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Abstract
This paper analyzes how to choose a delegation, a committee to represent a society
such as in a peace conference. We propose normative conditions and seek Pareto
optimal, consistent, neutral, and non-manipulable ways to choose a delegation. We
show that a class of threshold rules is characterized by these criteria. The rules do not
choose a fixed number of delegates, but instead require different sizes of delegations,
depending on the heterogeneity in society. Therefore the resulting delegations are very
inclusive, and with t delegates the ratio of individuals whose opinions are not included
is always below 0.5t . For instance, a delegation of size two should have at least 75%
support from the society and therefore only less than 25% of the opinion pool can be
neglected.
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1 Introduction

In many situations, individuals participate in collective decision making via a com-
mittee of representatives or delegates, i.e., there is a double-layered aggregation of
individual opinions. Consider, for instance, voting for political candidates in elections
to represent one’s opinion in a parliament. Board decisions in large corporations are
also taken collectively via a committee representing different departments, albeit not
every department is allocated a seat at the board. Correspondingly, peace conferences
and negotiations over conflict zones require delegates to be sent by different interest
groups or ethnicities involved in a civil war. The choice of which interest group or
ethnicity to invite to the conference, however, is not very straightforward—especially
not in extremely heterogeneous, polarized, or divided societies. In fact, the way in
which peace conferences are set also signals the possible effectiveness of these talks.

In many settings, delegates representing their interest groups (or certain types)
with various degrees of support in their society do not necessarily carry a weight
representing their social support in the committee.1 This is especially the case when
the delegation is summoned not tomake a decision but to deliberate on amemorandum
of understanding, or exchange ideas, information, perspectives and perhaps eventually
act as an advisory board. For instance, with a peace conference scenario in mind,
consider a society and the issues it is facing. Delegates representing various ethnic
groups are invited to the table in the hope of creating mutual understanding. Similarly,
consider different interest groups who have diverse opinions on how the city council
should allocate the budget across different expenditures, e.g., a public park, a new
tunnel, or a citywide educational program. Of course, delegates may represent groups
with different powers, and hold a varying degree of support from their supporters.
However, the output of such initiatives as the first layer in a multi-layered aggregation
typically consists of compiling a report or suggestion to another body that makes the
decisions or mediates the process. Therefore, we avoid a consequentialist approach
where the eventual outcome of the mediation process is the only factor that matters.
We follow a non-consequentialist method and focus on how this delegated mediation
should be formed. As proposed and characterized in Suzumura and Xu (2001), there
exist situationswhere people care about the “features of the decisionmaking procedure
through which the consequences are brought about”. It is those cases that we inquire
about, where for each individual “some form of representation” of their opinion is the
ultimate goal instead of the final implementation. By this, we make a clear distinction
between two concepts on opinion formation, i.e., deliberative and aggregative. We
believe that our results contribute to the somewhat neglected part of this research area
on deliberation. 2

Consider a vector, say (6, 2, 2, 1, 1, 0), where the values correspond to the number
of people in a society who support a particular opinion out of six possibilities. What
choice of opinions would be appropriate to represent this society? What should be the
size of the delegation? Should we fix the size ex-ante and then choose the opinions

1 For instance each of the 193 member states in the United Nations has a single ambassador for their
permanent missions, regardless of the size of the nations they represent.
2 Interesting aspects of consultation and deliberation also appear in the papal conclave, axiomatically
analyzed by Mackenzie (2020).
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according to some criteria? An ideal world in our context would obviously be forming
a delegation where all five opinions with nonzero support are represented. This may
be impractical, however, especially when opinions are too diverse. Considering the
support for each opinion, a plausible solution would be to represent opinions that have
“sufficient” support. We want to find out what limited set of opinions we could choose
to represent this society in a reasonable, fair, and plausible way. We are not interested
in how much relative importance an opinion in the delegation has per se, but only
in whether an opinion is “relevant” enough to be invited to the table. Eventually, we
might bring together some people representing those opinions on behalf of possibly
very diverse interest groups and hope to achieve a fruitful exchange of information
and deliberation within the delegation itself.

This paper investigates possible mechanisms through which this table can be
formed. We require such mechanisms to respect some minimal normative require-
ments. These requirements allow us to build an axiomatic framework for the analysis
of deliberative democracy in contrast to aggregative democracy. For instance, the del-
egation choice should respect unanimous agreements in the society and be consistent
in choosing delegates when similar societies are merged. We expect it to be neutral in
the way it treats the opinions, and also expect it to be non-manipulable, such that the
individuals have no improvement in representation through misreporting their ideas.
We propose all these norms as criteria to choose which opinions should get a seat at the
table and then show that there is a unique class of rules which satisfy all these criteria,
hence a characterization result. These novel rules are non-trivial and relatively simple
to comprehend, making them practically usable to form the table.

We assume individuals have priority orderings (opinions) over some available
issues, and those orderings form the preference profile of a society. We formalize
the delegation rules as mechanisms that assign a set of orderings (opinions) to each
given preference profile as representatives in a delegation. Since the delegation is not
necessarily comprised of a single opinion, a delegation rule herein corresponds to
a social welfare correspondence instead of a social welfare function. However, we
employ the term delegation as it entails a particular interpretation. That is, a delega-
tion, which is a set of orderings, is the collection of opinions that represents the society
and should be invited to the table. In addition, these rules do not impose a fixed size of
delegation, instead, the size of the delegations naturally depends on how the opinions
are distributed.

We first require that if all individuals in a society agree on how to rank one issue
over another, the delegation should respect that. This is also known as Pareto opti-
mality. Second, we impose that when two distinct societies represented by identical
delegations merge, the merged society should also be represented by the same dele-
gation (Young 1974, 1975; Smith 1973), an idea known as Consistency3. The third
condition, Support neutrality reflects an idea of fairness, and requires that only the
support of individual opinions should matter in the delegation choice.4 Finally, we
require that no individual can manipulate the choice of delegation to their advantage.

3 Consistency additionally implies that the delegation choice is anonymous, a condition which requires
that the names of the individuals do not matter.
4 Support neutrality additionally implies that the delegation choice is neutral, a condition which requires
that relabelling the names of issues does not matter.
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This condition is called Strategy-proofness. The first two, Pareto optimality and con-
sistency, are very standard conditions in the literature. In what follows, we explain
further support neutrality and strategy-proofness.

Support neutrality imposes neutrality towards “equivalent supports”. Consider two
societies of equal size, say, six individuals, facing three issues, hence six possible
preferences. Now represent the opinions in both societies by the number of followers
each preference has, e.g., (3, 2, 1, 0, 0, 0) and (0, 1, 2, 3, 0, 0). As it happens, the two
societies have “equivalent” ballots, i.e., the support distribution is merely a shuffling of
the number of followers. In this case, we require the delegation choice in each society
to correspond to the support for the delegates. For instance, if the first preference
in the former ballot with a support of 3 is chosen as a delegate in the first society,
then the fourth preference in the latter ballot should also be chosen in the second
society. Support neutrality is also a variable alternative axiom, which necessitates
that increasing the number of available issues and preferences, does not influence
the outcome so long as the distributions of supported opinions are equivalent.5 We
explain this further in detail in the coming section and provide an example in the
appendix.

Strategy-proofness requires that the rule is not manipulable by individuals (or coali-
tions). Therefore a rule being strategy-proof naturally induces honest reporting of
individual opinions. Consider a society and a delegation representing it. Suppose an
individual misreports his opinion, and this alters the delegation such that at least one
new delegate is strictly closer6 to his opinion than any other delegate in the original
delegation. This situation is considered as a successful manipulation. We require that
the delegation choice should not be prone to any such manipulation. If a rule is not
manipulable by any individual, then we call it individual strategy-proof, whereas if no
coalition of individuals can achieve such manipulation, we call it coalitional strategy-
proof. The latter is a stronger requirement than the former. Our strategy-proofness
concept is fundamentally different than that of Bossert and Storcken (1992), Bossert
and Sprumont (2014) and Athanasoglou (2016), since we allow multiple opinions in
the outcome.7

We find that there exists a non-dictatorial, non-trivial, and in fact, simple class of
rules which is characterized by these conditions, and which we call threshold rules.
The threshold rules impose different sizes of delegations depending on the composition

5 For instance, increasing the number of issues to 4, and hence the number of possible preferences to 24,
would still yield the first preference as the only delegate if the ballot stayed as (3, 2, 1, 0, 0, . . . , 0).
6 We use the most typical measure of closeness for orderings, i.e., the Kemeny distance (Kemeny 1959).
This metric is applied in many different contexts similar (or identical) to the Kendall–Tau distance (Kendall
1938), the Damerau–Levenshtein distance (Damerau 1964; Levenshtein 1966), the Hamming distance
(Hamming 1950), and swap distance among others.
7 When a profile of orderings is aggregated into a single alternative, i.e., social choice function, Gibbard
(1973) and Satterthwaite (1975) show the impossibility of finding proper non-dictatorial and strategy-
proof rules on unrestricted domain. See Barberà et al. (2001) and Barberà (2011) for more on strategy-
proof social choice rules and Dasgupta and Maskin (2008) for robustness of the majority rule when the
domain is restricted in various ways. When a profile is aggregated into a single ordering, i.e., social welfare
function, the results are mixed since the definition of strategy-proofness can be quite numerous. Bossert and
Storcken (1992) prove an impossibility result, Sato (2013) offers more positive news, and finally, Bossert
and Sprumont (2014) uses a weaker version of strategy-proofness than in Bossert and Storcken (1992) and
provides some examples of non-manipulable rules.
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of the society instead of a fixed size. This is very natural as opinions in a group of
people may have a different level of polarization and diversity. Therefore, threshold
rules change the size of the delegation depending on the heterogeneity of the society.
The rules also share a common lower bound in terms of how much representative
power they require for all possible size of delegations. For instance, if a delegation is
composed of t delegates, then the ratio of individuals whose opinions are not included
is always below 0.5t , hence the ratio of the individuals supporting those delegates to
the whole society must be strictly higher than 1 − 0.5t .

The delegation rules we characterize only differ in how high the thresholds are
set above the common lower bound. We show that for each threshold rule, there
exists a threshold function f , which imposes how much minimal support a delega-
tion of size t has to have to be an appropriate representation for a society. The rule
orders each possible opinion/delegates according to their support in the society and
chooses the lowest number of delegates t∗ with a total support reaching the respec-
tive threshold, i.e., f (t∗). For example, a threshold rule might require 60% of the
society’s support for singleton delegations, i.e., f (1) = 0.6. If this support is not
found, then it might look for 85% of the society’s support for a delegation of size 2,
f (2) = 0.85. If this support is not found, then the process continues, with mono-
tonically increasing thresholds for each t . We show that all threshold rules satisfy
two conditions: (i) f (1) > 0.5 and (ii) 1 ≥ f (t) ≥ ( f (t − 1) + 1)/2 for t ≥ 2,
i.e., the minimal threshold for a singleton delegation is above 50%, and the mini-
mal threshold for delegations of size t ≥ 2 is at least the average of the previous
level, f (t − 1) and 100%, but at most 100%. Of course, f (1) can also start from
100% (and hence continue at that level), requiring 100% support for each possible
sizes of delegations, which can only be reached by including all the reported prefer-
ences.

As Lanz (2011) argues, “Only stakeholders who add value to the process and aug-
ment the chances of reaching a sustainable settlement should be given seats at the
table, [...]”. The challenge, therefore, is to make the invitations to the table from a nor-
mative perspective while maintaining inclusivity and feasibility. This paper proposes
a quantitative measure on how to form the table for invitations, the number of seats at
the table, and finally how representative in total, the invitees must minimally be.

The paper proceeds as follows. Section 2 presents the notation and conditions. In
Sect. 3, we define threshold rules and provide some examples. In Sect. 4, we provide
our characterization. Section 5 concludes with some policy implication.

2 Basic notation and conditions

2.1 Model

Let A be a countably infinite set of alternatives, interpreted as potential issues.
Given a finite nonempty subset A � A, preferences are taken to be strict prior-
ity rankings of these issues, formalized as complete, antisymmetric and transitive
binary relations over the set of alternatives A. We denote the set of all prefer-
ences over A by L(A). Given a preference R ∈ L(A), and two distinct alternatives
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a and b, the case where a is preferred to b can be denoted by R = .a.b. or
(a, b) ∈ R. Consider, for instance, for A = {a, b, c} the preferences R1 =
abc and R2 = acb. Then {(a, b), (a, c), (b, c), (a, a), (b, b), (c, c)} = R1 and
{(a, b), (a, c), (c, b), (a, a), (b, b), (c, c)} = R2.

To measure closeness, we use the well-known Kemeny distance.8 The Kemeny
distance counts the number of disagreements in two preferences. Formally, for any two
preferences R1 and R2, the Kemeny distance is δ(R1, R2) = (|R2\R1| + |R1\R2|)/2
where |R2\R1| denotes the number of ordered pairs in R2 but not in R1, and vice versa.
For instance, for R1 and R2 above, the only disagreement stems from how to rank the
alternatives b and c. For the rest, both preferences are aligned. This disagreement is
exposed by the Kemeny distance by summing |R2\R1| = |{(c, b)}| and |R1\R2| =
|{(b, c)}| and dividing by 2 to account for the symmetry in these pairs. All in all, this is
interpreted as half of the symmetric set difference, i.e., δ(R1, R2) = 1 for R1 = abc
and R2 = acb.

Let N be a countably infinite set of agents, interpreted as potential individuals.
Given a finite nonempty subset N � N with cardinality n, L(A)n denotes the set
of all preference profiles P , i.e., preferences of n agents where P(i) refers to the
preference of agent i ∈ N and P(S) refers to the preference profile, say a subprofile,
of a subset of agents S ⊆ N . Given a profile P ∈ L(A)n , and R ∈ L(A), we denote
the number of agents who reported R in this profile as p(R) = |{i ∈ N | P(i) = R}|.

Given any finite A � A, let R1, R2, . . . , R|A|! be an enumeration of prefer-
ences in L(A), e.g., the lexicographic enumeration for A = {a, b, c} is “R1 =
abc, R2 = acb, R3 = bac, R4 = bca, R5 = cab, R6 = cba”. Let Z+ denote
the set of non-negative integers. Given any such enumeration, a profile P ∈ L(A)n

can also be interpreted as a vector composed of the number of followers each pref-
erence has, e.g., p = (p1, p2, , p3, . . . , p|A|!) on Z

|A|!
+ with the interpretation that

pt = |{i ∈ N | P(i) = Rt }| is the support for preference Rt ∈ L(A) and p is
the support for the preference profile P . As an example, for 3 alternatives and the
lexicographic enumeration given above, the support for the following preference pro-
file,

P = {abc, abc, abc
︸ ︷︷ ︸

R1

, bac, bac
︸ ︷︷ ︸

R3

, cab
︸︷︷︸

R5

} ∈ L(A)6

can be denoted by p = (3, 0, 2, 0, 1, 0). For simplicity, we also denote the normalized
support for the same profile similarly, e.g., p = (0.5, 0, 0.3̄, 0, 0.16̄, 0).

Consider two disjoint finite sets of agents N , N ′, and preference profiles P ∈
L(A)n , and P ′ ∈ L(A)n

′
. Then, P̄ = (P, P ′) ∈ L(A)n+n′

denotes the merging of two
profiles, i.e, P̄(i) = P(i) if i ∈ N and P̄(i) = P ′(i) if i ∈ N ′. If P and P ′ are such
that there exists a bijection σ : N ↔ N ′ such that P(i) = P ′(σ (i)) for all i ∈ N , then
we call P̄ = (P, P ′) as a two-fold replica of P and denote it by 2P . The definition
naturally extends to all c-fold replicas cP of P , for any c ≥ 2 for c ∈ Z+.

8 Kemeny (1959) introduced this distance. For a recent characterization of this distance, revealing a flaw
in Kemeny (1959), see Can and Storcken (2018).
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We investigate delegation rules, collection of social welfare correspondences that
can be defined for any finite population and any finite set of issues and assign a
nonempty subset of opinions to each preference profile. Formally, a delegation rule is
denoted by ϕ:

ϕ :
⋃

N�N ,A�A
L(A)N → 2L(A)\{∅} (2.1)

Given a preference profile P ∈ L(A)n , the set of opinions ϕ(P) ⊆ L(A) is inter-
preted as the set of delegates or the delegation for this society.

2.2 Conditions

Next, we introduce some conditions on how to choose a delegation. The first condition
requires that if everyone prefers an alternative over another, then no delegate should
say otherwise.

Definition 1 (Pareto optimality) A rule ϕ is Pareto Optimal whenever for all A � A,
for all N � N , for all P ∈ L(A)n and for all a, b ∈ A, if for all i ∈ N , (a, b) ∈ P(i),
then for all R ∈ ϕ(P), (a, b) ∈ R.

The second condition we impose concerns merging of two societies each endowed
with the same delegation. In such situations, the delegation assigned to the merged
society should remain the same. This concept is well known in many contexts under
varying names with slight changes, including reinforcement, homogeneity,9 etc.

Definition 2 (Consistency) A rule ϕ is consistent whenever for all A � A, for all
two disjoint finite sets N , N ′ � N (with cardinality n and n′ respectively) and for all
profiles, P ∈ L(A)n and P ′ ∈ L(A)n

′
, if ϕ(P) = ϕ(P ′) then ϕ((P, P ′)) = ϕ(P) =

ϕ(P ′).

The third condition we impose concerns variable alternative scenarios, wherein the
fixed set of individuals face more issues to report their preferences on. Consider, for
instance, two sets of alternatives A � Ā such that |A| = 3 and | Ā| = 4. Consider two
profiles on these sets with the following frequency supports:

P ∈ L(A)n with p = (3, 2, 1, 0, 0, 0) and P̄ ∈ L( Ā)n with p̄ = (0, 1, 2, 3, 0, . . . , 0)
︸ ︷︷ ︸

20 entries

Note that the nonzero entries in each vector are identical (except for the shuffling).
The condition requires that shuffling the support for preferences should shuffle the
delegates in the exact same way.10 Formally, take any two sets of alternatives such

9 Homogeneity is a milder version of this concept, which requires that result would be insensitive to
replicating the population (Fishburn 1977).
10 This condition is, in fact, an amalgamation of two well-known conditions, neutrality and anonymity,
and stronger than both.
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that A ⊆ Ā � A, a profile P ∈ L(A)n and an injection11 π : {1, 2, . . . , |A|!} →
{1, 2, . . . , | Ā|!} such that it injects each ranking on A to some unique ranking on Ā.
We say P̄ ∈ L( Ā)n is an “expansion of P by π” if for all t ∈ {1, 2, . . . , |A|!} we have
pt = p̄π(t). We consider such profiles P, P̄ to have equivalent supports and refer to
π as a corresponding injection.12

Definition 3 (Support neutrality) A rule is support neutral whenever for any two sets
of alternatives A ⊆ Ā � A, for all N � N , for all P ∈ L(A)n and P̄ ∈ L( Ā)n with
equivalent supports and for all corresponding injections π , we have:

Ri ∈ ϕ(P) if and only if R̄π(i) ∈ ϕ(P̄).

Weprovide an example inAppendixA.2 to illustrate this condition.13 Next,we show
that support neutrality, together with Pareto optimality, implies that the delegation can
only be chosen from preferences that are reported. Thus we do not have to worry about
finding a delegate whose role would be to represent some “compromised” preference.
Let RP(P) = {R ∈ L(A) | p(R) > 0}, denote the set of reported preferences,
preferences which are reported by at least one agent in profile P .

Proposition 2.1 If a rule ϕ satisfies Pareto optimality and support neutrality, then for
all A � A, for all N � N , and for all P ∈ L(A)n, ϕ(P) ⊆ RP(P).

Proof The proof is in Appendix B.1. 
�
The following remark says that we can always find an expansion for a profile in

which delegates and non-delegates are clustered, that is, each agent whose preference
is not in the delegation will prefer any non-delegate to any delegate. In other words,
every agent who supports a preference which is not part of the delegation would like
to enlarge the delegation set.

Let us extend the definition of injections to sets of preferences. Given A ⊆ Ā � A
and any injection π : {1, 2, . . . |A|!} → {1, 2, . . . | Ā|!}, and any X ⊆ L(A),

π(X) = {R̄π(i) ∈ L( Ā) | Ri ∈ X}.

Remark 2.1 Note that, since A is infinite, for any A � A, for any preference profile
on A and for any two disjoint sets X ,Y � L(A), we can always find an expansion
P by some π of the initial preference profile such that the injections of the two sets
X and Y (denoted respectively by π(X) and π(Y )), form clusters that are “far away”
from each other. Formally:

11 For A = Ā, π is a permutation.
12 There may be more than one corresponding injection for two equivalent supports.
13 Note that the definition of support neutrality even extends to profiles on two disjoint sets of alternatives.
For instance, let A = {x, y, z} and B = {a, b, c}, and consider two profiles P ∈ L(A)n and P̄ ∈ L(B)n

with identical ballots. Consider expansions of P and P̄ , say P ′ and P̄ ′ respectively, to A ∪ B by some
injection. Support neutrality applies between P and P ′ (and between P̄ and P̄ ′). By construction, P ′ and
P̄ ′ have equivalent supports. Therefore support neutrality applies between P ′ and P̄ ′. This, in turn, imposes
support neutrality between P and P̄ .

123



How to choose a fair delegation?

max
R,R′∈π(X)

δ(R, R′) < min
R∈π(X),R′∈π(Y )

δ(R, R′)

(The example in Appendix A.3 illustrates this remark. We would like to note,
however, that the remark is quite general and the proofs in the sequel do not use the
axiomatic properties of the Kemeny distance specifically except for betweenness.)

The fourth condition, strategy-proofness, implies that no agent should “benefit”
from misreporting his preference, i.e., truth telling is a weakly dominant strategy.
We say an agent i weakly prefers a delegate R1 to another delegate R2, when-
ever P(i) is weakly closer to R1 than it is to R2 in terms of the Kemeny distance,
i.e., δ(P(i), R1) ≤ δ(P(i), R2). Similarly, we say an agent i weakly prefers a
delegation D1 to another delegation D2, whenever P(i) is weakly closer to the
most preferred delegate in D1 than it is to the most preferred delegate in D2, i.e.,
min{δ(P(i), R1) | R1 ∈ D1} ≤ min{δ(P(i), R2) | R2 ∈ D2}. Strategy-proofness
means that every agent weakly prefers the delegation they get under true preferences
to any delegation they achieve by misreporting. In other words, there is no possi-
bility of misreporting and getting a new delegate in the delegation which is closer
to the agent’s preference. Here, we take the closest delegate as the only relevant
one for the agents, meaning agents do not care about the distance to other dele-
gates.14 We first discuss the usual individual strategy-proofness and afterward the
coalitional version of it. In the sequel we shall only use the former. However, we
show later in Proposition 2.2 that the latter is implied by the former under support
neutrality.

Definition 4 (Strategy-proofness) A rule ϕ is strategy-proof whenever for all A �

A, for all N � N , for all P ∈ L(A)n and for all i ∈ N , there exists no P ′ =
(P ′(i), P(N\{i})) ∈ L(A)n such that

min
R∈ϕ(P)

δ(P(i), R) > min
R∈ϕ(P ′)

δ(P(i), R).

Definition 5 (Coalitional strategy-proofness) A rule is coalitional strategy-proof
whenever for all A � A, for all N � N , for all P ∈ L(A)n and for all coalitions
S ⊆ N , there exists no P ′ = (P ′(S), P(N\S)) ∈ L(A)n such that:

min
R∈ϕ(P)

δ(P(i), R) > min
R∈ϕ(P ′)

δ(P(i), R)

for all i ∈ S.

14 Here we do not assume any negative externality in representativeness, i.e., agents only care about the
delegate(s) that are closest to them in terms of representation. We are thankful to an anonymous referee
pointing out that this formulation actually corresponds to the standard metric between two sets, where the
singleton set P(i) and the set of delegates D is compared. Note, however, that other methods, e.g., averaging
the distances to set D, or taking themedian preference in Dwould give perfectly valid but different scenarios
of representation.
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Remark 2.2 Note that our individual strategy-proofness concept is fundamentally dif-
ferent than that of Bossert and Storcken (1992) and of Athanasoglou (2016). We allow
multiple preferences in the outcome (in the case of single-valued delegation rules
they are equivalent). A recent paper by Bossert and Sprumont (2014) differs from
the former two interpretations since the manipulation is based on a concept known
as betweenness (see also Grandmont (1978), Kemeny (1959), and Sato (2013)). In
their interpretation, an agent can benefit only when the outcome is manipulated to
somewhere between herself and the preference corresponding to truth telling. In our
interpretation agents can benefit when the outcome ismanipulated to anywhere, result-
ing a closer preference. This makes the strategy-proofness we propose, ceteris paribus,
stronger and harder to satisfy. We provide an example in Appendix A.1 which is
strategy-proof in the sense of Bossert and Sprumont (2014), but not in the way we
interpret it.

Next, we show that under support neutrality strategy-proofness implies coalitional
strategy-proofness. We use this implication throughout the proofs.

Proposition 2.2 If a rule ϕ is strategy-proof and support neutral, then it is also coali-
tional strategy-proof.

Proof Let ϕ be a strategy-proof and support neutral rule. For any A � A, any N � N
and any P ∈ L(A)n , and for any S ⊆ {i ∈ N | P(i) /∈ ϕ(P)}, let us denote any
deviation from P by agents in S as P ′ = (P ′(S), P(N\S)). Let W = ϕ(P) and
O = L(A)\ϕ(P) denote a partition of L(A).

By Remark 2.1, there exists an expansion of P by π , say P̄ , where W̄ = π(W )

and Ō = π(O) such that

max
R̄,R′∈Ō

δ(R̄, R′) < min
R̄∈Ō,R′∈W̄

δ(R̄, R′). (2.2)

Consider any enumeration of i ∈ S, i.e. S = {1, 2, . . . , s}. Let us construct
expanded profiles, P̄0, P̄1, . . . , P̄s, with P̄0 = P̄ , P̄s = P̄ ′ (the expansion of
P ′ by π , i.e., P̄ ′ = (P̄ ′(S), P̄(N\S)), and for all i ∈ {1, 2, . . . , s}, P̄i =
(P̄ ′({1, 2, . . . , i}), P̄(N\{1, 2, . . . , i})). This is a formalization of the idea that any
deviation by a coalition can be constructed as a result of consecutive unilateral devia-
tions by a sequence of agents.

By Proposition 2.1, ϕ(P̄i ) ⊆ RP(P̄i ) for all i ∈ {1, 2, . . . , s}. Note that from P̄0 to
P̄1, there cannot be a preference R̄ ∈ Ō that becomes a new delegate for P̄1. This is
because by Inequality 2.2, we have that for all R′ ∈ W̄ , δ(R̄, P̄(1)) < δ(R′, P̄(1)) and
this would contradict individual strategy-proofness. A similar argument holds from
P̄i to P̄i+1 for any i ∈ {1, 2, . . . , s − 1}. As the choice of enumeration of agents in S
is arbitrary, eventually this implies that there exists no R̄ ∈ Ō such that R̄ ∈ ϕ(P̄s).
As P̄s = P̄ ′, and P̄ ′ is an expansion of P ′, then there exists no R ∈ O , such that
R ∈ ϕ(P ′), since there exists no R̄ ∈ O with R̄ ∈ ϕ(P̄ ′). Then ϕ(P ′) ⊆ W = ϕ(P).
As ϕ(P ′) is a subset of ϕ(P), this implies that no agent in S has become strictly better
off, i.e.,
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There exists no i ∈ S such that min
R∈ϕ(P)

δ(P(i), R) > min
R∈ϕ(P ′)

δ(P(i), R).

Since all agentswhose preferences are already included in the delegation, i.e, P(i) ∈
W has distance of zero to the delegation, they will not have any incentive to deviate
or to join a coalition. This means that there cannot be any coalition S which can
successfully manipulate. 
�

3 Using thresholds for delegation rules

3.1 Threshold rules

In this section, we introduce a large class of delegation rules which we call threshold
rules. Every threshold rule is associated with a particular threshold function which
we introduce below. Thereafter we show that the rules are well-defined and provide
some examples within this special class of delegation rules. Let Z++ denote the set
of positive integers.

Definition 6 (Threshold Function) A threshold function is a function f : Z++ →
( 12 , 1] such that for all t :

f (t + 1) ≥ f (t) + 1

2
.

These functions simply assign a threshold for each possible delegation of size t .
Let us introduce some additional notation to define the threshold rules. Given any
P ∈ L(A)n , consider an enumeration which orders preferences according to their
support from the agents from the strongest to weakest, i.e., pi ≥ pi+1. For example,
let p = (0.5, 0.3̄, 0.16̄, 0, 0, . . . , 0) be the normalized support for P . Let us also
denote the corresponding preferences as R1, R2, . . . , R|A|! i.e., R1 is the preference
with the strongest support and so forth.15 Then we can define the cumulative support
ρ as the cumulative vector of p, i.e., for all i , ρi = p1 + . . . + pi . For instance, the
cumulative support for the aforementioned P is: ρ = (0.5, 0.83̄, 1, 1, . . . , 1).

We first introduce the threshold rules as an algorithm, then proceed with the formal
definition.

15 Note that some preferences in profiles might have equal support with a tie. In that case, the enumeration
of those preferences can be chosen arbitrarily.
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Take any profile P and the cumulative support for it as ρ. Consider any threshold
function f . Let R1, R2, . . . R|A|! denote an ordering of preferences according to
their support, with ties broken arbitrarily.

Step 1: Check whether ρ1 ≥ f (1). If yes, ϕ f (P) = {R1} and the algorithm
stops. Otherwise, go to the next step.

Step 2: Checkwhetherρ2 ≥ f (2). If yes,ϕ f (P) = {R1, R2} and the algorithm
stops. Otherwise, go to the next step.

...

Step t: Check whether ρt ≥ f (t). If yes, ϕ f (P) = {R1, R2, R3, . . . , Rt } and
the algorithm stops. Otherwise, go to the next step.

...

Note that the algorithm stops after finite steps since we are dealing with a finite
subset A of A. Next, we propose the formal definition. Again, given any profile P ,
we use the enumeration R1, R2, . . . R|A|! which orders according to the size of the
support.

Definition 7 (Threshold Rule) Given a threshold function f , a threshold rule corre-
sponding to f is defined for all A � A, for all N � N , and for all P ∈ L(A)n

as

ϕ f (P) = {R1, R2, . . . , Rt∗}

where t∗ = argmin
t

{t ∈ Z++ | ρt ≥ f (t)}.

Thus the threshold rule selects the lowest number of delegates at which the corre-
sponding threshold for total support is reached via the threshold function f . Note that
an equivalent formulation for f in Definition 6 is as follows:

f (t + 1) − f (t) ≥ 1

2
(1 − f (t)). (3.1)

Under this formulation, it is easy to see that the delegation is not complete until the
last additional delegate joining the table actually accounts for representing at least half
of the previously excluded opinions.16 In addition, all the threshold functions obey

16 We thank an anonymous referee for this alternative formulation and pointing out an interesting interpre-
tation.
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the following lower bounds:

f (t) >
1

2
+

(

1

2

)2

+ · · · +
(

1

2

)t

=
t

∑

i=1

(

1

2

)i

. (3.2)

On top of this common lower bound feature, each of the threshold rules we char-
acterize differs in the amount of representation they require from a delegation. For
instance, if a single delegate is sent by the rule to the table, then that delegate, and the
opinion she represents must have strictly more than 50% support in the society. How-
ever, let us consider a more demanding threshold rule, such as one that requires a 60%
for a single delegate representation. In that case, the minimal required support for a
delegation of size 2 becomes at least 80% (averaging 60% and 100%). The thresholds
for larger delegations quickly increase by averaging each threshold with 100% to find
the next threshold, making it harder for small delegations to reach. Therefore, these
rules are fairly inclusive in most of the cases. Essentially, the size of the delegations
under the threshold rules depend on the diversity and the modality of the preferences
in the society.

However, there are two immediate concerns about these delegations rules. The first
is whether we can always find a delegation that exceeds the threshold. The second
is what happens when the algorithm stops at t∗, where two preferences have equal
support, i.e., pt∗ = pt∗+1 and Rt∗ ∈ ϕ f (P) but Rt∗+1 /∈ ϕ f (P). We address both
concerns in Proposition 3.1 which shows that the rules are well-defined.

Proposition 3.1 For all threshold functions f , the threshold rule ϕ f is well-defined.

Proof The proof is in Appendix B.2. 
�

3.2 Illustrations and comparison of exclusiveness

Next, we demonstrate with some examples how threshold rules assign delegates to
different preference profiles. Thereafter, we propose a measure of social exclusion
based on the threshold functions.

3.2.1 Some illustrations for threshold rules

Example 3.1 We will show four different delegation rules by their threshold rules in
the case of three alternatives. Let us consider the three different preference profiles,
P1, P2, and P3 denoted below by the normalized support (on the left side) and the
cumulative support (on the right side) for preferences. Note that for the sake of simplic-
ity we use profiles with the same enumeration wherein the support for Ri is decreasing
in i .

p1 = (0.31, 0.29, 0.29, 0.11, 0, 0) ρ1 = (0.31, 0.6, 0.89, 1, 1, 1)
p2 = (0.78, 0.12, 0.1, 0, 0, 0) ρ2 = (0.78, 0.9, 1, 1, 1, 1)
p3 = (0.55, 0.12, 0.11, 0.11, 0.11, 0) ρ3 = (0.55, 0.67, 0.78, 0.89, 1, 1)
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The illustrations which are provided below capture the essence of threshold rules.
Even though neither cumulative supports nor the relevant thresholds for each cardinal-
ity are continuous values, connecting discrete values via lines makes the visualization
easier. In the following graphs, the first number of delegates that a cumulative sup-
port is above the corresponding threshold indicates the number of delegates in the
delegation.

Throughout these examples, let us denote the threshold function as f =
(., . . . , 1, . . .), where the i th entry corresponds to f (i). Since this function is increas-
ing and has the bound of 1, once the value of 1 is reached, all further values is equal
to 1.

• The first rule, ϕ1 is defined by the threshold function f 1 = (0.51, 0.76, 0.89,
0.95, 1, . . .). This rule checkswhether the total support for somedelegation reaches
the relevant threshold for the size of the delegation, and if it does, picks that
delegation with the smallest number of delegates.

• The second rule we deal with, ϕ2 is characterized by the threshold vector, f 2 =
(0.51, 1, . . .). This rule checkswhether there exists any preference that is supported
by more than at least 51% of the agents and if it is the case makes it the singleton
delegate. If it is not the case, the rule picks all reported preferences instead.

• The third rule we deal with, ϕ3 is characterized by the threshold vector, f 3 =
(0.6̄, 1, . . .). This rule checks whether there exists any preference that is supported
by more than at least two-thirds of the agents (a.k.a. qualified majority), and if it
is the case, then makes it the singleton delegate. If it is not the case, the rule picks
all reported preferences instead.

• The last rulewedealwith,ϕ4 is the reported preference rule RP(P), which chooses
all preferences reported. The relevant threshold vector is f 4 = (1, . . .), i.e. the
total support for any delegation should be at least 100%.

The illustrations of the rules and the delegations for each example profile are pro-
vided below. The bold numbers for ρi , indicates that Ri is a chosen delegate for the
profile p under the rule ϕ f .

As can be seen from Fig. 1, ϕ1(P1) = {R1, R2, R3}, while ϕ1(P2) = ϕ1(P3) =
{R1}.

As can be seen from Fig. 2, ϕ2(P1) = {R1, R2, R3, R4}, while ϕ2(P2) =
ϕ2(P3) = {R1}.

As can be seen from Fig. 3, ϕ3(P1) = {R1, R2, R3, R4}, ϕ3(P2) = {R1}, and
ϕ3(P3) = {R1, R2, R3, R4, R5}.

As can be seen from Fig. 4, ϕ4(P1) = {R1, R2, R3, R4}, ϕ4(P2) = {R1, R2, R3},
and ϕ4(P3) = {R1, R2, R3, R4, R5}.

3.2.2 Ameasure of exclusion

Given a threshold function f , as a measure of social exclusion for a threshold function
can be considered as follows:

e( f ) =
∑

t

(1 − f (t))
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Fig. 1 Delegations chosen by threshold rule ϕ1

Fig. 2 Delegations chosen by threshold rule ϕ2

The exclusion measure e( f ) gives a value of almost 1 for the most exclusive rule
discussed as f 1 = (0.51, 0.76, 0.89, 0.95, 0.98, 1, . . .) and it is zero for the most
inclusive rule f 4 = (1, 1, . . .). in Sect. 3. The resemblance to Lorenz curves under
this setting is not superficial. Firstly, similar to Lorenz curves, these two thresholds
lead to the two extreme values for the exclusion measure e( f 1) = 1 and e( f 4) = 0.
Secondly, analogous to Lorenz domination, these two curves f 1 and f 4 in Fig. 5,
serve as the lower and upper bounds for all the other threshold functions, e.g., f 2 and
f 3 in Figs. 2 and 3 in Sect. 3.
If a threshold curve is above another, then it is more inclusive. Nevertheless, there

are still interesting situations in terms of exclusion. These cases arise from intersecting
threshold curves, similar to those in the inequality literature and Lorenz curves where
Lorenz dominance does not apply (see, for instance, Davies and Hoy (1995) and
Aaberge (2000)). Consider, for example, the following threshold functions which are
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Fig. 3 Delegations chosen by threshold rule ϕ3

Fig. 4 Delegations chosen by threshold rule ϕ4

also depicted in Fig. 5:

f 5 = (0.6, 0.8, 1, . . .)

f 6 = (0.51, 0.9, 0.95, 1, . . .)

The derived exclusion values for these functions are: e( f 5) = 0.4+0.2 = 0.6, and
e( f 6) = 0.49+ 0.1+ 0.05 = 0.064. The exclusion measure e gives a higher value of
exclusivity for f 6, hence f 5 is more inclusive. However, this does not mean that f 6

always has a lower number of delegates. As explained, the number of delegates (and
inclusivity) depends also on the heterogeneity of the profile. Therefore depending on
the composition of the preference profile of the society, the size of the delegation can
play out either way. For example, consider two preference profiles ρ1 = (0.5, 0.3, 0.2)
and ρ2 = (0.51, 0.49). Despite the higher exclusion value of f 6, for profile ρ1, f 6
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Fig. 5 Intersecting threshold curves

assigns 3 delegates while f 5 assigns only 2. Conversely, for profile ρ2, f 6 has 1
delegate while f 5 has 2.

We are thankful to an anonymous referee for pointing out to this very interesting
analogy to intersecting Lorenz curves. We believe it to be worthwhile to analyze
exclusion measures in terms of expected number of delegates. An interesting open
question to that end is whether with a higher exclusivity measure, one would have a
lower expected number of delegates for different profile distributions.

4 Characterization of the threshold delegation rules

In this section, we show that the conditions of Pareto optimality, consistency, support
neutrality, and strategy-proofness characterize the class of delegation rules which
we explained in the previous section. We show that these conditions lead to some
implications concerning the behavior of the delegation rules. The first four lemmas
shape the structure of the rules concerning the support of delegates. Another four
lemmas prove the existence of a series of critical thresholds for choosing delegates
and set forth the structure of these thresholds. We conclude the section with our main
theorem which states that the only rules satisfying the conditions we demand are the
threshold delegation rules.

4.1 Delegates and their support in the society

In what follows, Lemma 4.1 shows that if a preference is chosen as a delegate, then any
other preferencewith stronger support in the society should also be chosen. Lemma 4.2
argues that rules should only care about the percentage of the support, i.e., only the
normalized support of preference profiles matter. Lemma 4.3 proves that i) equal
redistribution of the total support for the delegates among themselves does not change
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the delegation, and ii) equal redistribution of the total support for the rest among
themselves also does not modify the delegation.

Lemma 4.1 If a ruleϕ satisfies consistency, support neutrality, and strategy-proofness,
then for all A � A, for all N � N and for all P ∈ L(A)n if R ∈ ϕ(P) and
p(R′) ≥ p(R), we have R′ ∈ ϕ(P).

Proof The proof is in Appendix B.3. 
�
This lemma andProposition 2.1 implies that any rule satisfying these conditionswill

have a delegation composed of preferences with relatively higher support compared to
preferences that are not in the delegation. The following lemma proves the delegations
to be the same for two different societies with identical normalized supports. Let
p/n = (

p1
n ,

p2
n , . . . ,

p|A|!
n ) denote the normalized support by the number of agents.

Lemma 4.2 If a rule ϕ satisfies consistency and support neutrality, then for all A � A,
for all N , N ′ � N , and for all P ∈ L(A)n and P ′ ∈ L(A)n

′
such that p/n = p′/n′,

we have ϕ(P) = ϕ(P ′).

Proof The proof is in Appendix B.4. 
�
The following lemma proves that neither averaging between supports of chosen

delegates nor averaging between supports of non-delegates will change the delegation.

Lemma 4.3 If a rule ϕ satisfies consistency and support neutrality, then for all A �

A, for all N � N and for all P ∈ L(A)n, denoting |ϕ(P)| = t , and picking an
enumeration on L(A) such that pi ≥ p j for all i < j , the following holds:

(i) For any P ′ ∈ L(A)n such that
p′
j
n = ∑t

i=1
pi
nt for all j ∈ {1, 2, . . . , t} and

p′
j
n = p j

n for all j ∈ {t + 1, t + 2, . . . , |A|!} we have ϕ(P) = ϕ(P ′).

(ii) For any P ′′ ∈ L(A)n such that
p′′
j
n = p j

n for all j ∈ {1, 2, . . . , t} and
p′′
j
n =

|A|!
∑

i=t+1

pi
n(|A|!−t) for all j ∈ {t + 1, t + 2, . . . , |A|!} we have ϕ(P) = ϕ(P ′′).

Proof The proof is in Appendix B.5. 
�
Example 4.1 As an example for those two cases, let us take some A with |A| = 3. Let
us take P ∈ L(A)n with support p = (8, 7, 6, 3, 0, 0)where bold numbers indicate the
support for the chosen delegates. As an example for two subcases of the Lemma 4.3, let
us take P ′, P ′′ ∈ L(A)n with supports p′ = (7, 7, 7, 3, 0, 0), p′′ = (8, 7, 6, 1, 1, 1)
respectively. Then, Lemma 4.3 implies ϕ(P) = ϕ(P ′) = ϕ(P ′′) = {R1, R2, R3}.
Remark 4.1 Using permutations and merging as in the proof of Lemma 4.3, it is
straightforward to see that the lemma also applies to any subset of delegates or non-
delegates. That is, averaging between supports of some subset of chosen delegates or
some subset of non-delegates will not change the delegation.
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In the next lemma, we show that if a preference is chosen as a delegate, it must
have more support than the total support for all the preferences which are not in the
delegation. This is mainly due to the strategy-proofness condition.

Lemma 4.4 If a rule ϕ satisfies support neutrality and strategy-proofness, then for all
A � A, for all N � N , and for all P ∈ L(A)n if R ∈ ϕ(P), then we have

p(R) >
∑

R′ /∈ϕ(P)

p(R′).

Proof The proof is in Appendix B.6. 
�

4.2 When to choose a delegate, and when not to?

As seen in the previous four lemmas, any well-defined delegation rule satisfying the
conditions of Pareto optimality, consistency, support neutrality, and strategy-proofness
takes the most supported preference in the delegation. However, for this preference to
be the only delegate, it has to be powerful enough to eliminate all the other opinions.
We need a new tool to capture this. Take any ϕ which satisfies all the conditions.
Categorize all P ∈ L(A)n for any N � N and A � A according to the size of
the delegations as follows: Pt = {P ∈ L(A)n | N � N , A � A and |ϕ(P)| = t}.
Lemmas 4.1 and 4.2 imply that we only have to focus on the normalized support of
the profiles from stronger to the weaker. Therefore, we can define a corresponding
vector for this ϕ for any A � A as

kϕ(A) = [k1, k2, . . . . , k|A|!] ,where each kt = min
P∈Pt

(

t
∑

i=1

pi

)

/n.

To ease the notation, we will omit ϕ from kϕ whenever it is clear. Furthermore, by
support neutrality, we know that for these rules the vector k is the same for every A
with equal cardinality. To understand these vectors, consider all profiles which end up
with a single delegate under ϕ. Then k1 gives the relative support of the delegate with
minimal value, among all the profiles with a single delegation. Similarly, kt gives the
total relative support of the delegation with the minimal value, among all the profiles
with a delegation of size t . In what follows, we discuss some features of these vectors.

Lemma 4.5 shows how kt values relate to one another. Lemma 4.6 shows if a
preference has more relative support than k1 it has to be chosen uniquely. Lemma 4.7
shows how the choice of delegates depends on k in general. Finally, Lemma 4.8 shows
how the vectors for sets of alternatives of different sizes relate to each other.

Lemma 4.5 If a rule ϕ satisfies Pareto optimality, consistency, support neutrality, and
strategy-proofness, then for all A � A, and for all N � N , the corresponding vector

satisfies that kϕ
t (A) ≥ kϕ

t−1(A)+1
2 for all t ∈ {2, 3, . . . , |A|!}.

Proof The proof is in Appendix B.7. 
�
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In the following two lemmas, Lemmas 4.6 and 4.7, we assume an enumeration
which orders preferences according to their support from the agents from the strongest
to weakest, i.e., pi ≥ p j for all i < j . Lemma 4.6 shows that for profiles in which a
strongest single preference has a relative support p1/n more than k1, the delegation
should only consist of this preference, R1. Lemma 4.7 extends this to larger delegation
sizes, i.e., the delegation should comprise of the first t strongest preferences whose
relative total support surpasses their corresponding threshold kt while no smaller sub-
delegation satisfies this.

Lemma 4.6 If a rule ϕ satisfies Pareto optimality, consistency, support neutrality, and
strategy-proofness, then for all A � A, for all N � N , and for all P ∈ L(A)n such
that p1 ≥ nkϕ

1 (A), we have that ϕ(P) = {R1}.

Proof The proof is in Appendix B.8. 
�

Lemma 4.7 If a rule ϕ satisfies Pareto optimality, consistency, support neutrality, and
strategy-proofness, then for all A � A, for all N � N and for all P ∈ L(A)n such
that

(i) for some t > 1,
t

∑

i=1
pi ≥ nkϕ

t (A) and,

(ii) for all l < t ,
l

∑

i=1
pi < nkϕ

l (A)

we have: ϕ(P) = {R1, R2, . . . , Rt }.

Proof The proof is in Appendix B.9. 
�

The next lemma shows that the corresponding vectors of the rules are independent
of the number of alternatives.

Lemma 4.8 If a rule ϕ satisfies support neutrality, then for all A � Ā � A, the
corresponding vector satisfies that kϕ(A)t = kϕ( Ā)t for all t ∈ {1, 2, . . . , |A|!}.

Proof The proof is in Appendix B.10. 
�

Note that Lemma 4.8 has further implications. In fact, for any two sets of alter-
natives, A, B the kϕ(A)t and kϕ(B)t values will always be the same. That can be
achieved by extending each of the sets to A ∪ B by separately by implementing the
lemma above.

Next, our main theorem finalizes the result by showing there is only one class of
delegation rules, i.e., the threshold rules, associated with a threshold function that
satisfies all the conditions we have imposed.

Theorem 4.1 A rule ϕ satisfies Pareto optimality, consistency, support neutrality, and
strategy-proofness if and only if for all A � A, for all N � N and for all P ∈ L(A)n

we have that ϕ(P) = ϕ f (P) for some threshold function f .
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Proof We delegate the “if” part to Appendix B.11 and prove the “only if” part here.
Proposition 2.1 and Lemma 4.1 together imply that only preferences with higher sup-
port will be assigned as delegates as opposed to those with lower support. Lemma 4.2
implies that the degree of this relative power will be independent of the number of
agents. Lemma 4.3 states that averaging of supports for delegates will not change the
delegation. This implies that only the normalized supports for the delegations matter.

Given any rule ϕ satisfying the conditions, we can then construct a corresponding
vector k(A)where, again, the i th entry is the minimum support needed for a delegation
of size i across all preference profiles on A. By consistency, k is constant across all
possible subsets of agents N � N , and by Lemma 4.8, k(A)i = k(B)i , i.e., k is also
constant across all possible sets of alternatives A � A. Hence one can construct a
function f on positive integers such that f (i) = ki for all possible delegations of size
i . By Lemma 4.4, we have that f (1) > 1/2. By Lemma 4.5, for all t ≥ 1 we have
that

f (t + 1) ≥ f (t) + 1

2
.

Thus, by construction, f : Z++ → ( 12 , 1] is the unique threshold function induced
by ϕ as in Definition 6, and hence ϕ = ϕ f is a threshold delegation rule. 
�

5 Conclusion

This paper brings about a novel class of rules for choosing a delegation, character-
ized by intuitive fairness, efficiency, and non-manipulability properties. The nature
of these threshold delegation rules is such that they provide a good compromise in
at least three aspects, inclusivity, minimalism, and non-manipulability. Inclusivity is
often deemed as crucial since it results in the legitimacy of the political settlement
(Dudouet and Lundström 2016). Minimalism, in the sense that not everyone can be
invited to the table, is an important parameter in the simplicity of design in conflict
resolution. Finally, non-manipulability of a delegation rule is essential so that peo-
ple’s true opinions are always reflected in the conflict resolution, preventing further
re-escalation of post-truce conflicts.

There are directions that we foresee for future research concerning the delega-
tion choice. For instance, our selection of minimal Kemeny distance as a measure of
representation of agents leads to a particular definition of strategy-proofness, which
implies non-externality in representation. That is, we define a manipulation to be
beneficial for an individual when the individual can successfully alter the “minimal
distance” to the delegation. This interpretation implies that agents do not benefit or
get harmed by other farther opinions in the delegation. Of course, one might define
strategy-proofness as the inability of individuals to manipulate the “average distance
to the delegation” or “distance to the farthest delegate” instead. Both these interpreta-
tions include externality in representation, i.e., introducing additional delegates might
reduce the representation of agents.
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Another direction is the choice ofmetric used to define strategy-proofness.Although
Kemeny distance is quite standard in the literature, one might employ other metrics to
see the robustness of these findings. As long as the clustering result in Remark 2.1 can
be reached, we expect that our results can be generalized. We suspect that any metric
that satisfies a minimal set of common features/axioms17 will lead to similar results.

Concerning the limitations of the results, as discussed in the introduction, our
investigation is more on the deliberative aspect of opinion formation than on the
aggregative aspect. Therefore, our results are about representation of opinions for
“deliberation”, rather than power distribution of opinions for “aggregation”. Hence,
these rules do not provide an explanation to both sides of the coin in collective decision
making. Nevertheless, our model can still be used to check whether the result of
a parliamentary election can be supported by a fair, threshold rule based delegation
rule. In this case, the agents are the citizens casting votes, and political parties represent
the preferences like delegates. Since we only care whether the opinion of a party is
considered, what matters is if a party makes it to the parliament or not. As long as
a party is in, it does not matter how many representatives or how much power it has
for deliberation. A party with non-negligible support can only end up with no seats
in a legislature if there is a minimum electoral threshold as a percentage of votes
to be reached. Without an electoral threshold, essentially, all parties make it to the
parliament, and there is maximal inclusivity. If there is an electoral threshold, then
depending on the votes, a certain number of parties make it to the parliament, and
some minorities are not represented. In this case, depending on the number of parties,
the most exclusive threshold rule specifies the maximum percentage of votes that can
be neglected.

Weconclude the paper by suggesting the policymakers thatwhen apeace delegation,
a committee or a board of size t is summoned from different opinions, for a fair and
inclusive representation, the ratio of uninvited opinions should be less than 0.5t of the
population, e.g., if only 3 delegates are invited, then uninvited groups should account
for less than 12.5% of the population. Similarly, in a parliament with six parties
and a 5% electoral threshold, the total percentage of the votes for the parties below
the electoral threshold should have in total less than 0.56 = 1.56%. This provides
a minimal bound for inclusivity, furthermore it can help us to quantify “negligible
minorities”.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

17 We suspect one of these particular axioms to be the betweenness axiom introduced in Kemeny (1959)
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A Examples

A.1 Example for showing the Kemeny rule is not strategy-proof

Example A.1 Given a profile P ∈ L(A)n , a preference R is a Kemeny ranking for
P , if for all R′ ∈ L(A), we have that

∑

i∈N δ(R, P(i)) ≤ ∑

i∈N δ(R′, P(i)). A
rule which assigns all Kemeny rankings to each profile is called the Kemeny rule.
More formally, the Kemeny rule, denoted by ϕK , assigns to a profile P ∈ L(A)n :
ϕK (P) = {R ∈ L(A) | R is a Kemeny ranking for P}.

Our counterexample is just with 4 alternatives, and 11 agents. P is as follows:

d d d a c c a b b b b
a a a d a a b c c c c
b b c c b b d d d d a
c c b b d d c a a a d

It can be seen that ϕK (P) = {abcd}. δ(abcd, bcad) = 2.
The last agent can manipulate to reach the following P ′:

d d d a c c a b b b b
a a a d a a b c c c c
b b c c b b d d d d d
c c b b d d c a a a a

It can be seen that ϕK (P ′) = {bcda}. δ(bcda, bcad) = 1. So, the last agent is in a
better position with reporting a false profile. So, even though both the Kemeny rule
and our strategy-proofness condition is defined upon minimal Kemeny distance, we
show that the Kemeny rule is not strategy-proof.

A.2 Example for a rule which is support neutral

Example A.2 Let us take two sets, A and Ā with A � Ā , |A| = 3 and | Ā| = 4.
Let us have 7 agents. For this example, we use the lexicographic enumeration where
alternatives are ordered with their place in the alphabet, so R1 = abc, R2 = acb and
so on, and R̄1 = abcd, R̄2 = abdc and so on.

Let us define P ∈ L(A)7 as

a a a a a b b
b b b c c a c
c c c b b c a

Here, p = (3, 2, 1, 1, 0, 0).
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Take some ϕ where ϕ(P) = {abc} = {R1}. Next, we define P̄ ∈ L( Ā)7 as

a a a a a a a
b b b b b c c
c c c d d b d
d d d c c d b

Here, p̄ = (3, 2, 1, 1, 0 0…0
︸ ︷︷ ︸

20 zeros.

).

There is an injective function from A to Ā that satisfies our condition. For π(t) = t ,
wehave pt = p̄π(t) = p̄t for all t ∈ {1, 2, . . . , 6}. So, forϕ to satisfy support neutrality,
we must have ϕ(P̄) = {R̄π(1)} = {R̄1} = {abcd}.

Or, since support neutrality is binding two ways, we can claim that if ϕ(P̄) =
{abcd} = {R̄π(1)} = {R̄1}, then we must have that ϕ(P) = {abc} = {R1}.

A.3 Example for a profile in which support neutrality is used to increase
coalitional options

Example A.3 Consider A = {a, b, c}, N = 16, and a profile P whose support is
p = (5, 4, 3, 2, 1, 1). If ϕ(P) = {R1, R2, R3, R4}, then agents whose preferences
are not in the delegation have distance of 1 to the nearest delegate in all possible
permutations. So, there is not a possible clustering, in which every agent strictly
prefers some other non-delegate to the closest delegate for this particular alternative
set. However, when we move to Ā = {a, b, c, d}, it is easy to see that there is such a
cluster with correct injection.

B Proofs

B.1 Proof of Proposition 2.1

Proposition 2.1 If a rule ϕ satisfies Pareto optimality and support neutrality, then for
all A � A, for all N � N , and for all P ∈ L(A)n, ϕ(P) ⊆ RP(P).

Proof Take some finite A � A and N � N . Take some preference profile P ∈ L(A)n

with RP(P) ⊆ L(A). First, note that with equality, we are done. Suppose, for a
contradiction, that there exists a preference R ∈ ϕ(P) with p(R) = 0 that is, a
preferencewith zero support. Consider any x ∈ A\A and let us construct the expansion
of P to Ā = A ∪ x by P̄ ∈ L( Ā)n as follows: for all i ∈ N , P̄(i) = P(i)||x where
P(i)||x = P(i)∪(x, x)∪{(a, x) | a ∈ A}, i.e., concatenation of x with P(i). Clearly,
for any a ∈ A and i ∈ N , (a, x) ∈ P̄(i). Take any a ∈ A, and R∗ ∈ L( Ā) such that
(x, a) ∈ R∗. By Pareto optimality, R∗ /∈ ϕ(P̄). Note that p̄(R∗) = 0 = p̄(R||x).
Then by support neutrality R||x /∈ ϕ(P̄). As P̄ is an expansion of P , again by support
neutrality, we conclude that R /∈ ϕ(P). 
�

B.2 Proof of Proposition 3.1

Proposition 3.1 For all threshold functions f , the threshold rule ϕ f is well-defined.
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Proof Let us pick some threshold function f , and consider the corresponding threshold
rule ϕ f (P). To show that the rule is well-defined, we need to show the following.

1. There is always a t that satisfies ρt ≥ f (t).

For any p ∈ L(A)n , t = |A|!, satisfies this. Since any reported preference should
be withinL(A), including all preferences in the delegation ensures to have cumulative
support of 1. Since by definition any f (t) ≤ 1, we have: ρ|A|! ≥ f (|A|!). This shows
that the universal set is always guaranteed to pass the relevant threshold.

2. There is always a unique way to pick the first t preferences.

Case 1: For all distinct i, j , we have pi �= p j .
If this is the case, powers of the preferences are well ordered, there is a unique

ordering enumeration, so there is always a unique way to pick the first t preferences.
Case 2: For some distinct i, j , we have pi = p j .
We will show that for any pi = p j it is either Ri , R j ∈ ϕ f (P) or Ri , R j /∈ ϕ f (P).
First, consider the case where the number of delegates is one. In that case, we must

have ρ1 = p1
n ≥ f (1) > 1

2 . This directly shows that any enumeration has the same
preference as its first, whenever the first preference is passing the relevant threshold.

Second, consider the case when t∗ > 1. By definition, for all t > 1 we have that

f (t) ≥ 1 + f (t − 1)

2
. Multiply both sides by 2 to get

2 f (t) ≥ 1 + f (t − 1). Subtract f (t) + f (t − 1) from both sides to get

f (t) − f (t − 1) ≥ 1 − f (t). (B.1)

From definition of the rule, we know the following is true for some t∗:

ρt∗−1 < f (t∗ − 1), (B.2a)

ρt∗ ≥ f (t∗). (B.2b)

Multiplying both sides of B.2b by −1 and adding 1 to both sides we get

1 − ρt∗ ≤ 1 − f (t∗). (B.3)

Subtracting B.2a from B.2b leads to

p(t∗)
n

> f (t∗) − f (t∗ − 1). (B.4)

If we combine B.3, B.4, and B.1 we get

p(t∗)
n

> f (t∗) − f (t∗ − 1) ≥ 1 − f (t∗) ≥ 1 − ρt∗ =
|A|!
∑

i=t∗+1

pi
n

. (B.5)

The rightmost term is the total support for the preferences which are not part of the
delegation,where the leftmost term is the support for theweakest delegate. This implies
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that not only the weakest delegate has strictly more support than the next preference,
but he also has strictly more support than the total support for non-delegates. This says
that there is again a unique way to select the topmost t preferences as delegates, even
though the relevant enumeration is not unique this time. In other words, when there
is any tie between support for some preferences, by design all of those preferences
belong to the delegation or none of them. 
�

B.3 Proof of Lemma 4.1

Lemma 4.1 If a ruleϕ satisfies consistency, support neutrality, and strategy-proofness,
then for all A � A, for all N � N and for all P ∈ L(A)n if R ∈ ϕ(P) and
p(R′) ≥ p(R), we have R′ ∈ ϕ(P).

Proof Suppose, for a contradiction, that there exists two preferences Rh (preference
with (h)igher support), and Rl (preference with (l)ower support) with Rl ∈ ϕ(P) and
Rh /∈ ϕ(P). Let p(Rh) = h and p(Rl) = l. Without loss of generality, we can assume
that h + l is even since by consistency we can replicate the profile once by using the
two-fold replica with no changes in the delegation. This will ensure that h− l can also
be assumed to be even.

First, assume that h − l = 0. This contradicts support neutrality since h = l. Next,
assume that h − l = 2. In that case, an agent whose original preference is Rh may
misreport Rl. Denoting the modified profile by P ′, that will cause p′(Rh) = p′(Rl).
From support neutrality, either both of Rh and Rl will be in the delegation, or none
will be included. If both are included, this means that the agent deviated to his benefit,
contradicting strategy-proofness. If none is included, some agentwith Rl as his original
preference may report Rh to get back to the original preference profile, resulting in
Rl ∈ ϕ(P) again, this also contradicts strategy-proofness. So for h−l = 2, we showed
that with the original preference profile, if Rl is included in the delegation, so must
Rh be.

Assume that our hypothesis holds for h−l = k for some even k, that is, if Rl ∈ ϕ(P),
then Rh ∈ ϕ(P). Now, let h − l = k + 2. Then an agent whose original preference is
Rh can report Rl to trigger the situation with h − l = k. Since this violates strategy-
proofness, we must have Rh ∈ ϕ(P) even when h − l = k + 2. By induction, this
completes the proof. 
�

B.4 Proof of Lemma 4.2

Lemma 4.2 If a rule ϕ satisfies consistency and support neutrality, then for all A � A,
for all N , N ′ � N , and for all P ∈ L(A)n and P ′ ∈ L(A)n

′
such that p/n = p′/n′,

we have ϕ(P) = ϕ(P ′).

Proof From consistency, we know that ϕ(P) = ϕ(2P) = ϕ(3P) = . . . = ϕ(nP). So,
ϕ(P) = ϕ(n′P) and ϕ(P ′) = ϕ(nP ′). Since n′ p = np′, support neutrality implies
that ϕ(n′P) = ϕ(nP ′), completing the proof. 
�
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B.5 Proof of Lemma 4.3

Lemma 4.3 If a rule ϕ satisfies consistency and support neutrality, then for all A �

A, for all N � N and for all P ∈ L(A)n, denoting |ϕ(P)| = t , and picking an
enumeration on L(A) such that pi ≥ p j for all i < j , the following holds:

i) For any P ′ ∈ L(A)n such that
p′
j
n =

t
∑

i=1

pi
nt for all j ∈ {1, 2, . . . , t} and p′

j
n = p j

n

for all j ∈ {t + 1, t + 2, . . . , |A|!} we have ϕ(P) = ϕ(P ′).
ii) For any P ′′ ∈ L(A)n such that

p′′
j
n = p j

n for all j ∈ {1, 2, . . . , t} and
p′′
j
n =

|A|!
∑

i=t+1

pi
n(|A|!−t) for all j ∈ {t + 1, t + 2, . . . , |A|!} we have ϕ(P) = ϕ(P ′′).

Proof i) Let P and p = (p1, p2, . . . , p|A|!) be as in the Lemma with |ϕ(P)| = t
and P ′ as defined in the Lemma. Consider the following profiles with the same
enumeration on L(A) where p1, p2, . . . , pt rotates and bold numbers indicate the
support for the chosen delegates:

P1 ∈ L(A)n such that p1 = (pt,p1,p2, . . . ,pt−1, pt+1, pt+2, . . . , p|A|!)
P2 ∈ L(A)n such that p2 = (pt−1,pt,p1, . . . ,pt−2, pt+1, pt+2, . . . , p|A|!)

...

Pt−1 ∈ L(A)n such that pt−1 = (p2,p3,p4, . . . ,p1, pt+1, pt+2, . . . , p|A|!)

From support neutrality, we know that ϕ(P) = ϕ(Pi ) for any i ∈ {1, . . . , t − 1}.
By design, merging all these profiles (P, P1, P2, . . . , Pt−1) gives t P ′, and from
consistency, we get that ϕ(t P ′) = ϕ(P). From Lemma 4.2, ϕ(P) = ϕ(t P ′) =
ϕ(P ′) is guaranteed.

ii) Let P and p = (p1, p2, . . . , p|A|!) be as in the Lemma with |ϕ(P)| = t and P ′′ as
defined in the Lemma. Consider the following profiles with the same enumeration
onL(A)where pt+1, pt+2, . . . , p|A|! rotates and bold numbers indicate the support
for the chosen delegates:

P1 ∈ L(A)n such that p1 = (p1,p2, . . . ,pt, p|A|!, pt+1, pt+2, . . . , p|A|!−1)

P2 ∈ L(A)n such that p2 = (p1,p2, . . . ,pt, p|A|!−2, p|A|!, pt+1, . . . , p|A|!−2)
...

Pt−1 ∈ L(A)n such that pt−1 = (p1,p2, . . . ,pt, pt+2, pt+3, pt+4, . . . , pt+1)

From support neutrality, we know that ϕ(P) = ϕ(Pi ) for any i ∈ {1, . . . , t − 1}.
By design, merging all these profiles (P, P1, P2, . . . , Pt−1) gives t P ′′, and from
consistency we get that ϕ(t P ′′) = ϕ(P). From Lemma 4.2, ϕ(P) = ϕ(t P ′′) =
ϕ(P ′′) is guaranteed.


�
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B.6 Proof of Lemma 4.4

Lemma 4.4 If a rule ϕ satisfies support neutrality and strategy-proofness, then for all
A � A, for all N � N , and for all P ∈ L(A)n if R ∈ ϕ(P), then we have

p(R) >
∑

R′ /∈ϕ(P)

p(R′).

Proof Let us denote by W = ϕ(P) the preferences of “winning” agents, and by
L = RP(P)\ϕ(P) the preferences of “losing” agents, where RP(P) = {R ∈ L(A) |
p(R) > 0} is again the set of reported preferences. Suppose, for a contradiction, that
there exists a profile P ∈ L(A)n and a preference Rt ∈ ϕ(P) such that:

p(Rt ) ≤
∑

R̄∈L
p(R̄).

That is, a preference Rt in the delegation has weakly less support than the total
support for all preferences of losing agents combined. By Remark 2.1, there exists an
expansion of P , in which the corresponding injections of W and L are clustered far
away from each other. By the same logic, one can find an expansion by π , say P̄ , if
needed to an even larger alternative set, in which in addition to having π(W ) and π(L)

as far away clusters, Rπ(t) is relatively closer to π(L) than to the other preferences in
π(W ). Formally:

max
R,R′∈π(L)

δ(R, R′) < min
R∈π(L),R′∈π(W )

δ(R, R′) (B.6)

and for any R, R′ ∈ π(L), R̃ ∈ π(W ),

δ(R, R′) < δ(R, Rπ(t)) < δ(R, R̃) (B.7)

Now consider a transformation of this expansion, denoted by P̄ ′, where all losing
agents concentrate on a preference of a fellow losing agent, say Rs . By construction:

∑

R∈L
p(R) = p̄′(Rs)

By supposition, p̄(Rπ(t)) ≤ p̄(Rs). Note that by coalitional strategy-proofness, we
have Rs /∈ ϕ(P̄ ′). Then we have two cases:

Case 1: If Rπ(t) ∈ ϕ(P̄ ′), then by Lemma 4.1, Rs should also be in the delegation
ϕ(P̄ ′), which is a contradiction.

Case 2: If Rπ(t) /∈ ϕ(P̄ ′), furthermore by Inequality B.7, Rπ(t) is a favorable
preference for all agents with P̄(i) ∈ π(L). Then the agents in L can misreport (and
disperse back to their preferences in P̄). As Rπ(t) ∈ ϕ(P̄), this contradicts strategy-
proofness. 
�
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B.7 Proof of Lemma 4.5

Lemma 4.5 If a rule ϕ satisfies Pareto optimality, consistency, support neutrality, and
strategy-proofness, then for all A � A, and for all N � N , the corresponding vector

satisfies that kϕ
t (A) ≥ kϕ

t−1(A)+1
2 for all t ∈ {2, 3, . . . , |A|!}.

Proof Let us start with some A � A and some t < |A|! − 1. Using consistency, we
can pick some N � N with |N | = n divisible by all numbers up to t + 1 without
loss of generality. Let us take a specific P ∈ L(A)n , which is defined as pi = a
for all i ∈ {1, 2, . . . , t + 1} and pi = 0 for i ∈ {t + 2, t + 3, . . . , |A|!}. From
Proposition 2.1 and support neutrality, we know that the delegation includes only the
first t + 1 preferences. Let us denote this profile as (with bold numbers indicating the
support for the chosen delegates)

p = (a, a, . . . , a
︸ ︷︷ ︸

t+1 times

, 0, 0, . . . , 0
︸ ︷︷ ︸

|A|!−t−1 times

).

Now, let us deal with a modification P ′ ∈ L(A)n for this profile which is defined
as p′

i = a′ = nkt
t for all i ∈ {1, 2, . . . , t}, p′

t+1 = b = n(1 − kt ) and p′
i = 0 for

i ∈ {t + 2, t + 3, . . . , |A|!}. Since the first t preferences have kt support in total, by
definition of kt and by Lemma 4.3, we know that the delegation includes only the first
t preferences. Let us denote this profile as

p′ = (a′, a′, . . . , a′
︸ ︷︷ ︸

t times

, b, 0, 0, . . . , 0
︸ ︷︷ ︸

|A|!−t−1 times

).

Another relevant modification of this profile, P ′′ ∈ L(A)n will be defined as p′′
i =

a′′ = n−2b
t−1 for all i ∈ {1, 2, . . . , t}, p′′

i = b = n(1 − kt ) for i ∈ {t, t + 1} and
p′′
i = 0 for i ∈ {t + 2, t + 3, . . . , |A|!}, e.g. p′′ = (a′′, a′′, . . . , a′′, b, b, 0, 0, . . . , 0).

By Proposition 2.1 we have that ϕ(P ′′) ⊆ RP(P), and by support neutrality either
i) ϕ(P ′′) = {R1, R2, . . . , Rt+1} or ii) ϕ(P ′′) = {R1, R2, . . . , Rt−1}. Suppose, for a
contradiction, that the former is the case. Let us take the average of support for the
first t preferences to get P ′. By Remark 4.1, this should not change the delegation.
However, ϕ(P ′) = {R1, R2, . . . , Rt } �= {R1, R2, . . . , Rt+1} = ϕ(P ′′), which is a
contradiction. So, it must be that ii) is the case, ϕ(P ′′) = {R1, R2, . . . , Rt−1}. Let us
denote this profile as

p′′ = (a′′, a′′, . . . , a′′
︸ ︷︷ ︸

t−1 times

, b, b, 0, 0, . . . , 0
︸ ︷︷ ︸

|A|!−t−1 times

).

By definition, kt−1 is the minimal support for all delegations with size t − 1. Since
only the first t − 1 preferences are in the delegation, total support for the first t − 1
preferences could be at least kt−1. Then, (t−1)a′′ = (t−1) n−2b

t−1 = n(1−2(1−kt )) ≥
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nkt−1. After rearranging we get that

kt ≥ kt−1 + 1

2
.


�

B.8 Proof of Lemma 4.6

Lemma 4.6 If a rule ϕ satisfies Pareto optimality, consistency, support neutrality, and
strategy-proofness, then for all A � A, for all N � N , and for all P ∈ L(A)n such
that p1 ≥ nkϕ

1 (A), we have that ϕ(P) = {R1}.
Proof Let P∗ ∈ L(A)n

∗
be one of the profiles where |ϕ(P∗)| = 1 and p∗

1 = n∗kϕ
1 (A),

i.e., one of the profiles wherein only a single delegate is assigned whose relative
support defines k1 in the corresponding vector. Consider now any P ∈ L(A)n with
p1 ≥ nkϕ

1 (A). By Lemma 4.1, R1 ∈ ϕ(P) and by support neutrality we can assume
that ϕ(P∗) = {R1}, i.e., the strongest ranking is the same both in P and P∗. Next, we
show that R1 is the only delegate assigned to P , i.e., {R1} = ϕ(P).

By consistency, we can replicate profiles P and P∗ (n∗ and n times respectively)
with no changes in the delegation.With abuse of notation, let us denote these replicated
profiles by P, P∗ ∈ L(A)n×n∗

. So, we have p∗
1 = nn∗kϕ

1 (A) and p1 ≥ nn∗kϕ
1 (A).

Suppose, for a contradiction, that ϕ(P) � {R1}, so there is another delegate, say Rk

in the delegation. Let us partition L(A) into two sets, X = L(A)\{R1} and Y = {R1}.
By Remark 2.1, there exists an expansion of P by π , say P̄ , in which the injection of
X , i.e., π(X) is clustered far away from the injection of R1, i.e., Rπ(1). Formally:

max
R,R′∈π(X)

δ(R, R′) < min
R∈π(X)

δ(R, Rπ(1)) (B.8)

Note that Rπ(1) = π(Y ) and Rπ(k) ∈ π(X). Let P̄∗ denote the expansion of P∗ by
the same injection, π . By support neutrality, i) Rπ(k) /∈ ϕ(P̄∗), implying kth strongest
preference of P̄∗ is not in the delegation of P̄∗, and ii) Rπ(k) ∈ ϕ(P̄), implying that
the kth strongest preference of P̄ is in the delegation of P̄ . Note that as p̄∗

1 ≤ p̄1, from
P̄∗ to P̄ this means that there is a coalition of agents moving from π(X) to Rπ(1),
resulting in Rπ (k) ∈ ϕ(P̄). As Rπ(k) ∈ π(X), by Inequality B.8, this contradicts
coalitional strategy-proofness. Hence Rπ(k) /∈ ϕ(P̄). Support neutrality then implies
that Rk /∈ ϕ(P). 
�

B.9 Proof of Lemma 4.7

Lemma 4.7 If a rule ϕ satisfies Pareto optimality, consistency, support neutrality, and
strategy-proofness, then for all A � A, for all N � N and for all P ∈ L(A)n such
that

(i) for some t > 1,
t

∑

i=1
pi ≥ nkϕ

t (A) and,
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(ii) for all l < t ,
l

∑

i=1
pi < nkϕ

l (A)

we have: ϕ(P) = {R1, R2, . . . , Rt }.

Proof Take any P ∈ L(A)n as defined in the lemma. As
∑l

i=1 pi < nkl for all l < t ,
by definiton of the corresponding vector, we have

|ϕ(P)| �= l. This means that |ϕ(P)| ≥ t . By Lemma 4.1 we get that ϕ(P) ⊇
{R1, R2, . . . , Rt }. Next, we show that ϕ(P) = {R1, R2, . . . , Rt }.

By consistency, we can assume that
∑t

i=1 pi is divisible by t without loss of gen-
erality. By Remark 4.1, we can take the average support for the first t preferences
without changing the delegation. Let us denote this modified profile by P ′, which is
defined as p′

i = a′ = ∑t
l=1

pl
t if i ≤ t and p′

i = pi if i > t .
Let P∗ ∈ L(A)n

∗
be one of the profiles where |ϕ(P∗)| = t ,

∑t
i=1 p

∗
i = n∗kt , i.e.,

one of the profiles wherein only the strongest t delegates are assigned whose relative
total support defines kt in the corresponding vector.

By consistency, we can assume that
∑t

i=1 p
∗
i is divisible by t without loss of

generality. By Remark 4.1, we can take the average support for the first t preferences
without changing the delegation. Let us denote this modified profile also by P∗, where
p∗
i = a = n∗kt

t for all i ≤ t .
Using consistency, we can replicate profiles P ′ and P∗ (n∗ and n times respectively)

with no changes in the delegation.With abuse of notation, let us denote these replicated
profiles by P ′, P∗ ∈ L(A)n×n∗

. By construction, the total support for the strongest t
preferences in P ′ is larger than those in P∗, i.e., n∗a′t ≥ nat .

Suppose, for a contradiction, that ϕ(P ′) � {R1, R2, . . . , Rt } so there is another
delegate, say Rk with k > t in the delegation. Let us partition L(A) into two sets,
X = L(A)\{R1, R2, . . . , Rt } and Y = {R1, R2, . . . , Rt }. By Remark 2.1, there exists
an expansion of P ′ by π , say P̄ ′, in which the injection of Y is clustered far away
from the injection of X . Formally:

max
R,R′∈π(X)

δ(R, R′) < min
R∈π(X),R′∈π(Y )

δ(R, R′) (B.9)

Note that {Rπ(1), Rπ(2), . . . , Rπ(t)} = π(Y ) and Rπ(k) ∈ π(X). Let P̄∗ denote the
expansion of P∗ by the same injection, π . By support neutrality, Rπ(k) /∈ ϕ(P̄∗)while
Rπ(k) ∈ ϕ(P̄ ′). Note that from P̄∗ to P̄ ′ there is a coalition of agents moving from
π(X) to π(Y ), resulting in Rπ (k) ∈ ϕ(P̄ ′). As Rπ(k) ∈ π(X), by Inequality B.9, this
contradicts coalitional strategy-proofness. 
�

B.10 Proof of Lemma 4.8

Lemma 4.8 If a rule ϕ satisfies support neutrality, then for all A � Ā � A, the
corresponding vector satisfies that kϕ(A)t = kϕ( Ā)t for all t ∈ {1, 2, . . . , |A|!}.
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Proof We denote corresponding threshold vectors as

kϕ(A) = [k1, k2, . . . , k|A|!],
kϕ( Ā) = [k′

1, k
′
2, . . . , k

′
| Ā|!].

Suppose, for a contradiction, that there exist A, Ā � A such that A � Ā with for
some t ∈ {1, 2, . . . , |A|!}, kt �= k′

t while for all i ∈ {1, 2, . . . , t − 1}, ki = k′
i . Without

loss of generality, assume that kt < k′
t .

Then we construct a profile P ∈ L(A)n and an expansion of P , by some π , denoted
by P̄ such that ρt > kt , ρt < k′

t and ρi < ki for all i ∈ {1, 2, . . . , t − 1}.
By Lemmas 4.6 and 4.7 we have that ϕ(P) = {R1, R2, . . . , Rt }, while ϕ(P ′) �

{Rπ(1), Rπ(2),...,Rπ(t)}. Since ϕ(P ′) includes other elements than the image of ϕ(P)

under π , this contradicts support neutrality. 
�

B.11 Proof of Theorem 4.1 (if part)

Wewill prove that for all threshold functions f , the rule ϕ f satisfies Pareto optimality,
consistency, support neutrality, and strategy-proofness. Take any threshold function
f .
Pareto optimality: Take any A � A, N � N , and P ∈ L(A)n . Suppose for a

contradiction, there exists (a, b) such that (a, b) ∈ P(i) for all i ∈ N and there exists
R ∈ ϕ f (P) such that (b, a) ∈ R. Consider an enumeration of rankings with respect to
their support, i.e., for any two ranking Ri , R j , i ≥ j if and only if pi ≥ p j . Suppose
R = Rk for some k > 1.Note that pk = 0. Consider the cumulative supportρk = p1+
. . . + pk−1 + pk . Note that ρk = ρk−1. By construction ϕ f (P) = {R1, R2, . . . , Rt∗}
where t∗ = argmint {t ∈ Z++ | ρt ≥ f (t)}. However, as f (k − 1) ≤ f (k) and
ρk−1 ≥ f (k − 1), it follows that t∗ < k, which contradicts Rk ∈ ϕ f (P).

Consistency: Take any A � A, any two disjoint finite sets N , N ′ � N (with
cardinality n and n′ respectively), and any P ∈ L(A)n and P ′ ∈ L(A)n

′
such that

ϕ f (P) = ϕ f (P ′). Let k denote the number of delegates in the two distinct societies,
that is |ϕ f (P)| = |ϕ f (P ′)| = k. For the two profiles P and P ′, it follows from the
definition of threshold rule thatρk ≥ f (k) andρ′

k ≥ f (k), and for all l ∈ {1, . . . , k−1}
wehave thatρl < f (l) andρ′

l < f (l).Merging the twoprofiles into P ′′ = (P, P ′)will
result in a newcumulative supportρ′′

i = (nρi+n′ρ′
i )/(n+n′) for all i = 1, 2, . . . , |A|!.

This ensures ρ′′
k ≥ f (k) and ρ′′

l < f (l) for all l ∈ {1, . . . , k − 1}, implying the same
delegation for the merged societies.

Support neutrality: Take any A, Ā � A such that A ⊆ Ā and any N � N . Take
any two profiles, P ∈ L(A)n and P̄ ∈ L( Ā)n with equivalent supports and take any
corresponding injection π . Consider enumerations of rankings with respect to their
support in P and in P̄ . By construction for Ri and R̄π(i) the supports in the respective
profiles are equal i.e., pi = p̄π(i). This implies that the cumulative supports ρi and
ρ̄i are identical for all i . Therefore Ri ∈ ϕ f (P) if and only if R̄π(i) ∈ ϕ f (P̄) since
shuffling the support for the preferences also shuffles the enumerations in the same
way.
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Strategy-proofness: Take any A � A, and any N � N . Suppose for con-
tradiction there exists a profile P ∈ L(A)n which is manipulable by some agent
i ∈ N with a profile P ′ = (P ′(i), P(N\{i})) ∈ L(A)n , i.e., min

R∈ϕ f (P)
δ(P(i), R) >

min
R∈ϕ f (P ′)

δ(P(i), R). Let ϕ f (P) = {R1, R2, . . . , Rt∗} be the set of delegates for P in

the order of support. Consider the steps of the threshold rule ϕ f for the profile P , and
let ρ denote the corresponding cumulative support. Then, we have: ρ j < f ( j) for all
j ∈ {1, 2, t∗ − 1} and ρt∗ ≥ f (t∗), since the rule ends at t∗.
Case 1: Suppose that the manipulation is done via reporting a preference in the

delegation, i.e., P ′(i) ∈ {R1, R2, . . . , Rt∗}. Without loss of generality let us assume
P ′(i) = Rs such that s∗ ≤ t∗. Then, for the new profile P ′ let ρ′ denote the corre-
sponding cumulative support. Then we have either of the two:

1. ρ′
j < f ( j) for all j ∈ {1, 2, t∗ − 1} and ρ′

t∗ ≥ f (t∗), or
2. ρ j < f ( j) for all j ∈ {1, 2, s∗ − 1} and ρs∗ ≥ f (s∗)

In both cases, ϕ f (P ′) ⊆ ϕ f (P) which doesn’t decrease min
R∈ϕ f (P ′)

δ(P(i), R).

Case 2: Suppose that the manipulation is done via reporting a preference outside
the delegation, i.e., P ′(i) /∈ {R1, R2, . . . , Rt∗}. Note that the threshold rules are well-
defined and therefore by Inequality B.5 in the proof of Proposition 3.1, the relative
support for the last (weakest) delegate t∗ in profile P is larger than the sum of relative
supports for all preferences outside the delegation. Formally:

p(t∗)
n

>

|A|!
∑

i=t∗+1

pi
n

.

Note that the preference of i was not in the original delegation, P(i) /∈
{R1, R2, . . . , Rt∗}, otherwise min

R∈ϕ f (P)
δ(P(i), R) would be zero. Therefore for the

new profile P ′, after misreporting a preference outside the delegation, we still have:

p′(t∗)
n

= p(t∗)
n

>

|A|!
∑

i=t∗+1

pi
n

=
|A|!
∑

i=t∗+1

p′
i

n
.

Therefore, ϕ f (P ′) = ϕ f (P), which doesn’t decrease min
R∈ϕ f (P ′)

δ(P(i), R).

C Independence of the conditions

The conditions used in the characterization were: Pareto optimality, consistency,
strategy-proofness, and support neutrality. Below, to put forward the logical indepen-
dence of those, let us take a look at the following four social welfare correspondences.

• All but Pareto optimality: ϕ(P) = L(A) for any P ∈ L(A)n .
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• All but consistency:

ϕ(P) =

⎧

⎪
⎨

⎪
⎩

R, if n is odd and ∃R with p(R) > N
2

R, if n is even and ∃R with p(R) > 2N
3

RP(P), otherwise.

• All but strategy-proofness: ϕ(P) = {R | p(R) ≥ p(R′) for all R′ ∈ L(A)}.
• All but support neutrality:

ϕ(P) =
{

L(A), if |L(A)\RP(P)| = 1

RP(P), otherwise.
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