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1 Introduction

In electoral systems with single-member districts (or even with at least two multi-
member districts) redistricting has to be carried out to resolve geographic malappor-
tionment caused by migration and different district population growth rates. An in-
herent difficulty associated with redistricting is that it may favor a party. The problem
becomes even worse if redistricting is manipulated for an electoral advantage, which is
referred to as gerrymandering.

In the middle of the previous century it was hoped that the problem of gerryman-
dering could be overcome by computer programs using only data on voters geographic
distribution without any statistical information on voters preferences (e.g. Vickrey,
1961) and thus determining an ‘unbiased’ districting. The first algorithm finding all
districtings with (i) equally sized, (ii) connected and (iii) compact districts was given
by Garfinkel and Nemhauser (1970).1 The computational difficulty of the problem was
clear from the very beginning. Nagel (1972) documented in an early survey the com-
putational limitations of automated redistricting by considering the available programs
of his time. Altman (1997) showed that the problems of achieving any of the three
mentioned criteria are NP-hard. Moreover, he also demonstrated that maximizing the
number of competitive districts is also NP-hard. Because of the computational diffi-
culty of the problem there is a growing literature on new approaches to finding unbiased
districtings (see, for instance, Mehrotra et al. (1998), Bozkaya et al. (2003), Bação et
al. (2005), Chou and Li (2006), Ricca and Simeone (2008) or Ricca et al. (2008)). For
recent surveys we refer to Ricca et al. (2011) and Tasndi (2011).

Though finding an equally sized districting is already computationally hard, from
another point of view it is feared by the public that the continuously increasing compu-
tational power makes the problem of carrying out an optimal partisan gerrymandering
possible. However, the underlying difficulty that hinders us in finding an unbiased
districting, does not allow us to determine an optimal partisan redistricting. Indeed,
Altman and McDonald (2010) provide recent evidence that current computer programs
are far away from finding an optimal gerrymandering.

A formal proof establishing that a simplified version of the optimal gerrymander-
ing problem is NP-complete was given by Puppe and Tasnádi (2009). Though they
take geographical constraints into account, planarity is not prescribed explicitly. The
current paper overcomes this shortcoming by locating voters in the plane.

2 The Framework

We assume that parties A and B compete in an electoral system consisting only of
single member districts. In addition, voters with known party preferences are located
in the plane and have to be divided into a given number of almost equally sized districts.
The districting problem is defined by the following structure:

Definition 1. A districting problem is given by Π = (X,N, (xi)i∈N , v,K,D), where

• X is a bounded and strictly connected2 subset of R2,

1Earlier Hess et al. (1965) provided an algorithm striving for similar goals; however, their algorithm
did not always obtain optimal solutions.

2We call a bounded subset A of R2 strictly connected if its boundary ∂A is a closed Jordan curve.
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• the finite set of voters is denoted by N = {1, . . . , n},

• the distinct locations of voters are given by x1, . . . , xn ∈ int(X),

• the voters’ party preferences are given v : N → {A,B},

• the set of district labels is denoted by K = {1, . . . , k}, where bn/kc ≥ 3, and

• D denotes the finite set of admissible districts consisting of bounded and strictly
connected subsets of X and each of them containing the location of bn/kc or
dn/ke voters,3 and furthermore,

• we shall assume that based on their locations the n voters can be partitioned into
k districts {D1, . . . , Dk} ⊆ D.

Observe that in defining the districting problem, we assumed that obtaining an al-
most equally sized districting is possible, which can be justified by the fact that finding
an admissible districting for real-life problems is possible, while finding a districting
satisfying additional requirements such as partisan optimality is difficult. In particu-
lar, the staff hired to produce a districting map could always construct a districting
map consisting of almost equally sized districts although other properties as partisan
optimality are difficult to prove or confute. Producing a districting with almost equally
sized districts, is a tractable problem if there are not to many geographical restrictions
since we can obtain a result by drawing districts from left to right and from top to
bottom on a map of a state by keeping the average district size in mind.

We shall mention that in reality the basic units of a districting problem from which
districts have to be created are census blocks or counties rather than voters. In this
case voter preferences v : N → {A,B} have to be replaced by a function of type
v′ : N ′ → [0, 1], where N ′ stands for the finite set of counties, expressing the fraction
of party A voters. However, our results obtained in this paper can be extended to this
more general setting, by allowing the case of almost equally sized counties, for which
district outcomes are determined by the number of winning counties for party A, which
happens to be the case, for instance, if v′(N ′) = {α, 1− α} for a given α ∈ [0, 1/2).

Turning back to our districting problem defined on the level of voters, we have to
assign each voter to a district.

Definition 2. An f : N → D is a districting for problem Π if there exists a set of
districts D1, . . . , Dk ∈ D such that

• f(N) = {D1, . . . , Dk},

• Di ∩Dj = ∅ if i 6= j and i, j ∈ K,

• {xi | i ∈ f−1(Dj)} ⊂ int(Dj) for any j ∈ K.

Observe that without loss of generality we do not explicitly require that a districting
covers the entire country but just the inhibited areas.

Definition 3. Two districtings f : N → D and g : N → D with districts D1, . . . , Dk

and D′1, . . . , D
′
k, respectively, are equivalent if there exists a bijection between the

series of sets {xi | i ∈ f−1(D1)}, . . . , {xi | i ∈ f−1(Dk)} and the series of sets {xi | i ∈
g−1(D′1)}, . . . , {xi | i ∈ g−1(D′k)} such that the respective sets are identical.

3bxc stands for the largest integer not greater than x ∈ R and dxe stands for the smallest integer
not less than x ∈ R.
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Clearly, by defining equivalent districtings we have defined an equivalence relation
above the set of districtings for problem Π.

A districting f and voters’ preferences v determine the number of districts won by
parties A and B, which we denote by F (f, v, A) and F (f, v,B), respectively. If the two
parties should receive the same number of votes in a district, its winner is determined
by a predefined tie-breaking rule τ : D → {A,B}.
Definition 4. For a given problem Π and tie-breaking rule τ a districting f : N → D
is optimal for party I ∈ {A,B} if F (f, v, I) ≥ F (g, v, I) for any districting g : N → D.

Note that due to the above defined equivalence relation the set of districtings has
finitely many equivalence classes, there exists at least one optimal districting for each
party.

3 Determining an optimal districting is NP-complete

We establish that even the decision problem associated with the optimization problem
of determining an optimal partisan districting, i.e. deciding for a given districting
problem Π whether there exists a districting with at least m winning districts for
a party, say party A, is an NP-complete problem; we call this problem WINNING
DISTRICTS. In order to prove this, we shall reduce the INDEPENDENT SET problem
on planar cubic4 graphs, a proven NP-complete problem (see Garey and Johnson; 1979,
pp. 195), to WINNING DISTRICTS. The INDEPENDENT SET problem asks whether
a given graph G has a set of non-neighboring vertices of cardinality not less than m.

Theorem 1. WINNING DISTRICTS is NP-complete.

Proof. Whether a districting possesses at least m winning districts for party A can be
verified easily in polynomial time, and therefore WINNING DISTRICTS is in NP.

We establish that INDEPENDENT SET on planar cubic graphs reduces to WIN-
NING DISTRICTS. We define the mapping that assigns to an arbitrary planar cubic
graph a districting problem in two steps.

Step 1: We start with constructing party A winning districts from a planar cubic
graph G = (V,E). Let each vertex be a party A voter and replace the ‘midpoint’ of
each edge with a party A voter. In addition, we associate with each vertex v ∈ V a
four member district containing the party A voter assigned to vertex v and the three
party A voters replacing the three edges adjacent to vertex v. Hence, so far we have
|V | + |E| = 5|V |/2 party A voters and |V | districts, where each of them is consisting
of four party A voters. Step 1 is illustrated in Figure 1.

Observe that the given planar cubic graph has an independent set of size m if and
only if we can select m disjoint districts from the districts drawn in Step 1. However,
as the right-hand side of Figure 1 shows, based on the districts drawn so far, we cannot
partition the set of voters even if we extend the boundaries of the districts5 in a way that
the set of contained voters remains the same. Hence, we cannot obtain a districting.
This is what Step 2 takes care about.

Step 2: Now we associate with each district full of party A voters twelve new party
B voters such that the new voters have to be placed on the ‘same side’ of the district
as illustrated in Figure 2.

4A graph is cubic if the degree of each vertex equals 3.
5By extending districts appropriately we can assign any uninhabited area of a map to one district.
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Figure 1: Associating party A winning districts with a planar cubic graph

w w w w
�
�
�
�

g g g gg g g g
g g g g

Figure 2: Party B voters

In addition, we have to form new districts distinguishing between the two cases
whether a district full of party A voters will be included in our districting. First, if a
district full of party A voters is not selected by a districting, then the respective party B
voters should be grouped into party B winning districts as shown in Figure 3. We will
refer to these ‘vertical districts’ as type 1 party B winning districts. However, we have
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Figure 3: Type 1 party B winning districts

to be more careful since each of the three party A voters corresponding to an edge of
our initial planar cubic graph G = (V,E) is even a member of another party A winning
district full of party A voters. Therefore, if none of these two districts containing the
same party A voter is contained in a districting, then this specific party A voter can
be only included in one of these two type 1 districts. Hence, to make a districting
possible we also include three type 2 ‘vertical districts’ associated with each party A
voter corresponding to an edge. Type 2 party B winning districts are illustrated in
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Figure 4 in which the second party A voter from the left is a voter corresponding to a
vertex of our initial planar cubic graph.
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Figure 4: Type 2 party B winning districts

Second, if a district full of party A voters is selected by our districting, then the
‘horizontal districts’ illustrated in Figure 5 make a districting possible.
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Figure 5: Type 3 party B winning districts

Observe that the districts introduced in Step 2 make a districting possible and that
the given planar cubic graph has at least an independent set of size m if and only if
the associated districting problem has at least m party A winning districts.

It remains to be shown that given a planar cubic graph G = (V,E) its associated
districting problem outlined in Steps 1 and 2 can be determined in polynomial time.
Constructing a straight line planar drawing of G with edges of at most five different
slopes (see Keszeg et al. 2008) or a planar embedding in the grid of G (as shown by
Liu et al. 1994), which can be obtained in polynomial time, we can easily locate the
voters described in Steps 1 and 2 in the plane such that the respective districts can be
drawn in polynomial time.

Remark 1. Considering our reduction, we can observe that the approximability of
WINNING DISTRICTS cannot be better than that of INDEPENDENT SET on pla-
nar cubic graphs for which Burns (1989) showed that the approximation ratio of the
polynomial time algorithm given by Choukhmane and Franco (1986) equals 7/8.
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