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Abstract

The existence of viable solutions is proven for nonautonomous upper
semicontinuous differential inclusions whose right-hand side is contained
in the Clarke subdifferential of a locally Lipschitz continuous function.
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1 Introduction

In [3], Bressan, Cellina and Colombo (see also Ancona and Colombo [1] for
perturbed inclusions) proved the existence of solutions to upper semicontinuous
differential inclusions

'(t) € F(z(t), 2(0) =0 (1)

without convexity assumptions on the right-hand side. They replaced convexity
with cyclical monotonocity, i.e. they assumed the existence of a proper convex
potential function V with F(x) C 0V (z) at every point. This condition assures
the L?-norm convergence of the derivatives of approximate solutions thus, no
convexity is needed to guarantee that the limit is in fact a solution.

Rossi [7] extended this result to problems with phase constraints (viable
solutions), and Staicu [9] considered added perturbations on the right-hand
side. Ultimately, both papers followed the method of [3].

The convexity assumption on the potential function V' was relaxed by Kannai
and Tallos [6], where lower regular functions were examined. That means a
locally Lipschitz continuous function whose upper Dini directional derivatives
coincide with the Clarke directional derivatives. Convex analysis subdifferentials
were replaced by Clarke subdifferentials.
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Viability problems for nonautonomous inclusions without convexity were
discussed by Kénnai and Tallos [5] under continuity assumption on the right-
hand side.

In the present paper we prove the existence of viable solutions to nonau-
tonomous inclusions in the presence of phase constraint. The right-hand side
of the inclusion is assumed to be measurable in ¢ and upper semicontinuous
with respect to x with nonconvex values. A counterexample shows that lower
regularity of the potential function cannot be omitted.

2 Lower regular functions

Let X be a real Hilbert space and consider a locally Lipschitz continuous real
valued function V' defined on X. For every direction v € X the upper Dini
derivative of V' at x € X in the direction v is given by

D1V (z;v) = limsup Viztto) - V(z) ,
t—0+ t

and its generalized (Clarke) directional derivative at z in the direction v is
defined by
t —
Ve(z;v) = limsup Viy+t) V(y)

Yz, 0+ t

The directional derivative of V at z in the direction v (if it exists) will be denoted
by DV (x;v).

Definition 1 The locally Lipschitz continuous function V' is said to be lower
reqular at x if for every direction v in X we have DTV (z;v) = V°(z;v). We
say that V is lower regular if it is lower regular at every point.

Example 1 Let us note here that lower regular functions are not necessarily
regular in the sense of Clarke [4]. Take for instance the function f(z) = log(1+4x)
on the real positive half line. Now think of a piecewise linear function V with
alternating slopes +1 and —1, whose graph lies between f and —f. Whenever V'
reaches the graph of f or —f, it bounces back. Since for every z > 0, |f/(z)| < 1,
it is obvious that V zigzags infinitely many times in every neighborhood of the
origin. Finally, eliminate all corners of V' lying on the graph of f by making
the derivative turn from 1 into —1 smoothly. Keep the corners on the graph
of —f. Clearly, such a V is Lipschitz continuous and it can easily be seen that
D*V(0,1) = V°(0,1) = 1 and hence, V is lower regular at the origin. However,
DV (0,1) does not exist and therefore, V' cannot be regular.

The intermediate (or adjacent) cone to the closed subset K at x € K is

Ix(z) = {ve X : Dt dg(z;v) =0} ,
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where di denotes the distance function, moreover
Ck(z) ={ve X :dy(z;v) =0}

is the Clarke tangent cone to K at z. The following characterization of lower
regular functions can be verified by a straightforward adaptation of the proof
of Theorem 2.4.9 in [4].

Theorem 1 The following two statements are valid for every x in X.
(CL) Iein(xa f(l’)) = epl D+V(IL’, )
(b) V is lower regular at x if and only if Iepiv (x, f(z)) = Cepiv (2, f(x)).

The Bouligand tangent cone to K at x € K is defined by
|
Ti(z)={veX: htgégf ;d;{(m +tv) =0} .

Obviously, Ck (z) C Ix(z) C Tk(x), while equalities hold if K is convex. For
further characterizations we refer to Aubin and Frankowska [2], pp. 239.

Consider a lower regular function V' and let = be a point in X. Suppose
A > 0 is a Lipschitz constant for V' in a neighborhood of . Let B stand for the
closed unit ball in X. By 0V (z) we denote the Clarke subdifferential of V" at x.

Lemma 1 For every 0 <e < X and v € OV (x) + B the inequality
lvl|? < DYV (z;v) + 22X

holds true.

Proof. Take u € 0V (x) with |ju — v|| < e. Since for each w € X we have
(u,w) < DYV (z;w), by setting w = v it follows

DYV(z;v) > (u,v) > ||v||2 + (u —v,v)
> vl]* —ello] = [lo]|* —e(e 4+ A) > [Jv]|* — 2eA

that is the desired inequality. [J

Lemma 2 Suppose the function f(t) = V(x + tv) is differentiable at t = 0 for
some x € X and v € OV (z). Then f'(0) = ||v||?.

Proof. Lower regularity of V' at x implies that
(v,u) < DTV (z;u)

for each v in X. Applying this inequality with « = v and v = —v the lemma
ensues. [
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Lemma 3 Ifz:[0,T] — X is absolutely continuous on the interval [0, T| with
z'(t) € OV (z(t)) a-e., then

(Voa)(t) = [/ ()]
for a.e. t €10,T).

Proof. Let S be a set of measure zero such that both  and V o x are
differentiable on [0, T'1\ S moreover 2/(t) € OV (x(t)) at every t € [0, T]\S. Thus,
if t € [0,T]\ S is given, there is a 6 > 0 such that z(¢t+h) — z(t) — ha'(t) = r(h)
for every |h| < &, where limp ¢ ||7(h)||/h = 0. Since a locally Lipschitz function
on a compact set is globally Lipschitz continuous, we can assume that

[V (@(t+h) = V(a(t) + ha'(1)] < Allr ()|

whenever |h| < §. Consequently, the function h — V(x(t) + ha'(t)) is differen-
tiable at h = 0, and its derivative is the same as the derivative of h — V (z(t+h))
at h = 0. Making use of Lemma 2, we obtain

_ / 2
lim ; = 2’0

at each point ¢t € [0,T]\ S. O

3 The main result

Let K be a convex and locally compact subset of X and consider a set valued
map F defined on [0,7] x K that is measurable in ¢ and upper semicontinuous
with respect to x, with nonempty closed images in X. Let us suppose that
there exists a lower regular potential function V' on X such that the tangential

condition
Tr(z) N F(t,z)NoV(x) # D (2)

holds true for every « € K, and a.e. t € [0, T], where Tk (x) denotes the tangent
cone to K at z.

Let the point zg be given in K and consider the Cauchy problem

2'(t) € F(tz(t) a. e (3)

with the phase constraint
wt)e K, t>0. (4)

Theorem 2 Assume that the tangential condition (2) is valid. Then under the
above conditions there exists a T > 0 such that the problem (3), (4) admits a
solution on [0,T).
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Choose ¢ > 0 such that Ky = K N (z + 2¢B) is compact and V is Lipschitz
continuous on xg + 29B with Lipschitz constant A > 0. Then 0V (x) C AB for
every x € Ko. Set T = o/A and K; = K N (z¢ + ¢B). Then no solution x
starting from xy with

2'(t) € F(t,z(t)) NV (z(t)) a.e. (5)

can leave the compact set K7 on the interval [0, T]. Therefore, without loss of
generality, we may assume that K is compact. Below we construct a solution
to the problem (3), (4) on [0,7] that also solves (5).

We denote by St the solution set to the problem (3), (4) on the interval
[0, 7). St will be regarded as a subset of the Banach space W12(0,T, X) of
absolutely continuous functions equipped with the norm

T
= t "(#)|? dt
(||| tg%&@;] @) + (/0 2" @)l )

Theorem 3 Under the additional assumption

1
2

F(t,z) CoV(x) for a.e.t and each x € K

there exists a T > 0 such that St is a nonempty compact subset in W12(0,T, X).

4 Regularizing the set valued vector field

Consider the viability problem given in (2), (3) and (4). By regularizing the set
valued map F on the right-hand side of the Cauchy problem (3) we will reduce
the nonautonomous problem to the autonomous case.

Let € > 0 be given. Then we can find a countable collection of disjoint open
subintervals (a;,b;) C [0,T], j = 1,2, ... such that their total length is less then
€ and a set valued map F; defined on

D= [O,T] \ (aj,b]—) x K

(@:

Jj=1

that is jointly upper semicontinuous and F¢(¢,x) C F(t,x) for each (¢t,z) € D.
Moreover, if u and v are measurable functions on [0, 7] such that

u(t) € F(t,v(8)) ae. on [0,T]
then for a.e. t € ([07T] \ Uj2 (ay, bj)> we have

u(t) € F.(t,v(t))
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(we refer to Rzezuchowski [6] for this Scorza-Dragoni type theorem). It is obvi-
ous that all trajectories to F are also trajectories to F.

Now we extend F; to the whole [0, T x K with retaining upper semicontinuity
and the tangential condition (2). Let us define

Rt 2) if ¢ [0,7]\ U2, (a,b)
F(t JE)Z Fs(ajw) if (lj<t<(aj+bj)/2
e Fg(bj,l‘) if (aj+bj)/2<t<bj
Fe(aj,x)UFg(bj,x) if t:(aj+bj)/2

It is easy to see that F still fulfills the tangential condition (2).
Lemma 4 F. is upper semicontinuous on [0,T] x K.

Proof. Routine calculations show that the graph of F. is closed. On the
other hand, the images of F. are contained in a neighborhood of the upper
semicontinuous map F. UJ

5 Proof of the theorems

Proof of Theorem 2. By extending the state space from X to R x X we can
reduce our problem to the autonomous case.

For every (t,z) € [0,7] x K introduce
Vit,z) =t+ V().
It can easily be checked that
DTV ((t,z),(s,v) = s+ DV (z,u) = s+ V°(z,u) = V°(z,u).
Therefore, V is lower regular and obviously

(1,v) € dV(t,x) if and only if v € IV (x) (6)
for all (¢,x) in [0,T] x K.
On the other hand, straightforward arguments show that
(1,v) € Tho, )k (t,x) if and only if v € Tx(x). (7)
Combining (6) and (7), the tangential condition (2) implies that
Tio,r)xx (t, ) N Fe(t,2) N OV (t,x) # 0 (8)

at every point in [0,7] x K. By exploiting Theorem 2. in [6], we infer the
existence of a solution x. to

l‘{c.(t) € F.(t,x(t)) a. e (9)
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satisfying the phase constraint
z(t)e K, t>0 (10)

on [0,7] for each € > 0. Assume that X is a Lipschitz constant for V' on the
compact set K. Since by the tangential condition (8) for every solution z. to
(9) we have z.(t) € OV (z.(t)), we deduce

el < A+1 (11)

almost everywhere on [0, 7] for each £ > 0.

Set ¢ = 1/n and consider a sequence of solutions z,. Making use of (10),
graph x,, is contained in K and z,, is also a solution to the inclusion (3) except
for a set E,, of measure not exceeding 1/n for each n. Therefore, in view of (11),
we can select a subsequence, again denoted by x,, which uniformly converges
to an absolutely continuous function x on [0,T], moreover z,, — z’ weakly in
L?(0,T, X).

By passing to the limit, standard arguments show that z'(t) € oV (z(t)) a.
e. Thus, taking advantage of Lemma 3, we obtain

T T
/ Wﬂﬂwdﬁ=/(VO%J@ﬁ#=V@ATD—V@w~
0 0

Hence, by the continuity of V', we get

T T
lim [, ()[* dt = V (2(T)) = V(o) = / [l (8)[|* dt ,
n—oo 0

or in other words

lim |27, [| 2> = [|2"]| > -
n—oo

This latter relation combined with the weak convergence implies the L?-norm
convergence of the derivative sequence. Consequently, we aasume that ], con-
verges to =’ almost everywhere. This tells us that z is a solution to the problem
(2), (3), (4) on [0,T]. O

Proof of Theorem 3. Consider a sequence x,, in S7. Since the derivatives
are uniformly bounded, without loss of generality we may assume that =/, — 2’
weakly in L?(0,7, X) and z,, — x uniformly on [0, T]. By Lemma 3 we have

T
AIM@Wﬁ=W%UW—WmX

Since the right hand side of the above equality converges to V (z(T)) — V (zo),
and by standard arguments 2’ (t) € OV (z(t)), a repeated application of Lemma

3 gives us
T

T
lim nmwwwz/nﬂw%a
0 0

n—oo
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and hence, z!, — 2’ with respect to the L?(0, T, X)-norm. From this point we
can follow the patterns of the proof to Theorem 2 to get that x lies in Sp. This
proves that St is a compact subset of W12(0,T, X). [J

Example 2 It is worth mentioning here that our Theorem 2 generalizes the
result of [3]. Indeed, take the lower regular function V' on the real line described
in Example 1. Consider the differential inclusion problem

2'(t) € F(z(t)), =x(0)=0, (12)
where the set valued map F' is given by

{V'(x)}, 1if the derivative exists
Flz)={ [-1,1], ifa=0
{-1,1 otherwise.

It is easy to verify that F' is upper semicontinuous, admits nonconvex values in
every neighborhood of the origin and F(x) C 0V (x) at every point. However,
it is obvious that there is no proper convex continuous function W with F(z) C
OW (z) since F' is not monotone.

Finally, let us note that the lower regularity of the potential function V'
cannot be omitted. Consider for instance the Cauchy problem (12) with

{1}, if <0
Fz)y=< {-1,1}, ifx=0
{-1}, if x>0

that is the common example of an upper semicontinuous map with no solutions.
Although we have F(z) C 0V (x) at every point for V(x) = —|z|, the potential
function V is clearly not lower regular at the origin.
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