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1 Introduction

In his path breaking work Aumann (1964) gave an exact mathematical model
for pure competition by taking a continuum of traders. His result was gener-
alized in many ways. For instance, Hildenbrand (1974) extended Aumann’s
(1964) result to atomless σ-additive exchange economies. Weiss (1981) went
even further in considering finitely additive exchange economies. One main
point is that the finitely additive framework allows the set of traders to be
only countable.

Weiss (1981) and Armsrtrong and Richter (1984) provided several exam-
ples for just finitely additive economies. In this note we consider an example
with a close connection to finite exchange economies. Taking a finite exchange
economy with traders {1, . . . , n}, the average endowments and the average
allocations are determined by the arithmetic means of the individual endow-
ments (ωi)

n
i=1 and the individual allocations (xi)

n
i=1, respectively. Thus, if we
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identify the set of traders with the set of positive integers, it seems to be
natural to express the average endowments by limn→∞

1
n

∑n
i=1 ωi and the av-

erage allocations by limn→∞
1
n

∑n
i=1 xi. However, these limits do not exist for

arbitrary sequences. Brown and Robinson (1975) overcame this type of diffi-
culty by considering a non-standard exchange economy, while we remain in
the framework of a standard exchange economy and define the core following
Weiss (1981).1 By considering this example, we want to emphasize the impor-
tance of the finitely additive framework. For this example core equivalence
and the non-emptiness of the core follows from Weiss (1981).

2 Preliminaries

We denote the set of positive integers by N, and the set of real numbers
by R. For M ⊂ N, write 1M for the characteristic function of M ; that is,
the function which is 1 on M and 0 elsewhere. Fix an arbitrary set M ⊂
N. We say that the sequence f : N → R is M -summable if the sequence
1
n

∑n
i=1 1M (i) f (i) is convergent. For an M -summable f let us introduce the

notation

s (f,M) := lim
n→∞

1

n

n∑
i=1

1M (i) f (i) .

We call the value s (f,M) the M -sum of sequence f . N-summable sequences
are usually called Cesàro summable sequences. Hence, f is M -summable if
1Mf is Cesàro summable. Since not every bounded sequence is M -summable,
we will extend the notion of M -sum. For the extension we will employ the
Banach Limit. In the following let T be an arbitrary but fixed Banach Limit
on `∞. Let

sn(f,M) :=
1

n

n∑
i=1

1M(i)f(i), M ⊂ N.

Definition 1. For any set M ⊂ N and any sequence f : N → R for which
(sn(f,M))n∈N ∈ `∞ holds true we define the M -sum of sequence f by

s(f,M) := T ((s1(f,M), s2(f,M), . . . )).

Note that if f ∈ `∞, then s(f,M) is defined for any set M ⊂ N. It is also
easy to see that s(f, ·) is a finitely additive measure for any fixed f ∈ `∞.
We are looking for the finitely additive measure ν for which s(f,M) obtains

1In another paper, Tasnádi (2002), we worked with a different definition of the core in
which case the core equivalence theorems found in the literature could not be applied.
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as
∫
M
fdν. As it will turn out, ν will be also useful in defining the size of a

coalition.
Our aim is to allow any M subset of N as a possible coalition. Let D

consist of those sets M subsets of N for which limn→∞
1
n

∑n
i=1 1M (i) exists.

Let us define the asymptotic density, henceforth briefly density, of a set of
positive integers M ∈ D by

ν (M) := lim
n→∞

1

n

n∑
i=1

1M (i) . (1)

The density cannot be defined on every subset of N by expression (1). Ex-
amples of sets for which the limit in expression (1) does not exist can be
found for instance in Buck (1946). The density, defined so far on D, can be
extended to the class P(N), where P(N) denotes the power set of N (see for
instance Buck, 1946). We define the sequence of measures (νn)n∈N on P(N)
in the following way:

νn(M) :=
1

n

n∑
i=1

1M(i), M ⊂ N.

Definition 2. We define the density of a subset M of N by

ν(M) := T ((ν1(M), ν2(M), . . . )),

where T denotes the same Banach Limit employed in the extension of s.

The density ν is a finitely additive measure on (N,P(N)). We will show
in Proposition 1 that the integral of a sequence with respect to the density
plays a special role because it equals in case of a bounded sequence a very
natural ‘infinite average’ of the sequence.

Weiss (1981) described the theory of measurability and integration for
finite and nonnegative measures when the underlying algebra consists of all
subsets of the base set. A subset A of N is called a null set if ν (A) = 0. We
say that a property holds for almost all N if this property is only violated
on a null subset of N. A function h : N → R is said to be a null function
if ν ({n ∈ N : |h (n)| > α}) = 0 for each α > 0. The norm of a function
f : N→ R is defined by

‖f‖∗ := inf
α>0
{α + ν ({n ∈ N : |f (n)| > α})} .

A function h : N→ R is a null function if and only if ‖h‖∗ = 0. A sequence
(fn) of functions on N to R converges in density to the function f on N to R
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if and only if limn→∞ ‖fn − f‖∗ = 0. A function f : N → R is called simple
if there exists a function g : N→ R which has only a finite set of values and
a null function h so that f = g + h. A function f : N → R is measurable if
there exists a sequence (fn) of simple functions converging in density to f .
By Weiss (1981) Lemma 5 every function f : N→ R is measurable.

Now we can prove the relationship between M -sums and the density.

Proposition 1. If f ∈ `∞ and M ⊂ N, then s (f,M) =
∫
M
fdν.

Proof. First, let f be a bounded simple sequence. Hence, f = g + h, where
sequence g takes only values {x1, . . . , xl} and h is a bounded null sequence.
Let Ei := g−1 ({xi}), where i ∈ {1, . . . , l}. The following equalities show us
the identity of the integral and the N-sum for simple sequences∫

fdν =

∫
gdν =

l∑
i=1

xiν(Ei) =
l∑

i=1

xiT ((ν1(Ei), ν2(Ei), . . . )) =

=
l∑

i=1

xiT ((s1(1Ei
,N), s2(1Ei

,N), . . . )) =

= T

((
l∑

i=1

xis1(1Ei
,N),

l∑
i=1

xis2(1Ei
,N), . . .

))
=

= T ((s1(g,N), s2(g,N), . . . )) = s (g,N) = s (f,N) .

Now take any bounded sequence f . Then there exists a uniformly bounded
sequence (fn) of simple functions converging in density to f . Let K be a
uniform bound for sequences |fn| and |f |. We obtain by the dominated con-
vergence theorem that f is integrable and that limn→∞

∫
|f − fn| dν = 0.

Therefore, it follows that∫
fdν = lim

n→∞

∫
fndν = lim

n→∞
s (fn,N) . (2)

To any positive value ε there exists an index n0 such that

ν ({i ∈ N : |f (i)− fn (i)| > ε}) < ε

for all n ≥ n0. Let Aε,n := {i ∈ N : |f (i)− fn (i)| > ε}. Then we can write

s (|f − fn| ,N) = s (|f − fn| , Aε,n) + s
(
|f − fn| , Acε,n

)
≤

≤ 2Kν (Aε,n) + εν
(
Acε,n

)
< (2K + 1) ε (3)

for all n ≥ n0. By (3) it can be easily checked that s (f,N) =
limn→∞ s (fn,N). Thus, regarding (2), we have established that

∫
fdν =

s (f,N). Clearly, this identity also holds for sequences of type 1Mf .
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The following example demonstrates that in Proposition 1 the assumption
that the sequence must be bounded cannot be dropped.

Example 1. Let us consider the sequence f (n) := n if log2 n ∈ N ∪ {0}, and
f (n) := 0 elsewhere. It can be checked that s (f,N) ∈ [1, 2], while

∫
fdν = 0.

3 The countable economy

The commodity space is Rd, where d stands for the number of different com-
modities being traded in the market. The symbol θ denotes the origin in
Rd. Superscripts will be used to denote coordinates. For x, y ∈ Rd we write
x > y if xi > yi for all i = 1, . . . , d, and x ≥ y if xi ≥ yi for all i = 1, . . . , d.
The consumption set is Rd

+ :=
{
x ∈ Rd | x ≥ θ

}
. The set of price vectors

is P := Rd
+\{θ}. A preference relation �⊂ Rd

+ ×Rd
+ is a transitive and ir-

reflexive binary relation on Rd
+. The set of traders is N. We assume that the

traders’ preferences (�n)n∈N satisfy monotonicity, i.e., for all n ∈ N and all
x, y ∈ Rd

+ from x ≥ y and x 6= y it follows that x �n y. Each trader n ∈ N
possesses an initial endowment ω (n) ∈ Rd

+. An exchange economy is given
by the traders’ preferences and initial endowments.

We follow Weiss (1981) in defining the core of our exchange economy. A
nonempty set I ⊂ N is called a coalition. A null coalition is a coalition of
a null set of traders. An assignment is an integrable vector-valued sequence
f : N→ Rd

+ and an allocation f is an assignment such that
∫
fdν =

∫
ω dν.

We define for any nonnull coalition I the coalitional preference �I , which is
defined for any pair of assignments, in the following way:

f �I g ⇔ f (i)⊕ h1 (i) �i g (i)⊕ h2 (i) ,

for all null functions h1, h2, for almost all i ∈ I, where

(x⊕ y)k := max
{
xk + yk, 0

}
, k = 1, . . . , d.

The nonnull coalition I ⊂ N improves upon an assignment g with an assign-
ment f if f �I g and

∫
I
fdν =

∫
I
ω dν.

Definition 3. We define the core as the set of those allocations which cannot
be improved upon via any nonnull coalition.

We define the competitive equilibrium also in line with Weiss (1981). We
say that an assignment f is in the budget set of I if there exists a real-valued
null sequence h such that for almost all i ∈ I we have pf (i)− h (i) ≤ pω (i).
An assignment f is a maximal assignment in the budget set of I if f is in
the budget set of I and if for every assignment g it follows from g �I f that
g is not contained in the budget set of J for any nonnull subcoalition J ⊂ I.
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Definition 4. We say that an allocation f is a competitive equilibrium alloca-
tion if there exists a price vector p ∈ P such that f is a maximal assignment
in the budget set of I for any nonnull coalition I.

To apply Weiss’s (1981) core equivalence theorem and existence theo-
rem we only have to impose an additional assumption and check that ν is
nonatomic.

Assumption 1. Suppose that z ∈ Rd, z > θ, h : N→ Rd is a null function
and I ⊂ N is a nonnull coalition. Then g (i) �i f (i) for almost all i ∈ I
implies

ν (i ∈ I | g (i) + z �i f (i) + h (i)) = ν (i ∈ I | f (i) + h (i) ≥ θ) .

Maharam (1976) established that ν is full valued, i.e., to any set B ⊂ N
with positive density β and to any real value α ∈ [0, β], there exists a subset
A of B with density α. This clearly implies that ν is nonatomic, i.e., for any
subset B of N and for any η > 0 there exists a subset A of B such that
|ν (B) /2− ν (A)| < η. Hence, by applying Weiss (1981) Theorems 2 and 3
we obtain the following theorem.

Theorem 1. If Assumption 1 is satisfied and
∫
ω dν > 0, then the core

coincides with the nonempty set of competitive allocations.
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