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Abstract: Price-setting and quantity-setting oligopoly games lead to

extremely different outcomes in the market. One natural way to ad-

dress this problem is to formulate a model in which some firms use

price while the remaining firms use quantity as their decision variable.

We introduce a mixed oligopoly game of this type and determine its

equilibria. In addition, we consider an extension of this mixed oligopoly

game through which the choice of the decision variables can be endo-

genized. We prove the emergence of the Cournot game.
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1 Introduction

The literature on oligopoly theory distinguishes between two main classes of
models depending on whether price or quantity is regarded as the decision
variable. Since these two types of models lead to extremely different outcomes
in the market, one would like to consider an intermediate model in which some
firms quote prices while others ‘dump’ quantities. Such kinds of models have
been formulated in the homogeneous good framework by Allen (1992) and by
Qin and Stuart (1997), and in the heterogeneous good framework by Singh
and Vives (1984), Klemperer and Meyer (1986), Szidarovszky and Molnár
(1992) and Tanaka (2001a, 2001b). For economically relevant examples in
which the firms are able to choose their decision variables (price or quantity)
we refer to Klemperer and Meyer (1986, Section 2).
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We consider homogeneous good oligopoly markets. Allen (1992) intro-
duced a duopoly game in which the decision variable of one firm was its
quantity while that of the other firm was its price, and determined the Nash
equilibrium under various orders of moves. Qin and Stuart (1997) formulated
a mixed oligopoly game in which some firms set their quantities and the re-
maining firms set their prices. They showed that if the firms are allowed to
choose between price-setting and quantity-setting behavior, then both the
Bertrand and the Cournot outcome could emerge.

One can say that the above mentioned previous works crossed the Cournot
model with the Bertrand model. Our analysis is of a similar nature, but
we regard a Bertrand-Edgeworth price-setting game instead of the simpler
Bertrand price-setting game because in many cases we cannot force the price-
setting firms to satisfy the entire demand they face, especially, when they are
not able to do this due to capacity constraints or when they could earn more
profits by serving fewer consumers. The Bertrand-Edgeworth game does not
have an equilibrium in pure strategies for many cost functions and therefore,
in order to keep our analysis tractable we will assume that the firms have
constant and identical unit costs up to a uniform capacity constraint.

We prove that for small capacities our mixed model possesses a Nash
equilibrium in pure strategies, which in fact equals both the Bertrand and
the Cournot solutions (Proposition 1). In the more intriguing case of larger
capacities we demonstrate the non-existence of Nash equilibrium in pure
strategies if there are at least two price-setting firms (Corollary 1). For this
case we determine the ‘symmetric’ mixed-strategy equilibrium of the game.
Our mixed model turns out to be a ‘consistent’ extension of price-setting and
quantity-setting games, since the equilibrium price distribution decreases (in
the sense of first order stochastic dominance) if any firm switches from being
a quantity player to being a price player (Theorem 2). If we extend our mixed
oligopoly model by allowing the firms to select their decision variables, then
we find that in any case the Cournot game arises as the equilibrium of the
extended game. In this respect our result is always deterministic, in contrast
to Qin and Stuart’s (1997) Theorem 1, in which multiple equilibria may arise.

The remainder of the paper is organized as follows. In Section 2 we present
our mixed oligopoly model. In Sections 3 and 4 we assume that the firms’
decision variables are predetermined and we calculate in these two Sections
the pure-strategy and the ‘symmetric’ mixed-strategy equilibria, respectively.
In Section 5 we endogenize the choice of decision variables and Section 6
concludes our paper. The more technical proof of Proposition 3 can be found
in the Appendix.
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2 The model

Suppose that there are n firms in the market. We assume that the firms
have zero fixed costs and constant marginal costs up to some positive and
identical capacity constraint k. In particular, we require that the firms have
identical capacity constraints to keep our analysis tractable, since the cal-
culation of the non-degenerated mixed-strategy equilibrium of the Bertrand-
Edgeworth oligopoly game is a difficult task. Vives (1986) determined the
symmetric mixed-strategy equilibrium of the symmetric Bertrand-Edgeworth
game with capacity constraints. However, for the case of asymmetric capaci-
ties the problem has not yet been solved. A step in this direction was done by
Gangopadhyay (1993), who could determine at least the equilibrium profit
of the firm with the largest capacity and could also provide boundary values
for the equilibrium profits of the other firms.

We impose the commonly applied zero marginal cost assumption.1 The
assumptions imposed on the oligopolists’ cost functions and on the demand
curve are summarized below.

Assumption 1. There are n oligopolists in the market with zero unit costs
and identical capacity constraints k > 0.

Assumption 2. D : R+ → R+ is strictly decreasing on [0, b], identically
zero on [b,∞), continuous at b, twice continuously differentiable on (0, b)
and concave on [0, b].

Clearly, any price-setting firm will not set its price above b. We write a
for the horizontal intercept; i.e., D (0) = a. Moreover, let us denote by P the
inverse demand function. Thus, P (q) = D−1 (q) for 0 < q ≤ a, P (0) = b,
and P (q) = 0 for q > a.

We define pc to be the price which clears the firms’ aggregate capacity
from the market if such a price exists, and zero otherwise. That is, pc =
P (nk). We will refer to this price as the market-clearing price. We shall
denote by Dr (p) := (D (p)− (n− 1) k)+ the residual demand curve and
its inverse by P r (q). It can be easily verified that P r (q) = P (q + (n− 1)k).
Assuming efficient rationing, the function πr (p) := pDr (p) will equal a firm’s
profit whenever it sets the highest price in the pure price-setting game and
p ≥ pc. We ensure that every firm will be active in the market by the next
assumption.

Assumption 3. (n− 1) k < a.

1For a paper focusing on cost asymmetry in a Bertrand-Edgeworth duopoly game we
refer to Deneckere and Kovenock (1996).
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Let p := arg maxp∈[0,b] π
r (p) and π := πr (p). Clearly, pc and p are well

defined whenever Assumptions 1-3 are satisfied. Note that Assumption 3 also
ensures that p > 0 and π > 0.

We denote by N = {1, . . . , n} the set of firms, by I ⊂ N the set of price-
setting firms and by J = N \I the set of quantity-setting firms. Let pi ∈ [0, b]
be the price decision of firm i ∈ I and qj ∈ [0, k] be the quantity decision of
firm j ∈ J . Hence, the price decisions and the quantity decisions are contained
in vectors p ∈ [0, b]n and q ∈ [0, k]n, respectively. Note that the values for pj
and qi are without meaning for any quantity-setting firm j ∈ J and for any
price-setting firm i ∈ I, respectively. For fixed decisions (p,q) the aggregate
supply of the firms at price p is given by Sp,q (p) :=

∑
j∈J qj +

∑
i∈I,pi≤p k.

We have to specify a demand-allocating mechanism and the price of the
quantity-setting firms’ product as a function of the price and quantity actions
taken by the firms. We define the quantity-setting firms’ sales price, denoted
by p∗ (p,q), to be the lowest price at which the demand is less or equal to
the aggregate supply of the firms. Formally, p∗ (p,q) :=

inf {p ∈ [0, b] | D (p) ≤ Sp,q (p)} = min {p ∈ [0, b] | D (p) ≤ Sp,q (p)} .

We can write min instead of inf because D (p)− Sp,q (p) is a decreasing and
right-continuous function in p. Observe that p∗ (p,q) is even defined for the
purely price-setting game.

At price level p∗ (p,q) aggregate supply may exceed market demand. This
case is illustrated in Figure 1 in which there are two price-setting firms and
one quantity-setting firm. In the situation presented in Figure 1 the sales price
for the quantity-setting firm’s product equals p3. In case of price ties, we as-
sume for simplicity, that the demand is allocated first to the quantity-setting
firms and afterwards the remaining demand is shared by the price-setting
firms in proportion of their capacities. The first part of this assumption, i.e.
that the demand is allocated first to the quantity-setting firms, expresses our
intuition that price setters shall face quantity adjustment, while quantity
setters shall face price adjustment. The demand satisfied by firm j ∈ J is
given by

∆j (p,q) :=

{
qj if p∗ (p,q) > 0,

min
{
qj,

qj∑
l∈J ql

D(0)
}

if p∗ (p,q) = 0;

and therefore, its profit equals πj (p,q) = p∗ (p,q) qj. We define the demand
satisfied by a price-setting firm i ∈ I by

∆i (p,q) :=


0 if pi > p∗ (p,q) ,
1
v

(
D (pi)−

∑
j∈J qj − uk

)
if pi = p∗ (p,q) ,

k if pi < p∗ (p,q) ,
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Figure 1: Quantity-setting firms product price

where u denotes the number of price-setting firms who set price lower than
pi and v denotes the number of price-setting firms who set price pi. Thus,
firm i ∈ I makes πi (p,q) := pi∆i (p,q) profit. We shall denote by OI the
mixed oligopoly game we have just defined.

3 Equilibrium in pure strategies

Now, we turn to the investigation of the mixed oligopoly game OI . In this
Section we determine those conditions under which an equilibrium in pure
strategies exists. If such an equilibrium exists, then we show that it is unique.
In two cases the outcome of game OI is well-known: for I = ∅ and I = N .
In the first case our mixed model reduces to the Cournot game, while in the
second case to the Bertrand-Edgeworth game.

We will proceed step by step in order to obtain a better understanding of
the equilibrium behavior of the mixed oligopoly game. The following Lemma
states that in a pure-strategy equilibrium the price-setting firms must set the
same prices.

Lemma 1. Under Assumptions 1-3, if (p,q) is a pure-strategy equilibrium,
then pi = pj for any i, j ∈ I.

Proof. The statement is obviously true if |I| ≤ 1. Thus, we have only to
consider the case of |I| > 1. Let firm j be one of the firms setting the lowest

5



price; that is, pj ≤ pi for all i ∈ I. Suppose that pj < pi holds for a firm
i ∈ I. If ∆i (p,q) > 0, then firm j can increase its profit by setting its
price arbitrarily close to but below pi. If ∆i (p,q) = 0, then πi (p,q) = 0.
But firm i can make positive profit, for instance, by switching its price to
P
(
1
2

((n− 1)k + a)
)

so that it faces a demand of at least 1
2

(a− (n− 1)k)
because of Assumption 3. Thus, firm i would deviate, and therefore, pj < pi
cannot be the case.

Next, we prove that in a pure-strategy equilibrium every price-setting
firm’s price must be equal to the sales price of the quantity-setting firms.

Lemma 2. Let |J | > 0 and Assumptions 1-3 be satisfied. If (p,q) is a pure-
strategy equilibrium, then pi = p∗ (p,q) for any i ∈ I.

Proof. Clearly, the Lemma holds if |I| = 0. Therefore, in what follows we
can assume that |I| > 0. Suppose that pi 6= p∗ (p,q) for some i ∈ I. Recall
that any firm i ∈ I setting its price below p∗ (p,q) can sell its entire capacity.
Moreover, observe that p∗ (p,q) will not change if prices lower than p∗ (p,q)
change as long as they remain lower than p∗ (p,q). Thus, if pi < p∗ (p,q),
firm i can increase its profit by setting a price slightly below p∗ (p,q), since
it is still selling k but at a higher price. If pi > p∗ (p,q), then firm i does not
sell anything and makes zero profit. But firm i can achieve positive profit by
making a sufficiently large price reduction because of Assumption 3.

Furthermore, if there is at least one price-setting firm in the market, then
in a pure-strategy equilibrium the quantity-setting firms produce at their
capacity limits.

Lemma 3. If |J | > 0, |I| > 0 and Assumptions 1-3 are satisfied, then we
must have qj = k for all j ∈ J in any pure-strategy equilibrium.

Proof. From Lemma 2 we know that in a pure-strategy equilibrium pi =
p∗ (p,q) must hold for all i ∈ I. Moreover, every firm’s profit must be positive
because of Assumption 3, which implies ∆i (p,q) > 0. If qj < k, then firm
j ∈ J can increase its profit by an increase in its output, because this will not
lead to a decrease of p∗ (p,q), since the increase in the output of the quantity-
setting firm j will just result in a decrease of sales for the price-setting firms;
a contradiction.

Our next lemma establishes that in the presence of at least two price-
setting firms a pure-strategy equilibrium requires the price-setting firms to
sell at their capacity limits and that the prices all equal the market-clearing
price.
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Lemma 4. Suppose that |I| ≥ 2 and that Assumptions 1-3 are satisfied.
Then a pure-strategy equilibrium exists if and only if p ≤ pc. In addition, if
a pure-strategy equilibrium exists, then it is given by qj = k for all j ∈ J and
pi = pc for all i ∈ I.

Proof. First, we show that if a pure-strategy equilibrium exists, then it is
given by qj = k for all j ∈ J and pi = pc for all i ∈ I. Suppose that |J | = 0.2

From Lemma 1 we know that in a possible equilibrium every firm sets the
same price. But, if that price level exceeds pc, then their sales will be less than
their capacity level and therefore any of them can gain from undercutting
its opponents. Now, we consider case |J | > 0. We have already shown in
Lemma 3 that qj = k for all j ∈ J . Furthermore, by Lemma 2 we must have
pi = p∗ (p,q) for any i ∈ I. Hence, pc ≤ p∗ (p,q). But if pc < p∗ (p,q), then
any price-setting firm i will sell less than k. Therefore, by just unilaterally
undercutting the price p∗ (p,q), any price-setting firm can increase its sales
radically and thus increase its profit.

Second, we demonstrate the necessary and sufficient condition for the ex-
istence of a pure-strategy equilibrium. If p ≤ pc, then it can be easily verified
that qj = k for all j ∈ J and pi = pc for all i ∈ I is an equilibrium in pure
strategies. In particular, neither could a quantity-setting firm benefit from
producing less than k nor could a price-setting firm benefit from changing its
price. Moreover, if p > pc, then qj = k for all j ∈ J and pi = pc for all i ∈ I
cannot be an equilibrium in pure strategies, since a price-setting firm could
gain from switching to price p.

We shall denote by qm the unique revenue maximizing output on the
inverse residual demand curve P r; i.e., qm := arg maxq∈[0,a] qP

r (q). Of course,
qm = Dr (p). If k ≤ qm, then we will say that the firms have scarce capacity,
while otherwise we will say that the firms have sufficient capacity. Note that
a firm with scarce capacity will be eager to produce at its capacity limit. It
can be verified that condition k ≤ qm is equivalent to pc ≥ p.

In the following proposition we establish that if the firms have scarce
capacity, then there exists a unique pure-strategy equilibrium in any mixed
oligopoly game.

Proposition 1. Under Assumptions 1-3, if the firms have scarce capacity,
there exists a unique equilibrium in pure strategies in which the prices equal
the market-clearing price and all firms produce at their capacity limits.

Proof. It can be easily verified that pi = pc for all i ∈ I and qj = k for all
j ∈ J is indeed a pure-strategy equilibrium of OI for any I ⊂ N , because of

2This part is standard, since |J | = 0 is the pure price-setting case.
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k ≤ qm. In case of |I| = 0 uniqueness follows from Vives’s (1999) Theorm 2.8.
For I = {i} uniqueness can be guaranteed by Lemma 3 and by the definition
of p. Finally, if |I| ≥ 2, then Lemma 4 assures uniqueness.

We have to mention that this proposition and the next corollary is very
similar to some results obtained by Kreps and Scheinkman (1983), Deneckere
and Kovenock (1992) and Boccard and Wauthy (2000) for the purely price-
setting game.

Corollary 1. Under Assumptions 1-3, if |I| ≥ 2, then OI has an equilibrium
in pure strategies if and only if the firms have scarce capacity.

Let us denote by p the price for which pk = pDr (p). Suppose that the
firms have sufficient capacity (implying p < p), then any firm is indifferent
to satisfying residual demand at price level p or selling its entire capacity at
the lower price level p.

Next, we investigate the case of only one price-setting firm. Because of
Proposition 1 we can restrict ourselves to the case in which the firms have
sufficient capacity.

Proposition 2. Suppose that the firms have sufficient capacity and that there
is only one price-setting firm; i.e., I = {i} ⊂ N . Then under Assumptions
1-3 there exists a unique pure-strategy equilibrium, which is given by

∀j ∈ J = N \ {i} : qj = k and pi = p = arg max
p∈[0,b]

pDr (p) . (1)

Proof. First, we verify that the strategy profile given by equation (1) is an
equilibrium. Clearly, a quantity-setting firm cannot increase its output be-
yond its capacity level. A unilateral output decrease of at most k − qm will
not change the sales price for the quantity-setting firms’ product, only in-
crease the price-setting firm’s sales. If firm j reduces its output by more than
k− qm, then the sales price for the quantity-setting firms’ product will equal
to P r (qj + (n− 1)k). Thus, a unilateral output decrease by any firm j ∈ J
will inevitably lead to a decrease in its own profit level because qj < qm.
It is obvious that firm i will not deviate from price p. Hence, equation (1)
determines a pure-strategy equilibrium profile, which is even unique because
of Lemmas 2 and 3.

We have to emphasize that by Proposition 2 a mixed oligopoly game O{i}
with a price-setting firm having sufficient capacity yields an implementation
of Forcheimer’s dominant firm model of price leadership (see Deneckere and
Kovenock, 1992), because the price-setting firm sets its price by maximizing
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profit with respect to its residual demand curve and the sales price for the
remaining firms’ product equals that price.

We still have to consider the Cournot game; that is, the case in which
every firm behaves as a quantity setter. The existence of a pure-strategy
equilibrium in the Cournot game has been investigated extensively in the lit-
erature (see, for instance, Szidarovszky and Yakowitz, 1977; Novshek, 1985;
Amir, 1996). If every firm behaves as a quantity-setter, then under Assump-
tions 1-3 the existence of a unique equilibrium in pure strategies can be easily
verified by applying Vives’s (1999) Theorem 2.8. By Vives’s (1999) Remark
17 it follows even that this unique equilibrium has to be a symmetric one.

The next theorem summarizes our results concerning the pure-strategy
equilibrium of game OI .

Theorem 1. Under Assumptions 1-3 the following statements hold true con-
cerning the mixed oligopoly game OI .

1. If qm ≥ k, then there is a unique equilibrium in pure strategies in which
the prices equal the market-clearing price and all firms produce at their
capacity limits.

2. If qm < k and I = {i}, then the equilibrium in pure strategies results in
a model of dominant firm price leadership, with the price-setting firm
as leader.

3. If qm < k and I = ∅, then the Cournot solution is the unique equilib-
rium in pure strategies.

4. In any other case a pure-strategy equilibrium does not exist.

4 Equilibrium in mixed strategies

In this section we consider the case in which we have a non-existence of
equilibrium in pure strategies; that is, the case of sufficient capacities. To de-
termine the mixed-strategy equilibrium is a difficult task even for the purely
price-setting game. Vives (1986) determined the symmetric mixed-strategy
equilibrium for the symmetric Bertrand-Edgeworth game. Here we will also
restrict ourselves to ‘symmetric’ mixed-strategy equilibria, though we do not
have a symmetric game and therefore, we introduce the notion of a quasi-
symmetric equilibrium.

Definition 1. We say that a strategy profile (p,q) is a quasi-symmetric
equilibrium of the oligopoly game OI if (p,q) is an equilibrium of the game
OI , pi = pj for all i, j ∈ I and qi = qj for all i, j ∈ J .
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The notion of quasi-symmetric equilibrium can be defined for pure strate-
gies and for mixed strategies as well.

Our first Proposition for the case of sufficient capacities gives us the
unique quasi-symmetric equilibrium in mixed strategies.

Proposition 3. Suppose that Assumptions 1-3 are satisfied, the firms in OI

have sufficient capacities (qm < k) and there are at least two price-setting
firms (|I| ≥ 2). Then there exists a unique quasi-symmetric equilibrium in
mixed strategies in which each price-setting firm randomizes according to the
following atomless distribution function

F|I|(p) =


0, if p ∈ [0, p),(

k−π/p
nk−D(p)

) 1
|I|−1

, if p ∈ [p, p],

1, if p ∈ (p, b],

(2)

and each quantity-setting firm produces k with probability one. In addition,
the quantity-setting firms’ sales prices are distributed according to the distri-
bution function

G|I|(p) =


0, if p ∈ [0, p),(

k−π/p
nk−D(p)

) |I|
|I|−1

, if p ∈ [p, p],

1, if p ∈ (p, b].

(3)

The proof of Proposition 3 is provided in the Appendix.
Our intuition suggests that given a fixed number n of oligopolists the more

price-setting firms we have the lower should be the prices in the market. The
following theorem establishes that our extension of purely quantity-setting
games and purely price-setting games is consistent with our intuition.

Theorem 2. Suppose that Assumptions 1-3 are satisfied, the firms have suffi-
cient capacities (qm < k) and that the quasi-symmetric equilibrium is played.
Then in the sense of first-order stochastic dominance we have lower prices
in OI than in OI′ whenever |I| > |I ′|.

Proof. We can assume without loss of generality that I ′ = {1, . . . , i} and I =
{1, . . . , i, i + 1} because the firms are playing their quasi-symmetric mixed-
strategy equilibrium strategies. We separate our proof into three subcases.

First, suppose that I ′ = ∅ and I = {1}. In this case we have to compare
the equilibrium price of the Cournot game with the equilibrium price of the
price leadership game (Proposition 2). Both games possess a deterministic
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outcome. Taking Assumption 2 and qm < k into consideration the price
leadership price has to be lower than the Cournot price, since

D(p)− (n− 1)k < D(p)− (n− 1)qc,

where qc stands for the unique Cournot outcome of game OI′ .
3

Second, suppose that i = 1. Thus, we will compare the price leadership
price with the equilibrium price distributions of the game having two price-
setting firms. In the price leadership game the equilibrium price equals p
with probability one, while in the case of two price-setting firms the highest
price set by the two firms could be p. However, the two price-setting firms
set prices less than p with probability one.

Third, suppose that i ∈ {2, . . . , n−1}. We start with considering a price-
setting firm j ∈ {1, . . . , i}. Since

0 < i−1

√(
k − π/p
nk −D(p)

)
< i

√(
k − π/p
nk −D(p)

)
< 1

for any p ∈
(
p, p
)

firm j has to set lower prices with higher probabilities in
OI than in OI′ . Now we consider a quantity-setting firm j ∈ {i + 2, . . . , n}
(this case is vacuous if i = n− 1). Applying equation (3), we obtain(

k − π/p
nk −D(p)

) i
i−1

<

(
k − π/p
nk −D(p)

) i+1
i

for any p ∈
(
p, p
)

because of 1 < i+1
i
< i

i−1 . Finally, we have to consider firm
i + 1, which is a quantity setter in OI′ and a price setter in OI . Comparing
equation (3) for i price-setting firms with equation (2) for i+ 1 price-setting
firms we get (

k − π/p
nk −D(p)

) i
i−1

<

(
k − π/p
nk −D(p)

) 1
i

for any p ∈
(
p, p
)
.

5 Endogenous choice of roles

In the previous sections we investigated the equilibrium behavior of a mixed
oligopoly game in which the strategic variables of the firms were predeter-
mined and made some comparisons. Now, we turn to the question what

3It can be verified that qm < k implies qc < k.
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happens if the firms are able to select whether they behave in a Cournot-like
manner or in a Bertrand-Edgeworth-like manner. We tackle this topic in the
following way: Consider an extension of game OI in which, first, the firms
simultaneously select their decision variables and, second, they determine
simultaneously the magnitude of their decision variables.

We shall denote by C and BE whether a firm uses quantity or price as
its decision variable. Let V = {C,BE} . Then the decisions of firm i ∈ N
is denoted by s = (v, x) ∈ V × R+, where v describes the selected decision
variable and x denotes the selected price or quantity.

Theorem 3. Let Assumptions 1-3 be fulfilled and suppose that in case of
sufficient capacities (qm < k) the quasi-symmetric equilibrium is played. Then
the above game has the following subgame-perfect Nash equilibria.

1. If qm ≥ k, every oligopoly game OI could arise in equilibrium. Particu-
larly, each firm is indifferent to whether being a price setter with actions
(BE, pc) or being a quantity setter with actions (C, k) regardless of the
other firms’ actions.

2. If qm < k, then only the Cournot game could emerge, that is, the equi-
librium actions of firm i are (C, qc) for all i ∈ N , where qc denotes the
unique Cournot output.

Proof. Point 1 of Theorem 1 implies point 1. Thus, we have only to establish
point 2. We show that choosing quantity as the decision variable strictly
dominates choosing price in stage one. Observe that the price-setting firms
achieve π = pk profits in any oligopoly game OI .

First, consider the case in which there are at least two price-setting firms.
Now if a price-setting firm unilaterally switches to become a quantity setter,
then it can sell with probability one its entire capacity at higher prices than
p. Hence, it clearly benefits from choosing C in stage one instead of choosing
BE.

Second, consider the case in which we have just one price-setting firm.
Then the price leader’s profit equals π = πr (p) = pk, while if it switches to
being a quantity setter, then it will face a more favorable demand D(p) −
(n − 1)qc, where qc stands for the unique Cournot outcome.4 Hence, it can
gain from selecting C instead of BE.

4See also the second paragraph of the proof of Theorem 2.
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6 Concluding remarks

Considering the symmetric Bertrand-Edgeworth game, like in Vives (1986),
scarce capacity is usually referred to as small capacity, while sufficient ca-
pacity as intermediate capacity. There is also a third case of large capacities,
which we omitted in our analysis by imposing Assumption 3. For the case of
(n − 1)k ≥ a it can be verified that for all pure-strategy equilibria we must
have p∗ (p,q) = 0 if there is at least one price-setting firm in the market. A
profile (p,q) is an equilibrium if the demand at price 0 can even be satisfied
when one firm with positive supply at price 0 leaves the market. It can be
also checked that the ‘traditional’ Cournot outcome is another solution of the
pure quantity-setting game besides the above mentioned type of equilibria.

It is worth mentioning that in case of k ≥ a we obtain the same payoff
functions as Qin and Stuart (1997). However, in their paper a firm simulta-
neously chooses its decision variable and its magnitude, while in our paper
this choice happens sequentially.

A possible extension would be to allow for asymmetric capacities. This
extension would not alter the validity of Lemmas 1-4, and Proposition 1.
However, firms with too small capacities cannot become a price leader, since
in a profile specified according to Proposition 2 the firm with the largest ca-
pacity might have the incentive either to increase its price or to decrease its
quantity. This observation also imposes a slight restriction on the extension
of Theorem 1. In what follows assume that the firms’ capacity constraints
ki are ordered decreasingly. Consider profiles in which all quantity-setting
firms produce kj with probability one and the price-setting firms’ mixed
strategies are determined by a mixed-strategy equilibrium of a Bertrand-
Edgeworth game with demand curve D(p) −

∑
j∈J kj. These profiles con-

stitute for any |I| ≥ 2 and I ⊂ {1, . . . , n} a mixed-strategy equilibrium of
game OI if the capacities are not ‘too asymmetric’. In particular, the capac-
ities are too asymmetric if the largest-capacity firm makes a profit less than
maxp1∈[0,b] p1 (D(p1)−

∑n
m=2 km)

+
in the above specified equilibrium of the

game O{n−1,n}. Thus, one might expect that Theorems 2 and 3 can be gener-
alized for the case of not too asymmetric capacities. However, it appears to
be difficult to give an explicit condition for capacities being too asymmetric.
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Appendix

Proof of Proposition 3. We can assume without loss of generality that I =
{1, . . . , i}. Let j := n−i. Our proof will be by construction. Pick an arbitrary
quasi-symmetric equilibrium with strategies F and G played by the price-
setting and quantity-setting firms, respectively. Let [p̃, p̂] be the support of
F and [q̃, q̂] be the support of G, that is, p̃ = sup {p ∈ [0, b] | F (p) = 0},
p̂ = inf {p ∈ [0, b] | F (p) = 1}, q̃ = sup {q ∈ [0, a] | G(q) = 0} and q̂ =
inf {q ∈ [0, a] | G(q) = 1}.5 Observe that p̃ ≥ p.

Step 1: We show that F is atomless on (p̃, p̂] and if F has an atom at p̃,
then D (p̃) = ik + jq̂.

Suppose that F has an atom at price p ∈ [p̃, p̂] and let α denote the mass
at price p. Then all price-setting firms set price p with probability αi > 0.
We separate our argument into three cases.

(i) If ik + jq̂ > D(p), then the price-setting firms cannot sell their entire
capacity with probability one when they all set price p. Hence, there exists a
sufficiently small ε > 0 so that a price-setting firm can increase its profit by
unilaterally shifting the mass α from price p to price p− ε; a contradiction.
(ii) If ik + jq̂ < D(p), then a price-setting firm can increase its profit by
setting a price slightly above p with probability one; a contradiction. (iii) If
ik + jq̂ = D(p), then we must have p = p̃.

We conclude that F cannot have an atom at p in cases (i) and (ii). More-
over, F can only have an atom in case (iii).

Step 2: We show that the quantity-setting firms play pure strategies in
a quasi-symmetric equilibrium, that is, q̃ = q̂.

We shall denote by u(p1, . . . , pi, Q
−, q) the sales price of the quantity-

setting firms when the price-setting firms set prices p1, . . . , pi, a quantity-
setting firm produces q ∈ [0, k] and all other quantity-setting firms together
produce Q− ∈ [0, (j− 1)k]. Note that u is continuous and decreasing in q for
any given p1, . . . , pi and Q−. In addition, u is twice continuously differentiable
with the exception of at most two points in q ∈ [0, k]. Moreover, if ∂

∂q
u does

not exist at q′ ≤ q′′ ∈ [0, k], then ∂
∂q
u is concave on [0, q′), (q′, q′′) and

(q′′, k]. Let G− = G ∗ · · · ∗G denote the distribution function of Q− and let
h(q) :=

∫
u(p1, . . . , pi, Q

−, q)dF . . . dFdG− denote the profit of a quantity-
setting firm producing q if the other firms are playing their quasi-symmetric
equilibrium strategies F and G.

5We follow the convention that the distribution functions are left continuous.
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For any given p1, . . . , pi and Q− we can construct a sequence of decreasing
twice continuously differentiable functions (um)∞m=1 converging uniformly to
u from below such that u(q) − um(q) < 1/m for all q ∈ [0, k] and that the
graph of u′m is identical to the graph of u′ with the exception of a union of
at most two disjoint squares of shapes (q′ − δ′m, q′ + δ′m) × (pi′ − ε′m, pi′) or
(q′, q′+ δ′m)× (pi′ − ε′m, pi′), where the graph of u has a kink at point (q′, pi′)
and δ′m, ε

′
m < 1/m. The possible cases are illustrated in Figure 2.
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Figure 2: The three types of kinks in [0, k].

Now we can define a sequence (hm)∞m=1 of perturbed payoff functions by
hm(q) := q

∫
um(p1, . . . , pi, Q

−, q)dF . . . dFdG− for all q ∈ [0, k]. It follows
from standard results that hm converges uniformly from below to h and that
h is continuous.

We show that hm has a unique maximum point in [q̃, q̂] for sufficiently
large m and several other useful properties of h′m and h′′m. The first derivative
of hm equals

h′m(q) =

∫
A

um(p, Q−, q)dFdG− + q

∫
A

∂

∂q
um(p, Q−, q)dFdG−, (4)

where A := [p̃, p̂]i× [(j − 1)q̃, (j − 1)q̂], p = (p1, . . . , pi) and F = F ⊗· · ·⊗F .
It can be verified that the first part of the right-hand side of (4) is greater or
equal than p. Therefore, hm strictly increases at q if

−
∫
A

∂

∂q
um(p, Q−, q)dFdG− <

p

2k
. (5)

If (5) is not satisfied, we will consider the second derivative of hm

h′′m(q) = 2

∫
A

∂

∂q
um(p, Q−, q)dFdG− + q

∫
A

∂2

∂q2
um(p, Q−, q)dFdG−. (6)

The first part of the right-hand side of (6) is smaller than or equal to −p/k
if (5) is not satisfied. For any given (p, Q−) ∈ A the integrand of the second

15



part of the right-hand side of (6) can only be positive in at most two intervals,
which are each contained in (q′−1/m, q′+1/m) or (q′, q′+1/m), where q′ is a
kink in [q̃, q̂]. Since this disturbing intervals are getting smaller as m increases,
it can verified that the probability that the sales price of the quantity-setting
firms lies by at most 1/m below a ‘kink price’, tends to zero by Step 1. Thus,
there exists an m0 such that

q

∫
A

∂2

∂q2
um(p, Q−, q)dFdG− <

p

2k

for all m > m0; and therefore,

h′′m(q) < −
p

2k
(7)

must hold for a sufficiently large m. Observe that the bound in (7) is not a
function of q.

To summarize, we have learned by investigating the first and second
derivatives of hm that there exists an m0 such that for all m ≥ m0 we have
that hm strictly increases by more than p/2 or hm will be strictly concave
with a bound on concavity (7). This also implies for sufficiently large m that
at a stationary point of hm in [q̃, q̂] we must have a local maximum. Hence,
the set of maximum points of h cannot be disconnected since hm converges
uniformly from below to h. In addition, the maximum point qm of hm in [q̃, q̂]
has to be unique, since otherwise (7) would be violated.

Let [c, d] ⊆ [q̃, q̂] be the set of maximum points of h in [q̃, q̂]. Observe that
the sequence qm has not only a cluster point but also a limit point because
hm approaches h monotonically. We shall denote by q∗ the limit point of the
sequence qm. Clearly, q∗ ∈ [c, d].

Suppose that q∗ < d. Then qm < d for sufficiently large m. Since hm is
strictly decreasing on (qm, d), (5) is violated in (qm, d). Therefore, we must
have

hm(q) ≤ hm(qm)−
p

4k
(q − qm)2

by (7), which implies that limm→∞ hm(d) < h(d); a contradiction. Thus,
q∗ < d cannot be the case.

Assume that q∗ = d. Then by an interplay of the conditions restricting h′

and h′′ we can derive that

hm(q) ≤ hm(qm)−min
{ p

4k
(qm − q)2 ,

p

2
(qm − q)

}
for all q ∈ [c, qm]. This would imply limm→∞ hm(c) < h(c) if c < d, and
therefore, it follows that c = d, which means that the quantity-setting firms
have to play pure strategies in a quasi-symmetric equilibrium.
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Step 3: We establish that F cannot have an atom at price p̃. Suppose that
F has an atom at price p̃ and let us denote by q the pure strategies played
by the quantity-setting firms. Then we must have D (p̃) = ik + jq by Steps
1 and 2, which in turn implies that the sales price of the quantity-setting
firms’ product equals the highest price set by a price-setting firm. Thus, if
q < k, a quantity-setting firm could benefit from increasing its quantity.
Hence, we must have q = k. But then a price-setting firm could gain from
setting a slightly lower price than p̃ with probability one instead of playing
F ; a contradiction.

Step 4: We determine the quasi-symmetric equilibrium strategy F of the
price-setting firms given that every quantity-setting firm plays the same pure
strategy q ∈ [0, k] in a quasi-symmetric equilibrium.

From Steps 1 and 3 we know that in any quasi-symmetric equilib-
rium the price-setting firms’ strategies are atomless. Thus, at price p̂
any price-setting firm can sell an amount of (D (p̂)− (i− 1)k − jq)+ with
probability one. Hence, in an equilibrium we must have p̂ = pq :=

arg maxp∈[0,b] p (D (p)− (i− 1)k − jq)+ and we write πq for the price-setting
firms’ equilibrium profits. We shall denote by p

q
the price for which p

q
k = πq.

The expected profits at price p̃ equal p̃k = πq, and therefore, p̃ = p
q

follows.

Thus, for all p ∈ [p
q
, pq] we must have

[F (p)]i−1 p (D(p)− (i− 1)k − jq) +
(

1− [F (p)]i−1
)
pk = πq,

from which we obtain through simple rearrangements

F (p) =


0 if p ∈ [0, p

q
),

i−1

√
k−πq

p

ik+jq−D(p)
if p ∈ [p

q
, pq],

1 if p ∈ (pq, b].

(8)

Step 5: Given the behavior of the price-setting firms derived in Step
4 we cannot have a quasi-symmetric equilibrium with q < k, since then
for all realizations of prices p1, . . . , pi a unilateral increase of a quantity-
setting firm’s production would not decrease the quantity-setting firms’ sales
price. Hence, we must have q = k in a quasi-symmetric equilibrium. Now
by replacing q with k in equation (8) we obtain equation (2). Thus, if a
quasi-symmetric equilibrium exists, then it is given by Proposition 3.

Step 6: We still have to check whether it is optimal for one quantity-
setting firm to produce k whenever the price-setting firms are all playing their
mixed strategies F , given by equation (2), and all other quantity-setting firms
produce k. Assume that p equals the quantity-setting firms’ sales prices in
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a realization of the quasi-symmetric equilibrium stated in the Proposition.
Clearly, p ∈

[
p, p
]
. Changing firm j’s quantity from k to qj ∈ [Dr (p) , k),

does not change p, and therefore, reduces the profit of firm j ∈ J . Moreover,
for any quantity qj ∈ [0, Dr (p)) we have qjp < Dr (p) p ≤ Dr (p) p = kp ≤ kp
and thus, a quantity-setting firm cannot gain from producing less than k.

Step 7: Finally, the quantity-setting firms’ sales prices have distribution
function G, since the quantity-setting firms’ sales prices equal the highest
price set by the price-setting firms. Thus, G(p) = [F (p)]i.
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