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Abstract

The existence of viable solutions is proven for nonautonomous upper
semicontinuous differential inclusions whose right-hand side is contained
in the Clarke subdifferential of a locally Lipschitz continuous function.
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1 Introduction

In [3], Bressan, Cellina and Colombo (see also Ancona and Colombo [1] for
perturbed inclusions) proved the existence of solutions to upper semicontinuous
differential inclusions

x′(t) ∈ F (x(t)), x(0) = x0 (1)

without convexity assumptions on the right-hand side. They replaced convexity
with cyclical monotonocity, i.e. they assumed the existence of a proper convex
potential function V with F (x) ⊂ ∂V (x) at every point. This condition assures
the L2-norm convergence of the derivatives of approximate solutions thus, no
convexity is needed to guarantee that the limit is in fact a solution.

Rossi [7] extended this result to problems with phase constraints (viable
solutions), and Staicu [9] considered added perturbations on the right-hand
side. Ultimately, both papers followed the method of [3].

The convexity assumption on the potential function V was relaxed by Kánnai
and Tallos [6], where lower regular functions were examined. That means a
locally Lipschitz continuous function whose upper Dini directional derivatives
coincide with the Clarke directional derivatives. Convex analysis subdifferentials
were replaced by Clarke subdifferentials.

∗Department of Mathematics, Budapest University of Economics, P.O.Box 489, 1828 Bu-
dapest, Hungary, e-mail: kannai@math.bke.hu

†Department of Mathematics, Budapest University of Economics, P.O.Box 489, 1828 Bu-
dapest, Hungary, e-mail: tallos@math.bke.hu

1



2 LOWER REGULAR FUNCTIONS 2

Viability problems for nonautonomous inclusions without convexity were
discussed by Kánnai and Tallos [5] under continuity assumption on the right-
hand side.

In the present paper we prove the existence of viable solutions to nonau-
tonomous inclusions in the presence of phase constraint. The right-hand side
of the inclusion is assumed to be measurable in t and upper semicontinuous
with respect to x with nonconvex values. A counterexample shows that lower
regularity of the potential function cannot be omitted.

2 Lower regular functions

Let X be a real Hilbert space and consider a locally Lipschitz continuous real
valued function V defined on X. For every direction v ∈ X the upper Dini
derivative of V at x ∈ X in the direction v is given by

D+V (x; v) = lim sup
t→0+

V (x + tv)− V (x)
t

,

and its generalized (Clarke) directional derivative at x in the direction v is
defined by

V ◦(x; v) = lim sup
y→x, t→0+

V (y + tv)− V (y)
t

.

The directional derivative of V at x in the direction v (if it exists) will be denoted
by DV (x; v).

Definition 1 The locally Lipschitz continuous function V is said to be lower
regular at x if for every direction v in X we have D+V (x; v) = V ◦(x; v). We
say that V is lower regular if it is lower regular at every point.

Example 1 Let us note here that lower regular functions are not necessarily
regular in the sense of Clarke [4]. Take for instance the function f(x) = log(1+x)
on the real positive half line. Now think of a piecewise linear function V with
alternating slopes +1 and −1, whose graph lies between f and −f . Whenever V
reaches the graph of f or −f , it bounces back. Since for every x > 0, |f ′(x)| < 1,
it is obvious that V zigzags infinitely many times in every neighborhood of the
origin. Finally, eliminate all corners of V lying on the graph of f by making
the derivative turn from 1 into −1 smoothly. Keep the corners on the graph
of −f . Clearly, such a V is Lipschitz continuous and it can easily be seen that
D+V (0, 1) = V ◦(0, 1) = 1 and hence, V is lower regular at the origin. However,
DV (0, 1) does not exist and therefore, V cannot be regular.

The intermediate (or adjacent) cone to the closed subset K at x ∈ K is

IK(x) =
{
v ∈ X : D+dK(x; v) = 0

}
,
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where dK denotes the distance function, moreover

CK(x) = {v ∈ X : d◦K(x; v) = 0}

is the Clarke tangent cone to K at x. The following characterization of lower
regular functions can be verified by a straightforward adaptation of the proof
of Theorem 2.4.9 in [4].

Theorem 1 The following two statements are valid for every x in X.
(a) Iepi V (x, f(x)) = epiD+V (x; .)
(b) V is lower regular at x if and only if Iepi V (x, f(x)) = Cepi V (x, f(x)).

The Bouligand tangent cone to K at x ∈ K is defined by

TK(x) = {v ∈ X : lim inf
t→0+

1
t
dK(x + tv) = 0} .

Obviously, CK(x) ⊂ IK(x) ⊂ TK(x), while equalities hold if K is convex. For
further characterizations we refer to Aubin and Frankowska [2], pp. 239.

Consider a lower regular function V and let x be a point in X. Suppose
λ > 0 is a Lipschitz constant for V in a neighborhood of x. Let B stand for the
closed unit ball in X. By ∂V (x) we denote the Clarke subdifferential of V at x.

Lemma 1 For every 0 ≤ ε ≤ λ and v ∈ ∂V (x) + εB the inequality

‖v‖2 ≤ D+V (x; v) + 2ελ

holds true.

Proof. Take u ∈ ∂V (x) with ‖u − v‖ ≤ ε. Since for each w ∈ X we have
〈u, w〉 ≤ D+V (x;w), by setting w = v it follows

D+V (x; v) ≥ 〈u, v〉 ≥ ‖v‖2 + 〈u− v, v〉
≥ ‖v‖2 − ε‖v‖ ≥ ‖v‖2 − ε(ε + λ) ≥ ‖v‖2 − 2ελ

that is the desired inequality. �

Lemma 2 Suppose the function f(t) = V (x + tv) is differentiable at t = 0 for
some x ∈ X and v ∈ ∂V (x). Then f ′(0) = ‖v‖2.

Proof. Lower regularity of V at x implies that

〈v, u〉 ≤ D+V (x;u)

for each u in X. Applying this inequality with u = v and u = −v the lemma
ensues. �
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Lemma 3 If x : [0, T ] → X is absolutely continuous on the interval [0, T ] with
x′(t) ∈ ∂V (x(t)) a.e., then

(V ◦ x)′(t) = ‖x′(t)‖2

for a.e. t ∈ [0, T ].

Proof. Let S be a set of measure zero such that both x and V ◦ x are
differentiable on [0, T ]\S moreover x′(t) ∈ ∂V (x(t)) at every t ∈ [0, T ]\S. Thus,
if t ∈ [0, T ]\S is given, there is a δ > 0 such that x(t+h)−x(t)−hx′(t) = r(h)
for every |h| < δ, where limh→0 ‖r(h)‖/h = 0. Since a locally Lipschitz function
on a compact set is globally Lipschitz continuous, we can assume that

|V (x(t + h))− V (x(t) + hx′(t))| ≤ λ‖r(h)‖

whenever |h| < δ. Consequently, the function h → V (x(t) + hx′(t)) is differen-
tiable at h = 0, and its derivative is the same as the derivative of h → V (x(t+h))
at h = 0. Making use of Lemma 2, we obtain

(V ◦ x)′(t) = lim
h→0

V (x(t) + hx′(t))− V (x(t))
h

= ‖x′(t)‖2

at each point t ∈ [0, T ] \ S. �

3 The main result

Let K be a convex and locally compact subset of X and consider a set valued
map F defined on [0, T ]×K that is measurable in t and upper semicontinuous
with respect to x, with nonempty closed images in X. Let us suppose that
there exists a lower regular potential function V on X such that the tangential
condition

TK(x) ∩ F (t, x) ∩ ∂V (x) 6= ∅ (2)

holds true for every x ∈ K, and a.e. t ∈ [0, T ], where TK(x) denotes the tangent
cone to K at x.

Let the point x0 be given in K and consider the Cauchy problem

x′(t) ∈ F (t, x(t)) a. e. (3)
x(0) = x0

with the phase constraint
x(t) ∈ K, t ≥ 0 . (4)

Theorem 2 Assume that the tangential condition (2) is valid. Then under the
above conditions there exists a T > 0 such that the problem (3), (4) admits a
solution on [0, T ].



4 REGULARIZING THE SET VALUED VECTOR FIELD 5

Choose % > 0 such that K0 = K ∩ (x0 + 2%B) is compact and V is Lipschitz
continuous on x0 + 2%B with Lipschitz constant λ > 0. Then ∂V (x) ⊂ λB for
every x ∈ K0. Set T = %/λ and K1 = K ∩ (x0 + %B). Then no solution x
starting from x0 with

x′(t) ∈ F (t, x(t)) ∩ ∂V (x(t)) a. e. (5)

can leave the compact set K1 on the interval [0, T ]. Therefore, without loss of
generality, we may assume that K is compact. Below we construct a solution
to the problem (3), (4) on [0, T ] that also solves (5).

We denote by ST the solution set to the problem (3), (4) on the interval
[0, T ]. ST will be regarded as a subset of the Banach space W 1,2(0, T, X) of
absolutely continuous functions equipped with the norm

‖x‖ = max
t∈[0,T ]

‖x(t)‖+

(∫ T

0

‖x′(t)‖2 dt

) 1
2

.

Theorem 3 Under the additional assumption

F (t, x) ⊂ ∂V (x) for a.e. t and each x ∈ K

there exists a T > 0 such that ST is a nonempty compact subset in W 1,2(0, T,X).

4 Regularizing the set valued vector field

Consider the viability problem given in (2), (3) and (4). By regularizing the set
valued map F on the right-hand side of the Cauchy problem (3) we will reduce
the nonautonomous problem to the autonomous case.

Let ε > 0 be given. Then we can find a countable collection of disjoint open
subintervals (aj , bj) ⊂ [0, T ], j = 1, 2, . . . such that their total length is less then
ε and a set valued map Fε defined on

D =

[0, T ] \
∞⋃

j=1

(aj , bj)

×K

that is jointly upper semicontinuous and Fε(t, x) ⊂ F (t, x) for each (t, x) ∈ D.
Moreover, if u and v are measurable functions on [0, T ] such that

u(t) ∈ F (t, v(t)) a.e. on [0, T ]

then for a.e. t ∈
(
[0, T ] \

⋃∞
j=1(aj , bj)

)
we have

u(t) ∈ Fε(t, v(t))
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(we refer to Rzeżuchowski [6] for this Scorza-Dragoni type theorem). It is obvi-
ous that all trajectories to F are also trajectories to Fε.

Now we extend Fε to the whole [0, T ]×K with retaining upper semicontinuity
and the tangential condition (2). Let us define

F̃ε(t, x) =


Fε(t, x) if t ∈ [0, T ] \ ∪∞j=1(aj , bj)
Fε(aj , x) if aj < t < (aj + bj)/2
Fε(bj , x) if (aj + bj)/2 < t < bj

Fε(aj , x) ∪ Fε(bj , x) if t = (aj + bj)/2

It is easy to see that F̃ε still fulfills the tangential condition (2).

Lemma 4 F̃ε is upper semicontinuous on [0, T ]×K.

Proof. Routine calculations show that the graph of F̃ε is closed. On the
other hand, the images of F̃ε are contained in a neighborhood of the upper
semicontinuous map F . �

5 Proof of the theorems

Proof of Theorem 2. By extending the state space from X to R×X we can
reduce our problem to the autonomous case.

For every (t, x) ∈ [0, T ]×K introduce

Ṽ (t, x) = t + V (x) .

It can easily be checked that

D+Ṽ ((t, x), (s, v)) = s + D+V (x, u) = s + V ◦(x, u) = Ṽ ◦(x, u) .

Therefore, Ṽ is lower regular and obviously

(1, v) ∈ ∂Ṽ (t, x) if and only if v ∈ ∂V (x) (6)

for all (t, x) in [0, T ]×K.
On the other hand, straightforward arguments show that

(1, v) ∈ T[0,T ]×K(t, x) if and only if v ∈ TK(x) . (7)

Combining (6) and (7), the tangential condition (2) implies that

T[0,T ]×K(t, x) ∩ F̃ε(t, x) ∩ ∂Ṽ (t, x) 6= ∅ (8)

at every point in [0, T ] × K. By exploiting Theorem 2. in [6], we infer the
existence of a solution xε to

x′ε(t) ∈ F̃ε(t, xε(t)) a. e. (9)
xε(0) = x0
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satisfying the phase constraint

xε(t) ∈ K, t ≥ 0 (10)

on [0, T ] for each ε > 0. Assume that λ is a Lipschitz constant for V on the
compact set K. Since by the tangential condition (8) for every solution xε to
(9) we have x′ε(t) ∈ ∂V (xε(t)), we deduce

‖x′ε(t)‖ ≤ λ + 1 (11)

almost everywhere on [0, T ] for each ε > 0.
Set ε = 1/n and consider a sequence of solutions xn. Making use of (10),

graphxn is contained in K and xn is also a solution to the inclusion (3) except
for a set En of measure not exceeding 1/n for each n. Therefore, in view of (11),
we can select a subsequence, again denoted by xn, which uniformly converges
to an absolutely continuous function x on [0, T ], moreover x′n → x′ weakly in
L2(0, T,X).

By passing to the limit, standard arguments show that x′(t) ∈ ∂V (x(t)) a.
e. Thus, taking advantage of Lemma 3, we obtain∫ T

0

‖x′n(t)‖2 dt =
∫ T

0

(V ◦ xn)′(t) dt = V (xn(T ))− V (x0) .

Hence, by the continuity of V , we get

lim
n→∞

∫ T

0

‖x′n(t)‖2 dt = V (x(T ))− V (x0) =
∫ T

0

‖x′(t)‖2 dt ,

or in other words
lim

n→∞
‖x′n‖L2 = ‖x′‖L2 .

This latter relation combined with the weak convergence implies the L2-norm
convergence of the derivative sequence. Consequently, we aasume that x′n con-
verges to x′ almost everywhere. This tells us that x is a solution to the problem
(2), (3), (4) on [0, T ]. �

Proof of Theorem 3. Consider a sequence xn in ST . Since the derivatives
are uniformly bounded, without loss of generality we may assume that x′n → x′

weakly in L2(0, T, X) and xn → x uniformly on [0, T ]. By Lemma 3 we have∫ T

0

‖x(t)‖2 dt = V (xn(T ))− V (x0) .

Since the right hand side of the above equality converges to V (x(T )) − V (x0),
and by standard arguments x′(t) ∈ ∂V (x(t)), a repeated application of Lemma
3 gives us

lim
n→∞

∫ T

0

‖x′n(t)‖2 dt =
∫ T

0

‖x′(t)‖2 dt ,
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and hence, x′n → x′ with respect to the L2(0, T, X)-norm. From this point we
can follow the patterns of the proof to Theorem 2 to get that x lies in ST . This
proves that ST is a compact subset of W 1,2(0, T, X). �

Example 2 It is worth mentioning here that our Theorem 2 generalizes the
result of [3]. Indeed, take the lower regular function V on the real line described
in Example 1. Consider the differential inclusion problem

x′(t) ∈ F (x(t)), x(0) = 0 , (12)

where the set valued map F is given by

F (x) =

 {V ′(x)}, if the derivative exists
[−1, 1], if x = 0
{−1, 1} otherwise.

It is easy to verify that F is upper semicontinuous, admits nonconvex values in
every neighborhood of the origin and F (x) ⊂ ∂V (x) at every point. However,
it is obvious that there is no proper convex continuous function W with F (x) ⊂
∂W (x) since F is not monotone.

Finally, let us note that the lower regularity of the potential function V
cannot be omitted. Consider for instance the Cauchy problem (12) with

F (x) =

 {1}, if x < 0
{−1, 1}, if x = 0
{−1}, if x > 0

that is the common example of an upper semicontinuous map with no solutions.
Although we have F (x) ⊂ ∂V (x) at every point for V (x) = −|x|, the potential
function V is clearly not lower regular at the origin.
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