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Abstract

The paper uses paired comparison-based scoring procedures for ranking the
participants of a Swiss system chess team tournament. We present the main challenges
of ranking in Swiss system, the features of individual and team competitions as well
as the failures of official lexicographical orders. The tournament is represented as a
ranking problem, our model is discussed with respect to the properties of the score,
generalized row sum and least squares methods. The proposed procedure is illustrated
with a detailed analysis of the two recent chess team European championships. Final
rankings are compared by their distances and visualized with multidimensional
scaling (MDS). Differences to official ranking are revealed by the decomposition of
least squares method. Rankings are evaluated by prediction accuracy, retrodictive
performance, and stability. The paper argues for the use of least squares method
with a results matrix favoring match points.
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1 Introduction

Sport is a classical field of paired comparison-based ranking, early works were often inspired
by chess tournaments (Landau, 1895, 1914; Zermelo, 1929). In the paper we deal with
ranking in Swiss system chess team tournaments. This issue were partly discussed by
Csaté (2013), here a deeper methodological foundation will be given for the problem and
the evaluation of rankings will be revisited. However, we do not discuss the issue of pairing
in Swiss system tournaments.

The paper considers a parametric family of scoring methods, the generalized row
sum (Chebotarev, 1989, 1994) as well as the least squares method. We do not know
any application of the former procedure, while the latter was extensively used for sport
rankings (Leeflang and van Praag, 1971; Stefani, 1980). Our analysis is based on some
recent results: Gonzalez-Diaz et al. (2014) have presented the axiomatic properties of
generalized row sum and least squares, Csat6 (2014a) has given an interpretation for the
least squares method, and Can (2014) has contributed to the choice of distance functions
between rankings. Brozos-Véazquez et al. (2010) argues for the use of recursive methods as
a tie-breaking rule in Swiss system chess tournaments.

The paper is structured as follows. Section 2 shortly outlines the ranking problem,
ranking methods and their relevant properties. Section 3 aims to incorporate Swiss system
chess team tournaments into this framework. We present the main challenges of ranking
in these type of tournaments, the features of individual and team competitions as well as
the failures of official lexicographical orders.

The proposed model is applied in Section 4 to ranking the participants in the 2011
and 2013 European Team Chess Championship open tournaments. We introduce twelve
rankings distinguished by the role of opponents and match versus table points. Rankings
are compared on the basis of their distances and visualized with multidimensional scaling
(MDS). Differences to official ranking are revealed by the decomposition of least squares
method.

On the basis of these examples, we argue for the use of least squares method with
a generalized result matrix favoring match points. The proposal is based on a lot of
findings, variance with respect to the chosen results matrix as well as prediction accuracy,
retrodictive performance (the ability to match the outcomes of matches already played)
and robustness (stability of the ranking between two subsequent rounds).

Finally, Section 5 summarize our findings and review possible extensions of the model.
Some results of the calculations are detailed in the Appendix. A reader familiar with
ranking problems (Gonzélez-Diaz et al., 2014; Csat6, 2014a) may skip Section 2, and
knowledge on Swiss system chess tournaments may save from the study of Subsection 3.1.

Most results mentioned above are our contribution. We do not know any formal
discussion of ranking in Swiss system tournaments (suggestions by Brozos-Vazquez et al.
(2010) are more or less based on intuition) together with investigations through examples,
despite the latter was given, for instance, by Jeremic and Radojicic (2010), Csat6 (2012),
and Csat6 (2013). MDS has been applied first for the comparison of rankings in Csato
(2013). According to our knowledge, we are the first to use the weighted distance of Can
(2014). Stability is also a new idea in the evaluation of Swiss system tournament rankings.



2 The ranking problem and its solution

In the following a model of paired comparison-based ranking is presented. It is a simpler
version of Csaté (2014a), a detailed derivation can be found there.

2.1 The ranking problem

Let N ={1,2,...,n}, n € N be a set of objects. The matches matriz M = (m;;) € N**"
contains the number of comparisons between the objects, and is symmetric (M ™ = M).!
Diagonal elements m; are supposed to be 0 for all ¢ = 1,2,...,n, anyway they will
not be used. Let d; = Z?:l m;; be the total number of comparisons of object ¢ and
0 = max{d; : i € N} be the mazimal number of comparisons with the other objects. Let
m = max{m;; :i,j € N}.

The results matriz R = (r;;) € R™*" contains the outcome of comparisons between the
objects, and is skew-symmetric (R" = —R). All elements are limited by r;; € [—m;j, m;].
(rij +my;)/(2my;) € [0, 1] may be regarded as the likelihood that object i defeats j. Then
ri; = m;; means that ¢ is perfectly better than j, and 7;; = 0 corresponds to an undefined
relation (if m;; = 0) or the lack of preference (if m;; > 0) between the two objects. A
ranking problem is given by the triplet (N, R, M'). Let R be the class of ranking problems
and R™ be the class of ranking problems with |N| = n.

A ranking problem is called round-robin if m;; = 1 for all i # j, that is, every object
has been compared exactly once with all of the others. A round-robin ranking problem
is more general than the binary tournaments of Rubinstein (1980) as it allows for ties
(rij = r; = 0) and arbitrary preference intensities (r;; is not necessarily —1 or 1). A
ranking problem is called unweighted if m;; € {0,1} for all ¢ # j, namely, every paired
comparison is carried out at most once. A ranking problem is called balanced if d; = d; for
all 4,7 =1,2,...,n, that is, every object has the same number of comparisons.

2.2 Ranking methods

Matches matrix M can be represented by an undirected multigraph G := (V, E) where
vertex set V' corresponds to the object set N, and the number of edges between objects ¢
and j is equal to m;;. The number of edges adjacent to 7 is the degree d; of node i. A path
from object k; to object k; is a sequence of objects ki, ko, ..., k; such that myg,,,, > 0 for
all ¢ =1,2,...,t — 1. Two vertices are connected if G contains a path between them. A
graph is said to be connected if every pair of vertices is connected.

Graph G is called the comparison multigraph associated with the ranking problem
(N, R, M), and is independent of the results of paired comparisons. The Laplacian matriz
L = (4;;) € R™™ of graph G is given by {;; = —m,; for all i # j and ¢;; = d; for all
i=1,2,...,n.

Vectors are denoted by bold fonts, and assumed to be column vectors. Let e € R”
be given by e; =1 forall i =1,2,...,n and I € R"*" be the matrix with /;; = 1 for all
i,7=1,2,...,n.

A rating (scoring) method f is an R™ — R" function, f; = f;(N, R, M) is the rating of
object i. It defines a ranking method by i weakly above j in the ranking problem (N, R, M)

! In most practical applications (including ours) the condition m;; € N means no restriction. Modifi-
cation of the domain to R4 has no impact on the results but the discussion becomes more complicated.
This generalization has some significance for example in the case of forecasting sport results when the
latest comparisons give more information about the current form of a player.



if and only if f;(N,R, M) > f;(N, R, M). Throughout the paper, the notions of rating
and ranking methods will be used analogously since all ranking procedures discussed are
based on rating vectors. Rating methods f! and f? are called equivalent if they result in
the same ranking for any ranking problem (N, R, M).

Now we introduce some rating methods for a ranking problem (N, R, M) € R™.

Definition 1. Row sum rating method: s : R™ — R" such that s = Re.

Row sum will also be referred to as scores, s is sometimes called the scores vector. It
does not take the comparison structure into account.

The following parametric rating procedure was constructed axiomatically by Chebotarev
(1989) and thoroughly analyzed in Chebotarev (1994).

Definition 2. Generalized row sum rating method:
x(g) : R™ — R" such that (I +eL)x(g) = (1 + emn)s, where € > 0 is a parameter.

It follows from the definition that lim. ,ox(¢) = s. Generalized row sum adjusts the
standard scores of objects by accounting for the performance of objects compared with it,
and so on. ¢ indicates the importance attributed to this correction.

In our model the outcome of paired comparisons is restricted by —m < r;; < m for all
1,7 € N. Then we have some results about the choice of ¢.

Definition 3. Reasonable choice of ¢ (Chebotarev, 1994, Proposition 5.1): Let (N, R, M) €
R"™ be a ranking problem. The value of parameter ¢ of generalized row sum is reasonable if

0 < —F .
<6_m(n—2)

The reasonable upper bound of € is 1/ [m(n — 2)].

n > 3 can be assumed implicitly since the solution becomes trivial for n = 2.
Proposition 1. If € is reasonable, then —m(n — 1) < x;(e) < m(n —1) for alli € N.
Proof. See Chebotarev (1994, Property 13). O

Note that —m(n — 1) < z;(e) < m(n — 1) for all ¢ € N in a round-robin ranking
problem (N, R, M) € R™.

Both the score and the generalized row sum ratings are well-defined and can be obtained
from a system of linear equations for all ranking problems.

The subsequent method is well-known in a lot of fields, a review about its origin is
given by Gonzalez-Diaz et al. (2014) and Csat6 (2014a).

Definition 4. Least squares rating method: q : R™ — R" such that Lq = s and e' q = 0.
It has strong connections to generalized row sum.

Lemma 1. The least squares method is equivalent to the other limit of generalized row
sum (e — o0), moreover, lim._, x(¢) = mnq.

Proof. See Chebotarev and Shamis (1998, p. 326). ¢ — oo means that expressions with a
constant coefficient in the equation system (I + eL)x(e)(N, R, M) = (1 + emn)s become
negligible. O]



Proposition 2. The least squares rating q is unique if and only if comparison multigraph
G is connected.

Proof. In the unweighted case, see Bozdki et al. (2010, Theorem 4). The same theorem
was proved by Kaiser and Serlin (1978, p. 426) in a different way.

The general weighted case is examined in Bozoki et al. (2014) and Gonzalez-Diaz
et al. (2014). Chebotarev and Shamis (1999, p. 220) mention this fact without further
discussion. O

Proposition 2 causes no problem as in the case of an unconnected comparison multigraph
we have independent ranking problems.

A graph-theoretic interpretation of the generalized row sum method is given by Shamis
(1994). An iterative decomposition of least squares is provided by Csat6 (2014a).

Proposition 3. Let the comparison multigraph be connected and not reqular bipartite.
The unique solution of the least squares problem is q = limy_,oo q*) where

q¥ = (1/v)s,

171 F
q(k):q(k—l)Jra[a(a]_L)} s (k=1,2,...).

2.3 Some properties of ranking methods

In order to argue for the use of these methods we need to discuss a number of axioms.

Definition 5. Admissible transformation of the results (Csatd, 2014b): Let (N, R, M) €
R™ be a ranking problem. An admissible transformation of the results provides a ranking
problem (N, kR, M) € R" such that k > 0, k € R and ka;; € [—m;;, m;;] for all i € N.

Multiplier k£ cannot be too large since —m,;; < kr;; < m;; should be satisfied for all
t € N according to the definition of the results matrix. £ < 1 is always allowed.

Definition 6. Scale invariance (SI) (Csatd, 2014b): Let (N, R, M), (N,kR,M) € R"
be two ranking problems such that (N, kR, M) is obtained from (N, R, M) through an
admissible transformation of the results. Scoring procedure f : R™ — R™ is scale invariant

if f,(N,R,M) > f;(N,R,M) < fi(N,kR, M) > f;(N,kR, M) for alli,j € N.

Scale invariance implies that the ranking is invariant to a proportional modification of
wins (r;; > 0) and losses (r;; < 0). It seems to be important for applications. If the paired
comparison outcomes cannot be measured on a continuous scale, it is not trivial how to
transform them into r;; values. ST provides that it is not a problem in several cases. For
example, if only three outcomes are possible, the coding (r;; = x for wins; r;; = 0 for
draws; r;; = —k for losses) makes the ranking independent from x > 0. It may also be
advantageous when relative intensities are known such as a regular win is two times better
than an overtime triumph.

Lemma 2. The score, generalized row sum and least squares methods satisfy S1I.

Proof. See Csat6 (2014b, Lemma 4.3). It is the immediate consequence of s(N, kR, M) =
ks(N, R, M). 0



One disadvantage of the score procedure is that it is independent of irrelevant matches
(Gonzélez-Diaz et al., 2014). However, it does not cause problems on the class of round-
robin ranking problems, so it makes sense to preserve the attributes of score on this
set.

Definition 7. Score consistency (SCC') (Gonzélez-Diaz et al., 2014): Scoring procedure f :
R™ — R™ is score consistent if f;(N,R, M) > f;(N,R,M) < s;(N,R, M) > s;(N,R, M)
for all 4, 7 € N and round-robin ranking problem (N, R, M) € R™.

A score consistent method is equivalent to the score in the case of round-robin ranking
problems. A similar requirement is mentioned by Zermelo (1929) and David (1987, Property
3).

Remark 1. Regarding the generalized row sum method, Chebotarev (1994, Property 3)
introduces a more general axiom called agreement: if (N, R, M) € R" is a round-robin
ranking problem, then x(¢)(N, R, M) = s(N, R, M).

Lemma 3. Score, generalized row sum and least squares methods satisfy SCC'.

Proof. For generalized row sum see Remark 1. In the case of least squares the proof is
given by Gonzalez-Diaz et al. (2014, Proposition 5.3). [

Further properties of the scoring procedures are discussed by Gonzalez-Diaz et al.
(2014) and Csat6 (2014b).

3 Modelling of the problem

Now we are able to discuss ranking in Swiss system chess competitions in the framework
presented above.

3.1 Main features of Swiss system chess tournaments

Chess tournaments are often organized in the Swiss system. They go for a predetermined
number of rounds, in each round two players compete head-to-head. All of them participate
in the entire tournament, none are eliminated. The system is used when there are too
many players to play a round-robin tournament consequently there are pairs of players
without a match between them. However, it is more efficient than a knock-out tournament
as more matches can be played at the same time.

Two emerging issues are how to pair the players and how to rank the participants on
the basis of their respective results. The pairing algorithm aims to pair players with a
similar performance as measured by the number of their wins and draws (see FIDE (2014)
for details). Some proposals have been made to improve them by weighted (C)lafsson,
1990) or stable matchings (Kujansuu et al., 1999) but it is out of the scope of this paper.

A match in chess can have three different results: white wins, black wins or draw. The
winner gets one point, the loser gets zero points, a draw means half-half points for both
players. There are some competitions where a win results in three points and a draw in
one point, however, they not fit into our model since then the number of allocated points
depends on the result, a win and a loss is not equal to two draws, which violates the
skew-symmetricity of the results matrix.

Let us denote the number of rounds by ¢ and the number of players by n.



The final ranking of the players is determined by lexicographical orders such that the
first rule is the number of points scored. However, it is usually not enough to get a linear
order (complete, transitive and antisymmetric binary relation) of the participants: in ¢
rounds the number of points is an integer between 0 and 2c¢ so there always will be players
with equal score if n > 2c+ 1. Ties are eliminated by the sequential application of various
tie-breaking rules (FIDE, 2014).

The difficulties in ranking are caused by different schedules as players with weaker
opponents can score the same number of points more easily. A pairing algorithm based on
the concept above and lexicographical orders are not able to solve this problem (Csato,
2012, 2013; Brozos-Vazquez et al., 2010; Jeremic and Radojicic, 2010). Actually, it prefers
players with an improving performance during the tournament contrary to players with a
declining one. Take two players ¢ and j with equal number of points after playing some
rounds. Player ¢ is said to on the inner circle if it scored more points in the first rounds
relative to player 7 who is said to be on the outer circle. Since they have played against
opponents with a similar number of points in each round because of the pairing algorithm,
it is probable that player j has met with weaker opponents. Tie-breaking rules may take
the performance of opponents into account but a similar problem may arise if player j has
a bit more points than player i as a lexicographical order is not continuous. Naturally, it
is not a precise mathematical argument, although we hope it highlights the main problem
with official rankings. It can be argued that an improving performance is better than a
declining one, however, it contains a subjective judgment strange to the positive approach
of scientific research.

besides individual competitions, there are also team tournaments in chess. They seem
to be preferable from a theoretical point of view since in individual championships color
allocation has a prominent role, the first-mover with white have an inherent advantage in
the game. In team tournaments a match is played on 2t boards such that t players of a
team play with white and the other ¢ players of the team play with black. Therefore it
can be accepted that color allocation does not influence the outcome of any matches.

In team championships there is a difference between board points and match points
scored. The winner of a game on a board gets 1 board point, the loser 0 points, and the
draw yields 0.5 points for both teams, thus 2¢ board points are allocated in a given match.
The winner team achieving more (at least ¢ + 0.5) board points scores 2 match points, the
loser 0, while a draw results in 1 match point for both team. Lexicographical orders are
usually based on the number of board or match points. Recently the use of match points
is preferred as in chess olympiads and team European championships.

Other details on Swiss-system chess team tournaments can be found in Csat6 (2012,
2013).

3.2 Definition as a ranking problem

Paired comparison-based ranking of the objects involves three main challenges. The first
one is the possible appearance of circular triads when object ¢ is better than object j
(rij > rj;), object j is better than object k, but object k is better than object ¢. Circular
triads generate difficulties in all paired comparison settings, but, if preference intensities
also count, other triplets may cause a problem. The second issue, the varied calibre of
the opposition encountered by each object, arises as the consequence of incomplete and
multiple comparisons. For example, if object ¢ was compared only with object j, then
its rating certainly should depend on the results of object j. We have seen that this



argument can be continued infinitely. The third problem is the possibly different numbers
of comparisons involving the objects, that is, d; # d;.

According to David (1987), ’it must be realized that there can be no entirely satisfactory
way of ranking if the number of replications of each object varies appreciably’. In Swiss
system competitions this question does not emerge. The other two will be dealt with the
methods presented in Section 2, after any chess team tournament is presented as a ranking
problem. Since data are given by sport results, we do not discuss the question whether
inherent inconsistency allows to provide a meaningful ranking (Jiang et al., 2011).

Set of objects N consists of the teams of the competition. Matches matrix M is given
by m;; = 1 if teams ¢ and j have played against each other and m,; = 0 otherwise. For
the sake of simplicity it is assumed that n is even, so it is possible that all teams play
exactly ¢ matches (there are no byes or unplayed matches). First we suggest two extreme
possibilities for the choice of results matrix.

Notation 1. M P;; and BP;; is the number of match points and board points of team 4
against team 7, respectively.
mp and gp is the vector of match points and board points, respectively.

Rankings derived from mp and bp are the same as the official lexicographical orders
based on match points and board points without tie-breaking rules.

Definition 8. Match points based results matriz: Results matrix of ranking problem
(N, RMP M) € R™ is based on match points if rf\fp = MP;; —1foralli,j€N.

Definition 9. Board points based results matriz: Results matrix of ranking problem
(N, RBY M) € R™ is based on board points if Tf;P = BPj; —tforalli,j € N.

The two concepts can be integrated.

Definition 10. Generalized results matriz: Results matrix of ranking problem
(N,RP(X), M) € R" is generalized if r[(A) = (1 — X) (M Py —1) + A(BP; —t) /t for
all 4,j € N such that A € [0,1].

Lemma 4. RP(\ = 0) = RMF and RP(\ = 1) = RBL.
Ranking according to the score procedure are closely related to the official rankings.

RMP

Lemma 5. Score method on is equivalent to mp.

Proof. d; = c for all i € N, hence s(N, RM* M) = mp — ce. ]

Lemma 6. Score method on RBY is equivalent to bp.

Proof. d; = c for all i € N, hence s(N, RBY M) = bp — cte. O
Our main result is the following.

Theorem 1. Let (N, R, M) € R" be a round-robin ranking problem. Generalized row sum
and least squares methods on RMY are equivalent to mp, and on RBY they are equivalent
to bp.

Proof. In case of round-robin problems, generalized row sum and least squares are equiva-
lent to the score method due to axiom SCC (Lemma 3), hence Lemmata 5 and 6 provide
the result. O



Generalized row sum and least squares methods address the lack of matches by
accounting for the opponents of each team. Due to Theorem 1, they result in the official
ranking without tie-breaking rules in the ideal round-robin case. When the lexicographical
order is based on match points, the transformation RM? is recommended. Generalized
results matrix with a small (i.e. close to 0) parameter A gives a similar outcome but it
reflects the number of board points, the magnitude of wins and losses. This effect becomes
more significant as A increases and RPF extends the ranking based on board points to
Swiss system competitions.

Proposition 4. Let (N,R,M) € R" be a ranking problem, and k € (0,1]. Rankings
derived from generalized row sum and least squares methods on RMY and kRMP, on RBT
and kKRBT as well as on R”(\) and kR ()\) are the same.

Proof. 1t is the consequence of property SI (Lemma 1). n

Proposition 4 implies that there exists only one ranking on the basis of match points
after accepting that wins are more valuable than losses. Analogously there exists a unique
ranking based on board points. In the lack of scale invariance the ranking may depend on
the results matrix chosen such as wins are represented by r;; = 0.5 or r;; = 1, for example.

We have also investigated the meaning of some other properties discussed in Gonzélez-
Diaz et al. (2014) for Swiss-system chess team tournaments. The short conclusion is that
they support the use of generalized row sum and least squares.

These methods use all information of the tournament (about the opponents, opponents
of opponents and so on) to break the ties. Therefore it is very unlikely that teams remain
tied after applying generalized row sum or least squares, unless the tied teams have exactly
the same opponents and in such a case it seems reasonable do not break the tie. No
need for arbitrary tie-breaking rules is certainly an advantage compared to lexicographical
orders.

4 Application: European chess team championships

In the following we will scrutinize the theoretical model suggested in Section 3 in practice.

4.1 Examples and implementation

We illustrate the method proposed in Section 3 with an extensive analysis of two chess
team tournaments:

e 18th European Team Chess Championship (ETCC) open tournament, 3rd-11th
November 2011, Porto Carras, Greece.
Webpage: http://euro2011.chessdom. com/
Tournament rules: ECU (2012)
Detailed results: http://chess-results.com/tnr57856.aspx

e 19th European Team Chess Championship open tournament, 7th-18th November
2013, Warsaw, Poland.
Webpage: http://etcc2013.com/
Tournament rules: ECU (2013)
Detailed results: http://chess-results.com/tnr114411.aspx


http://euro2011.chessdom.com/
http://chess-results.com/tnr57856.aspx
http://etcc2013.com/
http://chess-results.com/tnr114411.aspx

In both tournaments the number of competing teams is n = 38 playing on t = 4
tables during ¢ = 9 rounds. Results are known for about the quarter of possible pairs,
9 x 19 =171 from n(n — 1)/2 = 703.

Number of board points achieved by the team in the corresponding row against the
team in the corresponding column are presented in Tables A.1 (2011) and A.2 (2013) in
the Appendix. At least 2.5 board points means a win, 2 means a draw, while at most 1.5
means a loss. Unplayed matches are indicated by —.

The first element of the official lexicographical order was the number of match points in
both cases but tie-breaking rules were different. They certainly should be used since in 9
matches at most 18 match points can be achieved and the number of participants is 38. The
first tie-breaking rule was number of board points in ETCC 2011 and Olympiad-Sonneborn-
Berger points without lowest result (i.e. match points of each opponent, excluding the
opponent who scored the lowest number of match points, multiplied by the number of
game points achieved against this opponent) in ETCC 2013, therefore teams have had an
incentive to achieve more points. It is especially relevant for middle teams. The pairing
algorithm provides that a team scoring 9 wins will be the first, however, such a feat is
almost impossible. To conclude, teams are interested in scoring more match points and
board points, which count through the tie-breaking rules.?

In the 2013 competition application of the first tie-breaking rule (Olympiad-Sonneborn-
Berger points) was enough, while in 2011 a second tie-breaking rule (aggregated board
points of the opponents) should be used in some cases.

Tables A.3 (2011) and A.4 (2013) in the Appendix focus on match outcomes: ¢/
indicates a win for the team in the corresponding row, = and X indicate a draw and a
loss, respectively. Match points aggregate them by giving 2 for wins, 1 for draws and 0
for losses. Teams are ordered according to the official ranking. Wins are usually above
the diagonal and played matches tend to be placed close to the diagonal because of the
concept of the pairing algorithm.

Distribution of match results for ETCC 2013 is drawn in Figure 1. Minimal victory
(2.5 : 1.5) is the mode, so incorporating board points probably will not influence the
rankings much.

We have two exogenous rankings called Official according to the tournament rules and
Start based on E18 points of players, reflecting the past performance of team members.
Further 12 rankings have been calculated from the ranking problem representation. Four
results matrices have been considered: RMF RMP = RF(1/4) = 3/4 RMP + 1/4 RBF,
RBM = RF(2/3) = 1/3 RMF + 2/3 RBY and RP”. We have chosen three methods, least
squares (LS) and generalized row sum with ¢; = 1/324 (GRS;) and €3 = 1/6 (GRS,).
Note that ¢; is smaller and g5 is larger than the reasonable upper bound of 1/36 when
m =1 and n = 38.

Existence of a unique least squares solution requires connectedness of the comparison
multigraph (Proposition 2), which is provided after the third round. Rankings in the first
two rounds are highly unreliable, therefore they were eliminated. From the third round all
methods give one, thus we have 7 x 13 4+ 1 = 92 rankings as Start remains unchanged.

Notation 2. The 14 final rankings are denoted by Start, Official; GRS, (RM?), GRS, (RMB),
GRS (RBM), GRS,(RBY); GRS:(RMP), GRSy (RMB), GRSy (RPM), GRS,(RBY); and

2 Sometimes leading teams can secure a prize by a draw in the final round or certain teams may lose
their spirit to compete. These issues emerge in all sports, note that soccer teams in national competitions
have usually weak incentives to win by a lot of goals.
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Figure 1: Distribution of match results, ETCC 2013
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LS(RMP) LS(RMB) LS(RPM) LS(RPT). In the figures they are abbreviated by Start,
Off; G1, G2, G3, G4; S1, S2, S3, S4; and L1, L2, L3, L4, respectively.

Start and Official rankings are strict, that is, they do not allow for ties by definition.
It can be checked that the other rankings also give a linear order of teams in all cases.
Rankings by different methods are displayed in Tables A.5 (2011) and A.6 (2013) in the
Appendix.

4.2 Visualisation of the rankings

For the comparison of final rankings their distances have been calculated. We have chosen
the well-known Kemeny distance (Kemeny, 1959) and its weighted version proposed by
Can (2014). Both distances are defined on the domain of strict rankings, i.e. ties are
not allowed. Our rankings satisfy this condition. Kemeny distance was characterized by
Kemeny and Snell (1962), however, Can and Storcken (2013) achieved the same result
without one condition. Can and Storcken (2013) also provides an extensive overview about
the origin of this measure. It is the number of pair of alternatives ranked oppositely in
the two rankings examined. For instance, Kemeny distance of a = b > cand b > a > ¢
is 1, because they only disagree on how to order a and b. Similarly, Kemeny distance of
a>0b>canda>c>bis 1 since the disagreement on how to order b and c.

Thus the dissimilarity between the former two and between the latter two seems to be
identical according to the Kemeny distance. However, in our chess example a disagreement
at the top of the rankings may be more significant than a disagreement at the bottom
of them: the audience is interested in the first three, five or ten places but people are
not bothered much whether a team is the 31th or 34th. For this purpose, Can (2014)
proposes some functions on strict rankings in the spirit of Kemeny metric, which are
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respectful to the number of swaps but allow for variation in the treatment of different
pairs of disagreements.

It has some price since the calculation will depend on the order of swaps between
the two rankings. Can (2012, Theorem 1) shows that only the path-minimizing function
satisfies the triangular inequality condition for all possible weight vectors. Finding the
path-minimizing metric is not trivial, it is equivalent to solving a short-path problem. A
way out is that if weights are monotonically decreasing (increasing) from the upper parts
of a ranking to the lower parts, then the Lehmer function (the inverse Lehmer function) is
equivalent to the path-minimizing metric (Can, 2014, Corollaries 1 and 2).

These results have inspired us to choose a monotonically decreasing weight vector
meaning that swaps in the first places are more important than changes at the bottom of
the rankings. Our weight vector is given by w; = 1/i for all i =1,2,...,n — 1. Then the
distance between a > b > c and b > a > cis 1 (a swap at the first position), while the
distance between a > b > c and a > ¢ > bis 1/2 (a swap at the second position). The
measure reaches its maximum of n — 1 if and only if the two rankings are entirely opposite.
We do not know about any other application of Can (2014)’s novel method.

Distances of rankings of ETCC 2011 competition is presented in Table A.7 in the
Appendix. All Kemeny distances are significantly smaller than its maximum of n(n—1)/2 =
703 for entirely opposite rankings. Largest values usually occur in comparison with Start
since it is not influenced by the results. However, rankings based on match points and
board points are also relatively far from each other. Official coincides with GRS, (RMP).

Weighted distances are presented in Table A.7.b. Its maximum is n — 1 = 37. Ratio of
Kemeny and weighted distances are between 8.73 and 17.44 for ETCC 2011, and between
5.81 and 18.73 for ETCC 2013. In the second case accounting for swaps’ positions has a
larger effect but the discrepancy of the two distances remains smaller than expected. It
implies that variations are more or less equally distributed along the rankings.

It is worth to note here that GRS, (RM?) means a kind of tie-breaking rule for match
points both in ETCC 2011 and ETCC 2013. If ¢ = 0 then generalized row sum gives
the ranking of match points, while a small € ranks tied teams by the strength of their
opponents. Official method also aims to eliminate ties, it uses a different approach though.

Table A.7 gives some information, however, it does not much simplify the comparison of
the rankings. We want to achieve this by a graphical representation. The pairwise distances
of 14 rankings can be plotted in a 13-dimensional space without loss of information but it
still seems to be unmanageable. Therefore, similarly to Csat6 (2013), multidimensional
scaling (Kruskal and Wish, 1978) have been applied. It is a statistical method in information
visualization for exploring similarities or dissimilarities in data: a textbook application of
MDS is to draw cities on a map from the matrix consisting of their air distances.

Kemeny and weighted distances mean a ratio scale due to the existence of a natural
minimum and maximum. Then discrepancies of the reduced dimensional map are linear
functions of the original distances. Both Stress and RSQ tests for validity strengthen that
two dimensions are sufficient to plot the 14 rankings, but one is too restrictive. The method
gives a map where only the position of objects count, more similar rankings are closer to
each other. Only the distances of points representing the rankings yield information, we
do not know what is the meaning of the axes.?

Figure 2 shows MDS maps for the 2011 tournament. Figure 2.a supports the view that
Start is far away from all other rankings, thus it is omitted from further analysis (which
improves the mapping, too).

3 Note the change of direction of the vertical axis on Figures 2 and 3.
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Figure 2: MDS maps of the European Team Chess Championship 2011 rankings

Official ranking (Off) is the same as one from generalized row sum (G2), their distances are zero. There is
a minimal difference between the coordinates of corresponding points, probably due to computational

errors.
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There is not much difference between the four charts (ETCC 2011 vs. 2013, Kemeny
vs. weighted distances) as Figure 3 is similar to Figure 2.b. MDS maps of ETCC 2013 an
Kemeny distances have more favorable validity measures than MDS maps of ETCC 2011
and weighted distances. They suggest the following:

1. Start significantly differs from the other rankings since it does not depend on the
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Figure 3: MDS maps of the European Team Chess Championship 2013 rankings
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results of the tournament;

2. Generalized row sum rankings (with low A) are more similar to the official one than
least squares;

3. The order of results matrices by variance is RMF < RMB < RBM < RBP4 greater
role of match points stabilize the rankings;

4. The order of scoring procedures by variance is LS < GRSy < GRS, a greater role
of opponents stabilize the rankings.

5. Choice of tie-breaking rule for match points has a surprisingly large effect, especially
in the case of ETCC 2011 as rankings Off and G1 are relatively far from each other.

On the basis of these observations, we propose to use least squares with a generalized
results matrix favoring match points (a low ), for example, 1/4 as in RM?) for ranking in
Swiss-system chess team tournaments as it gives incentives for teams to score more board
points but still prefers match points against them.
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4.3 Analysis of a ranking

Another approach to compare the rankings is offered by the decomposition of the least
squares rating (Csatd, 2014a). The ranking problem is balanced, the comparison multigraph
is regular. Therefore it gives a ranking according to mp (the official ranking without the
application of tie-breaking rules) in the zeroth step (q®) as Proposition 3 states. After
that, it reflects the strength of neighbors, neighbors of neighbors and so on by accounting
for their average match points since 9 — L = M. Ranking according to q(R™F) is
obtained after the seventh (from q((RM?)) and after the twelfth step (from q?(RMP))
for ETCC 2011 and ETCC 2013, respectively.

Table 1 shows the changes of teams’ positions in each step of the iterative decomposition
of the ranking LS(RM?) for ETCC 2013. In the second column ties are broken according
to the official rules, so it coincides with the official ranking. In subsequent steps there
are no ties. Position improvements and declines are indicated by the 1 and { arrows,
respectively. Lack of change is indicated by —.

Correction according to neighbors’ strength results in seven positions improvement for
Slovenia together with a four positions decline for Romania and six for Netherlands. Hence
Slovenia overtakes Netherlands despite it has a two match points disadvantage. Official
tie-breaking rule 7'B4 (number of board points of the opponents) shows a similar direction
of adjustment. Subsequent steps of the iteration usually lead to a similar sign of change in
positions, however, in a more moderated extent. A notable exception is Romania, which
regains some positions due to indirect opponents. Monotonicity of absolute adjustments
are violated only by Lithuania.

There are two changes among the top six teams. After k = 2 France becomes the
winner of the tournament instead of Azerbaijan. It can be debated since the latter team
has no loss, however, the schedule of France was more difficult. The swap of Russia and
Armenia may be explained by the advance on an outer circle of the former team. Note the
lack of match between Azerbaijan and Russia (Table A.4).

The last change is a swap of Turkey and Montenegro in the twelfth step of the iteration.
As it was mentioned, least squares method is not only a tie-breaking rule for match points
(contrary to generalized row sum with € = 1/324), it makes possible that a team overtakes
another one despite its disadvantage of two match points.

Imperfection of the official ranking is highlighted by ETCC 2011, for which Table A.8
in the Appendix contains the positional changes according to the iterative decomposition
of LS(RMT). Here France scored three wins and three draws in the first six rounds but
it has been defeated in the last three matches. It is an extreme example of advance on
an inner circle, France has had a more challenging schedule compared to teams with the
same number of match points. It is reflected in the significant adjustment by the least
squares method. On the other side, Serbia loses nine, and Georgia loses 14 positions. They
had luck with the opponents, for example, Georgia had not played against a better team
according to the official ranking. We think it is a surprising fact for a team at the 13th
place. You can also see that both Serbia and Georgia significantly benefits from decreasing
¢ or increasing the role of board points.

The strange phenomenon is also remarked by a Hungarian commentator who speaks
about 'the curse of the Swiss system’? However, we think it is not necessarily the mistake
of Swiss system rather a failure of the official ranking, which can be improved significantly

4 See at http://sakkblog.postr.hu/sokan-palyaznak-dobogos-helyezesre-izgalmas-utolso-
fordulo-dont.
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Table 1: Positional changes in decomposition of the ranking LS(RM?), ETCC 2013

Team Off (0) 1 2 3 4 5 6 9 12 Cumulated LS (00)
Azerbaijan 1 - vy - - - - - - ¥ 2
France 2 - () - - = = = = () 1
Russia 3 J - - - - - = = \/ 4
Armenia 4 () - - = = = = = () 3
Hungary 5 - - - - - = = = - 5
Georgia 6 = - - - - = = - 6
Greece 7 - - - - - - - N/ 8
Czech Rep. 8 N/ v - - - - - - W 10
Ukraine 9 () - - - -1 - - ™M 7
England 10 = () - - = = = = () 9
Netherlands 11 Vv (6) - - - - = = = V(6) 17
Ttaly 12 2 U - 12
Serbia 13 Wil W - - - - - L (6) 19
Romania 4 vy ™M™ -1 - - - - ¥ 15
Belarus 15 M - - -1t - - - ™ (4) 11
Poland 16 M - - - - - - ™ 14
Croatia 17 ™ - - N - - - - () 16
Montenegro 18 N/ - N - - - = W 21
Spain 19 W - R AR 22
Germany 20 = =) ™ 18
Slovenia 21 ™ (7) — - -t - - - ™ (8) 13
Poland Futures 22 W — v - v - - - v (4) 26
Lithuania 23 W 4@ - - - ¥ - - v (7) 30
Turkey 24 ™M — - - -7 - 7 T (4) 20
Bulgaria 25 ™M - - - - - = - ™ 23
Sweden 26 J — v - - - - - W 28
Denmark 27 W \) - - - -y - v (5) 32
Israel 28 i N = = = = = T (4) 24
Iceland 29 NANY - e W 31
Austria 30 ™M M - -1 - - - T (5) 25
Poland Goldies 31 - 0 - - -1 - - ™ 29
Switzerland 32 ™M () r - - - - - ™ (5) 27
Belgium 33 - - v - - - - - ¥ 34
Finland 34 = = R 0 33
Norway 35 - - - - - = = = - 35
Scotland 36 - - - - - = = = - 36
FYR Macedonia 37 - - - - - - - - - 37
Wales 38 - - - - - = = = - 38

by accounting for the strength of opponents.

4.4 Assessment of the rankings

For evaluating the 14 rankings, three approaches have been applied:

e Predictive performance: ability to forecast the outcomes of future matches;
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e Retrodictive performance: ability to match the results of contests already played;
e Robustness between subsequent rounds.

The first two are the proposals of Pasteur (2010) for the classification of mathematical
ranking models. The third seems to be important because of (at least) two causes. First,
both the participants and the audience feel strange if the positions of teams are not stable,
they are largely determined by a certain match result. Naturally, extreme stability is not
favorable, too, but it is usually not a problem in a Swiss system tournament. The second
argument for robustness is that the number of rounds is often determined arbitrarily, for
instance, it was 13 in the 2006 and 11 in the 2013 chess olympiads with 148 and 146 teams,
respectively.

The first two have been measured by the number of match and board points scored
by an underdog against a better team. It does not take into account the difference of
positions, only its sign. Some results are presented in the Appendix. They are qualitatively
equivalent, the methods applied behave similarly in all cases.

Figure A.1 shows the number of match and board points scored by a weaker opponent
in later rounds according to the appropriate ranking after each round. It can be calculated
from the third round when the least squares ranking is unique. Start has the most favorable
forecasting performance, especially in the first rounds, match outcomes are determined
by teams’ ability rather than by their results in the competition. As Figure A.2 reveals,
there is no difference among the methods in forecasting power if only the next round is
scrutinized, too.

Forecasting can be regarded as out-of-sample fit. Another approach is how a ranking
describes the results of matches already played, that is, in-sample fit. Figure A.3 shows
the number of match and board points in earlier rounds scored by a weaker opponent
according to the appropriate ranking after each round. It is calculated from the third round,
however, it has a meaning after the last round when forecasting power is not defined. Least
squares method has the best retrodictive performance but it remains dubious whether it
is statistically significant. Generalized row sum is placed between the least squares and
official rankings. Choice of the results matrix and the tournament does not influence these
findings.

Stability has been defined as the distance of rankings in subsequent rounds. It has
no meaning for Start but can be calculated for all other rankings from the third round.
Figure 4 illustrates the robustness of some rankings in ETCC 2011. Volatility is not
monotonically decreasing, however, a stable decline is observed as the actual round gives
relatively fewer and fewer information. Ranking LS(RM?T) is the most robust according to
both definitions of the distance, which is followed by GRSo(RMT), then GRS, (R™”) and
Official. Therefore rankings become less volatile by taking into account the performance
of opponents. Difference of absolute values is more significant in the case of weighted
distance, the least squares method is more robust in the first, critical places. The order
LS < GRS, < GRS, is valid for other result matrices RMZ, RPM and RBF. however,
GRS, is sometimes worse than the official ranking.

Results for ETCC 2013 are presented on Figure A.4 in the Appendix. Now the
conclusions are more uncertain but least squares is the most stable with the exception of
first rounds. To summarize, application of the least squares method is recommended if the
organizers want to mitigate the effects of the (predetermined) number of rounds on the
ranking.
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5 Discussion

The paper has given an axiomatic analysis of ranking in Swiss system chess team tour-
naments. We have applied the paired-comparison based ranking methodology in order
to build an appropriate model for these competitions, which reveals the failure of official
lexicographical rankings. The framework is flexible with respect to the role of the oppo-
nents (parameter ) and the influence of match and board points (choice of the results
matrix). The main theoretical advantages of the methods proposed are that they are
close to the concept of official rankings (in fact they coincide in the case of round-robin
tournaments), can be calculated iteratively or by solving a system of linear equations
and have a clear interpretation on the comparison multigraph. They also do not call for
arbitrary tie-breaking rules.

It is tested on the results of the 2011 and 2013 European Team Chess Championship
open tournaments. Our observations support the use of least squares method. However, it
is an opportunity to take into account the number of board points scored by a generalized
results matrix favoring match points (small A close to zero). The findings suggest that
official lexicographical orders have significant disadvantages, and recursive methods similar
to generalized row sum and least squares are worth to consider for ranking purposes. Brozos-
Viézquez et al. (2010) recommend them as tie-breaking rules in Swiss system tournaments,
achievable by the choice of a small €. Brozos-Vazquez et al. (2010) summarizes their
favorable properties as using all available information of the tournament to break the ties
and that it is difficult players remain tied after their application.

We have presented that the idea of recursive methods can be extended and they can
serve not only as a tie-breaking rule but as a unique ranking procedure. In this case
the ranking will be less dependent on the designation of table or board points for the
benchmark (actually, middle paths can be chosen), and will be more robust with respect
to new results, increasing the reliability of the final ranking. These advantages over
lexicographical methods are far less significant if generalized row sum is only used for
tie-breaking with a small €.

Brozos-Vézquez et al. (2010) list three main disadvantages of recursive tie-breaking
methods:

e Lot of people criticizes the fact that a computer is needed in order to calculate
the tie-break in the tournament.

e In the same lines, it is also criticized that it will be difficult for the players to
verify (and understand) the tie-breaks at the end of the tournament.

e Up to 4 or 5 rounds might be needed for the methods to be convergent. Hence,
intermediate standings prior to that round cannot incorporate the tie-break.

According to our view, the third point does not mean such a serious problem since
rankings in the first rounds are obviously not reliable and other tie-breaking rules may be
applied, e.g. El8 points. In the tournaments examined, connectedness of the comparison
multigraph is provided after the third round. We have also seen that the rankings after one
or two iteration steps are not very far from the final ranking and they can be calculated by
hand. Naturally, the least squares method is a bit more complicated than usual tie-breaking
rules but its graph interpretation (Csaté, 2014a) and its core concept close to Buchholz
helps in the understanding. Anyway, there usually exists a trade-off between simplicity
and other favorable properties (like sample fit, robustness), and we think it is worth to
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use more developed methods in the case of Swiss system tournaments in order to avoid
anomalies of the ranking.’

There are some plausible area of further research. In the analysis we have neglected
some complications observed in practice like matches played with black or white (an
unavoidable issue in individual tournaments) or different number of matches due to byes
or unplayed games. The choice of parameter ¢ also requires further investigation. Our
findings can be strengthened or falsified by the examination of other competitions and
some simulations of Swiss system tournaments.

Finally we mention two possible use of the proposed ranking method. First, it can
be incorporated into the pairing algorithm, which may lead to more balanced schedules.
Second, extensive analysis of the stability of a ranking between subsequent rounds may
contribute to the choice of the number of rounds: it can be made endogenous as a function
of the number of participants and other restrictions.
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Table A.1: Results of the European Team Chess Championship open tournament 2011
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Table A.1: Results of the European Team Chess Championship open tournament 2011 (continued)
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Table A.2:

Results of the European Team Chess Championship open tournament 2013 I.
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Table A.2: Results of the FEuropean Team Chess Championship open tournament 2013 II.
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Table A.3: Match results of the European Team Chess Championship open tournament 2011
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Place Team 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 lg/f)a:flilsl
1 Germany v v Vv 4 = v v 15
2 Azerbaijan 14
3 Hungary 13
4 Armenia 13
5 Russia 13
6 Netherlands 12
7 Bulgaria 12
8 Poland 11
9 Romania 11

10  Spain 11
11 Ttaly 11
12 Serbia 10
13 Georgia 10
14 Israel 10
15 Ukraine 10
16 Czech Rep. 10
17 Slovenia 10
18  Moldova 9
19 France 9
20  Greece 9
21 Croatia 9
22 England 8
23 Switzerland 8
24  Latvia 8
25  Montenegro 8
26 Iceland 8
27 Sweden 8
28  Denmark 8
29  Norway 8
30 FYROM 7
31  Finland 7
32 Austria 7
33  Lithuania 7
34 Turkey 6
35  Scotland 5
36  Luxembourg 4
37  Wales 2
38  Cyprus 1
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Table A.4:

Match results of the European Team Chess Championship open tournament 2013

Place Team 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 lg/f)?;%lsl
1 Azerbaijan = v v Vv 4 v = 14
2 France 13
3 Russia 13
4 Armenia 13
5 Hungary 12
6 Georgia 12
7 Greece 11
8 Czech Republic 11
9 Ukraine 11

10  England 11
11 Netherlands 11
12 Ttaly 11
13 Serbia 10
14  Romania 10
15 Belarus 10
16  Poland 10
17 Croatia 10
18  Montenegro 10
19 Spain 9
20  Germany 9
21 Slovenia 9
22 Poland Futures 9
23 Lithuania 9
24 Turkey 8
25  Bulgaria 8
26 Sweden 8
27 Denmark 8
28  Israel 7
29 Iceland 7
30  Austria 7
31  Poland Goldies 7
32  Switzerland 7
33 Belgium 7
34  Finland 6
35  Norway 6
36 Scotland 4
37  FYR Macedonia 4
38  Wales 0




Table A.5: Rankings of the European Team Chess Championship open tournament 2011

& i 5 & s 5 &
= T T S - T - J o S - RPN
.8 B S Y R® IR EZ R RS
s £ F A E G AE F RS F RS
g E KB &K @B K K ©n 8 &K ©»n K & o
Team n O T O <[ O U 1 O U A © O =~
Germany 10 1 1 1 2 1 1 2 1 1 2 3 2 2
Azerbaijan 3 2 2 2 1 2 2 1 2 2 1 1 1 1
Hungary 5 3 5 6 6 3 5 6 3 5 6 2 4 5
Armenia 4 4 4 4 5 4 4 5 4 3 4 4 3 4
Russia 1 5 3 3 3 5 3 3 5 4 3 8 5 3
Netherlands 9 6 7 7 8 6 7 8 9 9 9 13 13 12
Bulgaria 7 7 6 5 4 7 6 4 11 6 5 18 9 6
Poland 14 8 11 12 16 8 11 13 6 8 12 5 6 9
Romania 17 9 10 10 12 9 9 12 10 10 13 11 12 13
Spain 13 10 8 8 7 10 8 712 7 7T 12 8 7
Italy 22 11 9 9 9 11 10 10 14 12 11 17 19 15
Serbia 18 12 16 18 21 12 17 21 7 15 19 6 7 16
Georgia 15 13 17 22 27 13 21 25 &8 20 24 7 16 23
Israel 1 14 15 16 15 14 16 15 13 14 14 10 10 11
Ukraine 2 15> 13 11 11 15 12 11 16 11 10 15 15 10
Czech Rep. 12 16 14 14 14 16 14 16 17 16 15 19 17 14
Slovenia 21 17 12 13 13 17 13 14 20 17 16 26 21 19
Moldova 20 18 21 20 20 18 19 20 15 19 20 9 14 20
France 6 19 18 15 10 19 15 9 18 13 & 14 11 8
Greece 19 20 19 17 17 20 18 17 19 18 17 16 18 18
Croatia 6 21 20 19 18 21 20 19 23 22 21 28 23 21
England 8§ 22 22 21 19 22 22 18 21 21 18 20 20 17
Switzerland 26 23 27 24 23 23 24 23 22 24 23 21 26 24
Latvia 27 24 23 23 22 24 23 22 24 23 22 23 22 22
Montenegro 29 25 25 26 29 25 26 29 25 25 28 24 24 27
Iceland 32 26 26 28 28 26 27 28 26 26 26 25 25 26
Sweden 25 27 24 25 25 27 25 26 27 27 27 27 27 28
Denmark 24 28 28 27 26 28 28 27 29 28 29 29 28 29
Norway 31 29 29 30 31 29 30 31 32 32 31 34 33 32
FYROM 30 30 33 33 33 30 33 33 28 31 33 22 31 31
Finland 28 31 32 32 32 31 32 32 30 33 32 30 32 33
Austria 23 32 31 31 30 32 31 30 31 30 30 31 30 30
Lithuania 33 33 30 29 24 33 29 24 33 29 25 32 29 25
Turkey 34 34 34 34 34 34 34 34 34 34 34 33 34 34
Scotland 3 35 35 35 35 35 35 35 35 35 35 35 35 35
Luxembourg 37 36 36 36 36 36 36 36 36 36 36 36 36 36
Wales 36 37 3r 3v 3¢ 3¢v 3v 37 3v 37 3v 38 37 37
Cyprus 38 38 38 38 38 38 38 38 38 38 38 37 38 38
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Table A.6: Rankings of the European Team Chess Championship open tournament 2013

= I~ 5 & & -~ &% & -

888 B ®BI RS8R

: £ 3 4 B 5 A ke SR g R

S E K K nn K & @ K K ©n K K ¢

Team n O U U 1 O T 19 T U 8 O O W
Azerbaijan 6 1 1 1 2 1 1 2 2 1 2 5 2 3
France 3 2 2 2 1 3 2 1 4 3 1 7 4 1
Russia 1 3 4 4 4 2 4 4 1 2 3 2 1 2
Armenia 2 4 3 3 3 4 3 3 6 5 4 13 11 9
Hungary 7 5 5 5 5 5 5 5 5 4 5 3 3 4
Georgia 4 6 6 6 6 6 6 6 7T 6 8 11 9 8
Greece 5 7 7 7 8 8 T 7 8 7T 6 9 6 5
Czech Rep. 9 8 9 10 10 10 9 10 9 9 9 8 7 6
Ukraine 5 9 8 8 7 9 8 8 10 8 7 10 8 7
England 4 10 10 9 9 11 10 9 12 10 10 12 10 10
Netherlands 8 11 12 14 17 7 13 17 3 11 15 1 5 11
Italy 13 12 11 11 12 12 11 12 14 12 12 15 14 14
Serbia 20 13 16 18 19 14 16 18 13 14 16 6 12 15
Romania 19 14 17 17 15 13 15 15 11 13 14 4 13 13
Belarus 17 15 13 12 11 16 12 11 16 15 11 17 16 12
Poland 12 16 14 13 14 15 14 13 15 16 13 14 15 16
Croatia 6 17 15 15 16 17 17 16 17 17 18 18 17 17
Montenegro 30 18 18 19 21 18 19 22 19 21 23 27 27 25
Spain 11 19 21 21 22 21 21 21 21 20 21 23 20 22
Germany 10 20 20 20 18 20 20 19 20 18 19 22 18 19
Slovenia 22 21 19 16 13 23 18 14 26 19 17 29 25 20
Poland Futures 23 22 22 23 26 22 23 25 22 24 25 24 23 24
Lithuania 34 23 23 25 30 19 25 29 18 25 29 16 22 27
Turkey 18 24 24 22 20 27 22 20 27 22 20 26 21 18
Bulgaria 21 25 25 24 23 25 24 23 24 23 22 21 19 21
Sweden 25 26 26 27 28 26 26 28 25 26 27 25 24 26
Denmark 26 27 27 30 32 24 29 32 23 28 31 19 26 30
Israel 29 28 28 26 24 30 27 24 30 27 24 30 29 23
Iceland 28 29 32 32 31 29 32 31 29 29 30 28 28 28
Austria 27 30 29 28 25 33 28 26 34 30 26 34 33 29
Poland Goldies 24 31 31 31 29 31 31 30 31 32 32 32 31 32
Switzerland 31 32 30 29 27 32 30 27 33 31 28 33 34 31
Belgium 33 33 33 33 34 28 33 34 28 33 33 20 30 33
Finland 32 34 34 34 33 34 34 33 32 34 34 31 32 34
Norway 36 35 35 35 35 35 35 35 35 35 35 36 35 35
Scotland 37 3 36 36 36 37 36 36 37 37 36 37 37 37
FYR Macedonia 35 37 37 37 37 36 37 37 36 36 37 35 36 36
Wales 38 38 38 38 38 38 38 38 38 38 38 38 38 38
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Table A.7: Distances of rankings of the European Team Chess Championship open tournament 2011

(a) Kemeny distance

3 3 a a S 5 & &
= = <o = = a Q q - q Q —~
_ = =% s = 2 £ = 3 = =g
< — — — —
s ¢ ¢ ¢ § & ¢ F & & F £ 7 g
< n ) n n
N o O € N <) O _ O <) N <) O =
Start 107 100 98 100 107 99 96 110 93 93 130 99 85
Official 107 37 45 73 0 38 69 25 34 60 71 52 60
GRS1(RMP) 100 37 16 44 37 13 42 62 31 43 108 61 53
GRSo(RMP) 98 45 16 28 45 7 26 70 27 29 114 67 45
LS(RMP) 100 73 44 28 73 35 8 94 47 21 130 81 41
GRS (RMB) 107 0 37 45 73 38 69 25 34 60 71 52 60
GRS (RMB) 99 38 13 7 35 38 33 63 20 32 107 60 40
LS(RMB) 96 69 42 26 8 69 33 88 41 13 122 73 33
GRS1(RBEM) 110 25 62 70 94 25 63 88 49 79 46 41 71
GRS (RBM) 93 34 31 27 47 34 20 41 49 30 87 40 26
LS(RBM) 93 60 43 29 21 60 32 13 79 30 111 60 20
GRS1(RBP) 130 71 108 114 130 71 107 122 46 87 111 57 97
GRS2(RBF) 99 52 61 67 81 52 60 73 41 40 60 57 44
LS(RBF) 85 60 53 45 41 60 40 33 71 26 20 97 44
(b) Weighted distance
3 3 a 2 S 5 - £
= = o = = o 9 9 - 9 5 —~
- 8 85 = =2 = = 3 = 2 g
< — — — —
s & £ ¢ 0§ ¢ ¢ F £ & =z & &z 3
n 0 9] 0
0 o O O N O O _ O O _ O O =
Start 10.79 9.68 9.60 9.39 10.79 9.54 9.15 11.30 9.45 8.66 12.16  10.05 8.10
Official 10.79 0.00 3.08 6.12 2.09 2.74 5.62 6.55 4.89 5.58
GRS1(RMP)  9.68 3.04 3.04 0.75 3.73 5.04 2.29 3.80 9.41 5.87 4.39
GRS>(RMP)  9.60 3.67 3.67 0.60 2.73 5.66 2.24 2.87 9.97 6.36 4.15
LS(RMP) 9.39 6.33 6.33 3.39 0.53 8.07 4.36 1.53 9.94 6.20 3.01
GRS1(RMB)  10.79 0.00 3.04 3.67 6.33 2.09 2.74 5.62 6.55 4.89 5.58
GRS3(RMEB)  9.54 3.08 0.75 0.60 3.39 5.09 1.65 3.27 9.42 5.80 3.69
LS(RMB) 9.15 6.12 3.73 2.73 0.53 7.74 4.04 1.00 9.48 5.71 2.49
GRS (REM)  11.30 2.09 5.04 5.66 8.07 2.09 5.09 7.74 4.48 3.96 6.58
GRS2(RBM) 945 2.74 2.29 2.24 4.36 2.74 1.65 4.04 8.01 4.23 2.98
LS(RBM) 8.66 5.62 3.80 2.87 1.53 5.62 3.27 1.00 8.79 4.79 1.49
GRS1(RBP)  12.16 6.55 9.41 9.97 9.94 6.55 9.42 9.48 4.48 8.01 8.79
GRS3(REPFP)  10.05 4.89 5.87 6.36 6.20 4.89 5.80 5.71 3.96 4.23 4.79
LS(RBP) 8.10 5.58 4.39 4.15 3.01 5.58 3.69 2.49 6.58 2.98 1.49




Table A.8: Positional changes in decomposition of the ranking LS(R™F), ETCC 2011

Team Off (0) 1 2 3 4 5 7 8 Cumulated LS (c0)
Germany 1 - - - R 2 g 2
Azerbaijan 2 — — - - 1 - - () 1
Hungary 3 Wl - - - - = = W 6
Armenia 4 N2 — - - - = - / 5
Russia 5 ™M - - - - = = ™ 3
Netherlands 6 N/ - N = = W 8
Bulgaria 7 ™M - - - - = - ™ 4
Poland 8 Vv (6) - A . 2 v (8) 16
Romania 9 - J N/ - N - - W 12
Spain 10 ™M - () - = = M 7
Ttaly 11 Y N 9
Serbia 12 V(1) - - W - - - ¥V (9) 21
Georgia 13 V9 ¥ voov b - v V(14 27
Israel 14 W — = = = 4 = g 15
Ukraine 15 ™M 1 () - = ¥ - T (4) 11
Czech Rep. 16 ™M W = = = = ™M 14
Slovenia 7 16 W - - - = - T (4) 13
Moldova 18 W - - - - = W 20
France v 1r*4 ™M - S O T (9) 10
Greece 20 M - — - = = = M 17
Croatia 21 ™M - - - - = = M 18
England 22 0 - - ™M - - - M 19
Switzerland 23 v 4 MM 1 - - = = - 23
Latvia 24 0 () - = = ™M 22
Montenegro 25 - N O v o(4) 29
Iceland 26 - W — - - = = W 28
Sweden 27 ™M -1 - ¥V - ™ 25
Denmark 28 — () () vy - - 71 ™M 26
Norway 29 \/ J - - - = = W 31
FYROM 30 NAN - — - = = = NANE 33
Finland 31 ) = - - - = - / 32
Austria 32 0 ™ - = = = ™M 30
Lithuania 33 M4 - ™M T 1T 1T - ™ (9) 24
Turkey 34 - - - - - = = - 34
Scotland 35 - - - - - = = - 35
Luxembourg 36 — — — = = = = — 36
Wales 37 - - - - - = = - 37
Cyprus 38 — — — - = = = - 38
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Figure A.1: Total forecasting power, ETCC 2011

(a) Match points, results matrix

RMB

4 5 6 7
Number of rounds
—+ Start o Off G2 ——S2 1.2

(b) Table points, results matrix

RMB

4 5 6 7
Number of rounds
= Start  —o-Off G2 ——S2 —+12
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Figure A.2: Forecasting power for the next round, ETCC 2013

(a) Match points, results matrix RMB

3 4 5 6 7
Number of rounds
—+ Start o Off G2 ——S2 1.2

(b) Table points, results matrix

RMB

3 4 5 6 7
Number of rounds
- Start - Off G2 —-S2 12
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Figure A.3: Sample fit, ETCC 2013

(a) Match points, results matrix

RMP

4 5 6 7
Number of rounds
= Start -o-0f G2 —-S2 12

(b) Table points, results matrix RM¥
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Figure A.4: Stability between rounds, ETCC 2013

(a) Kemeny distance, results matrix RMP
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