Darvay, Zsolt and Rigó, Petra Renáta (2021) New predictor-corrector interior-point algorithm for symmetric cone horizontal linear complementarity problems. Working Paper. Corvinus University of Budapest, Budapest.
|
PDF
- Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
586kB |
Abstract
In this paper we propose a new predictor-corrector interior-point algorithm for solving P_* (κ) horizontal linear complementarity problems defined on a Cartesian product of symmetric cones, which is not based on a usual barrier function. We generalize the predictor-corrector algorithm introduced in [13] to P_* (κ)-linear horizontal complementarity problems on a Cartesian product of symmetric cones. We apply the algebraic equivalent transformation technique proposed by Darvay [9] and we use the function φ(t)=t-√t in order to determine the new search directions. In each iteration the proposed algorithm performs one predictor and one corrector step. We prove that the predictor-corrector interior-point algorithm has the same complexity bound as the best known interior-point algorithms for solving these types of problems. Furthermore, we provide a condition related to the proximity and update parameters for which the introduced predictor-corrector algorithm is well defined.
Item Type: | Monograph (Working Paper) |
---|---|
Series Name: | Corvinus Economics Working Papers - CEWP |
Series Number / Identification Number: | 2021/01 |
Uncontrolled Keywords: | Horizontal linear complementarity problem, Cartesian product of symmetric cones, Predictor-corrector interior-point algorithm, Euclidean Jordan algebra, Algebraic equivalent transformation technique |
JEL classification: | A32 - Collective Volumes A33 - Handbooks A39 - Collective Works: Other B00 - History of Economic Thought, Methodology, and Heterodox Approaches |
Divisions: | Faculty of Economics > Department of Operations Research and Actuarial Sciences |
Subjects: | Mathematics, Econometrics |
References: | Achache, M.: A new primal-dual path-following method for convex quadratic programming, Comput. Appl.
Asadi, S., Mahdavi-Amiri, N., Darvay, Zs., Rigó, P.R.: Full-NT step feasible interior-point algorithm for symmetric
Asadi, S., Mansouri, H., Darvay, Zs.: An infeasible full-NT step IPM for P_*(κ) horizontal linear complementarity
Asadi, S., Mansouri, H., Darvay, Zs., Zangiabadi, M.: On the P_*(κ) horizontal linear complementarity problems
Asadi, S., Zangiabadi, M., Mansouri, H.: A predictor-corrector interior-point algorithm for P_*(κ)-HLCPs over
Asadi, S., Mansouri, H., Lesaja, G., Zangiabadi, M.: A long-step interior-point algorithm for symmetric cone
Bai, Y.Q., El Ghami, M., Roos, C.: A comparative study of kernel functions for primal-dual interior-point
Chung, S.-J.: Np-completeness of the linear complementarity problem, J. Optim. Theory Appl., 60, 393-399
Darvay, Zs.: New interior-point algorithms in linear programming, Adv. Model Optim. 5, 51-92 (2003)
Darvay, Zs.: A new predictor-corrector algorithm for linear programming, Alk. Mat. Lapok, 22, 135-161 (2005),
Darvay, Zs.: A predictor-corrector algorithm for linearly constrained convex optimization, Studia Univ. Babes-Bolyai, Ser. Informatica, 54, 121-138 (2009)
Darvay, Zs., Illés, T., Majoros, Cs.: Interior-point algorithm for sufficient LCPs based on the technique of
Darvay, Zs., Illés, T., Povh, J., Rigó, P.R.: Predictor-corrector interior-point algorithm for sufficient linear
Darvay, Zs., Papp, I.-M., Takács, P.-R.: Complexity analysis of a full-Newton Step interior-point method for
Darvay, Zs., Rigó, P.R.: New interior-point algorithm for symmetric optimization based on a positive-asymptotic
Faraut, J., Korányi, A.: Analysis on Symmetric Cones, Oxford Mathematical Monographs. The Clarendon Press
Faybusovich, L.: Linear systems in Jordan algebras and primal-dual interior-point algorithms, J. Comput. Appl.
Güler, O.: Barrier functions in interior point methods, Math. Oper. Res. 21, 860-885 (1996)
Karimi, M., Luo, S., Tun�cel, L.: Primal-dual entropy-based interior-point algorithms for linear optimization,
Karmarkar, N.K.: A new polynomial-time algorithm for linear programming, Combinatorica 4, 373-395 (1984)
Kheirfam, B., Haghighi, M.: A full-newton step feasible interior-point algorithm for P_*(κ)-LCP based on a new
Kojima, M., Megiddo, N., Noma, T. , Yoshise, A.: A unified approach to interior point algorithms for linear
Lesaja, G., Roos, C.: Unified analysis of kernel-based interior-point methods for P_*(κ)-LCP, SIAM J. Optim.
Luo, Z., Xiu, N.: Path-following interior point algorithms for the Cartesian P_*(κ)-LCP over symmetric cones, Science in China Series A: Mathematics 52, 1769-1784 (2009)
Mohammadi, N., Mansouri, H., Zangiabadi, M., Asadi, S.: A full Nesterov-Todd step infeasible-interior-point
Nesterov, Y.E., Todd, M.J.: Self-scaled barriers and interior-point methods for convex programming, Math.
Nesterov, Y.E., Todd, M.J.: Primal-dual interior-point methods for self-scaled cones, SIAM J. Optim. 8, 324-364
Pan, S., Li, X., He, S.: An infeasible primal-dual interior point algorithm for linear programs based on logarithmic
Rigó, P.R.: New trends in algebraic equivalent transformation of the central path and its applications, PhD
Rigó, P.R.: New trends in interior-point algorithms, In F. Friedler ed., Proceeding of the 8th VOCAL Optimization
Rigó, P.R., Darvay, Zs.: Infeasible interior-point method for symmetric optimization using a positive-asymptotic
Peng, J., Roos, C., Terlaky, T.: Self-Regularity, A New Paradigm for Primal-Dual Interior-Point Algorithms,
Roos, C., Terlaky, T., Vial, J.Ph.: Theory and Algorithms for Linear Optimization, Springer, New York (2005)
Schmieta, S.H., Alizadeh, F.: Extension of primal-dual interior point algorithms to symmetric cones, Math.
Sturm, J.F.: Similarity and other spectral relations for symmetric cones, Linear Algebra Appl. 312, 135-154
Tuncel, L., Todd, M.J.: On the interplay among entropy, variable metrics and potential functions in interior-point
Vieira, M.V.C.: Jordan algebraic approach to symmetric optimization, PhD thesis, Delf University of Technology,
Wang, G.Q., Bai, Y.Q.: A new full Nesterov-Todd step primal-dual path-following interior-point algorithm for
Wright, S.: Primal-Dual Interior-Point Methods, SIAM, Philadelphia (1997)
Ye, Y.: Interior Point Algorithms, Theory and Analysis. Wiley, Chichester (1997) |
ID Code: | 6323 |
Deposited By: | Ádám Hoffmann |
Deposited On: | 04 Mar 2021 17:30 |
Last Modified: | 15 Apr 2021 15:09 |
Repository Staff Only: item control page