From April 2008 to

January 2011, heating oil futures receive about 44% volatility from SPX
(5R3C), 17% from copper (5R8C) and 12% from natural gas futures
(5R6C). Similarly, during the pandemic-induced crisis, heating oil fu-
tures again transition to become net receivers of volatility. From August
2020, they receive about 54% volatility information from SPX (5R3C)
and 15% from lumber futures (5R8C). Heating oil futures remained
net receivers of volatility during the 2014–16 oil price crash despite
transmitting around 18% volatility information to natural gas futures
(see Fig. 6)

Our findings provide strong evidence for the financialisation of
energy futures, such as crude oil and heating oil, and the result-
ing intensification of volatility spillovers from SPX during various
crises (Mensi et al., 2021d; Balcilar et al., 2018). Crude oil futures also
bsorb substantial volatility from other energy and industrial futures

21 Note: 4R5C refers to the fourth row and fifth column of Fig. 3.



Energy Economics 143 (2025) 108225S. Ramesh et al.

t
i

t
t
S

e
t
w
f

n
s

v

i
h
c

f
2
i
l
t
i
u

t
W
(
f

Fig. 6. Average volatility spillover contribution to/from Energy futures during crises.
The colours represent different crises given in Table 2: AFC, DBC, GFC, ESDC and COVID. The 𝑋-axis indicates the commodity futures/SPX that are in net transmitting/receiving
volatility to/from the energy future. The percentage contribution of mean volatility spillover is given in Eq. (19). The + sign indicates that the energy future was in net transmitting
volatility to that future/SPX during that particular crisis period. The − sign indicates that energy future was in net receiving volatility from that future/SPX during that particular
crisis period. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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included in the study. While heating oil is a net volatility transmitter
o crude oil, it also receives considerable volatility from natural gas and
ndustrial futures.

Unlike crude and heating oil futures, natural gas futures consistently
ransmit volatility until Dec 2016 (see Fig. 3 row 6). Our results indicate
hat natural gas futures do not experience substantial integration with
PX and are relatively isolated from volatility shocks affecting the

SPX market (like the DBC or GFC). Natural gas futures also do not
xhibit significant within-energy sector volatility integration compared
o crude oil-heating oil future integration. Our findings are consistent
ith studies that the prices of natural gas futures have decoupled

rom crude and heating oil prices (Mensi et al., 2021c; Erdős, 2012;
Ramberg and Parsons, 2012; Gong et al., 2021). Since December 2016,
atural gas futures have become significant recipients of volatility
pillovers, particularly from lumber. During the initial phase of the

COVID-19 crisis in April 2020, natural gas briefly shifted to being a net
transmitter of volatility, notably to crude oil (23%) (6R4C) and heating
oil (18%) (6R5c). However, despite this short-lived shift, the broader
pandemic period was marked by an exceptionally high reception of
olatility from lumber, averaging 63%. The pandemic-induced lock-

downs, which severely disrupted manufacturing and industry, further
intensified these spillovers from lumber futures (see Fig. 6).

5.2.4. Volatility spillovers of industrial futures
In this study, we use lumber and copper futures to represent the in-

dustrial sector. Lumber is predominantly a net transmitter of volatility
nformation. From Fig. 3 row 7, we observe that lumber experienced
istorical levels of volatility transmission from February 2019, coin-
iding with soaring levels of RV and SV (see Fig. 2). Lumber futures

transmit substantial amounts of volatility information to natural gas
utures. Even before the onset of the COVID-19 crisis, from February
019 to February 2020, lumber transmitted about 68% of its volatility
nformation to natural gas (see Fig. 3 7R6C22). During the COVID crisis,
umber futures transmit close to 65% of their volatility information
o natural gas (see Fig. 7). Our results reaffirm findings of increased
ntegration between lumber and natural gas due to their use in man-
facturing activities. Shocks in lumber markets propagate to increase

volatility in natural gas prices.
Copper, a key industrial commodity, consistently acts as a net

ransmitter of volatility, particularly to crude and heating oil futures.
e observe substantial transmission spikes from copper to crude oil

15%) (see Fig. 3 8R4C), heating oil(16%) (8R5C) and silver(17%)
utures (8R2C) from May 06 to June 08. As illustrated in Fig. 7, copper

22 Note: 7R6C refers to the seventh row and sixth column of Fig. 3.
12
typically transmits most of its volatility to crude and heating oil on
verage during crises. Copper futures have a more dynamic relationship
ith natural gas and lumber futures, with copper alternating between
eing a transmitter or receiver for different crises. However, the volatil-
ty chaos caused by the pandemic in lumber futures led to copper
eceiving historically high levels of volatility from lumber, averaging
o around 26%.

5.2.5. Volatility spillovers of agricultural futures
In this study we use corn and wheat futures to represent the agricul-

ural sector. Fig. 3 shows that corn and wheat futures are characterised
by strong bidirectional within-sector volatility transmissions.

For the most part, corn futures are an active receiver of volatility
information. They primarily receive volatility from silver, gold and
SPX. However, as shown in Fig. 3 row 9, from June 2008 to October
2012, coinciding with the GFC and ESDC, corn futures significantly
transmit volatility to other asset classes, predominantly wheat, gold,
silver, copper and lumber futures while also periodically transitioning
to receive volatility from them. On average, during the GFC, corn
receives 16% volatility from SPX while transmitting close to 10%
volatility to lumber and 8% to wheat (see Fig. 8). During COVID,
corn receives heightened volatility transmission on average from gold
(17%), silver (22%), SPX (14%) and copper (9%) while transmitting
close to 10% volatility information on average to natural gas futures.

Wheat futures periodically transition between net transmitters and
receivers of volatility information, although the extent of transmissions
is greater. Corn and natural gas futures actively engage with wheat
futures. As shown in Fig. 8, wheat futures consistently transmitted
volatility to gold barring the pandemic-induced crisis. Wheat receives
significant proportion of its volatility from silver on average during
the AFC(26%) and COVID (23%). Barring ESDC, wheat transmits a
substantial amount of its volatility on average to natural gas (especially
during AFC(22%) and COVID (23%)). During periods of crises, wheat
predominantly receives volatility signals from corn. Overall, our results
align with Farid et al. (2022) and Mensi et al. (2021d) who document
ignificant interactions between agricultural, energy, precious metal
nd industrial futures.

5.3. Noteworthy aspects of volatility transmissions across different crises

In our analyses, we identify some consistent patterns across various
crises and some specific fluctuations that correspond to the unique
characteristics of each crisis. Recognising these trends can be significant
for optimising portfolios and enhancing risk management strategies.

Our results are consistent with SPX being the largest net transmitter
of volatility (Farid et al., 2021; Bouri et al., 2021b). We also find
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Fig. 7. Average volatility spillover contribution to/from Industrial futures during crises.
The colours represent different crises given in Table 2: AFC, DBC, GFC, ESDC and COVID. The 𝑋-axis indicates the commodity futures/SPX that are in net transmitting/receiving
volatility to/from the industrial future. The percentage contribution of mean volatility spillover is given in Eq. (19). The + sign indicates that the industrial future was in net
ransmitting volatility to that future/SPX during that particular crisis period. The − sign indicates that the industrial future was in net receiving volatility from that future/SPX
uring that particular crisis period. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 8. Average volatility spillover contribution to/from Agricultural futures during crises.
he colours represent different crises given in Table 2: AFC, DBC, GFC, ESDC and COVID. The 𝑋-axis indicates the commodity futures/SPX that are in net transmitting/receiving

volatility to/from the agricultural future. The percentage contribution of mean volatility spillover is given in Eq. (19). The + sign indicates that the agricultural future was in
et transmitting volatility to that future/SPX during that particular crisis period. The − sign indicates that agricultural future was in net receiving volatility from that future/SPX
uring that particular crisis period. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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evidence of increasing contagion effects from SPX to energy futures.
SPX consistently transmits volatility information to crude and heating
oil futures, deepening spillovers during crises. Volatility shocks to SPX
translate to volatility shocks in crude and heating oil futures. Our
results add to existing literature that points to the financialisation of
energy futures and the subsequent reduction in diversification potential
offered by crude and heating oil futures (Bianchi et al., 2020; Main
et al., 2018; Basak and Pavlova, 2016; Nguyen et al., 2020). We also
allude to the importance of incorporating equity indices in studies
involving volatility spillover analyses of energy futures.

Gold futures function as safe-haven assets, shielding speculators
rom periods of heightened volatilities in both SPX and energy fu-
ures. Nguyen et al. (2020) find that gold futures remain negatively cor-

related to shocks in both equity and oil markets. Its supply scarcity and
bility to hold value further make gold futures ideal hedge assets. Our

results substantiate the safe-haven characteristic by finding evidence
for increasing volatility spillover information received by gold futures
from SPX and energy futures, exacerbating during crises (Balcilar et al.,
2019; Mensi et al., 2017, 2021a; Bouri et al., 2021a). We, however,
observe more muted overall volatility transmissions to gold during the
pandemic-induced crisis than earlier crises (see Fig. 3 1R1C). Despite
ecord stock market lows at the onset of the pandemic, immediate
overnmental intervention, coupled with rising hedging costs and his-
orical evidence of significant reductions in prices of gold investments
ollowing crises, could have contributed to the reduced ‘‘flight to
uality’’ towards gold. Several other studies concur with the dissipating
otion of gold as safe-haven assets post the COVID crisis (Burdekin and
ao, 2021; Akhtaruzzaman et al., 2021; Baur and Trench, 2022).
13
Our study reveals that crude oil futures predominantly act as a
net receiver of volatility information, amplifying notably during crises
uch as the aftermath of the 1990–91 oil crisis and the GFC. During

these periods, crude oil futures experienced heightened volatility levels,
drawing significant cues from heating oil, SPX, and natural gas markets.
Our results are consistent with Gong et al. (2021), who find that crude
il futures predominantly receive volatility from both heating oil and
atural gas futures. During the oil price crash however, crude and
eating oil futures transmit volatility to natural gas futures, though
he overall impact on natural gas was less pronounced. Notably, at

the onset of the COVID-19 pandemic, crude oil futures briefly became
an overall net transmitter of volatility, coinciding with the sharpest
recorded drop in oil futures prices. Following this period, crude oil
utures reverted to their role as a net receiver for the rest of the
andemic. These results are in line with Corbet et al. (2021), who

document the transition of crude oil futures from net receivers to net
transmitters of volatility to the SPX during the early stages of the
andemic. It is worth noting that the level of volatility information
eceived during the pandemic was comparatively more subdued than
uring the GFC.

Natural gas futures remain isolated from volatility shocks in SPX.
hey also do not have significant interactions with crude and heating
il futures. We posit that natural gas futures could be an exciting
edge to protect from volatility shocks in SPX and crude and heating
il futures during both crises and non-crises. Our findings align with
hat of Okhrin et al. (2023) who report the predictive influence SPX

and natural gas have on the crude oil market. Our findings also align
with other studies (Mensi et al., 2021c; Rizvi et al., 2022), further
affirming their potential as a hedging asset. Our results are consistent
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with studies alluding to the decoupling of natural gas future prices
rom other energy futures owing to the US shale gas revolution (2008)
nd the subsequent shift from oil-based pricing (Ramberg and Parsons,

2012; Erdős, 2012; Zhang and Ji, 2018). Similarly, agricultural futures
do not have significant interactions with SPX and crude and heating oil
futures during crises and non-crises and could serve as an avenue for
isk diversification (Yip et al., 2020).

This study differentiates the impact of volatility transmissions
amongst asset classes depending on the nature of various crises. An
conomic crisis like the GFC is characterised by exacerbated trans-

missions from SPX to energy futures due to exposure to common
hocks and from SPX to precious metal futures as investors scramble
o invest in more stable hedge assets. In contrast, the pandemic-
nduced crisis uniquely heightened spillovers from lumber to natural
as futures unobserved during previous crises. Production cuts and
ockdowns severely impacted volatility transmissions across industrial,
atural gas and agricultural futures. The pandemic-induced crisis was
ore pervasive than previous crises regarding exacerbated volatility

ransmissions.

5.4. Portfolio analysis

Analysing the direction and magnitude of volatility interconnected-
ess has important portfolio ramifications as highly integrated sectors
ould exacerbate overall portfolio risk during crises. The MCP strat-
gy introduced by Broadstock et al. (2020) reduces portfolio risk by
inimising bilateral volatility transmissions between assets. It does so

by allocating greater weight to less interconnected sectors, thereby
reducing dependence on highly integrated sectors. We compare histor-
ical performance of the MCP strategy against the conventional MVP
and EWP strategies similar to the following papers (Bai et al., 2023;
Adekoya et al., 2022; Elsayed et al., 2024; Abdullah et al., 2023).

The dynamic weights for the portfolio based on the MCP strategy
q. (16) are presented in the LHS of Fig. 9. Hedge assets according to
he MCP strategy are assets that pose minimum volatility integration
isks. Gold futures receive exacerbated volatility transmissions from
PX and oil futures especially after 2005. Consequently, the MCP
trategy is more conservative to gold during the GFC, ESDC and COVID
rises. Crude and heating oil futures are also consistently weighted
ower in the portfolio during crises owing to their significant integra-
ion with each other and the SPX, particularly during AFC and GFC.
uring the ESDC, heating oil futures are weighted more heavily than
rude oil futures. In contrast, crude oil futures are weighted more

heavily during the oil price crash than heating oil futures. Our findings
substantiate the hedge asset potential of natural gas futures in the
portfolio. With minimal interactions with SPX, crude, and heating oil
futures, they are heavily weighted during crises, maximising returns by

inimising inter-future volatility spillovers. Similarly, lumber and corn
futures are weighted higher during crises due to their limited volatility
nteraction with the rest of the portfolio. Copper futures significantly
nteract with oil futures during the GFC and ESDC and are subsequently
eighted less during those crises. Despite SPX being a constant volatil-

ty contagion source, the only instance where SPX is weighted to zero
s at the onset of the DBC. During the COVID-19 pandemic, crude
il and heating oil futures are weighted at zero coinciding with their
xacerbated volatility spillover conditions. Overall, the MCP strategy
laces greater emphasis on SPX, natural gas, lumber, silver, and corn
utures.

The MVP strategy minimises portfolio risk by reducing conditional
covariances between assets within the portfolio (Markowitz, 1959).
The dynamic weights for the portfolio based on the MCP strategy are
presented in the RHS of Fig. 9. Both the MCP and MVP strategies
equire estimating the time-varying variance–covariance matrix of the
VP-VAR-SV model Eq. (7). Additionally, the MCP weights require

the computation of the generalised FEVDs to compute the pairwise
connectedness indices. Our results indicate that the MVP strategy places
14
Table 4
Descriptive Statistics — Cumulative returns of the portfolio.

MCP MVP EWP

Mean 3.11 1.97 2.97
Min −0.0 −0.03 −0.0
Max 13.35 10.67 7.22
Standard deviation 2.64 2.07 2.3

heavier emphasis on gold futures during crisis periods and on SPX
during non-crisis periods. Interestingly, the MVP strategy weighs lum-
ber more than gold during the GFC. We observe the typical MVP
characteristic of portfolio concentration (Maillard et al., 2010; Clarke
t al., 2011), with minimal weights assigned to silver, crude oil, heating
il, and wheat futures.

Fig. 10 plots the historical evolution of cumulative portfolio returns
nder the MCP, MVP, and EWP strategies. Our results indicate that the
CP strategy consistently outperforms the highly concentrated MVP

trategy during crises and also surpasses the EWP strategy during the
andemic-induced crisis.

Table 4 depicts the descriptive statistics for the cumulative portfolio
returns of the three strategies. The MCP strategy generally yields higher
verage returns, while the MVP strategy exhibits the lowest return
olatility.

Hedge Effectiveness (HE) (Ederington, 1979) measures the diversi-
fication potential of the hedged portfolio over the unhedged individual
asset. It is calculated as:

𝐻 𝐸 = 1 − 𝑣𝑎𝑟(𝑅𝑝𝑜𝑟𝑡𝑓 𝑜𝑙 𝑖𝑜)
𝑣𝑎𝑟(𝑅𝑎𝑠𝑠𝑒𝑡)

(20)

where 𝑣𝑎𝑟(𝑅𝑝𝑜𝑟𝑡𝑓 𝑜𝑙 𝑖𝑜) is the variance of the return of the different strate-
gies and 𝑣𝑎𝑟(𝑅𝑎𝑠𝑠𝑒𝑡) is the variance of the individual asset (future or
SPX). A HE value close to 1 indicates a better risk diversification poten-
tial for the portfolio compared to the individual asset. Table 5 depicts
the mean weight of the portfolio along with the hedge effectiveness
of individuals asset for the different portfolio construction strategies
(MCP, MVP and EWP). We find that the HE is smaller and at times
negative for the MCP and EWP portfolios, whereas the values are closer
to unity for the MVP portfolio. This is consistent as the MVP portfolio
by definition minimises the variance of the portfolio returns; thereby
minimising risk. However, this does not imply profitability. The MCP
strategy ensures greater cumulative returns by placing more emphasis
on SPX, lumber natural gas, silver and agricultural futures.

6. Conclusion

Our study investigates the impacts of time-varying volatility
spillovers across major commodity futures (gold, silver, crude oil,
heating oil, natural gas, lumber, copper, wheat and corn) and SPX from
January 1990 to February 2022. We highlight the dynamic nature of
the transmission effects across precious metals, industrial goods, energy
and agricultural futures. Incorporating SPX in the analysis accounts
for spillover effects due to exposure to common shocks fuelled by the
increasing speculative participation in futures markets. The extended
timeline covers key crises, including the AFC, GFC, ESDC, the oil price
crash and COVID-19 pandemic-induced crisis.

We employ the TVP-VAR-SV model (Primiceri, 2005; Cogley and
Sargent, 2005; Nakajima, 2011) to estimate time-varying contempora-
neous and lagged effects, as well as the impact of exogenous shocks.

he model parameters follow a random walk specification, estimated
via Bayesian MCMC techniques. The TVP-VAR framework effectively
aptures the dynamic interdependencies between variables, allowing

for the analysis of both mutual influences and the transmission of
shocks. Additionally, the SV component (Black, 1976) addresses vari-
ability in exogenous shocks. Volatility spillover indices are computed
sing the generalised FEVD-based DY-spillover index (Diebold and

Yilmaz, 2008, 2012; Diebold and Yılmaz, 2014).
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Fig. 9. Time-varying Multivariate Portfolio Weights
he LHS of the Figure plots the dynamic weights following the MCP strategy (see Eq. (16)) computed from the Pairwise Connectedness Indices (see Eq. (15)) computed from
he TVP-VAR-SV model. The RHS of the Figure plots the dynamic weights following the MVP strategy (see Eq. (17)) computed from the Variance-Covariance matrices of the

TVP-VAR-SV model. The various crisis periods are shaded as reported in Table 2.
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Our results indicate that SPX is the largest net transmitter of volatil-
ity information. Significant volatility spillovers from SPX to energy
futures exist that exacerbate during crises, alluding to the financiali-
ation of energy futures. In addition, gold futures receive heightened
olatility transmissions during crises, alluding to the flight to quality

characteristic exhibited by investors. Natural gas futures do not have
significant within-sector transmissions with crude and heating oil fu-
ures, supporting the theory that natural gas prices have decoupled
15

f

from prices of other oil futures. Additionally, the degree of integration
f natural gas futures with SPX is significantly lower than other energy
utures, suggesting potential viability as a hedge asset. Agricultural
utures primarily exhibit a high degree of within-sector volatility in-
erconnectedness and could also serve as viable hedge assets during
rises. A unique finding from the COVID-19 crisis and the consequent
upply chain disruptions indicate heightened volatility transmissions
rom lumber to natural gas futures, which was unseen in previous
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Table 5
Mean portfolio weights and Hedge Effectiveness.

MCP MVP EWP

Asset class Mean Weight HE Mean Weight HE Mean Weight HE

Gold .06 0.04 .21 0.55 .10 −0.11
Silver .10 0.71 .01 0.86 .10 0.66
SPX .12 0.24 .32 0.64 .10 0.12
Crude oil .06 0.95 .01 0.98 .10 0.94
Heating oil .06 0.8 .02 0.91 .10 0.77
Natural gas .14 0.91 .07 0.96 .10 0.9
Lumber .15 0.83 .13 0.92 .10 0.81
Copper .11 0.6 .09 0.81 .10 0.53
Corn .10 0.68 .09 0.85 .10 0.64
Wheat .10 0.71 .05 0.86 .10 0.67

Average .10 0.647 .10 0.834 .10 0.593

This table reports the averaged portfolio weights and Hedge Effectiveness Eq. (20) of the overall portfolio under the MCP, MVP and EWP
strategies. A higher HE value indicates a larger risk reduction and vice versa.
a

C
W
R

s
b

F
c

w

Fig. 10. Weighted Portfolio Performance
Cumulative portfolio returns under the MCP and MVP and EWP strategies. The various
crisis periods are shaded as reported in Table 2.

crises.
Analysing the propagation of volatility transmissions is integral for

policymakers and investors to gauge the aftermath of high volatility
events on specific asset and the downstream impacts on related assets.
Policymakers benefit by identifying key volatility transmitters and
eceivers. Volatility transmitting assets pose a risk of exacerbating con-

tagion effects throughout the economy. By pinpointing these sources
and understanding the channels of risk propagation, policymakers can
implement more effective regulatory measures to mitigate systemic
isks. For fund managers, identifying key volatility transmitters and
eceivers within their portfolios can provide a strategic advantage. Our
pillover analyses reveal that the financialisation of energy futures —
articularly crude and heating oil futures, lead to exacerbated volatility
n these assets during economic and financial crises, as stock market
hocks spill over into energy markets. However, demand and supply
hocks in the oil market do not significantly affect SPX volatility.23

While, conventional hedging assets like gold futures experience in-
creased volatility from SPX and oil futures during crises, making them
ess effective, natural gas futures show minimal interaction with SPX
nd other energy futures, maintaining stability. We substantiate our
ecommendations by constructing dynamic MCP weights (Broadstock
t al., 2020) (See Fig. 9), which indicate that less interconnected assets,

23 The brief period in April 2020, when oil futures traded at negative prices
nd transitioned to net volatility transmitter to SPX being an exception.
16
such as natural gas, lumber, and agricultural futures, offer effective
hedging opportunities, making them valuable additions to a diversified
portfolio during periods of crises. Additionally, identifying inter-asset
volatility linkages contain significant information that could potentially
enhance fund managers’ ability to predict future asset volatility more
ccurately.
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Appendix A. Data - crisis timelines and event-based statistical
analysis

A.1. Crisis timelines

Our study’s timeline spans three decades, from January 1990 to
February 2022. This period encompasses significant economic crises,
commodity price crashes, and a crisis induced by a pandemic. We detail
the justification for the beginning and end of the various crises, along

ith the relevant sources here.
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1. Asian Financial Crisis (AFC) (July 1997–December 1998):
The crisis began in July 1997 with the devaluation of the Thai
Baht, sparking widespread capital outflows across Asia. It lasted
until December 1998, concluding with the implementation of
IMF-led stabilisation programs, as detailed by Kaminsky and
Schmukler (1999), Lien et al. (2018) and Krugman (2000).

2. Dot-com Bubble Crash (DBC) (March 2000–October 2002):
After nearly peaking at 5048 points on March 10, 2000, NAS-
DAQ began to sharply decline, as major companies started plac-
ing large sell orders on their stocks. This triggered a panic
among investors, causing the stock market to lose over 10%
of its value within weeks. NASDAQ continued to fall, reaching
1,139 by October 2002, signalling the end of the dot-com bubble
(Timeline retrieved from the Federal Reserve Bank of St. Louis.).

3. Global Financial Crisis (GFC) (June 2007–February 2009):
The crisis began in July 2007 when Standard and Poor’s and
Moody’s Investor Services downgraded over 100 bonds backed
by second-lien subprime mortgages. Additionally, Bear Stearns
informed investors that it would suspend redemptions from
its High-Grade Structured Credit Strategies Enhanced Leverage
Fund, subsequently liquidating two hedge funds invested in
various types of mortgage-backed securities. The crisis came to
an end in February 2009 with the implementation of the U.S.
government’s economic stimulus package, as documented by the
Federal Reserve Bank of St. Louis.

4. European Sovereign Debt Crisis (ESDC) (January 2010–May
2012): The crisis began in January 2010 when rising sovereign
debt levels compelled lenders to demand higher interest rates
from Eurozone countries grappling with significant debt and
deficit issues. Greece, Portugal, and Ireland faced substantial
downgrades to junk status by international credit rating agen-
cies, intensifying investor anxieties. The crisis ended in May
2012, following the European Union’s financial assistance and
the implementation of crucial reforms, as highlighted by Ehrmann
and Fratzscher (2017) and Arellano et al. (2012)

5. Oil price crash (September 2014–November 2016): The crsis
began in September 2014, driven by a sharp decline in oil prices
from a peak of $100 in June 2014. This decline was further
compounded by OPEC’s decision not to cut production levels de-
spite falling prices, as they aimed to maintain market share and
pressure higher-cost producers, particularly U.S. shale produc-
ers. The crisis ended in November 2016, when OPEC agreed to
cut production for the first time in eight years, with participation
from non-OPEC producers, as reported by Fantazzini (2016).

6. COVID-19 pandemic-induced crisis (March 2020–February
2022): The crisis began in March 2020 when the World Health
Organisation declared the Novel Coronavirus outbreak a pan-
demic, marking a significant period of global economic dis-
ruption and uncertainty, which continued until February 2020,
which is also the endpoint of our data scope (Timeline retrieved
from the Federal Reserve Bank of St. Louis).

A.2. Crisis-specific descriptive statistics

Tables A.6–A.16 present the period-wise descriptive statistics to
mphasise changes in key characteristics during crises.

Appendix B. MCMC sampling methodology to estimate coefficients
in TVP-VAR-SV model

The model introduced in Section 3.1 has several time-varying pa-
ameters that require estimation: 𝐀𝑡, 𝐁𝑚,𝑡 and 𝜮𝑡. This section outlines
he MCMC algorithm used in this study.
17

A

B.1. Prior estimation

Priors refer to the probability distributions that express our beliefs
r assumptions about the data before undertaking any data analysis.
he first 200 observations (from Jan 1, 1990, to Oct 1993) are cho-
en to calibrate our prior distributions. Robust priors are necessary
o avoid implausible behaviours from the time-varying parameters.

e follow Primiceri (2005) and Nakajima (2011) and set up tighter
priors for the time-varying coefficient 𝜷𝑡 and more diffuse priors for
he time-varying simultaneous relations 𝜶𝑡 and the time-varying SV
omponent ℎ𝑡. We estimate the initial conditions using a conventional
LS approach where we solve the following SVAR model :

𝐲𝑡 = 𝐗′
𝑡𝛽 + 𝝃𝑡, (B.1)

where 𝛽 is the constant to be estimated, while [𝜩]𝑛×𝑛 from 𝜉𝑡∼𝑁(0,𝜩) is
stimated via the sum-squared error of the constant VAR. The estima-
ions are found via standard OLS equations (Greene, 2022; Lütkepohl,

2005):

𝛽𝑂 𝐿𝑆 = 𝐸(𝛽) =
( 𝑇
∑

𝑡=1
(𝐗𝑡𝐗′

𝑡)

)−1 ( 𝑇
∑

𝑡=1
𝐗𝑡𝐲𝑡

)

(B.2)

𝜩̂ = 1
𝑇 − 𝑘

𝑇
∑

𝑡=1
(𝐲𝑡 − 𝐗′

𝑡𝛽𝑂 𝐿𝑆 )(𝐲𝑡 − 𝐗′
𝑡𝛽𝑂 𝐿𝑆 )′ (B.3)

(𝛽𝑂 𝐿𝑆 ) =
( 𝑇
∑

𝑡=1
𝐗𝑡𝜩̂

−1𝐗′
𝑡

)−1

. (B.4)

To get the estimates for the terms in 𝐀−1𝜮, we need to perform a
Cholesky decomposition, or more specifically an LDL decomposition,
on 𝜩̂ = 𝐀̂−1

𝑂 𝐿𝑆 𝜮̂0𝜮̂
′
0(𝐀̂

−1
𝑂 𝐿𝑆 )′ to get:

𝜩̂ = 𝐋𝐃𝐋′, (B.5)

𝐀̂𝑂 𝐿𝑆 = 𝐋−1 (B.6)

𝜮̂𝑂 𝐿𝑆 =
√

𝐃, (B.7)

where 𝐋 is a lower-triangular matrix and 𝐃 is a diagonal matrix.
To estimate the variance of 𝜶𝑡, we observe the distribution of

ossible covariance matrices for Ξ by drawing 10000 samples from
he appropriate Inverse Wishart distribution with 𝑇 degrees of freedom
nd Ξ̂ as the scale matrix. For each sampled draw, we calculate the
ssociated 𝜶𝑡 via the LDL decomposition as shown above. Now that we
ave 10000 different possible 𝜶𝑡 vectors, we take the variance in these
ectors to get the prior for 𝑉 𝑎𝑟(𝐀̂𝑂 𝐿𝑆 ).

Summarising, the priors of the state variables and the corresponding
hyperparameters are given as follows:

𝛽0 ∼ 𝑁(𝛽𝑂 𝐿𝑆 , 4 ∗ 𝑉 (𝛽𝑂 𝐿𝑆 )), (B.8)

𝐴0 ∼ 𝑁(𝐴̂𝑂 𝐿𝑆 , 4 ∗ 𝑉 (𝐴̂𝑂 𝐿𝑆 )), (B.9)

log 𝜎0 ∼ 𝑁(log 𝜎𝑂 𝐿𝑆 , 𝐼𝑛), (B.10)

𝑄 ∼ 𝐼 𝑊 (𝑘2𝑄 ∗ 200 ∗ 𝐼𝑛, 200), (B.11)

𝑆1 ∼ 𝐼 𝑊 (𝑘2𝑆 ∗ 2 ∗ 𝑉 (𝐴̂1,𝑂 𝐿𝑆 ), 2), (B.12)

𝑆2 ∼ 𝐼 𝑊 (𝑘2𝑆 ∗ 3 ∗ 𝑉 (𝐴̂1,𝑂 𝐿𝑆 ), 3), (B.13)

𝑊 ∼ 𝐼 𝑊 (𝑘2𝑊 ∗ 4 ∗ 𝐼𝑛, 4) (B.14)

We empirically set the following values 𝑘𝑄 = 0.00001, 𝑘𝑆 = 0.1,
𝑊 = 1 to represent diffuse (i.e., uninformative) priors for the hyper-
arameters. The selected hyper-parameters yield stationary solutions
ver every draw of 𝛽𝑡 generated using the MCMC sampling algorithm.
he stationarity condition is an essential condition to ensure robustness

of the MCMC sampling draws. If the MCMC process fails to produce
stationary solutions, the iteration is rejected, and the algorithm reverts
o the previously accepted 𝛽𝑡 value to compute the values for 𝛼𝑡 and 𝛴𝑡.

 high rejection rate would indicate that the posterior means of 𝛽𝑡 are



Energy Economics 143 (2025) 108225S. Ramesh et al.

d

p
s

Table A.6
Descriptive Statistics: AFC (Jul 1997–Dec 1998).

Asset class Mean Median Min Max Skew Kurtosis Jarque–Bera Test

Gold 5.45 4.86 1.08 16.52 1.06 2.62 37.03∗∗∗

Silver 12.07 11.63 1.42 31.35 0.68 0.62 7.34∗∗

SPX 8.11 7.13 3.26 28.83 2.54 7.84 283.48∗∗∗

Crude oil 13.73 12.31 2.58 43.57 1.67 3.94 86.99∗∗∗

Heating oil 12.17 11.03 3.33 35.65 1.79 4.14 97.17∗∗∗

Natural gas 19.89 18.31 7.68 40.91 0.68 −0.0 6.05∗

Lumber 10.99 11.11 2.91 19.45 0.07 −0.25 0.27
Copper 9.89 9.46 1.5 21.29 0.65 0.35 5.88∗

Corn 9.03 8.48 0.64 21.29 0.69 0.07 6.2∗

Wheat 8.91 8.6 3.14 20.16 1.31 3.76 68.43∗∗∗

The Jarque–Bera test is for the following significance levels: *** indicates significance at 1% level, ** indicates significance at 5% level and *
indicates significance at 10% level.
Table A.7
Descriptive Statistics: Pre-DBC (Jan 1999–Feb 2000).

Asset class Mean Median Min Max Skew Kurtosis Jarque–Bera Test

Gold 6.25 4.18 1.12 34.66 2.89 10.39 365.13∗∗∗

Silver 9.12 8.17 2.57 26.56 1.36 2.61 36.78∗∗∗

SPX 8.02 8.08 1.7 15.6 0.14 −0.49 0.83
Crude oil 14.38 13.98 4.19 37.48 1.17 3.18 40.25∗∗∗

Heating oil 14.22 13.44 3.14 33.88 0.83 1.45 12.45∗∗∗

Natural gas 17.54 16.86 7.25 36.68 0.61 0.19 3.95
Lumber 9.78 9.35 3.52 19.26 0.47 −0.38 2.66
Copper 9.87 9.31 3.0 23.68 0.72 0.6 6.28∗

Corn 8.46 7.7 2.34 21.26 1.2 1.17 18.43∗∗∗

Wheat 9.97 9.26 2.45 26.34 1.14 2.86 34.49∗∗∗

The Jarque–Bera test is for the following significance levels: *** indicates significance at 1% level, ** indicates significance at 5% level and *
indicates significance at 10% level.
Table A.8
Descriptive Statistics: DBC (Mar 2000–Oct 2002).

Asset class Mean Median Min Max Skew Kurtosis Jarque–Bera Test

Gold 5.33 4.81 0.93 21.6 2.14 8.37 507.51∗∗∗

Silver 6.3 5.67 1.41 25.79 1.92 7.92 444.91∗∗∗

SPX 9.59 8.43 2.48 23.45 1.06 0.52 27.27∗∗∗

Crude oil 15.18 14.22 0.71 55.17 2.16 9.3 604.12∗∗∗

Heating oil 14.93 14.16 2.43 48.01 1.28 4.06 132.21∗∗∗

Natural gas 23.75 22.56 6.66 69.05 1.13 2.06 53.9∗∗∗

Lumber 13.0 12.55 4.53 21.52 0.21 −0.93 5.95∗

Copper 7.59 7.11 1.13 20.86 1.08 2.3 57.22∗∗∗

Corn 8.71 7.85 1.79 24.95 1.24 1.91 56.43∗∗∗

Wheat 9.76 9.5 2.25 28.95 1.19 3.66 109.77∗∗∗

The Jarque–Bera test is for the following significance levels: *** indicates significance at 1% level, ** indicates significance at 5% level and *
indicates significance at 10% level.
Table A.9
Descriptive Statistics: Pre-GFC (Nov 2002–May 2007).

Asset class Mean Median Min Max Skew Kurtosis Jarque–Bera Test

Gold 7.1 6.59 1.46 25.3 1.56 4.51 299.36∗∗∗

Silver 11.89 10.2 2.26 54.21 2.44 8.72 994.77∗∗∗

SPX 5.24 4.62 1.56 14.15 1.21 1.51 81.58∗∗∗

Crude oil 13.31 12.53 3.1 34.27 1.07 2.34 99.89∗∗∗

Heating oil 14.65 13.59 4.34 36.21 1.21 2.35 113.48∗∗∗

Natural gas 20.32 18.98 5.16 89.13 1.91 8.36 841.44∗∗∗

Lumber 11.69 11.69 2.44 21.28 −0.05 −0.17 0.39
Copper 11.57 10.07 3.5 44.24 1.74 4.59 330.15∗∗∗

Corn 10.01 9.22 2.16 36.7 1.28 3.02 156.29∗∗∗

Wheat 11.72 10.93 2.89 30.17 1.14 2.14 97.95∗∗∗

The Jarque–Bera test is for the following significance levels: *** indicates significance at 1% level, ** indicates significance at 5% level and *
indicates significance at 10% level.
based on limited variation, potentially misrepresenting the underlying
ata-generating process.

Using the current set of priors for the parameters and the hyper-
arameters, we do not reject a single iteration of the 20000 MCMC
ampling iterations. This implies that our empirically tested values for
18
𝑘𝑄, 𝑘𝑆 and 𝑘𝑊 will lead to posterior estimates that are stationary and
will aid the MCMC process to model the underlying data process effec-
tively. Additionally, we plot the convergence of the estimated posterior
distributions of the model parameters using a Cauchy convergence test

Fig. C.13). With our priors, the MCMC model achieves convergence
(see
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Table A.10
Descriptive Statistics: GFC (Jun 2007–Feb 2009).

Asset class Mean Median Min Max Skew Kurtosis Jarque–Bera Test

Gold 10.7 9.47 4.16 36.11 1.57 4.19 103.97∗∗∗

Silver 16.9 14.12 4.86 51.85 1.38 1.56 37.89∗∗∗

SPX 12.87 10.51 2.91 48.67 1.8 2.84 79.66∗∗∗

Crude oil 19.0 15.34 5.42 49.66 1.11 0.19 18.91∗∗∗

Heating oil 16.38 14.39 4.66 40.0 1.09 0.53 19.11∗∗∗

Natural gas 18.66 17.58 6.02 47.76 0.97 1.4 21.59∗∗∗

Lumber 12.69 12.08 4.27 34.67 1.1 1.88 31.7∗∗∗

Copper 17.05 14.41 5.31 55.85 1.56 2.39 58.5∗∗∗

Corn 15.85 14.24 3.64 36.68 0.91 0.44 13.42∗∗∗

Wheat 18.58 16.52 7.21 54.88 1.62 3.69 91.32∗∗∗

The Jarque–Bera test is for the following significance levels: *** indicates significance at 1% level, ** indicates significance at 5% level and *
indicates significance at 10% level.
Table A.11
Descriptive Statistics: Pre-ESDC (Mar 2009–Dec 2009).

Asset class Mean Median Min Max Skew Kurtosis Jarque–Bera Test

Gold 8.03 7.28 3.31 26.5 2.49 9.22 201.22∗∗∗

Silver 14.91 13.51 5.97 46.27 2.67 11.25 284.31∗∗∗

SPX 9.84 8.32 1.35 25.28 1.07 0.85 9.76∗∗

Crude oil 17.24 14.57 3.44 44.81 1.56 2.58 30.06∗∗∗

Heating oil 16.71 14.81 6.83 40.52 1.33 1.68 18.08∗∗∗

Natural gas 25.29 23.03 10.43 44.76 0.64 −0.59 3.66
Lumber 15.83 15.65 2.73 27.71 −0.07 −0.6 0.7
Copper 15.48 15.35 3.85 27.78 0.2 −0.26 0.4
Corn 14.69 14.05 6.03 32.37 0.78 0.31 4.68
Wheat 15.5 15.2 7.29 33.83 0.72 0.5 4.23

The Jarque–Bera test is for the following significance levels: *** indicates significance at 1% level, ** indicates significance at 5% level and *
indicates significance at 10% level.
Table A.12
Descriptive Statistics: ESDC (Jan 2010–May 2012).

Asset class Mean Median Min Max Skew Kurtosis Jarque–Bera Test

Gold 7.49 6.96 2.06 24.38 1.67 4.2 150.9∗∗∗

Silver 15.63 14.27 2.57 72.55 2.94 15.2 1394.61∗∗∗

SPX 7.61 6.6 0.67 33.85 1.83 6.7 306.33∗∗∗

Crude oil 11.98 10.94 3.2 31.34 1.14 1.29 35.86∗∗∗

Heating oil 10.29 10.05 2.25 28.86 0.96 1.83 37.01∗∗∗

Natural gas 16.26 15.03 5.89 37.09 1.0 1.24 28.96∗∗∗

Lumber 14.71 14.76 4.08 29.25 0.12 −0.02 0.3
Copper 11.69 10.68 3.35 34.44 1.57 3.75 125.75∗∗∗

Corn 13.08 11.57 3.98 41.95 1.48 3.14 97.83∗∗∗

Wheat 15.38 13.95 2.69 44.95 1.19 2.17 54.41∗∗∗

The Jarque–Bera test is for the following significance levels: *** indicates significance at 1% level, ** indicates significance at 5% level and *
indicates significance at 10% level.
Table A.13
Descriptive Statistics: Pre-OC (Jun 2012–Aug 2014).

Asset class Mean Median Min Max Skew Kurtosis Jarque–Bera Test

Gold 6.99 6.29 0.63 32.34 2.55 11.61 783.12∗∗∗

Silver 11.18 9.74 2.36 39.23 1.44 3.44 98.26∗∗∗

SPX 4.75 4.33 0.71 11.05 0.78 0.09 11.87∗∗∗

Crude oil 8.04 7.2 1.01 30.91 2.05 7.05 324.13∗∗∗

Heating oil 6.85 6.36 1.89 21.35 1.28 3.13 79.66∗∗∗

Natural gas 14.98 13.36 4.99 51.44 2.39 8.94 500.82∗∗∗

Lumber 9.62 9.67 2.34 27.63 0.92 3.61 79.85∗∗∗

Copper 7.29 6.95 2.46 24.62 1.42 4.15 123.13∗∗∗

Corn 9.92 8.7 2.43 26.25 1.22 1.01 33.8∗∗∗

Wheat 10.2 9.32 1.86 24.51 0.77 0.38 12.21∗∗∗

The Jarque–Bera test is for the following significance levels: *** indicates significance at 1% level, ** indicates significance at 5% level and *
indicates significance at 10% level.
s
b

to steady-state values after 20,000 iterations.

B.2. Sampling 𝛽𝑡𝑠

The first stage of the Carter-Kohn algorithm is a Kalman filter. A
alman filter assumes that the observed data is subject to measurement

errors. This implies that the true data process is still unobservable. The
alman Filter algorithm filters the measurement noise in order to learn
19
more about the true data generating process (Kalman, 1960; Burmeister
et al., 1986). The observed data (measurement equation) is given by:

𝐲𝑡 = 𝐗′
𝑡𝜷𝑡 + 𝝃𝑡 (B.15)

where 𝝃𝑡 is the measurement noise with 𝐸(𝝃𝑡𝝃′𝑡) = 𝐑𝑡. The unob-
ervable process known as the state or transition equation is given
y:
𝜷𝑡 = 𝜷𝑡−1 + 𝐮𝑡 (B.16)
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Table A.14
Descriptive Statistics: Oil crash (Sep 2014–Nov 2016).

Asset class Mean Median Min Max Skew Kurtosis Jarque–Bera Test

Gold 6.41 6.04 1.59 18.02 1.24 2.67 65.22∗∗∗

Silver 10.92 10.18 2.68 26.38 0.71 −0.05 9.87∗∗

SPX 5.64 5.18 0.66 20.0 1.14 2.24 50.18∗∗∗

Crude oil 18.18 17.54 4.06 42.62 0.94 0.93 21.56∗∗∗

Heating oil 15.22 13.99 3.73 39.17 0.99 1.16 26.03∗∗∗

Natural gas 17.33 16.4 4.42 41.63 1.05 1.85 38.54∗∗∗

Lumber 10.32 10.1 1.83 21.39 0.21 −0.36 1.49
Copper 8.77 8.29 1.17 22.53 1.01 1.81 36.15∗∗∗

Corn 9.5 8.41 2.2 25.94 1.15 1.66 39.46∗∗∗

Wheat 11.37 10.99 2.37 26.49 0.86 1.16 21.02

The Jarque–Bera test is for the following significance levels: *** indicates significance at 1% level, ** indicates significance at 5% level and *
indicates significance at 10% level.
Table A.15
Descriptive Statistics: Pre-COVID (Dec 2016–Feb 2020).

Asset class Mean Median Min Max Skew Kurtosis Jarque–Bera Test

Gold 4.57 4.23 1.18 17.02 1.89 7.19 464.09∗∗∗

Silver 7.66 7.15 1.28 28.45 1.95 6.38 393.74∗∗∗

SPX 4.85 3.71 0.98 20.98 2.13 5.41 333.28∗∗∗

Crude oil 11.94 10.59 2.55 47.6 2.29 8.38 642.65∗∗∗

Heating oil 9.85 9.39 2.28 36.6 1.71 6.43 373.52∗∗∗

Natural gas 15.27 13.09 5.52 88.98 3.54 21.81 3703.9∗∗∗

Lumber 11.98 10.73 1.45 30.23 0.82 0.44 20.31∗∗∗

Copper 7.65 7.18 2.47 17.7 0.84 0.37 20.94∗∗∗

Corn 7.78 6.71 1.74 28.41 1.61 3.93 181.78∗∗∗

Wheat 10.73 9.67 3.79 26.69 0.93 0.35 25.48∗∗∗

The Jarque–Bera test is for the following significance levels: *** indicates significance at 1% level, ** indicates significance at 5% level and *
indicates significance at 10% level.
Table A.16
Descriptive Statistics: COVID (Mar 2020–Feb 2022).

Asset class Mean Median Min Max Skew Kurtosis Jarque–Bera Test

Gold 7.07 6.4 1.44 26.88 1.75 4.49 140.27∗∗∗

Silver 14.9 12.39 2.74 51.06 1.75 3.28 99.41∗∗∗

SPX 8.54 6.21 1.41 54.87 3.57 14.98 1192.52∗∗∗

Crude oil 21.23 13.3 4.8 211.04 4.62 24.47 2963.04∗∗∗

Heating oil 15.49 11.98 3.43 66.42 2.39 6.6 287.71∗∗∗

Natural gas 22.33 20.22 4.27 52.19 0.67 −0.24 8.04∗∗

Lumber 22.52 21.23 5.33 50.13 0.71 0.61 10.44∗∗

Copper 10.07 9.17 2.01 28.1 0.99 1.65 28.7∗∗∗

Corn 10.54 9.44 2.18 27.76 1.35 1.65 43.6∗∗∗

Wheat 11.95 11.16 4.23 41.52 2.36 12.16 736.65∗∗∗

The Jarque–Bera test is for the following significance levels: *** indicates significance at 1% level, ** indicates significance at 5% level and *
indicates significance at 10% level.
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where 𝐮𝑡 is the structural shock with 𝐸(𝐮𝑡𝐮′𝑡) = [𝐐](𝑛(𝑘𝑛+1))×(𝑛(𝑘𝑛+1)).
Note that we have no coefficient in front of 𝛽𝑡−1 as we have packed
the matrices such that 𝛽𝑡 follows a random walk. We define 𝛽𝑡|𝑠 as
the conditional expectation 𝐸(𝛽𝑡|𝛽1,… , 𝛽𝑠) and the conditional variance
𝑉𝑡|𝑠 = Var(𝛽𝑡|𝛽1,… , 𝛽𝑠).

From the Kalman filter algorithm we get:

𝛽𝑡|𝑡−1 = 𝛽𝑡−1|𝑡−1 (B.17)

𝑉𝑡|𝑡−1 = 𝑉𝑡−1|𝑡−1 +𝐐 (B.18)

𝐹𝑡|𝑡−1 = 𝑦𝑡 −𝑋′
𝑡𝛽𝑡|𝑡−1 (B.19)

𝐾𝑡 = 𝑉𝑡|𝑡−1𝑋𝑡(𝑋′
𝑡𝑉𝑡|𝑡−1𝑋𝑡 + 𝐑𝑡)−1 (B.20)

𝛽𝑡|𝑡 = 𝛽𝑡|𝑡−1 +𝐾𝑡𝐹𝑡|𝑡−1 (B.21)

𝑉𝑡|𝑡 = 𝑉𝑡|𝑡−1 −𝐾𝑡𝑋
′
𝑡𝑉𝑡|𝑡−1, (B.22)

Eqs. (B.17) and (B.18) predict the one period ahead value of the
state variable and its variance using only the parameters from the
transition equation. The observed data 𝑦𝑡 is not used up to this point.
q. (B.19) calculates the conditional forecast error of the state variable
𝑡. We set the initial values (the priors) as: 𝛽0|0 = 𝛽𝑂 𝐿𝑆 and 𝑉0|0 =
𝑉 (𝛽𝑂 𝐿𝑆 ). Note that 𝑦𝑡 − 𝑋′

𝑡𝛽𝑡|𝑡−1 is the error in forecasting 𝑦𝑡 given
all its previous values. Upon calculating all the values for 𝛽 and 𝑉 ,
20

𝑡|𝑡 𝑡|𝑡
we can better estimate the values of 𝛽𝑡 and its variance by applying
ackward recursion (which effectively better smooths the data). Here
he values of 𝛽𝑡 and its variance calculated at every time point are
sed as the mean and variance of a Normal distribution of the potential
uture value; by randomly sampling from such a distribution, we can
stimate the previous points starting from 𝑡 = 𝑇 :

𝛽𝑡|𝑡+1 = 𝛽𝑡|𝑡 + 𝑉𝑡|𝑡𝑉
−1
𝑡+1|𝑡(𝛽𝑡+1 − 𝛽𝑡|𝑡) (B.23)

𝑡|𝑡+1 = 𝑉𝑡|𝑡 − 𝑉𝑡|𝑡𝑉
−1
𝑡+1|𝑡𝑉𝑡|𝑡. (B.24)

Here 𝛽𝑡+1 is drawn randomly from a Normal distribution 𝑁(𝛽𝑡|𝑡, 𝑉𝑡|𝑡)
where 𝛽𝑡|𝑡 and 𝑉𝑡|𝑡 are taken from the calculated values during the

alman filter step. Similarly, 𝑉𝑡+1|𝑡 = 𝑉𝑡|𝑡 + 𝐐. The result is that we
now have a smoothed estimates: 𝛽𝑡|𝑡+1 and 𝑉𝑡|𝑡+1. Now we finally use
these means and variances to get the values of 𝛽𝑡 by randomly drawing
from a Normal distribution: 𝑁(𝛽𝑡|𝑡+1, 𝑉𝑡|𝑡+1).

B.3. Sampling 𝛼𝑡𝑠

In order to model the contemporaneous relations amongst the model
ariables, we will draw the covariance states from Eq. (5).
𝐀𝑡(𝑦𝑡 −𝑋′
𝑡𝛽𝑡) = 𝐀𝑡𝑦𝑡 = Σ𝑡𝜀𝑡 (B.25)
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Re-writing Eq. (B.25) as follows:

(𝐈𝑛 + 𝛼𝑡)𝑦𝑡 = Σ𝑡𝜀𝑡 (B.26)

𝑦𝑡 = −𝛼𝑡𝑦𝑡 +Σ𝑡𝜀𝑡 (B.27)

𝑦𝑡 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0 ... 0
𝛼21,𝑡 0 0 0 ... 0
𝛼31,𝑡 𝛼32,𝑡 0 0 ... 0
⋮ ⋱ ⋱ ⋱ ⋱ 0

𝛼𝑛1,𝑡 ... ... ... 𝛼𝑛𝑛−1,𝑡 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎝

−𝑦1,𝑡
−𝑦2,1
−𝑦3,𝑡
⋮

−𝑦𝑛,𝑡

⎞

⎟

⎟

⎟

⎟

⎟

⎠

+Σ𝑡𝜀𝑡 (B.28)

𝑦𝑡 =

⎛

⎜

⎜

⎜

⎜

⎝

0
−𝛼21,𝑡𝑦1,𝑡

−[𝛼31,𝑡𝑦1,𝑡 + 𝛼32,𝑡𝑦2,𝑡]
−[𝛼𝑛1,𝑡𝑦1,𝑡 + ... + 𝛼𝑛𝑛−1,𝑡𝑦𝑛−1,𝑡]

⎞

⎟

⎟

⎟

⎟

⎠

+Σ𝑡𝜀𝑡 (B.29)

𝑦𝑡 =

⎛

⎜

⎜

⎜

⎜

⎝

0 0
−𝑦̂1,𝑡
0 −𝑦̂[1,2],𝑡𝑠𝑒
0 0 −𝑦̂[1,2,…,𝑛−1],𝑡

⎞

⎟

⎟

⎟

⎟

⎠[𝑛× 𝑛(𝑛−1)
2 ]

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝛼21,𝑡
𝛼31.𝑡
𝛼32.𝑡
⋮

𝛼𝑛1,1
⋮

𝛼𝑛𝑛−1,𝑡

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

+Σ𝑡𝜀𝑡

(B.30)

𝑦𝑡 = 𝐙𝑡𝜶𝑡 +Σ𝑡𝜀𝑡 (B.31)

As observed in Eq. (B.31), the model though Gaussian has a nonlinear
tate form. The vector [𝑦𝑡, 𝛼𝑡] is not jointly normal as the dependent

variable of the observation equation 𝑦𝑡 appears on both sides of the
equation. We can therefore not use Kalman filter based smoothers to
compute the conditional distributions as we did for sampling the coef-
ficient states 𝛽𝑡. As a workaround we write separate model equations
for every row of the previous equation into 𝑛 − 1 equations where the
𝑖th equation is (Primiceri, 2005):

𝑦̂[1,…,𝑖]𝑡 = −𝑦̂[1,…,𝑖]𝑡𝛼𝑖,𝑡 + 𝜎𝑖,𝑡𝜖𝑖,𝑡 (B.32)

where the vector of 𝛼𝑡-values 𝛼𝑖,𝑡 = [𝛼𝑖1,… , 𝛼𝑖,𝑖−1] is from the 𝑖+ 1 row of
𝑡. By partitioning into separate equations, the assumption is that the
ariance of the noise term in the random walk process is block diagonal:

𝛼𝑖,𝑡 = 𝛼𝑖,𝑡−1 + 𝜁𝑖,𝑡, (B.33)

where the matrices [𝐒𝑖]𝑖×𝑖 are the associated covariance matrices for
he noise term [𝜁𝑖,𝑡]𝑖,1. The block diagonal form ensures that we can

implement the Kalman filter and recursion separately equation by
quation. In this case, we have different state variables that belong to
istinct and subsequent time periods. The dependent variable ̂𝑦𝑖,𝑡 no
onger appears in the right hand side of the equation.

To draw the values of 𝛼𝑡, we apply a similar stream of logic to
estimating 𝛽𝑡. We draw 𝛼𝑡 by separately drawing each of the rows 𝛼𝑖,𝑡.
The Kalman filter recursively computes the following:

𝛼𝑖,𝑡|𝑡−1 = 𝛼𝑖,𝑡−1|𝑡−1 (B.34)

𝑖,𝑡|𝑡−1 = 𝑉𝑖,𝑡−1|𝑡−1 + 𝐒𝐢 (B.35)

𝐾𝑖,𝑡 = 𝑉𝑖,𝑡|𝑡−1𝑍
′
𝑡 (𝑍𝑡𝑉𝑖,𝑡|𝑡−1𝑍

′
𝑡 + expℎ2𝑖,𝑡)−1 (B.36)

𝛼𝑖,𝑡|𝑡 = 𝛼𝑖,𝑡|𝑡−1 +𝐾𝑖,𝑡(𝑦𝑡 −𝑍𝑡𝛼𝑖,𝑡|𝑡−1) (B.37)

𝑉𝑖,𝑡|𝑡 = 𝑉𝑖,𝑡|𝑡−1 −𝐾𝑖,𝑡𝑍𝑡𝑉𝑖,𝑡|𝑡−1 (B.38)

where the notation alludes to the way it was defined when drawing 𝛽𝑡.
imilarly, the backward recursions are given by:

𝛼𝑖,𝑡|𝑡−1 = 𝛼𝑖,𝑡|𝑡 + 𝑉𝑖,𝑡|𝑡𝑉
−1
𝑖,𝑡+1|𝑡(𝛼𝑖,𝑡+1 − 𝛼𝑡|𝑡) (B.39)

𝑉𝑖,𝑡|𝑡+1 = 𝑉𝑖,𝑡|𝑡 − 𝑉𝑖,𝑡|𝑡𝑉
−1
𝑖,𝑡+1|𝑡𝑉𝑖,𝑡|𝑡 (B.40)

We now generate the posterior values of 𝛼𝑖𝑡 by drawing from a Normal
istribution: 𝑁(𝛼 , 𝑉 ).
21

𝑖,𝑡|𝑖,𝑡+1 𝑖,𝑡|𝑖,𝑡+1
B.4. Sampling 𝛴𝑡s

We will now draw the volatility states in order to capture the impact
f the time-varying exogenous shocks on the model system. Rewriting
q. (5) as:

𝐴𝑡(𝑦𝑡 −𝑋′
𝑡𝛽𝑡) = 𝑦∗𝑡 = 𝛴𝑡𝜀𝑡 (B.41)

This non-linear measurement equation can be converted into a linear
form by squaring and taking logarithms of every element of Eq. (B.41).

s (𝑦∗𝑖𝑡)
2 is very small, following Fuller (1995), we introduce an offset

onstant 𝑐 to ensure a more robust estimation process. The state space
form for the volatility states are given by:

𝑦∗∗𝑡 = 2ℎ𝑡 + 𝑒𝑡 (B.42)

ℎ𝑡 = ℎ𝑡−1 + 𝜂𝑡 (B.43)

where:

𝑦∗∗𝑖,𝑡 = log[(𝑦∗𝑖,𝑡)2 + 𝑐] (B.44)

𝑐 = .001 (B.45)

𝑒𝑖,𝑡 = 𝑙 𝑜𝑔(𝜀2𝑖,𝑡) (B.46)

ℎ𝑖,𝑡 = log 𝜎𝑖,𝑡 (B.47)

The transformed equations while linear are still non-Gaussian as the in-
ovations in the measurement equation 𝑒𝑖,𝑡 follows a ln𝜒2(1) process.24

The algorithm by Carter and Kohn (1994) relies on Kalman filtering
nd smoothing to derive the process. This will necessitate that the

distribution process along with the model errors follow a Gaussian pro-
cess. As the variance–covariance matrix of 𝑒’s is an identity matrix, the
ariance–covariance matrix of 𝑒’s are also diagonal, therefore allowing
he use of several independent mixture of normal approximation for 𝑒𝑡.
hat is, we now work component-wise across every dimension and find
he best Gaussian that explains the current component of 𝑒𝑡.

Kim et al. (1998) in their paper develop an approximation for the
n𝜒2 distribution using several mixture Gaussian models.

𝑓 (𝑒𝑖,𝑡) = 𝛴𝐾
𝑗=1𝑞𝑗𝑓𝑁 (𝑒𝑖,𝑡|𝑚𝑗 − 1.2704, 𝑣2𝑗 ) (B.48)

where the density function of the Gaussian distribution:

𝑓𝑁 (𝑒𝑖,𝑡) = 1

𝑣𝑗
√

2𝜋
exp

(

−1
2
(𝑒𝑖,𝑡 − (𝑚𝑗 − 1.2704))2

𝑣𝑗

)

(B.49)

Specifically they use seven normal densities with component proba-
ilities 𝑞𝑗 , mean 𝑚𝑗 − 1.2704 and variances 𝑣2𝑗 where 𝑗 = 1, 2,… , 7
o approximate the density of the ln𝜒2(1) distribution. The values of
𝑗 , 𝑚𝑗 , 𝑣2𝑗 indicating the implied weights, means and variances are given
n Kim et al. (1998) where they found them via numerical optimisation.

The Carter Kohn algorithm however will only accommodate for one
aussian error. As a workaround in dealing with the mixture Gaussian

approximation of the error term from Eq. (B.48), like Primiceri (2005),
e follow the approach taken by Kim et al. (1998) to select the most

likely of the 7 Gaussians that explains the noise at a given point in
time. We define an indicator variable 𝐺𝑡 = (𝐺1,𝑡,… , 𝐺𝑛,𝑡) where 𝐺𝑗 ,𝑡 ∈
{1,… , 7} where for a given time 𝑡, 𝐺𝑗 ,𝑡 indicates the best Gaussian for
component 𝑗 of 𝑦∗∗𝑡 (which we denote as 𝑦∗∗𝑗 ,𝑡). We calculate 𝐺𝑗 ,𝑡 by
sampling the probability distribution:

𝑃 (𝐺𝑗 ,𝑡 = 𝑖) = 𝑞𝑖𝑓𝑁 (𝑦∗∗𝑗 ,𝑡|2ℎ𝑗 ,𝑡 + 𝑚𝑖, 𝑣2𝑖 ), (B.50)

where ℎ𝑗 ,𝑡 denotes component 𝑗 of ℎ𝑡. In practice we simply take the
cumulative distribution of 𝑃 (𝐺𝑗 ,𝑡 = 𝑖) over all 𝑖 and then using the
esulting bins across 𝑖 and then matching them against a uniformly
ampled random number to draw the value of 𝐺𝑗 ,𝑡. Once we have drawn
ll values of 𝐺𝑡, we can then use this indicator variable to select the

24 The degree of freedom of the ln𝜒2 is 1 as we iterate through each
individual element in the model system.
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appropriate Gaussian to get the mean and variance value for 𝜂𝑡 to
ubsequently write down the equations for the Kalman filter:

Denote the best Gaussian for component 𝑗 (which has a mean 𝑚𝐺𝑗 ,𝑡
nd variance 𝑣𝐺𝑗 ,𝑡 ) of 𝑦∗∗𝑡 (that is, 𝑦∗∗𝑗 ,𝑡) as 𝑀𝐺𝑗 ,𝑡∼𝑁(𝑚𝐺𝑗 ,𝑡 , 𝑣𝐺𝑗 ,𝑡 ). The
easurement equation becomes 𝑦∗∗𝑗 ,𝑡 = 2ℎ𝑡 + 𝑀𝐺𝑗 ,𝑡 . However, we note

hat the mean of the noise term 𝑀𝐺𝑗 ,𝑡 is not zero. Thus, we subtract
ts mean 𝑚𝐺𝑗 ,𝑡 from both sides to obtain the new measurement and
ransition equations:

𝑦∗∗∗𝑗 ,𝑡 = 1
2 (𝑦

∗∗
𝑗 ,𝑡 − 𝑚𝐺𝑗 ,𝑡 ) = ℎ𝑗 ,𝑡 + 𝑒∗𝑗 ,𝑡 (B.51)

ℎ𝑗 ,𝑡 = ℎ𝑗 ,𝑡−1 + 𝜂𝑗 ,𝑡 (B.52)

where 𝑒∗𝑗 ,𝑡∼𝑁(0, 𝑣2𝐺𝑗 ,𝑡∕4) in which we have additionally divided by 2
or convenience (scaling the variance appropriately). Note that 𝜂𝑗 ,𝑡,
he component 𝑗 of 𝜂𝑡, can be treated individually as 𝐖 is diagonal
that is, there is no covariance amongst the different components of
he noise terms here). To apply the Carter-Kohn algorithm, we once
gain start with the accompanying Kalman filtering (only this time as
omponent-wise scalars):

ℎ𝑗 ,𝑡|𝑗 ,𝑡−1 = ℎ𝑗 ,𝑡−1|𝑗 ,𝑡−1 (B.53)

𝑉𝑗 ,𝑡|𝑗 ,𝑡−1 = 𝑉𝑗 ,𝑡−1|𝑗 ,𝑡−1 +𝐖𝑗 (B.54)

𝐾𝑗 ,𝑡 = 𝑉𝑗 ,𝑡|𝑗 ,𝑡−1(𝑉𝑗 ,𝑡|𝑗 ,𝑡−1 + 1
4𝑣

2
𝑗 ,𝑡)−1 (B.55)

ℎ𝑗 ,𝑡|𝑗 ,𝑡 = ℎ𝑗 ,𝑡|𝑗 ,𝑡−1 +𝐾𝑗 ,𝑡(𝑦∗∗∗𝑗 ,𝑡 − ℎ𝑗 ,𝑡|𝑗 ,𝑡−1) (B.56)

𝑉𝑗 ,𝑡|𝑗 ,𝑡 = 𝑉𝑗 ,𝑡|𝑗 ,𝑡−1 −𝐾𝑗 ,𝑡𝑉𝑗 ,𝑡|𝑗 ,𝑡−1 (B.57)

where the notation alludes to the way it was defined when drawing 𝛽𝑡.
he backward recursions are given by:

ℎ𝑗 ,𝑡|𝑗 ,𝑡+1 = ℎ𝑗 ,𝑡|𝑗 ,𝑡 + 𝑉𝑗 ,𝑡|𝑗 ,𝑡𝑉 −1
𝑗 ,𝑡+1|𝑗 ,𝑡(ℎ𝑗 ,𝑡+1 − ℎ𝑗 ,𝑡|𝑗 ,𝑡) (B.58)

𝑉𝑗 ,𝑡|𝑗 ,𝑡+1 = 𝑉𝑗 ,𝑡|𝑗 ,𝑡 − 𝑉𝑗 ,𝑡|𝑗 ,𝑡𝑉 −1
𝑗 ,𝑡+1|𝑗 ,𝑡𝑉𝑗 ,𝑡|𝑗 ,𝑡 (B.59)

Here ℎ𝑗 ,𝑡+1 is drawn randomly from a Normal distribution 𝑁(ℎ𝑗 ,𝑡|𝑗 ,𝑡,
𝑗 ,𝑡|𝑗 ,𝑡) where ℎ𝑗 ,𝑡|𝑗 ,𝑡 and 𝑉𝑗 ,𝑡|𝑗 ,𝑡 are taken from the calculated values

during the Kalman filter step. Similarly, 𝑉𝑗 ,𝑡+1|𝑗 ,𝑡 = 𝑉𝑗 ,𝑡|𝑗 ,𝑡 + 𝐖𝑗 . The
esult is that we now have a smoothed estimates: 𝛽𝑡|𝑡+1 and 𝑉𝑡|𝑡+1. Now
e finally use these means and variances to get the values of ℎ𝑗 ,𝑡 by

andomly drawing from a Normal distribution: 𝑁(ℎ𝑗 ,𝑡|𝑗 ,𝑡+1, 𝑉𝑗 ,𝑡|𝑗 ,𝑡+1).

B.5. Sampling hyperparameters

The covariance matrices required for the model must be recalcu-
ated every iteration. The first is the covariance of the noise term for
𝑡:

𝐑𝑡 = 𝐴−1𝛴𝑡𝛴
′
𝑡 (𝐴

−1)′. (B.60)

Note that the matrices are constructed from the values of 𝛼𝑡 and ℎ𝑡. The
emaining hyperparameters of the model are the covariance matrices:
, W and the different diagonal blocks of S.

In Bayesian analysis, an Inverse-Wishart distribution is often used as
a prior for the covariance matrix (Gelman et al., 2013; Zhang, 2021).
The Inverse-Wishart (IW) prior is also popular as it is a conjugate to
normal data (that is, the posterior distribution is also normal). That
is, the IW distribution gives the distribution of possible covariance
matrices given 𝑚 samples of data (termed as 𝑚 degrees of freedom).

Conditional on and 𝑦𝑇 , we sample the hyperparameters from the
normal-inverse-Wishart distribution, with known innovations. The prior
distribution of an IW distribution is given as: 𝐼 𝑊 (𝑐0, 𝑑0), the scale
and degrees of freedom of the variance covariance matrix of 𝑄, 𝑆𝑖
and 𝑊𝑗 . Refer to Eqs. (B.11) to (B.14) for the prior assumptions
for the hyperparameters. Given that sampling the inverse Wishart
distribution is well-known via the Bartlett decomposition (Jones, 1985)
mplemented in modern packages (for example, scipy.stats.invwishart),
e shall only present the parameters of the IW distribution required to
raw the hyperparameters. The matrix 𝐐 associated with the random

walk process for 𝛽 can be calculated by noting that 𝑢 = 𝛽 − 𝛽 to
22

𝑡 𝑡 𝑡 𝑡−1
randomly sample a single matrix from the IW distribution:

𝐐∼𝐼 𝑊 (𝐂𝛽 +𝐐0, 𝑇 − 1) (B.61)

𝛽 =
𝑇
∑

𝑡=2
(𝛽𝑡 − 𝛽𝑡−1)(𝛽𝑡 − 𝛽𝑡−1)′, (B.62)

where 𝐼 𝑊 (𝐂, 𝑚) is the IW distribution for covariance 𝐂 and 𝑚 degrees
f freedom. Similarly, the matrices 𝐒𝑖 associated with the random walk
rocess 𝛼 can be sampled via:

𝐒𝑖∼𝐼 𝑊 (𝐂𝛼 , 𝑇 − 1) (B.63)

𝛼 =
𝑇
∑

𝑡=2
(𝛼𝑡 − 𝛼𝑡−1)(𝛼𝑡 − 𝛼𝑡−1)′. (B.64)

We note that for 𝑆1, the associated draw is from the Gamma distribu-
ion (the IW distribution for a scalar). Finally, the matrix 𝐖 associated

with the random walk process ℎ can be sampled via:

𝐖∼𝐼 𝑊 (𝐂ℎ, 𝑇 − 1) (B.65)

𝐂ℎ =
𝑇
∑

𝑡=2
(ℎ𝑡 − ℎ𝑡−1)(ℎ𝑡 − ℎ𝑡−1)′. (B.66)

B.6. The MCMC algorithm

The previous sections highlighted how to draw different parameters
of the TVP-VAR-SV model. The MCMC sampler repeats these draws un-
il the parameters have converged as discussed later in Appendix C.0.1.

The algorithm is summarised as:

1. Initialise 𝐴𝑇 , 𝛴𝑇 and the hyperparameters 𝑅𝑇 , 𝑄𝑇 , 𝑆𝑇
𝑖 and 𝑊 𝑇 .

2. Sample posterior value of 𝛽𝑇 by drawing from 𝑁(𝛽𝑇 |𝑇+1, 𝑉𝑇 |𝑇+1).

3. Sample posterior value of 𝐴𝑇 by drawing from 𝑁(𝛼𝑖,𝑇 |𝑖,𝑇+1,
𝑉𝑖,𝑇 |𝑖,𝑇+1).

4. Sample posterior values of 𝛴𝑇 by drawing from 𝑁(ℎ𝑗 ,𝑇 |𝑗 ,𝑇+1,
𝑉𝑗 ,𝑇 |𝑗 ,𝑇+1).

5. Sample 𝑄𝑇 , 𝑆𝑇
𝑖 and 𝑊 𝑇 by sampling from their respective

Inverse Wishart distributions.
6. Repeat from Step 2.

Appendix C. MCMC simulation results

We performed the MCMC sampling on the RV data using a custom
Python implementation that is available on GitHub. The algorithm was
run on the ARDC Nectar cluster on a 32-core node with 64 GB RAM.
The run-time was approximately 15 h. The results are shown in the
main text. However, we present the raw posterior means for 𝛽𝑡 and 𝛼̂𝑡
n Figs. C.11 and C.12.

C.0.1. Convergence tests
To ensure convergence of the posterior distributions, we run 20,000

MCMC sampling iterations of our model, from which we exclude the
first 5000 iterations as burn-in and utilise the remaining 15,000 it-
erations to estimate the posterior values. To test if our estimated
posterior distributions of the parameters have converged, we run an
intuitive Cauchy convergence test to check the sum squared differences
of the posterior means for every 100 iterations. If the differences
in subsequent iterations become increasingly insignificant, our poste-
rior estimates have attained convergence within an acceptable range.
Fig. C.13 plots the convergence plots for the 𝛼, 𝛽 and ℎ parameters. We
see that after 10000 sampling iterations, the sum squared differences
drop below 0.01, while the typical sum squared values of the posterior
means for the associated parameters are in the order of 10. That is, the
posterior estimates fall well below 1% error.
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Fig. C.11. Posterior means of the time-varying constant and lagged terms of 𝛽𝑡 in the VAR model.
The x-axes show the dates from Nov 93 to Feb 2022. The y-axes show the coefficient values listed inside the plots. The indices represent the asset classes in the order: Corn, Gold,
Silver, SPX, Crude oil, Heating oil, Copper, Lumber, Wheat, Natural Gas. The error bars represent the variation within 5th and 95th percentile values of the terms.
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Fig. C.12. Posterior means of the time-varying contemporaneous terms 𝛼̂𝑡 in the VAR model.
The x-axes show the dates from Nov 93 to Feb 2022. The y-axes show the coefficient values listed inside the plots. The indices represent the asset classes in the order: Corn, Gold,
Silver, SPX, Crude oil, Heating oil, Copper, Lumber, Wheat, Natural Gas. The error bars represent the variation within 5th and 95th percentile values of the terms.
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Fig. C.13. Convergence test for the posterior means of the time-varying parameters.
The x-axes indicate the number of completed MCMC iterations. The y-axes show the sum of squared differences in the posterior means of the parameters for every 100 iterations.
The 𝑦 axes are scaled logarithmically to better visualise the decay when the sum differences of the square of posterior means between successive 100 iterations become more and
more indistinguishable.
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Fig. C.14. Net pair-wise volatility spillover index across horizons H=1 to 16.
The Figure illustrates the net pairwise spillover index for variance decomposition periods H= 1 to 16. Details of the shaded crisis periods are mentioned in Table 2. The X axes
show the extent of volatility spillover. The Y axes show the dates from Nov 93 to Oct 2021. The red lines represent positive net spillover (net transmitter) from column 𝑖 to row
𝑗. The blue lines represent negative net spillover (net receiver) from column 𝑖 to row 𝑗. The off diagonal elements plot the net pairwise spillover index defined in Eq. (13). The
diagonal elements plot net volatility spillover to the remaining asset classes defined in Eq. (14). The off-diagonals mirror one another up to a sign of −1. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
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C.1. Horizon saturation

We compute the pair-wise time-varying net spillover index, for
variance decomposition periods H = 1 to 16. Fig. C.14 plots the net
olatility spillover indices for horizon periods H = 1to16. We find that

beyond variance decomposition period 𝐻 = 8, the spillover effects have
already saturated to their maximum values.

Data availability

Data and associated code will be provided upon request.
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