Corvinus
Corvinus

Predictor-corrector interior-point algorithm based on a new search direction working in a wide neighbourhood of the central path

Illés, Tibor and Rigó, Petra Renáta and Török, Roland (2021) Predictor-corrector interior-point algorithm based on a new search direction working in a wide neighbourhood of the central path. Working Paper. Corvinus University of Budapest, Budapest.

[img]
Preview
PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
569kB

Abstract

We introduce a new predictor-corrector interior-point algorithm for solving P_*(κ)-linear complementarity problems which works in a wide neighbourhood of the central path. We use the technique of algebraic equivalent transformation of the centering equations of the central path system. In this technique, we apply the function φ(t)=√t in order to obtain the new search directions. We define the new wide neighbourhood D_φ. In this way, we obtain the first interior-point algorithm, where not only the central path system is transformed, but the definition of the neighbourhood is also modified taking into consideration the algebraic equivalent transformation technique. This gives a new direction in the research of interior-point methods. We prove that the IPA has O((1+κ)n log⁡((〖〖(x〗^0)〗^T s^0)/ϵ) ) iteration complexity. Furtermore, we show the efficiency of the proposed predictor-corrector interior-point method by providing numerical results. Up to our best knowledge, this is the first predictor-corrector interior-point algorithm which works in the D_φ neighbourhood using φ(t)=√t.

Item Type:Monograph (Working Paper)
Series Name:Corvinus Economics Working Papers - CEWP
Series Number / Identification Number:2021/02
Uncontrolled Keywords:predictor-corrector interior-point algorithm; P_*(κ)-linear complementarity problems; wide neighbourhood; algebraic equivalent transformation technique
JEL classification:C61 - Optimization Techniques; Programming Models; Dynamic Analysis
Subjects:Mathematics, Econometrics
References:

W. Ai, S. Zhang, An O(p
nL) iteration primal-dual path-following method, based on wide
neighborhoods and large updates, for monotone LCP, SIAM J. Optim., 16(2), (2005),
400–417.

[2] S. Asadi, N. Mahdavi-Amiri, Zs. Darvay, P. R. Rigó, Full Nesterov-Todd step feasible
interior-point algorithm for symmetric cone horizontal linear complementarity problem
based on a positive-asymptotic barrier function. Optim. Methods Softw., (2020)
DOI:10.1080/10556788.2020.1734803.

[3] S. Asadi, H. Mansouri, Zs. Darvay, M. Zangiabadi, On the P*(κ) horizontal linear complementarity
problems over Cartesian product of symmetric cones. Optim. Methods Sofw.,
31(2), (2016), 233–257.

[4] S. Asadi, H. Mansouri, G. Lesaja, M. Zangiabadi, A long-step interior-point algorithm for
symmetric cone Cartesian P*(κ)-HLCP. Optimization, 67(11), (2018), 2031–2060.

[5] C. Brás, G. Eichfelder, J. Júdice, Copositivity tests based on the linear complementarity
problem. Comput. Optim. Appl., 63(2), (2016), 461–493.

[6] S.J. Chung, NP-completeness of the linear complementarity problem. J. Optim. Theory
Appl., 60(3), (1989), 393–399.

[7] R.W. Cottle, J.S. Pang, R.E. Stone, The Linear Complementarity Problem. Computer
Science and Scientific Computing. Academic Press, Boston, 1992.

[8] R.W. Cottle, J.S. Pang, V. Venkateswaran, Sufficient matrices and the linear complementarity
problem. Linear Algebra Appl., 114 (1989), 231–249.

[9] Zs. Darvay, A new algorithm for solving self-dual linear optimization problems. Studia
Univ. Babes-Bolyai, Ser. Informatica, 47(1), (2002), 15–26.
[10] Zs. Darvay, New interior point algorithms in linear programming. Adv. Model. Optim.,
5(1), (2003), 51–92.
[11] Zs. Darvay, A new predictor-corrector algorithm for linear programming. Alkalmazott
Matematikai Lapok, 22:135–161, 2005. in Hungarian.
[12] Zs. Darvay, A predictor-corrector algorithm for linearly constrained convex optimization.
Studia Univ. Babes-Bolyai, Ser. Informatica, 54(2), (2009), 121–138.
[13] Zs. Darvay, T. Illés, B. Kheirfam, P. R. Rigó, A corrector-predictor interior-point method
with new search direction for linear optimization. Cent. Eur. J. Oper. Res., 28 (2020),
1123–1140.
[14] Zs. Darvay, T. Illés, J. Povh, P. R. Rigó, Feasible corrector-predictor interior-point algorithm
for P*(κ)-linear complementarity problems based on a new search direction. Siam J.
Optim., 30(3), (2020), 2628–2658.
20
[15] Zs. Darvay, I.-M. Papp, P.-R. Takács, Complexity analysis of a full-Newton step interiorpoint
method for linear optimization. Period. Math. Hung., 73(1), (2016), 27–42.
[16] M. E.-Nagy, Sufficient Matrices. https://sites.google.com/view/menagy/research/sufficientmatrices
, Accessed: 2021-03-04.
[17] M. E.-Nagy, T. Illés, G. Lovics, Market exchange models and geometric programming.
Cent. Eur. J. Oper. Res., 27 (2019), 415-435.
[18] E. de Klerk, M. E.-Nagy, On the complexitiy of computing the handicap of a sufficient
matrix. Math. Program., 129 (2011), 383–402.
[19] E. de Klerk, C. Roos, T. Terlaky, Polynomial primal-dual affine scaling algorithms in
semidefinite programming. J. Comb. Optim., 2(1), (1998), 51–69.
[20] M.C. Ferris, J.S. Pang, Engineering and economic applications of complementarity problems.
SIAM Review, 39(4), (1997), 669–713.
[21] M. Fiedler and V. Pták, On matrices with non-positive off-diagonal elements and positive
principal minors. Czechoslovak Mathematical Journal, 12:382–400, 1962.
[22] M. Fiedler and V. Pták, Some generalizations of positive definiteness and monotonicity.
Numerische Mathematik, 9:163–172, 1966.
[23] S.M. Guu, R.W. Cottle, On a subclass of P0. Linear Algebra Appl., 223/224 (1995), 325-335.
[24] F. Gurtuna, C. Petra, F.A. Potra, O. Shevchenko, A. Vancea, Corrector-predictor methods
for sufficient linear complementarity problems. Comput. Optim. Appl., 48(3), (2011), 453–
485.
[25] M. Haddou, T. Migot, J. Omer, A generalized direction in interior point method for
monotone linear complementarity problems. Optim. Lett., 13(1), (2019), 35–53.
[26] T. Illés, S. Morapitiye, Generating sufficient matrices. In F. Friedler, editor, 8th VOCAL
Optimization Conference: Advanced Algorithms, pages 56–61. Pázmány Péter Catholic University,
Budapest, Hungary, 2018.
[27] T. Illés, M. Nagy, A Mizuno-Todd-Ye type predictor-corrector algorithm for sufficient linear
complementarity problems. Eur. J. Oper. Res., 181(3), (2007), 1097–1111..
[28] T. Illés, M. Nagy, T. Terlaky, EP theorem for dual linear complementarity problems. J.
Optim. Theory Appl., 140(2), (2009), 233–238.
[29] T. Illés, M. Nagy, T. Terlaky, Polynomial interior point algorithms for general linear complementarity
problems. Alg. Oper. Res., 5(1), (2010), 1–12.
[30] T. Illés, M. Nagy, T. Terlaky, A polynomial path-following interior point algorithm for
general linear complementarity problems. J. Global. Optim., 47(3), (2010), 329–342.
[31] T. Illés, J. Peng, C. Roos, T. Terlaky, A strongly polynomial rounding procedure yielding
a maximally complementary solution for P*(κ) linear complementarity problems. SIAM J.
Optim., 11(2), (2000), 320–340.
[32] B. Kheirfam, A new infeasible interior-point method based on Darvay’s technique for
symmetric optimization. Ann. Oper. Res., 211(1), (2013), 209–224.
[33] B. Kheirfam, A predictor-corrector interior-point algorithm for P*(κ)-horizontal linear
complementarity problem. Numer. Algorithms, 66(2), (2014), 349–361.
[34] B. Kheirfam, M. Haghighi, A full-Newton step feasible interior-point algorithm for P*(κ)-
LCP based on a new search direction. Croat. Oper. Res. Rev., 7(2), 2016, 277-290.
[35] E. De Klerk, Aspects of Semidefinite Programming: Interior Point Algorithms and Selected
Applications. Kluwer Academic Pubishers, 2002.
[36] M. Kojima, N. Megiddo, T. Noma, A. Yoshise, A Unified Approach to Interior Point
Algorithms for Linear Complementarity Problems, volume 538 of Lecture Notes in Computer
Science. Springer Verlag, Berlin, Germany, 1991.
[37] M. Kojima, S. Mizuno, A. Yoshise, A polynomial-time algorithm for a class of linear complementarity
problems. Math. Program. ,44 (1989), 1–26.
[38] G. Lešaja, C. Roos, Unified analysis of kernel-based interior-point methods for P*(κ)-linear
complementarity problems. SIAM J. Optim., 20(6), (2010), 3014–3039.
21
[39] X. Liu, F.A. Potra. Corrector-predictor methods for sufficient linear complementarity problems
in a wide neighborhood of the central path. SIAM J. Optim., 17(3), (2006), 871–890.
[40] Z. Luo, N. Xiu, Path-following interior point algorithms for the Cartesian P*(κ)-LCP over
symmetric cones. Science in China Series A: Mathematics, 52(8), (2009), 1769–1784.
[41] S. Mizuno, M.J. Todd, Y. Ye, On adaptive-step primal-dual interior-point algorithms for
linear programming. Math. Oper. Res., 18 (1993), 964–981.
[42] Y.E. Nesterov and A.S. Nemirovskii, Interior point polynomial methods in convex programming:
Theory and applications. SIAM Publications, Philadelphia, USA, 1994.
[43] J. Peng, C. Roos, T. Terlaky, Self-Regular Functions: a New Paradigm for Primal-Dual
Interior-Point Methods. Princeton University Press, 2002.
[44] F.A. Potra, A superlinearly convergent predictor-corrector method for degenerate LCP in a
wide neighborhood of the central path with O(p
nL) iteration complexity. Math. Program.,
100(2), (2004), 317–337.
[45] F.A. Potra, Interior point methods for sufficient horizontal LCP in a wide neighborhood
of the central path with best known iteration complexity. SIAM J. Optim., 24(1), (2014),
1–28.
[46] F.A. Potra, X. Liu, Predictor-corrector methods for sufficient linear complementarity problems
in a wide neighborhood of the central path. Optim. Methods Softw., 20(1), (2005),
145–168.

[47] F.A. Potra, R. Sheng, Predictor-corrector algorithm for solving P*(κ)-matrix LCP from
arbitrary positive starting points. Math. Program., 76(1), (1996), 223–244.

[48] F.A. Potra, R. Sheng, A large-step infeasible-interior-point method for the P�-Matrix LCP.
SIAM J. Optim., 7(2), (1997), 318–335.

[49] P. R. Rigó, Zs. Darvay, Infeasible interior-point method for symmetric optimization using
a positive-asymptotic barrier. Comput. Optim. Appl., 71(2), (2018), 483–508.

[50] P. R. Rigó, New trends in algebraic equivalent transformation of the central path and its
applications. PhD thesis, Budapest University of Technology and Economics, Institute of
Mathematics, Hungary, 2020.

[51] C. Roos, T. Terlaky, J.-Ph. Vial, Theory and Algorithms for Linear Optimization. An
Interior Approach. John Wiley & Sons, Chichester, UK, 1997.

[52] G. Lešaja, G.Q. Wang, D.T. Zhu, Interior-point methods for Cartesian P*(κ)-linear complementarity
problems over symmetric cones based on the eligible kernel functions. Optim.
Methods Softw., 27(4-5), (2012), 827–843.

[53] S.H. Schmieta, F. Alizadeh, Extension of primal-dual interior point algorithms to symmetric
cones. Math. Program., Ser. A, 96(3), (2003), 409–438.

[54] E. Sloan, O.N. Sloan, Quitting Games and Linear Complementarity Problems. Math. Op.
Res., 45(2), (2020), 434–454.

[55] Gy. Sonnevend, J. Stoer, G. Zhao, On the complexity of following the central path by linear
extrapolation ii. Math. Program., 52(1), (1991), 527–553.

[56] P.-R. Takács, Zs. Darvay, A primal-dual interior-point algorithm for symmetric optimization
based on a new method for finding search directions. Optimization, 81(3), (2018), 889–905.
[57] H. Väliaho, P�-matrices are just sufficient. Linear Algebra Appl., 239, (1996), 103–108.
[58] M.V.C. Vieira, Jordan algebraic approach to symmetric optimization. PhD thesis, Electrical
Engineering, Mathematics and Computer Science, Delft University of Technology, The
Netherlands, 2007.

[59] G.Q. Wang, Y.Q. Bai, A new primal-dual path-following interior-point algorithm for semidefinite
optimization. J. Math. Anal. Appl., 353(1), (2009), 339–349.

[60] G.Q. Wang, C.J. Yu, K.L. Teo, A new full Nesterov-Todd step feasible interior-point
method for convex quadratic symmetric cone optimization. Appl. Math. Comput., 221,
(2013), 329–343.

[61] S.J. Wright, Primal-Dual Interior-Point Methods. SIAM, Philadelphia, USA, 1997.

[62] Y. Ye, Interior Point Algorithms, Theory and Analysis. John Wiley & Sons, Chichester,
UK, 1997.

[63] Y. Ye, A path to the Arrow-Debreu competitive market equilibrium. Math. Program.,
111(1-2), (2008), 315–348.

ID Code:6474
Deposited By: Ádám Hoffmann
Deposited On:04 May 2021 15:28
Last Modified:04 May 2021 15:30

Repository Staff Only: item control page

Downloads

Downloads per month over past year

View more statistics