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Abstract The solution of a TU cooperative game can be a distribution of the
value of the grand coalition, i.e. it can be a distribution of the payoff (utility)
all the players together achieve. In a regression model, the evaluation of the
explanatory variables can be a distribution of the overall fit, i.e. the fit of the
model every regressor variable is involved. Furthermore, we can take regression
models as TU cooperative games where the explanatory (regressor) variables
are the players. In this paper we introduce the class of regression games, char-
acterize it and apply the Shapley value to evaluating the explanatory variables
in regression models. In order to support our approach we consider Young
(1985)’s axiomatization of the Shapley value, and conclude that the Shapley
value is a reasonable tool to evaluate the explanatory variables of regression
models.

Keywords TU game · Shapley value · Young’s axiomatization of the Shapley
value · Linear regression model

1 Introduction

Consider a regression model where there are one explained and finitely many
explanatory (regressor) variables, moreover assume that all the variables are
random variables (on a fixed measure space) with finite variance. Then it
comes the natural question, how important are the regressor variables in the
given regression model?
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In this paper we apply game theory to giving an answer to the above
question. First, we introduce the concept of regression games. A regression
game is a transferable utility (TU) cooperative game such that the players
are the regressor variables, and it is generated by a regression model in the
way the value of a coalition is the difference between the variance (square
of the norm) of the explained variable and the square of the distance of the
explained variable from the vector space spanned by the given coalition of
regressor variables (this the least squares method is about). Our first main
result is that we characterize the class of regression games and show that it is
a finite convex cone such that the interior of the class of monotone games is
its proper subset, and it is a proper subset of the class of monotone games.

The Shapley value (Shapley, 1953) is probably the most popular solution
concept for TU cooperative games, henceforth games. We apply the Shapley
value to measuring the importance of the regressor variables of regression
models. To sum up, we correspond every regression model to a game, and apply
a well-known solution concept, the Shapley value, to answering the question
of how important the regressor variables are.

There are, however, many other solution concepts for games. In order to
give solid reasons for our choice we consider Young (1985)’s axiomatization of
the Shapley value. As an application of Pintér (2011)’s result we show that
the considered axioms – which are very reasonable ones from the viewpoint of
statistics / econometrics, we discuss it in the next paragraph – characterize the
Shapley value on the class of regression games. In other words, if one accepts
these reasonable statistical requirements (axioms), then she gets that the only
evaluation method meeting these axioms (requirements) is the Shapley value.

We impose three axioms, their statistical interpretations are as follows:
(1) let the total fit be decomposed among the regressor variables, (2) if two
regressor variables are equivalent, i.e. they are indistinguishable in the given
regression model, then let they be evaluated equally, (3) if a regressor variable
performs better in one regression model than in an other, then let it be eval-
uated higher in the former model than in the latter. Our second main result
is that the set of the above desirability criteria is equivalent with the Shapley
value, i.e. accepting these criteria implies the acceptance of the Shapley value,
and vice versa.

The main cornerstones of the application of the Shapley value to the dis-
cussed statistical / econometric problem are as follows. Chevan and Sutherland
(1991) were the first who applied the Shapley value to evaluating explanatory
variables. They had distributed the coefficient of determination (R2) among
the explanatory variables in the way the Shapley value does. Chevan and
Sutherland (1991) did not recognize that they had used the Shapley value,
that was pointed out only later by Stufken (1992) (this is a clear evidence for
that the idea of applying the Shapley value to measuring the relative impor-
tance of regressor variables had emerged naturally, and independently from
game theory).

Lipovetsky and Conklin (2001) also applied the Shapley value to evaluating
explanatory variables in regression models. They used this method in order
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to avoid the problem of multicollinearity. Lipovetsky and Conklin (2001) did
not know the above papers, hence they did not face the fact that their results
were new only to some extent.

It also makes sense to mention that Lipovetsky and Conklin (2001) and
Lipovetsky and Conklin (2010) showed that not only the importance of the
predictors can be evaluated by the Shapley value of their contribution to the
theoretical variance (multiple determination), but also the coefficients of the
regression model itself can be re-estimated due to the found Shapley value of
the predictors.

It is also worth noticing that the Shapley Value has been successfully ap-
plied in statistics not only for linear regression modeling but also in several
other statistical decision making problems, see for instance: Grabisch (1996),
Powaga and Lipovetsky (2004), Conklin and Lipovetsky (2005), Lipovetsky
(2006), Lipovetsky (2007) and Lipovetsky (2008) among others.

The papers Babat (2008) and Feldman (2007) also use game theory to
evaluate the regressor variables of regression models, however, Babat (2008)’s
approach is completely different from ours (in his model the observations are
the players), and Feldman (2007) does not characterize his class of ”regression
games”. As we have already mentioned above, in a regression game the players
are the regressor variables, so in a certain sense we consider how these players
interact or cooperate. Grabisch and Roubens (1999) consider the interaction
or cooperation of players in TU games, so our paper is related to theirs.

Finally, the papers Grömping (2007), Grömping and Landau (2010) and
Lipovetsky and Conklin (2010) clearly show that the problem we discuss in
this paper, is in the very focus of recent statistical / econometric research.

The paper is organized as follows: in Section 2 we define and characterize
the class of regression games, and in Section 3 we present our axiomatization
result.

2 Regression games

Notation: |N | and P(N) denote respectively the cardinality and all subsets
of set N . A ⊂ B, if A ⊆ B and A 6= B. Cone (S) denotes the smallest
convex cone containing set S, furthermore, Lin({ξ1, . . . , ξk}) denotes the linear
subspace spanned by vectors ξ1, . . . , ξk. Let A be a set in a topological space,
then Int(A) denotes the interior of set A. Let X be an inner product space
and A ⊆ X be a subspace, then A⊥ denotes the orthogonal complement of set
A. Moreover, A ⊆ X is a cone, if ∀α > 0: αA ⊆ A, where X is a vector space
(over the real field).

Let N be a non-empty finite set. Then v : P(N)→ R such that v(∅) = 0 is
called TU (transferable utility) cooperative game with player set N , henceforth
game. GN denotes the class of games with player set N . It is well known that

GN and R2|N|−1 are isomorphic (as vector spaces), therefore w.l.o.g. we can
assume that N = {1, . . . , |N |}, moreover, in this paper we use the following
order on P(N): ∀A,B ∈ P(N) A is ”before” B, if |A| < |B|, or |A| = |B| and



4 Miklós Pintér

A is before B in the lexicographic order. E.g. if N = {1, 2, 3}, then the fixed
order is {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.

It is also important to note that at certain points in our discussion we
refer to GN as a normed vector space. Since on a finite dimensional vector
space all norms are topologically equivalent, and we use only the concept of
convergence, we do not need to specify the norm on GN .

Game v ∈ GN is monotone, if ∀S, T ⊆ N such that S ⊆ T : v(S) ≤ v(T ); it
is superadditive, if ∀S, T ⊆ N such that S ∩ T = ∅: v(S) + v(T ) ≤ v(S ∪ T );
it is subadditive, if ∀S, T ⊆ N such that S ∩ T = ∅: v(S) + v(T ) ≥ v(S ∪ T );
it is essential, if v(N) >

∑
i∈N

v({i}).

The dual of game v ∈ GN is a game v̄ ∈ GN such that ∀S ⊆ N : v̄(S) =
v(N)− v(N \ S). Let T ⊆ N \ ∅ be an arbitrary set, then

uT (S) =

{
1, if T ⊆ S
0 otherwise

is called unanimity game on coalition T .

In this section we consider linear regression models (henceforth regression
models). It is our goal to establish theoretically the application of the Shapley
value to evaluating explanatory variables in regression models.

Let η be the explained and ξi, i ∈ N , |N | <∞ be the explanatory variables
of a regression model, henceforth (η, {ξi}i∈N ). We examine the problem in
an abstract way, i.e. we do not care about estimations and other empirical
concepts, we use (known) random variables with finite variance.

Definition 1 Let N be the player set, in other words the players are the
explanatory variables.

See the following problem (S ⊆ N is an arbitrary set):

var(η)− var(η −
∑
i∈S

βiξi)→ max

βi ∈ R, i ∈ S
(1)

Notice that in the objective function of (1) the second term is the square
of the distance of the explained variable from the linear space spanned by
the regressor variables of S. Since the second term has a negative sign and we
maximize the objective function, the optimal solution of (1) is the least square
solution.

Because of that the value of the empty coalition be zero, we compare this
square of distance to the square of the distance of the explained variable from
the origin (0), i.e. to the square of the norm of the explained variable. Put
it differently, in (1) we apply the Least Squares Method to the regression
problem with regressor variables of S, and take the difference of a constant
(the variance of the explained variable) and the least square.

Definition 2 Let (η, {ξi}i∈N ) be a regression model. ∀S ∈ P(N) let v(S) be
the optimal solution of (1).
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The value of a coalition (S) is the optimal solution of model (1), it is
similar to SSR (regression sum of squares). Chevan and Sutherland (1991)
and Lipovetsky and Conklin (2001) used the coefficient of determination (R2),
hence we differ from them at this point.

Corollary 1 v is a (TU cooperative) game.

Proof It is the direct corollary of Definitions 1 and 2.

We can regard v as a set of linear regression problems determined by the
given regression model.

Definition 3 Let (η, {ξi}i∈N ) be a regression model, v ∈ GN be the generated
game and Π be a partition of N . Then the restricted regression model of
(η, {ξi}i∈N ) on Π denoted by (η, {ξi}i∈N , Π) is the model where the players
are the elements of Π. Moreover, vΠ ∈ GΠ denotes the restricted game, i.e. it
denotes the game generated by (η, {ξi}i∈N , Π).

Put the above definition differently, in a restricted game some players are
concentrated to form super players, and these new players, the super players,
are the players in the restricted game. The next example illustrates the concept
of Definition 3.

Example 1 Let the covariance matrix of a regression model (there are three
regressor variables in this model) be

1 0 1 1
0 1 −1 0
1 −1 4 2
1 0 2 3

 ,

where the elements in the diagonal are the variances of the random variables
((1, 1) is the variance of the explained variable), and the other elements are
the covariances.

The generated game is as follows: v =

(
0,

1

4
,

1

3
,

1

3
,

1

3
,

3

8
,

2

5

)
. It is important

to notice that, the regression game v is monotone, but it is not super-, or
subadditive or essential.

Furthermore, let Π = {{1, 3}, {2}} be a partition of the player set. Then

vΠ =

(
1

3
,

1

4
,

2

5

)
.

The intuition behind Definition 3 is the following: in some cases the mod-
eler (statistician) is interested in the evaluation of not only a single regressor
variable, but rather a group of them. Put it differently, the modeler concen-
trates some explanatory variables into groups, tackle them as players (super
players) and measure the explaining power of these super players.

For the reasonableness of super players (variables), consider the following
example. In a data set we have a nominal variable with three ”values”, and



6 Miklós Pintér

we want to put this nominal variable into a regression model. Then we have
to convert this nominal variable into two dummy variables, in the way every
dummy variable belongs to a ”value” of the nominal variable. Furthermore,
if we want to measure the importance of the original nominal variable in the
regression model, then we have to take the three generated dummy variables
as a super variable (player), and put all or none of them into the model.

Definition 4 Let N be a non-empty finite set. v ∈ GN is a regression game if
∃M finite set of regressor variables, ∃η explained variable and ∃Π partition of
M such that v is generated by (η,M,Π) (notice that |Π| = |N |). Furthermore,
let GNR denote the class of regression games with player set N .

In other words, a regression game with player set N is a game such that
it is a restricted game of a game which is generated by a regression model in
the way (1) defines it.

The next proposition shows the power of the Definition 4. Henceforth, when
we write explanatory (regressor) variable then we mean a super variable (a set
of variables that can be singleton).

Proposition 1 GNR is a convex cone.

We split the proof into two lemmata.

Lemma 1 GNR is a cone.

Proof If we multiply the explained variable in (1) by α > 0, then the generated
game will be the α2 multiplication of the original game. Put it differently, if
we multiply the covariance matrix of the given model by α > 0, then the
generated game will be the α multiplication of the original game.

Lemma 2 GNR is a convex set.

The strategy of the proof is the following. Pick two arbitrary regression
games and their convex weights, take the two regression models which gen-
erate the two games in the way such that any random variable of the first
is independent from any of the second (in the proof they are only orthogo-
nal), then put the (convex) weighted modifications of them together. Finally,
a reduced game of the game generated by this regression model is the convex
combination of the two original games.

Proof Let w, z ∈ GNR and α ∈ [0, 1]. Then ∃Mw = {ξw1 , . . . , ξwmw},Mz =
{ξz1 , . . . , ξzmz} sets of regressor variables, ∃ηw, ηz explained variables, ∃Πw, Πz

partitions of Mw and Mz respectively such that w and z are generated by
(ηw,Mw, Πw), (ηz,Mz, Πz) respectively and Lin({ηw} ∪Mw) ⊆ Lin⊥({ηz}
∪Mz).

Lemma 1 implies that αw ∈ GMw

R , (1−α)z ∈ GMz

R and αw is generated by

(
√
αηw,Mw) and so is (1− α)z′ by (

√
(1− α)ηz,Mz).

Consider the model in which the explained variable is
√
αηw +

√
(1− α)ηz

and the explanatory variables are Mw ∪Mz. Moreover, let Π be a partition
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of Mw ∪Mz such that it consists of the sets Vi = Wi ∪Zi, where Vi is the ith
element of partition Π, so are Wi and Zi of partitions Πw and Πz respectively,
i = 1, . . . , |N |, hence |Π| = |N |.

Let v be generated by (
√
αηw +

√
(1− α)ηz,Mw ∪Mz, Π). Then v ∈ GNR ,

and it is an easy calculation (remember Lin({ηw}∪Mw) ⊆ Lin⊥({ηz}∪Mz))
to see that v = αw + (1 − α)z. w, z and α were arbitrarily fixed, hence the
proof is complete.

Proof (The proof of Proposition 1) It is the direct corollary of Lemmata 1 and
2.

Next we show that GNR is a proper subset of the class of monotone games.

Lemma 3 If |N | ≥ 2, then GNR ⊂ MonN , where MonN denotes the class of
monotone games with player set N .

Proof The proof of that every regression game is monotone is left for the
reader. However, if |T | > 1, then the unanimity game uT is monotone and
uT /∈ GNR . If ∀i ∈ T : ξi ∈ Lin⊥({η}), in other words v({ξi}) = 0, then ∀ξ∗ ∈
Lin({ξi}i∈T ): ξ∗ ∈ Lin⊥({η}), put it differently v(T ) = 0.

Naturally, in the trivial case of |N | = 1 GNR and the class of monotone
games coincide.

Proposition 2 Int(MonN ) ⊂ GNR .

To prove the above proposition we need the following notion.

Definition 5 Let T ⊆ P(N) be such that T \ {∅} 6= ∅ and ∀A,B ∈ T :
|A| = |B|. Furthermore, let

gT (S) =

{
1, if ∃A ∈ T such that A ⊆ S
0 otherwise

.

Then gT is called generalized unanimity game on coalitions of T .

It is clear that any unanimity game and the dual of any unanimity game
are generalized unanimity games (that is a reason for the naming). E.g. ūN =
g{A⊆N ||A|=1} and uN = g{N} . However, e.g. the generalized unanimity game
g{A,B}, A 6= B is neither a unanimity game nor the dual of any of them.

An other reason for the name of gT is the following: ∀S ⊆ N : gT (S) =
max
A∈T

uA(S). In other words, gT is the upper envelope of unanimity games

{uA}A∈T .
Next we characterize the class of monotone games.

Lemma 4 The class of monotone games (for any player set) is a finite convex
cone spanned by the generalized unanimity games.
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Proof Let v ∈ GN be a monotone game. Consider the following algorithm:

1 w ← v
2 for i← 1 to |N |
3 T ← {S ∈ P(N) | |S| = i}
4 α = min

S∈T
w(S)

5 w ← w − αgT
6 T ← T \ argmin

S∈T
w(S)

7 if T 6= ∅ then go to 4
8 next i
9 return w

It is an easy calculation to show that the above algorithm returns with 0,
moreover, α never hits the negative region, hence

v ∈ Cone ({gT }T⊆P(N), T\{∅}6=∅, ∀A,B∈T : |A|=|B|) .

v was an arbitrary monotone game, therefore, any monotone game is in the
convex cone spanned by the generalized unanimity games.

The following lemmata show that the class of regression games contains
the interior of the class of monotone games.

Lemma 5 Let uT ∈ GN be a unanimity game. Then ūT ∈ GNR .

Proof Consider the following regression model:

var(η) = 1

cov(ξi, η) =

{
1, if i ∈ T
0 otherwise

cov(ξi, ξj) =

{
1, if i, j ∈ T
0 otherwise

Then the regression game generated by the above regression model is ūT .

Lemma 6 Let N be a non-empty finite set and T ⊆ P(N) be such that T \
{∅} 6= ∅ and ∀A,B ∈ T : |A| = |B|. Then ∃Ai ⊆ N, Ai 6= ∅, i = 1, . . . , |N |,
and ∃k ∈ N such that ∀S ⊆ N : gT (S) = 1 if and only if |

⋃
i∈S

Ai| ≥ k.

Proof Let T ⊆ P(N) be such that T \ {∅} 6= ∅ and ∀A,B ∈ T : |A| = |B|. The
following algorithm produces the sets Ai and k.
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1 α← |A|, A ∈ T
2 for i← 1 to |N |
3 Ai ← {i}
4 next i
5 k ← α
# At this stage ∀S ∈ P(N): |

⋃
i∈S

Ai| ≥ k, if and only if |S| ≥ α.

# Next we manipulate sets S such that S ∈ P(N), |S| ≥ α
# and gT (S) = 0.
6 j ← |N |+ 1
7 for S ∈ P(N), |S| ≥ α, gT (S) = 0
8 if |

⋃
i∈S

Ai| < k then goto 13

9 Ai ← Ai ∪ {j} i /∈ S
10 j ← j + 1
11 k ← k + 1
11 go to 8
13 next S
# It is clear that, if Z ⊆ N , Z \ S 6= ∅, then |

⋃
i∈Z

Ai| increases by one,

# and so does k. In the other case (Z ⊆ S) gT (Z) = 0, hence it is OK.
# that |

⋃
i∈Z

Ai| does not increase and k does.

14 return Ai, i ∈ N, k

It is easy to see that for the returned sets Ai and k, gT (S) = 1, if and only
if |

⋃
i∈S

Ai| ≥ k.

It is worth noticing that in line 7 we do not specify the order in which the
algorithm applies the given sets, that order can be arbitrary.

Lemma 7 Let T ⊆ P(N) be such that T \ {∅} 6= ∅ and ∀A,B ∈ T : |A| = |B|.
Then ∀ε > 0: ∃v ∈ GNR such that ||v − gT || < ε.

Proof Since the considered space of the random variables with finite variance
is an infinite dimensional Hilbert space, we can work in Rn (with the standard
inner product), where n is a natural number.

Let ε > 0. First we show that ∀n ∈ {1, . . . , |N |}, ∀T = {A ⊆ N | |A| = n}:
∃v ∈ GNR such that ||v − gT || < ε.

For the case of n = 1, (when gT = ūN ) see Lemma 5.

n = 2: Let η = (0, 1) and α > 0. Furthermore, let ξαi =

(
i

α
, 1

)
, i =

1, . . . , |N |, and vαT be generated by (η, {ξαi }
|N |
i=1). Then it is easy to see that

gT = lim
α→0

vαT .



10 Miklós Pintér

n > 2: Let η =
1√
n

1, where 1 ∈ Rn is the vector with components 1, and

S(η) = {x ∈ Rn | ||x − η|| = 1} (the unit sphere of center η). Furthermore,
let X be an n − 1 dimensional subspace of Rn such that η ∈ X⊥, and ξi be
vectors such that ξi ∈ S(η)∩ (X+η), i = 1, . . . , |N | and any n member subset
of vectors ξ1, . . . , ξ|N | is a basis of Rn, however, the vector space spanned
by any n − 1 member subset of vectors ξ1, . . . , ξ|N | does not contain η (it
is clear that there are such vectors). Moreover, let pr : Rn → X be the
projection into the subspace X, α > 0, and vαT be the game generated by

(η, {αξi + (1 − α)pr(ξi)}|N |i=1). Then it is easy to see that gT = lim
α→0

vαT (as

α→ 0 αξi + (1− α)pr(ξi) is getting closer to X).

Next we show that ∀T ⊆ P(N) such that T \ {∅} 6= ∅ and ∀A,B ∈ T ,
|A| = |B|: ∃v ∈ GNR such that ||v − gT || < ε. Let n = |A|, A ∈ T . Consider
game wαT from the previous paragraph (i.e. wαT = vαT ) where the player set is⋃
i

Ai and n = k, and the sets Ai and k are from Lemma 6. Then we have

a regression model in which any n (k) of the regressor variables can fully
explain the explained variable η, but any less than n (k) of them can explain
only nothing (asymptotically). Let

∑
i

Ai, the direct sum of sets Ai, be a new

player set and the explained variable be retained. Then Π = {A1, . . . , A|N |} is
a partition of

∑
i

Ai, moreover let vαT = (wαT )Π . Then the previous paragraph

implies that gT = lim
α→0

vαT .

The proof of the above lemma shows that the concept introduced in Defi-
nition 3 ensures not only that GNR is a convex cone, but more.

Proof (The proof of Proposition 2) Let {αn}n be a sequence such that αn ↘ 0.
Then from Proposition 1 and Lemmata 4, 7:

Int(MonN ) ⊆
⋃
n

Cone {vαn

T }T⊆P(N), T\{∅}6=∅, ∀A,B∈T : |A|=|B| ⊆ GNR ,

where vαn

T are the regression games constructed in Lemma 7.

Furthermore, from Lemma 5: GNR * Int(MonN ).

We can say only two more things:

Lemma 8 If the explanatory variables are uncorrelated (orthogonal), then the
generated regression game is additive. Moreover, if two explanatory variables
are linearly correlated, then exchanging them has no any impact on the gener-
ated regression game.

It is important to see that, the above arguments (Lemma 8) cannot be
reversed. If a regression game is additive, then it is not necessary that the ex-
planatory variables are uncorrelated, and if exchanging two regressor variables
does not matter, then it does not imply that those are linearly correlated.

Summing up the characterization of GNR , we get the following corollary.
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Corollary 2 The class of regression games GNR is

1. a convex cone,
2. Int(MonN ) ⊂ GNR ⊂ MonN ,
3. neither open nor closed,
4. not a subset of the class of super-, or subadditive or essential games.

Proof See Example 1, Lemma 3 and Propositions 1, 2.

3 The Shapley value

In this section we consider Young (1985)’s axiomatization of the Shapley value
on the class of regression games. First we introduce some notions and Young
(1985)’s result.

For any v ∈ GN , i ∈ N let v′i(S) = v(S ∪ {i})− v(S), where S ⊆ N . Then
v′i(S) is the marginal contribution of player i to coalition S in game v.

Definition 6 Let v ∈ GN be a game. Players i, j ∈ N are equivalent, i ∼v j,
if ∀S ⊆ N such that i, j /∈ S: v′i(S) = v′j(S). S is an equivalence set in v, if
∀i, j ∈ S: i ∼v j.

A solution on set A ⊆ GN is a function ψ : A → RN . In this paper we
assume that a solution is a singleton set valued mapping.

Definition 7 Let v ∈ GN be a game and

piSh(S) =


|S|!(|N | − |S| − 1)!

|N |!
, if i /∈ S

0 otherwise
.

Then φi(v), the Shapley value (Shapley, 1953) of player i in game v, is the
piSh expected value of v′i. Put it differently

φi(v) =
∑
S⊆N

v′i(S)piSh(S) . (2)

Furthermore, let φ denote the Shapley solution.

Definition 7 emphasizes the expected value interpretation of the Shapley
value.

Definition 8 ψ, a solution on A ⊆ GN , is / satisfies the

– Pareto optimal (PO), if ∀v ∈ A:
∑
i∈N

ψi(v) = v(N),

– equal treatment property (ETP ), if ∀v ∈ A: (i ∼v j)⇒ (ψi(v) = ψj(v)),
– strongly monotone (SM), if ∀v, w ∈ A: (v′i ≤ w′i, i ∈ N) ⇒ (ψi(v) ≤
ψi(w)).
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In the following paragraphs we interpret the above defined properties (ax-
ioms).

Grömping (2007) argues that the proper decomposition (the total fit is
decomposed among the regressor variables) is an indispensable requirement
for an evaluation method. The statistical concept of proper decomposition is
equivalent with the game theoretical concept of PO.

ETP requires that, if two regressor variables have the same effects on the
given regression model, then they be evaluated equally. This axiom can be cor-
responded to the following property: if exchanging two explanatory variables
has no influence on the generated game, then their evaluations be the same.

Property SM is about that, if one compares two models in which the same
regressor variable (indexed by the same natural number) performs better (is
more useful) in the first model than in the second, then its evaluation be higher
in the first model than in the second. We can interpret this requirement as
the evaluation should depend on only the performance, it should not biased
by other factors.

In our opinion, all the three discussed axioms are reasonable and acceptable
from the viewpoint of statistics / econometrics.

Next we focus on Young (1985)’s axiomatization of the Shapley on the
class of regression games. First we provide Young (1985)’s results:

Theorem 1 (Young (1985)) ψ, a solution on GN , is PO, ETP and SM if
and only if ψ = φ, i.e. if and only if it is the Shapley solution.

The next result is our characterization result.

Theorem 2 ψ, a solution on the class of regression games, is PO, ETP and
SM if and only if ψ = φ, i.e. if and only if it is the Shapley solution.

To prove the above theorem we need the following concept.

Definition 9 Set A ⊆ GN is M -closed, if ∀v ∈ A such that S ⊆ N is an
equivalence set in v, and ∀k ∈ N \S: ∃w ∈ A such that S∪{k} is an equivalence
set in w and w′k = v′k.

Pintér (2011) mentions that MonN is an M -closed class of games. The next
proposition is a simplified version of Pintér (2011)’s result.

Proposition 3 Let A ⊆ GN be an M -closed class of games. ψ, a solution on
set A, is PO, ETP and SM if and only if ψ = φ, i.e. if and only if it is the
Shapley solution.

Proof See Theorem 3.3 in Pintér (2011).

In order to prove Theorem 2 we need the following lemma.

Lemma 9 Let v ∈ GN be a game and

e =
∑
T

gT ,

where T ⊆ P(N) is such that T \ {∅} 6= ∅ and ∀A,B ∈ T : |A| = |B|. Then
∀ε ∈ R, i, j ∈ N : i ∼v j if and only if i ∼v+εe j.
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Proof It is clear that ∀i ∈ N : (v + εe)′i = v′i + εe′i. Moreover, it is a slight
calculation to see that ∀i, j ∈ N : i ∼e j, therefore the proof is complete.

Proof (The proof of Theorem 2) First we show that Int(MonN ) is an M -closed
class of games. Let v ∈ Int(MonN ) be such that S is an equivalence set in v,
and k ∈ N \ S be a player. Lemma 4 implies that ∃ε > 0, ∃w ∈ MonN such
that v = w+ εe, and from Lemma 9 S is an equivalence set in w. Since MonN

is an M -closed set of games (see Pintér (2011)), ∃z ∈ MonN such that S ∪{k}
is an equivalence set in z and z′k = w′k. Then from Lemma 9 S ∪ {k} is an
equivalence set in z + εe ∈ Int(MonN ) and (z + εe)′k = v′k, i.e. Int(MonN ) is
M -closed.

Let v ∈ GNR and ε > 0. Then v + εe ∈ Int(MonN ), from Proposition 2
v+ εe ∈ GNR , and from Proposition 3 and the previous paragraph ψ(v+ εe) =
φ(v+εe). Moreover, SM ensures that ψ(v) ≤ ψ(v+εe) = φ(v+εe). Therefore
that ε > 0 was arbitrarily chosen, that φ is continuous and axiom PO imply
that ψ(v) = φ(v).

It is important to see that neither Young (1985)’s nor Moulin (1988)’s
proofs do not work in this case, hence the above result is a real application of
Pintér (2011)’s alternative proof for Young’s axiomatization.

Summing up our results, Theorem 2 implies that on the class of regression
games the Shapley value is equivalent with the three reasonable requirements
(axioms) discussed in Definition 8. In other words, if we accept the three
axioms as basic properties of an evaluation method, then we get the Shapley
value since this is the only solution which meets the pre-defined criteria.

It has been the motivation of this paper to establish a solid mathemati-
cal background for using the Shapley value as a regressor variable evaluation
method in linear regression models. We conclude that applying the Shapley
value to evaluating explanatory variables is mathematically and theoretically
well founded.
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