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Abstract
Developing a big data signal processing method is to monitor the behavior of a common component: a pneumatic actuator. 
The method is aimed at supporting condition-based maintenance activities: monitoring signals over an extended period, and 
identifying, classifying different machine states that may indicate abnormal behavior. Furthermore, preparing a balanced 
data set for training supervised machine learning models that represent the component’s all identified conditions. Peak 
detection, garbage removal and down-sampling by interpolation were applied for signal preprocessing. Undersampling the 
over-represented signals, Ward’s hierarchical clustering with multivariate Euclidean distance calculation and Kohonen self-
organizing map (KSOM) methods were used for identifying and grouping similar signal patterns. The study demonstrated 
that the behavior of equipment displaying complex signals could be monitored with the method described. Both hierarchi-
cal clustering and KSOM are suitable methods for identifying and clustering signals of different machine states that may 
be overlooked if screened by humans. Using the proposed methods, signals could be screened thoroughly and over a long 
period of time that is critical when failures or abnormal behavior is rare. Visual display of the identified clusters over time 
could help analyzing the deterioration of machine conditions. The clustered signals could be used to create a balanced set of 
training data for developing supervised machine learning models to automatically identify previously recognized machine 
conditions that indicate abnormal behavior.

Keywords Machine learning · Big data processing · Clustering · Kohonen self-organizing map · Condition-based 
maintenance · Fault detection · Signal pattern identification

Introduction

Smart Manufacturing and Industry 4.0 provide new main-
tenance solutions for factories to leverage the ample data 
produced by sensors and other sensing technologies. Internet 
of Things, cloud computing and big data analytics all sup-
port discovering valuable information about the status of 
the equipment, its past, present and future conditions. Data 
coming from sensors, log files and various other sources are 
available in different forms. Signals from equipment have 
a key role in the identification of device’s health, how well 

it functions and if its condition deviates from past states. 
Because of the data volume, velocity, variety and veracity, 
humans are not able to analyze signal data using traditional 
manufacturing tools. There are more efficient techniques 
than inspecting data visually, especially when the patterns 
describing certain machine conditions are complex and rare.

Condition-based maintenance is a well-established tech-
nique in manufacturing. Monitoring equipment parameters 
like the temperature and vibration of bearings, or the elec-
tric current of motors are used by many maintenance opera-
tions. When applying these techniques, normally a control 
limit is set for the monitored parameter, often established 
empirically, to alert the risk of failure when the parameter 
is outside the set limits. Preventing machine failure not only 
reduces the cost of maintenance by preventing consequen-
tial damage that often follows breakdowns but could also 
eliminate making defective products with hidden faults that 
are difficult to detect [1, 2]. Using smart manufacturing 
broadens the application of condition-based maintenance, 
enabling to monitor those types of equipment, where a single 
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control limit is not adequate, that would require the identi-
fication of a particular, complex signal pattern [3]. Screen-
ing patterns are a well-known method in machine learning 
(ML), and it is used, e.g., in monitoring network activities 
to identify intrusions.

The aim of this work is (1) to present an approach to iden-
tify and classify different machine states, including the ones 
that may indicate abnormal behavior by analyzing signal 
patterns of pneumatic actuators using machine learning tech-
niques, (2) to investigate the challenges of processing signals 
from real-world data and (3) to create a balanced training 
data set from the classified signal patterns for developing a 
predictive analytics application that helps identifying those 
machine states that exhibit equipment malfunctions. Being 
able to raise early warnings for equipment failure would help 
improving overall manufacturing performance by improving 
product quality, boosting efficiency, reducing scrap rates and 
maintenance costs.

Related Works

Data produced by the modern manufacturing industry show 
explosive growth reaching more than 1000 EB annually [4]. 
Manufacturers started to recognize the strategic importance 
of data; it became a key enabler for manufacturing com-
petitiveness [3]. Smart manufacturing aims to exploit the 
data collected via manufacturing intelligence throughout 
the product lifecycle in order to make a positive impact on 
all aspects of manufacturing [5]. Compared with traditional 
manufacturing, smart manufacturing has an extreme focus 
on real-time data collection and conversion through physical 
and computational processes. Data describing the manufac-
turing process could usually be obtained from: (a) manu-
facturing information systems (e.g., ERP, CRM or SCM), 
(b) industrial IoT technologies (e.g., operating conditions 
measured by sensors of a production equipment, (c) smart 
products and product-service systems by IoT technologies 
(e.g., product performance in the context of usage condi-
tions), (d) social networking and e-commerce platforms 
(e.g., user data, users profiles and preferences), (e) open 
databases provided by governments (e.g., civic infrastruc-
ture) [3]. Types of manufacturing data can be structured 
(e.g., databases), semi-structured (e.g., XML documents) 
or unstructured (e.g., equipment and error logs) [6]. Emerg-
ing technologies, like artificial intelligence (AI), the Internet 
of Things (IoT), cloud computing, mobile Internet, play a 
strategic role in supporting data-driven manufacturing. Tao 
et al. [3] proposed the following steps of translating data 
to useful information, referring to them as “manufacturing 
data life cycle (MDLF)”: collection, transmission, storage, 
processing, visualization and application.

Data in a manufacturing environment are collected from 
numerous sources in a variety of ways. Equipment and prod-
uct data are usually collected through smart sensors, RFID 
tags or other sensing devices aiming to monitor equipment 
and product behavior in real time. The vast amount of data 
collected from manufacturing processes must be transmitted 
and integrated efficiently and stored securely. Traditionally, 
manufacturing companies stored mainly structured data; 
however, recently unstructured data (especially log files) 
became also valuable sources of information. Data storage in 
the cloud could be a cost-effective and flexible option; how-
ever, because of security restrictions it may not be feasible 
for many companies. Data processing deals with discover-
ing knowledge from large volumes of manufacturing data. 
It starts with preprocessing steps of data cleaning and data 
reduction. Data preprocessing has a crucial impact on the 
results; it is usually a complex, non-trivial operation. Data 
cleaning typically includes removing redundant, mislead-
ing, duplicated, inconsistent information. In manufacturing 
practice, missing values are common, and they pose a chal-
lenge to the application of machine learning algorithms [7]. 
There are various approaches for replacing missing values; 
however, they influence the original data set. This is a com-
mon problem and widely discussed from theoretical and 
practical aspects in the literature [8, 9]. The following step 
of data processing is data reduction, which transforms the 
massive volume of data into ordered, meaningful and simpli-
fied forms. Data analysis is the next data processing phase, 
covering a wide variety of techniques, including machine 
learning, data mining, time series analysis, large-scale com-
puting and the use of forecasting models. Clustering, classi-
fication, prediction and deviation analysis from data mining 
methods are used extensively in this field. Visual analytics 
and visualization support the communication with end users, 
and it helps having clear, user-friendly view of the data and 
understanding the data processing results more easily. Tao 
et al. [3] recognized three phases of data applications. The 
first phase (design) helps in demand analysis, smart design 
and market forecasting through better understanding of cus-
tomers, competitors and markets. The second phase (manu-
facturing) supports decision making, product quality control 
and equipment supervision. The third phase (MRO—main-
tenance, repair and operations) enriches monitoring opera-
tions, fault predictions and smart maintenance.

Compared with the traditional methods, intelligent fault 
diagnosis is able to rapidly and efficiently process mas-
sive amounts of signals, and it could provide accurate fault 
diagnostic results [10]. Fassois and Sakellariou [11] gave 
an overview of the principles and techniques of time series 
methods for fault detection, identification and estimation in 
vibrating structures. They presented two case studies about 
(1) fault detection in an aircraft-stiffened panel and (2) fault 
detection and estimation in an aircraft skeleton structure. 



SN Computer Science (2020) 1:196 Page 3 of 12 196

SN Computer Science

Helwig et al. [1] and Sharma et al. [2] discussed sensor fault 
detection, while Munirathinam et al. [12] and Al Tobi et al. 
[13] dealt with fault prediction. Al Tobi et al. [13] aimed at 
the automatic fault diagnosis of centrifugal pumps based 
on artificial intelligence methods. Their data collection was 
performed in an experimental setup environment, and their 
suggested data analysis framework included the combination 
of wavelet transformation, feature extraction and classifi-
cation with multilayer perceptron artificial neural network 
(MLP-ANN) and support vector machine (SVM).

Intelligent fault diagnosis includes the following main 
steps: signal acquisition, feature extraction and selection, 
and fault classification [14, 15]. The feature extraction phase 
aims to extract representative features from the collected sig-
nals based on signal processing techniques, like time-domain 
statistical analysis, Fourier spectral analysis and wavelet 
transformation [16]. These features may contain useless or 
insensitive information, k-nearest neighbor (kNN) which 
could negatively affect the diagnosis results. Feature selec-
tion is applied to select sensitive features through dimen-
sion reduction strategies, like principal component analysis 
(PCA), or distance evaluation technique [17]. In the fault 
classification step, because of the unlabeled data, unsuper-
vised learning techniques like clustering and support vector 
machine (SVM) [18] are used.

Machine learning became popular in manufacturing over 
the past 20 years. It got the first significant attention in the 
1980s, but because of the immature technology and the diffi-
culties of implementation at the time, adaption was not high 
[19]. Currently with increased spreading of the Industrial 
Internet of Things (IoT), Industry 4.0 and smart manufac-
turing more data are being generated than before and ML 
has new opportunities in manufacturing. Machine learning 
is a subset of artificial intelligence covering diverse areas. 
ML has several definitions, and one widely used is the fol-
lowing: ML allows computers to solve problems without 
being specifically programmed to do so [20]. ML techniques 
can be structured in various ways. Supervised, unsupervised 
and reinforcement learning are widely used categories [21], 
but other taxonomies are available as well. Some research-
ers divide ML to active and passive learning, where “active 
learning is generally used to refer to a learning problem 
or system where the learner has some role in determining 
on what data it will be trained” [22] and passive learning 
describes a situation where the learner has no control over 
the training set.

ML techniques can be classified according to their role in 
manufacturing too. Schwabacher and Goebel [23] provided 
a taxonomy of the Integrated Systems Health Management 
(ISHM) system. They distinguished model-based and data-
driven ISHM algorithms, where in model-based category 
they had two classes, physics-based (systems of differential 
equations) and classical AI categories (e.g., expert systems 

and qualitative reasoning). Data-driven category includes 
conventional numerical methods, like linear regression and 
machine learning. They mapped ISHM problems (fault 
detection, diagnostics and prognostics) for algorithm types 
(physics-based, classical AI, conventional numerical meth-
ods and machine learning). According to this matrix, cluster-
ing as a machine learning method is common in fault detec-
tion, underpinning our case. Supervised learning method 
fits well for challenges and problems faced in manufactur-
ing applications as manufacturing data are often labeled and 
expert feedback is available. Unsupervised learning methods 
are becoming increasingly important, providing an enor-
mous field for research. The typical goal in unsupervised 
learning is to discover unknown classes of items by cluster-
ing, which is a relevant approach in fault detection [24].

Imbalanced class distribution problem is one of the key 
challenges in machine learning from the beginning [25]. It is 
a situation where are significantly more instances from one 
class relative to other classes. In such cases, the classifier 
can easily misclassify the instances of the less represented 
classes. The imbalance issue is common in many real-world 
applications, such as fault identification [26], network intru-
sion detection [27], sentiment analysis [28] and fraud detec-
tion [29]. There are three common approaches for manag-
ing the class imbalance problem [30]: algorithm adaptation, 
cost-sensitive learning and data resampling. The first two 
solutions depend on the classifiers; they involve algorithmic 
adaptation. The third method is about balancing the origi-
nal data set, using either undersampling or oversampling 
approaches, or the combinations—variations of them.

Common examples of unsupervised learning are cluster-
ing, association rules and self-organizing maps [31]. Unsu-
pervised learning is useful in manufacturing applications for 
outliers’ identification in manufacturing data [32] or when 
no expert feedback is available. Due to the fast increase of 
unlabeled data in manufacturing, hybrid methods that com-
bine the machine learning approaches with one or more 
other approaches are becoming more common [23]. An 
example for these hybrid methods could be the application 
of unsupervised learning as data preprocessing for super-
vised learning [33]. The class distribution imbalance of a 
training data set for supervised machine learning poses a 
performance problem that could be mitigated by balanc-
ing the training data set undersampling the majority class. 
Lin et al. [33] used undersampling combined with k-nearest 
neighbor (kNN) clustering to create a balanced training set 
for training a classifier. In their solution, the majority class 
data set is divided into a number of bags, and random under-
sampling is performed over each bag. Each reduced bag is 
then combined with the minority class data set to train each 
of the bagging-based classifiers. Yen and Lee [34] suggested 
a cluster-based undersampling approach to solve the imbal-
anced class distribution problem by using backpropagation 
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neural network. According to the experiments the SBC 
(undersampling based on clustering) method has better pre-
diction accuracy and stability than other methods (Random 
selection and NearMiss-2). It has high classification accu-
racy on predicting the minority class samples, and it has fast 
execution time. Their another approach sampling based on 
clustering with Most Distance (SBCMD) has better predic-
tion accuracy and stability when the data sets contain more 
exceptional samples and disordered samples.

Ofek et al. [30] proposed a clustering-based undersam-
pling method called Fast-CBUS that improves Yen and Lee’s 
method [34] with reduced computational cost. Instead of 
clustering the entire data set, their proposed method only 
clusters the minority class instances combined with the sam-
ples of the majority class instances closer to the minority 
class clusters. Their clustering-based undersampling method 
could improve AUC results, compared with such a well-
known method as SMOTE. Fast-CBUS method achieves 
an optimal trade-off between the computational costs and 
predictive performance, in terms of training time and AUC. 
Having a time complexity similar to their method has less 
prediction performance, while more complex methods are 
significantly slower [30].

Case Study: The Proposed Method

This case study is using real-world data, and it is part of a 
smart manufacturing—predictive analytics R&D project of 
a Hungarian multinational manufacturer of electrical com-
ponents. The company, a global leader in connectivity solu-
tions, manufactures a vast range of industrial connectors, 
cables and electronics components such as sensors, relays 
and switches. Their products are used in a wide range of 
applications, including factory machinery, rail and transit 
vehicles, HVAC systems, medical instrumentation, as well 
as communication, computers and power supply compo-
nents. The company places great importance on research and 
development; the aim of this work is to monitor the behavior 
of pneumatic actuators through signal processing, with the 
longer-term goal of developing condition-based maintenance 
tools. Data was collected in 2018–2019.

Condition monitoring of rotary machines like bearings is 
well established. Measuring the temperature or analyzing the 
vibration spectrum of the part could provide valuable infor-
mation about its behavior. Monitoring reciprocating parts 
could be more difficult as the signals are non-stationary and 
Fourier spectrum calculations may introduce false alarms 
or missed detections [35]. Pattern recognition, a technique 

Fig. 1  Signal of a sequence of 7 cycles from a pneumatic actuator
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that is frequently used in big data applications, could be used 
in failure prediction more reliably than methods developed 
for rotary parts. This case study aims at analyzing signals 
from a common, inexpensive reciprocating part: a pneumatic 
actuator that is widely used in machines of mass manufactur-
ing. The signal is related to the movement generated by the 
device; the shape of the signal is related to the wear and tear 
of its parts. The anticipated benefit from being able to pre-
dict the failure of the component is not as much of reducing 
manufacturing or maintenance cost but rather preventing to 
produce defective products, ones that are difficult to detect.

A signal of 0–20 mV was collected at a frequency of 
7.8 × 10−5 s from the actuator and recorded as .csv files. 
This extreme high-frequency signal recording was found 
to be unnecessary during the data processing and was sub-
sequently down-sampled to a frequency of 1.4 × 10−2 s by 
interpolation. The down-sampled data still carried sufficient 
information for the calculations. As the signal recording 
was automatic, signals were collected for both operating 
and idling machine states, the latter to be removed. Under 
normal operating conditions, the actuator runs in a sequence 
of 6–8 cycles followed by a set waiting time. External condi-
tions: mainly compressed air pressure, may affect the cycle 

time and the signal amplitude. The cycle time was set to 
1.56 s; however, it was not stable, and it could vary as much 
as 1%. Disturbances like jamming could also influence the 
cycle time or could even cause the sequence of cycles pre-
maturely aborted. Figure 1 shows a sequence of 7 cycles, the 
fourth being different, indicating defective operation.

The data were processed following the steps that Tao 
et al. [3] suggested as the “manufacturing data life cycle”: 
collection, transmission, storage, processing, visualization 
and application. Data processing was carried out in R envi-
ronment [36]. Approximately 20 GB of data was collected 
per month, recording more than 400,000 cycles of operation 
between May 2018 and February 2019. Unfortunately, there 
was a gap in the recording between July and October 2018 
that could have provided compelling information about the 
performance of the equipment, as our results indicated. Tao 
et al. [3] point out that data must be preprocessed to remove 
redundant, misleading and inconsistent information. Data 
cleaning therefore should take care of missing values, for-
mat conversions, duplicates and garbage cleaning. Our data 
preprocessing started with format conversion transforming 
the .csv data into xts time series objects [37], enabling to 

Fig. 2  Process flow of signal preprocessing Fig. 3  Process flow of clustering batches of signals
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perform time series functions and transformations in the 
R environment. The format conversion step also involved 
removing redundant data from the files (summary statistics 
calculated and recorded at regular intervals that was part of 
the .csv files), assigning timestamps to each data points and 
splitting them to contiguous sequences. Duplicates removal 
was not necessary in our case; however, there were data 
of useless information: recordings of idle machine states, 
empty signals, noise or other erratic signals. Therefore, a 
garbage cleaning step was required to identify these irrel-
evant sequences of empty or erratic signals. An indicator 
was calculated for each sequence to decide whether the data 

should be further analyzed or be discarded. This indicator 
was defined as the average of the rolling standard deviation 
of values through a set window. If this indicator was greater 
than a predefined value, then sequence should have suffi-
cient information and was processed further. Other meth-
ods, like STL (seasonal time series decomposition utilizing 
local regression) [38], were also tested, but discarded due to 
increased computational intensity.

The next step of data preprocessing was splitting the 
sequences to individual signals of each reciprocating cycles. 
The machine cycle starts with a peak, followed by a pat-
tern of decreasing values approaching zero value at the 

Fig. 4  Assembled clustering 
large sets of data over longer 
time period
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Fig. 5  Unrooted dendrogram of the final set of signals, suggesting the 
split into 4 clusters

end of the cycle, but not necessarily reaching it. Accord-
ing to the technical experts, the shape of the signal carries 
information about the conditions of the pneumatic actuator. 
The height of the initial peak varies, even for consecutive 
cycles of similar machine conditions, as a result of external 
factors like changes in air pressure or electric current of 
the plant. As the cycle time was somewhat instable and the 
sequences may be aborted due to jamming, and because the 
operation of the actuator was not encoded in the recorded 
signals, the start of each cycle had to be identified individu-
ally. The start of the cycle was identified through a simple 
peak-detection method, finding the earliest local maximum 
above a threshold. This threshold was required as it could 
not be guaranteed that recordings started at the beginning of 
a cycle, and it could be started in the middle of a reciprocat-
ing cycle. Peak detection was accomplished by a simple hill-
climbing algorithm on the data that were processed through 
of a rolling average function as a noise filter. As the signal 
not necessarily reached zero value by the end of the cycle, 
the end was set as a cutoff point at a constant time that was 
somewhat less than the average cycle time. The shortened 
cutoff point helped with the instable cycle time issues and 
made further data processing easier having uniform length of 
signals. The signals then were split between these start and 
end times and stored as both .csv files for further processing 
and .png pictures for the quick observation of a cycle pattern 
(Fig. 2). The visualization of the cycle patterns, in line with 

the MDLF model of Tao et al. [3], was found particularly 
useful, ensuring that the data preprocessing was executed 
accurately. It also helped at the next data processing step to 
identify and compare patterns belonging to different clusters 
and machine conditions.

Data preprocessing was followed by unsupervised 
learning of agglomerative hierarchical clustering to clas-
sify and group the signals based on the similarity of pat-
terns they display (Fig. 3). Euclidean distance was used 
to calculate the dissimilarity matrix as the input for the 
clustering. Approximately 20,000 signals were processed 
in a batch (except one batch that consisted only 5807 sig-
nals, from the recordings of one particular time period), 
the maximum the computer was able to handle at a time, 
memory being the limiting resource. Setting the appropri-
ate number of clusters was done as an iterative, manual 
process, using the dendrograms of clusters. Different num-
bers of clusters were investigated, evaluated by experts. 
The clustering was performed using the fastcluster [39] R 
package applying Ward’s method [40]. Due to the data vol-
ume (the distance matrix comprised more than 100 million 
items for an average batch of signals), computations were 
accelerated by parallelizing processes and calculating the 
dissimilarity matrix in graphical processing unit (GPU), 
using the R packages of doParallel [41], foreach [42] for 
the parallel execution and the rpud [43] package for the 
dissimilarity matrix calculation. Data processing was com-
pleted by creating a combined .csv file for all signals with 
cluster memberships marked for further use. Processing 
signals in separate batches is not only necessary due to the 
limitations of computing resources, but be also suitable 
as the behavior of the equipment may be monitored over 
an extended period. During this extended time, one might 
want to periodically inspect the condition of the equip-
ment, performing the clustering on the signals (Fig. 4).

Once all 21 separate batches of signals were processed 
and clustered, the data were assembled to create an overall 
data set. As noted earlier, the maximum number of signals 
that the computer was capable to calculate distance matri-
ces of dissimilarities was approximately 20,000. In order 
to reduce the size of the data set but still ensuring that 
all relevant signal clusters are represented in the reduced 
data set, majority clusters have been undersampled. This 
has been achieved by taking an equal sample of the small-
est batch-cluster combination from each clusters of the 21 
batches that were 125 samples. The random undersampling 
of majority classes was performed using the downSample 
function of the caret [44] R package. The total number 
of signals in the undersampled data set was 7250. The 
clustering process was performed similar to as described 
above, inspecting the dendrograms and evaluating differ-
ent number of clusters. Four clusters were identified based 
on the dendrogram (Fig. 5), and those typical patterns are 
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shown in Fig. 6. Cluster 3 displays a pattern that is visually 
very different from the others. It was recognized by tech-
nical experts as defective behavior, and its disappearance 
after October 2018 is a result of maintenance activities. 
As mentioned earlier, there were no data available prior 
to the appearance of this cluster, although it might have 
indicated the deterioration of the equipment. Interestingly, 
Cluster 4-type signals precede the defective behavior that 
may be an early indication of the deterioration of the 

equipment. Showing the different clusters on a timeline 
(Fig. 7) could be particularly useful for the detection of 
change in machine status.

As a result of the process described above, it was pos-
sible to identify and cluster those distinct signal patterns 
that may indicate a behavior that deviates from the normal. 
Approximately 7% of the signals from the undersampled set 
fell into this category of abnormal behavior that is typical for 
many machine learning problems [45]. Patterns displaying 

Fig. 6  Signal patterns of a reciprocating cycle indicating different behaviors

Fig. 7  Appearance in time of the different signal pattern clusters of a reciprocating cycle
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abnormal behavior were further analyzed using equipment 
log files, trying to determine the possible reasons for the 
differences. The output of the data processing: signal pat-
terns, is stored in a combined .csv file with their cluster 

membership labeled. This data set will be used in the follow-
ing phase of the research to build a sample data set (training 
and test) for building a predictive analytical model (Table 1).

As an alternative method for clustering the signals, 
Kohonen self-organizing maps (KSOM) were applied, using 
the “kohonen” R package [46]. KSOM developed by Teuvo 
Kohonen is one of the most well-known unsupervised learn-
ing models [47]. It is a special type of neural network that 
can learn from complex, multi-dimensional data and can 
transform them into visually interpretable clusters. Using 
the analogy with the human sensory system in the brain, 
the main function of KSOM networks is to map the input 
data from an n-dimensional space to a lower-dimensional 
(usually one or two-dimensional) plot while maintaining the 
original topological relations. Its algorithm is capable of 
processing high-dimensional data because it is designed to 
group data into clusters that exhibit some similarities [48]. 
Each group with similar features belongs to the same node 
on the map. KSOM supports simultaneous visualization and 
observation of the clusters [49].

KSOM have been successfully applied as a classification 
method to various problem domains, including speech rec-
ognition [50], image data compression [51], image or char-
acter recognition [52], and medical diagnosis [53]. Ahmad 

Table 1  Cluster membership of 
signals by batches

N.B. same cluster numbers may display different patterns in different batches

Batch #1 #2 #3 #4 #5 Total Number of 
clusters in 
batch

Batch 1 5660 14,238 – – – 19,898 2
Batch 2 10,254 14,459 – – – 24,713 2
Batch 3 5436 9670 5983 – – 21,089 3
Batch 4 645 6559 5606 – – 12,810 3
Batch 5 11,735 6367 702 125 – 18,929 4
Batch 6 14,728 6023 – – – 20,751 2
Batch 7 380 2972 2455 – – 5807 3
Batch 8 10,563 5797 1661 – – 18,021 3
Batch 9 12,610 3778 201 – – 16,589 3
Batch 10 7531 8618 2838 – – 18,987 3
Batch 11 14,892 9291 – – – 24,183 2
Batch 12 962 2835 16,672 642 4266 25,377 5
Batch 13 15,788 5499 – – – 21,287 2
Batch 14 17,149 2392 9318 – – 28,859 3
Batch 15 15,141 5372 2289 – – 22,802 3
Batch 16 1599 553 – – – 2152 2
Batch 17 10,695 15,965 4581 – – 31,241 3
Batch 18 6726 1834 13,917 7560 – 30,037 4
Batch 19 18,637 6402 – – – 25,039 2
Batch 20 3310 12,669 6174 – – 22,153 3
Batch 21 15,482 5676 – – – 21,158 2
Total – – – – – 431,882

Fig. 8  Kohonen self-organizing map of the signals using 2 × 2 hex-
agonal configuration
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et al. [48] applied KSOM for clustering imbalanced data 
sets, and their results were promising.

In our research, KSOM resulted the same clusters as the 
hierarchical clustering (Fig. 8). Both methods share simi-
larities in terms of both are unsupervised learning methods. 
One drawback of KSOM is that prior to creating the map, 
the number of clusters (the dimension of the grid) must be 
defined, similarly to k-nearest neighbor (kNN) clustering. 
This feature however helps testing different configurations. 
There are however advantages of KSOM over hierarchical 
clustering: it was found to be faster and could handle larger 
data sets. In our case, it was able to process the entire data 
set of more than 400,000 signals, making the down-sam-
pling unnecessary. An advantage of hierarchical clustering 
could be that the cluster structures can be visualized in a 
more expressive way in the R environment, as dendrograms. 
Although KSOM can also depict the distances (e.g., using 
color depth of the Kohonen map), the hierarchical structure 
may be easier to understand.

Conclusion

Smart manufacturing pays a particular attention to real-time 
data collection and conversion through physical and compu-
tational processes; data became a key enabler for support-
ing manufacturing competitiveness, and it has a strategic 
importance. Data-driven applications could serve different 
purposes; among others, they could help monitoring opera-
tions, predicting malfunctions or supporting smart mainte-
nance. This paper presented an approach of monitoring the 
behavior of pneumatic actuators through signal processing 
using a real-world data set. This approach could be applied 
to monitoring other types of equipment, where the shape and 
the pattern of a signal collected from the equipment carry 
information about its status and conditions. Data were col-
lected from a Hungarian multinational manufacturer of elec-
trical components during 2018–2019. Signal preprocessing 
is not a trivial operation, as confirmed by our work too. The 
removal of redundant, erratic data and the conversion and 
its transformation to a format that suits further analysis has 
a crucial impact on the success of the project. The proposed 
process enabled scanning through large amount of data, over 
an extended period to identify, classify and group signals 
displaying different (normal or faulty) behavior of the equip-
ment. The results of this process and its visualization on a 
timeline could be used to identify those time periods where 
the equipment behaved differently, and this difference could 
be analyzed comparing the different patterns of signals. The 
signal patterns were stored as labeled .csv files, to be used 
in the next phase of the research building a predictive ana-
lytical model. In addition, equipment log files were used to 
determine the potential reasons of signal patterns deviating 

from normal behavior. Our research used real-world data 
unlike the test bench environment for sensor fault detection 
in hydraulic systems of Helwig et al. [1] or the experimen-
tal environment-based fault diagnosis approach of Al Tobi 
et al. [13].

The next phase of the research will focus on the prepara-
tion of a predictive analytical model of equipment failure 
aiming at identifying the malfunctions of the pneumatic 
actuator in advance and developing an early warning sys-
tem. Machine learning, artificial neural networks or deep 
learning methods are considered for developing this predic-
tive analytical model, and all require sufficient amount of 
training and test data sets. One of the key challenges related 
to the predictive analytical model is the imbalance in the 
sample data set: significantly less faulty patterns are avail-
able than good ones. The applied undersampling process 
enabled handling large amount of data that might not be 
done otherwise. This undersampling process may be fine-
tuned in the future, considering other methods in the like 
SMOTE [54], or ADASYN [55].
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