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Abstract: Innovative power-to-X (P2X) technologies, as a set of emerging new solutions, could play a
crucial role in creating sustainable, carbon-neutral economies, such as the hydrogen economy. These
technologies, however, are generally not yet implemented on a commercial scale. This research
focuses on how innovative, digital inter-organizational knowledge networks of industry representa-
tives and universities could contribute to the commercial implementation of P2X technologies and
increase the pace of sustainable hydrogen-based development. The findings of an extended case
study with a hybrid (qualitative–quantitative) methodology and a five-year time horizon, suggest
the need for a digital knowledge platform, where universities and industry representatives add and
combine their knowledge. In contrast with expectations, however, the empirical results show that
academia would, not only be capable of supporting the exploration of new solutions, but foster the
exploitation of more mature technologies as well. Similarly, large energy companies could also drive
exploratory activities, not only exploitative ones. The findings highlight the possible central role
of the “system builder” actor, who integrates exploitative-explorative learning and facilitates the
formation of a (digital) innovation ecosystem. By exceeding the dominant techno-economic and
environmental aspects, this research contributes to the literature by highlighting the applicability of
network-based innovation management theory for hydrogen economy research.

Keywords: hydrogen economy; P2X technologies; knowledge networks; industry-university cooper-
ation; innovation management

1. Introduction

Immense pressure on societies in developed countries to create carbon-neutral economies
requires rapid innovation and technological development as well as knowledge transfer
related to renewable energy technologies, energy storage, and smart energy systems [1].
A promising strategic direction for creating carbon-neutral economies is the hydrogen
economy, which is “a proposed system where hydrogen is produced and used extensively
as the primary energy carrier” [2] (p. 1572). Industry actors and scholars argue that
power-to-X (P2X), especially power-to-gas (P2G) (including power-to-hydrogen (P2H) and
power-to-methane (P2M)) and power-to-liquid (P2L) technologies are innovative in this
area. These technologies can absorb surplus renewable electricity, provide network bal-
ancing services to reduce maintenance costs and energy storage solutions to avoid energy
loss, integrate energy sectors, reuse carbon dioxide, and consequently facilitate sustainable
transitions [3–5]. Innovative P2X technologies, however, are not widely implemented on
a commercial scale yet, and research results suggest that change in the energy sector is
hampered because of the exploitative, risk-averse routines of large energy companies and
the strict institutional background [6,7]. This phenomenon has been supported recently by
empirical evidence in the case of P2X technologies as well [8].
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Even though the literature has already covered several aspects of P2X technology
development and implementation mainly based on quantitative methods (for example,
process design, technical performance [9], or even macro-level technical and financial
potential [10]), in-depth analysis of the managerial and technology development processes
is mostly overlooked. This phenomenon is also visible with regard to broader hydrogen
economy research. The latest works focus, for example, on the optimal synergy of photo-
voltaic panels and hydrogen fuel cells [11], life-cycle assessments of materials in hydrogen
technologies [12], comparison of hydrogen and ammonia [13], waste-heat utilization [14],
or a review of policy framework [15].

Filling this research gap provides, not only a theoretical contribution, but a practical
one as well, because a deep understanding of P2X development from currently uncovered
viewpoints can obviously facilitate the P2X R&D&I process and plant deployment. This
work contributes to this field in the following ways:

1. While previous studies mainly focused on the technical, economic, and environmental
aspects of hydrogen-based technologies, to the best of our knowledge, this is the first
study to highlight the applicability of network-based innovation management theory
for hydrogen economy research. By doing so, this study concentrates on the segment
of P2X technologies and provides an in-depth analysis of a P2X-related knowledge
transfer and leverage case.

2. By synthesizing the introduced key theories, this study extends firm-level exploration-
exploitation learning theory to the inter-organizational level.

3. Based on the supporting empirical data of this extension, a practical contribution is
provided to P2X development, by (1) highlighting the different areas where exploita-
tive and explorative knowledge transfer is needed among universities and industry
actors, and (2) showing how digital knowledge platforms can facilitate knowledge
flows among different actors in this segment.

4. Different interpretations and subjects of exploitation and exploration in the P2X
segment; and the role of collaborating actors (universities, industry representatives,
and central “system builders”) in exploitative and explorative learning are identified
during P2X technology development.

The study is structured as follows. First, we present the research framework, including
the focal P2X technologies and the role of knowledge-sharing between industry representa-
tives and universities in taking steps toward the hydrogen economy. The third part shows
how the extended case study can be a useful contribution to the theory (of the development
of the hydrogen economy) and what data gathering and analysis practices have led to the
research results. After that, the characteristics of the emerging inter-organizational and
knowledge network will be presented in the Results section. It is followed by a discussion
of the interpretation of the results according to previous literature findings and theories. Fi-
nally, the last part describes the implications and the limitations of the study, and directions
for future research.

2. Materials and Methods
2.1. Theoretical Background

As innovation management-focused research could cover numerous topics, regarding
(1) its main related management areas (e.g., knowledge management, project manage-
ment or process management) [16,17], or (2) its operational practices (e.g., innovation
strategy planning, benchmarking, technology portfolio management or competency man-
agement) [18], the starting point must be clearly defined. The research is built on two
key theoretical assumptions and two current calls for empirical research into innovation
management.

Regarding the key theoretical assumptions, first, according to Teece [19], certain
technological advancements (innovations) require complementary resources to utilize
them in the market; however, these complementary resources (for example knowledge) can
be granted by external actors (partners), as well. This leads to the trans-organizational or
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inter-organizational innovation concept. In this sense, Millar et al. [20] suggest that trans-
organizational innovation has increased complexity, as mutual learning and knowledge
generation are distributed across disciplines and organizations. It can mean, for example,
that a P2X developer company does not have the capacity and/or competency to conduct
additional research related to the core P2X technology, but university research centers could
provide new knowledge in the focal topic to increase the energy efficiency of the whole
energy conversion process.

Second, strategic ambidexterity requires efficient operation in current business areas
(exploitation) and also renewal and innovation in new business areas (exploration) [21].
This exploitation–exploration dilemma (i.e., how to allocate resources, focus attention, and
balance them) is present in learning activities as well [22]. In this sense, organizational
learning must also be defined from a strategic approach: “the process of improving actions
through better knowledge and understanding” [23] (p. 803). Here it can mean, for example,
that there are already well-known technologies, and exploitative learning would focus on
industrial practices by which the technological potential can be exploited. On the other
hand, there can be new technologies with numerous uncovered technical aspects which
should be researched using explorative learning.

This study is also responding to the call from Nambisan et al. [24], as they analyzed
inter-organizational innovation and its complexity considering digital technologies. In
line with their suggestion, this research considers digital solutions as an orchestration
tool that enables dynamic problem–solution matching within the distributed innovation
process. It can mean, for example, that a digital platform could connect the actors in the
inter-organizational innovative network, where knowledge regarding exploitation or ex-
ploration of technological opportunities can be dynamically transferred. Furthermore, even
though numerous studies have highlighted the benefits of industry–university cooperation,
Mascarenhas et al. [25] suggest that there is a clear need for research into “the process of
partner selection and the way these innovation partnerships function” (p. 717). Addressing
these aspects in this research narrows the scope to knowledge flows between industry and
universities, so enables an in-depth analysis to be provided in the P2X segment.

Based on these theoretical assumptions and recent calls for research, this study focuses
on the problem that P2X technologies are rarely implemented in grid-scale but, according
to the theory, facilitating knowledge transfer and learning within an inter-organizational
P2X innovation network could increase the pace of R&D and implementation. This topic (in
this paper) belongs to the broader hydrogen economy development research area, which
received increased attention from the research community in 2019 and 2020 (see Figure 1).
The number of publications in academic journals that focused on hydrogen economy (based
on their title or subject terms) was over 300 in 2020; and the three keywords (hydrogen,
economy, and development) also appear increasingly often (based on the EBSCO database).

“Hydrogen economy development” as a whole, however, is less frequent. For com-
parison, Google Scholar listed more than 19,000 exact mentions of “hydrogen economy”
since 2010, but only 119 for “hydrogen economy development”. Even though other terms
instead of the “development” might indicate the same purpose, the open area for a further
direct contribution is clearly visible. Addressing this issue as well, the research question is
the following:

How could the pace of hydrogen economy development through P2X innovation-focused,
digital inter-organizational knowledge networks containing industry actors and univer-
sities be increased?

Figure 2 shows the research framework.
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By conducting predominantly qualitative research, aiming to support practice with
existing theories, but also to develop new theories that are built on practical experience [26],
a presumption can be determined instead of a hypothesis. The presumption for the research
question is that a digital platform could support the P2X technological know-how flows and
so hydrogen economy development with academic and industrial partners, where univer-
sities would provide explorative knowledge (mainly because of their research capacities),
while energy companies would provide exploitative knowledge (mainly because of their
exploitative routines and extensive knowledge of existing businesses and infrastructure).
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Besides the theoretical foundations of this presumption, the following sections show
what different P2X technologies can be relevant for exploitative or explorative learning, and
why collaboration between universities and industry representatives in the P2X segment
should be analyzed in depth.

2.2. Power-to-X and the Focal Technologies of the Research

The power-to-X (P2X) concept is mainly characterized by the chemical conversion of
surplus renewable electricity into other energy carriers. The concept emerged as a reaction
to the need for long-term, large-size energy storage that cannot be efficiently achieved
using, for example, batteries or compressed air storage [27]. The main functions of P2X
technologies are (1) energy storage, because of the unpredictability of renewable energy
production, (2) a carbon-neutral energy carrier or fuel, thus (3) reducing CO2 emission [28].
The first step of the P2X process chain is the power-to-gas (P2G) process, which can be
followed by a gas-to-chemicals, a gas-to-liquid, or a gas-to-power process; in this latter
case realizing a power-to-gas-to-power conversion [29]. This study focuses on the P2G and
P2L processes of the P2X. In the case of P2G and P2L, water electrolysis is the first step to
producing renewable hydrogen (power-to-hydrogen, P2H). By staying in the P2G segment,
it can be followed by methanation to produce renewable methane (power-to-methane,
P2M), while hydrogen can be used to create liquid hydrocarbons (e.g., diesel, kerosene) in
the P2L segment. Figure 3 shows the relevant P2X technologies for the research.
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Based on previous research, these technologies can be crucial regarding the hydro-
gen economy and decarbonization efforts in several countries. For example, Blumberga
et al. [30] showed the promising role of P2H and P2L in utilizing surplus renewable energy
production to cover the electricity needs of Latvia; Bellocchi et al. [31] discussed how the
increase of renewables improves the P2G and P2L viability for decreasing CO2 emission
in Italy; Mesfun et al. [32] presented how P2G and P2L technologies can contribute to
integrating renewable energy sources by providing physical links between different sectors
(electricity, transportation, heating) in the Alpine region. In addition, a recent study also
demonstrated how the coupling of electricity and gas sectors by P2G plants at wastew-
ater treatment plants can enable seasonal energy storage, which is promising due to the
remarkable capacities of the natural gas grid in Hungary [10].

From a technological aspect, these solutions have been extensively analyzed. In
the P2H segment, scholars compared alkaline (AEL) and polymer electrolyte membrane
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(PEMEL) electrolysis regarding their operation in large scale, lifetime or flexibility [33–39]
solid oxide (SOEL) electrolyzers [35,40,41] as well. In the P2M segment, CO2 conversion effi-
ciencies of biological and chemical methanation were evaluated several times [9,33,34,42–44].
Moreover, other directions, such as a bioelectrochemical system for electromethanogene-
sis [45] and producing methane by hydrogenotrophic methanogens in mixed culture [46]
were also explored. Regarding P2L, its fundamental characteristics have also been stud-
ied [3,37] but, unlike AEL, PEMEL, chemical and biological methanation, which are already
applied in grid-scale, there are mainly demonstration plants and research and development
projects using P2L technology. The plan for the deployment of the first commercial-scale
P2L plant was published in June 2020 using the technology from Sunfire GmbH [47].

Based on the above, technical and economic aspects have already received much
attention, but business-, strategy-, and innovation-oriented research did not so far in the
P2X segment, despite its vast significance (i.e., companies will invest in P2X technologies
and utilize them).

2.3. P2X-Oriented Industry-University Collaborations

Based on previous research, to promote the development of the sustainable energy
sector effectively, multiple knowledge and data sources must be synthesized; collecting and
organizing relevant knowledge is crucial for the whole sector [48,49]. Organizations in this
field should develop more inter-organizational R&D collaborations, which would provide
them with more external knowledge (both scientific and technical) [50], while taking an
integrative approach would also allow the integration of sources and the formation of
alliances, and thus make their connection with policymakers easier [48]. At the same
time, promoting collaboration between stakeholders, often with the support of digital
technology, plays an increasing role in creating and preserving value, reacting to public
demand, and striving for sustainable solutions. This is relevant not only in the case of for-
profit organizations (e.g., a technology developer startup or a large energy company) [51]
but in the public sector (e.g., a university) as well [52,53].

These inter-organizational R&D collaborations, involving industry representatives and
universities, are relevant in the P2X segment as well. For example, the above-mentioned
technologies are often developed and implemented in demonstration plants or commercial-
scale plants through inter-organizational collaborations. A recent study showed that,
over time, dyadic collaborations can lead to a formation of an innovation network in
Hungary [8]. In such a network, actors combine their complementary capabilities (e.g.,
core technology from an innovative startup, broad industry knowledge and resources from
a large energy company, scientific knowledge and research capacities from a university,
or financial resources from strategic investors) to exploit the potential of an innovative
P2G technology [8]. Based on previous literature, official announcements, and project
deliverables, these collaborations are common within the international P2X segment of the
energy sector as well. Table 1 shows examples of P2X projects where industrial companies
have been working together with partners that were capable of completing industrial
research and development (R&D) using scientific knowledge.
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Table 1. Examples of P2X projects with collaborations among industrial and scientific actors, including universities.

Project Location H2 by: Additional
Conversion

Unique
Attribute

Industrial
Knowledge

Scientific
Knowledge Sources

H2orizon
Hardthausen
am Kocher,
Germany

PEMEL
(880 kW) -

Mobile H2
storage in a

trailer
ZEAG Energie AG German Aerospace

Center (DLR) [54,55]

REFHYNE Wesseling,
Germany

PEMEL
(10,000

kW)
-

Largest P2H
plant (under
construction)

ITM Power, Shell,
Sphera, Element

Energy
SINTEF [56–58]

Audi e-gas
plant

Werlte,
Germany

AEL
(6000 kW)

Catalytic
methanation

Largest P2M
plant

ETOGAS, EWE
Biogas, Audi

ZSW, Fraunhofer
IWES [36,59,60]

HELMETH Kalsruhe,
Germany

SOEL
(15 kW)

Catalytic
methanation

Innovative
electrolysis
technology

Sunfire, German
Technical and

Scientific
Association for Gas

and Water

Polytechnic
University of Turin,
European Research

Institute of
Catalysis, National

Technical
University of

Athens

[36,59,61,62]

BioPower2Gas Allendorf,
Germany

PEMEL
(300 kW)

Biological
methanation

First
commercial
plant with

biomethana-
tion

Microbenergy,
Viessmann Group
EAM EnergiePlus,
EnergieNetz Mitte

iDe (Institue of
Decentralized

Energy
Technologies),

DBFZ (German
Biomass Research

Centre)

[36,63–65]

BioCat Avedøre,
Denmark

AEL
(1,000 kW)

Biological
methanation

Patented
microorganism

and largest
biomethana-

tion
plant

Electrochaea,
Energinet,

Hydrogenics,
NEAS Energy,

HMN Gashandel
A/S, Biofos A/S,

Audi, Insero

University of
Chicago [36,66–68]

Underground
Sun Storage

Pilsback,
Austria

AEL
(500 kW)

Biological
methanation

Underground
methanation

RAG, Verbund,
Axiom

University of
Leoben, University

of Natural
Resources and
Applied Life

Sciences Vienna,
Energy Institute at

the Johannes
Kepler University

[69,70]

STORE&GO-
Italy Troia, Italy AEL

(200 kW)
Catalytic

methanation

P2M with CO2
from Direct Air
Capture (DAC)

Climeworks AG
(DAC), Studio

Tecnico BFP,
Engineering
Ingegneria

Informatica SPA,
Iren SPA,

ATMOSTAT,
Hysytech S.R.L.,
Comune di Troia

Politecnico di
Torino, CEA

French Alternative
Energies and

Atomic Energy
Commission

[71,72]

Copernicus
P2X project

Karlsruhe,
Germany

SOEL
(10 kW)

Fischer-
Tropsch

synthesis

P2L with CO2
from Direct Air
Capture (DAC)

INERATEC,
Climeworks,

Sunfire

Karlsruhe Institute
of Technology [73–75]

C3 Mobility
P2L plant

Freiberg,
Germany N/A Methanol

synthesis

12 tons of
green fuel

already
produced for

tests of car
manufacturers

Chemieanlagenbau
Chemnitz,

Mitsubishi Hitachi
Power Systems

Europe

TU Bergakademie [76,77]

Table 1 illustrates that all the examined P2X sub-segments (P2H, P2M, P2L) can
be characterized by collaborative R&D activities; moreover, that the valuable scientific
knowledge is mostly provided by universities or research centers. Based on the importance
of industry–academia collaborations in P2X R&D and innovation projects, but the lack of
research into the dynamics of knowledge flows within these collaborations, researching
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this area can have practical contributions for P2X developments and transition to the
hydrogen economy.

2.4. Methodology
2.4.1. Extended Case Study Method

The research question is answered through the extended case study method, which
builds on the retrospective analysis of a company and aims to gather in-depth understand-
ing using quantitative and qualitative data, documents and interviews. Furthermore, the
extended case study method involves constant iteration between theory, data collection
and analysis in order to extend an existing theory [78,79]. In this study, the case study
was conducted at a Hungarian P2X technology developer startup, which was founded in
2016. This startup company developed an innovative P2G prototype in 2018, and recently
opened its research and development activities to the P2L segment as well. The company
plans to use its special know-how to implement P2X technologies in grid-scale, producing
renewable hydrogen, synthetic methane or liquid fuels. The company is also a member
of the National Hydrogen Technology Platform in Hungary. Based on the theoretical
background, the data collection and analysis were focused on technological knowledge
flows and knowledge development from 2016 to 2021 through the inter-organizational
connections of the company, especially with universities and other industry actors.

The company was chosen based on its information intensity [80], because an extended
case study can only be prepared with sufficient information; moreover, international P2X
projects suggest that there is a central technology development company that acts as the
“engine” of the projects (e.g., Electrochaea in the BioCat project, Sunfire in the Copernicus
P2X project, and Microbenergy in the BioPower2Gas project). Besides the necessity of
information intensity for the case selection, based on Burawoy [78] and Danneels [79], an
extended case study can be characterized by the following considerations:

It focuses on getting to know a case in-depth, emphasizing the past as well, not just
analyzing the present.

The use of quantitative and qualitative data sources with interviews, reviewing the
events chronologically, and exploring their circumstances.

Data from a longer study period are analyzed and compared with the theory, from
which theoretical constructs are derived. These are finalized by reinterpreting the data and
comparing it with existing theories, by collecting new data, and creating new constructs
when the points of the data and the theoretical framework show a solid fit [78,79].

2.4.2. Data Gathering and Analyses

In line with the balancing nature of the extended case study method (between in-
terpretative “understanding” and functionalist “theorizing”), the data gathering, and
analyses had a predominantly qualitative and a supporting quantitative part, which
were interconnected:

1. More than 30 semi-structured interviews were undertaken (with the employees of
the company, stakeholders, and partners, including researchers at universities and
managers of industrial partners), which lasted for 1–1.5 h. This is in line with re-
search into similar strategic and management-related topics using the extended case
study method. For example, Danneels [79] conducted 17 interviews, while Bingham
et al. [81] and Tripsas and Gavetti [82] conducted 31 and 20 interviews. The interviews
were guided by the main research question, considering that although Creswell [83] ar-
gued that qualitative questions come up and change continuously (in our case, partly
based on the supporting quantitative analysis), even qualitative research cannot start
without a plan; as such, some kind of a conceptional question is necessary [84]. The
emerged sub-questions of the semi-structured interviews are listed in Appendix A.
The interviews were coded using the suggested iterative approach (between data and
theory) with regard to the extended case studies [79].
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2. Quantitative text analysis was used on the content of the R&D Technological Platform
of the P2X developer company, which contained 336 knowledge elements (docu-
mented technological know-hows, innovation-related questions and ideas, and e-
learning materials) as a result of the open innovation processes of the company. Based
on the supporting nature of this quantitative analysis, a representational approach
(and not an instrumental approach) was followed instead to identify the intended
meanings of the sources. The analysis-in parallel with the interviews-mainly involved
thematic and network text analysis [85], but identifying trends was also relevant
because of the extended case study methods. Based on these trends, future pathways
could be also explored through interviews, as exploring scenarios is becoming highly
relevant in the complex and uncertain future economic system [86].

The knowledge elements from the platform were first exported to Microsoft Excel
with the year of the uploading (in line with the retrospective approach of the extended case
study method), then the knowledge elements were categorized based on the interviews
according to their:

a. primary source (industry/academia);
b. primary technological focus (e.g., P2H);
c. primary (academic or industrial) sectoral connection (e.g., bio- or chemical technology);
d. primary goal (e.g., benchmarking and market research).

The texts were analyzed using the JMP software, which can be used for text mining
purposes [87]. Using the JMP software, the following steps were undertaken:

1. data cleaning (e.g., correction of grammatical errors);
2. tokenizing (removing punctuation and common words such as “the” or “some” using

built-in Regex tokenization);
3. phrasing (a maximum of four words, but mostly from two or three words, e.g.,

“anaerobic digestion”, or “solid oxide electrolysis”);
4. terming (adding phrases to the term list) were conducted in the first part of the

text analysis.

Regarding terming, manual recoding of the terms was needed because built-in stem-
ming led (could have led) to distorted results (e.g., “active” and “activity” must not be
grouped, in contrast to “activity” and “activities”). Manual recoding also allowed to group
chemical symbols with their word (e.g., “H2” and “hydrogen”), thus reveal trends instead
of highly fragmented results. The main parameter of the analyses was the appearance rate
of the different terms, and the analysis used the following tools to contextualize and guide
the interviews:

1. Generating a document term matrix that showed whether a specific term appeared
in a specific knowledge element or not and scoring terms by the attributes of the
knowledge elements (e.g., their source or primary goal).

2. Generating and analyzing word clouds and trend analyses according to attributes of
the knowledge elements, such as their source or upload year

3. Hierarchical clustering of the terms according to the attributes of their containing
knowledge elements.

As indicated above, the interviews (the qualitative part) affected the text analysis (the
quantitative part), but vice versa, as well as the documents and the text analysis affected
the interview sub-questions (e.g., the importance of carbon capture was asked because of
the volume of related know-how development in the platform). This interconnection is
illustrated in Figure 4.
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Beyond these phases, the authors added a synthetizing, validating, and fine-tuning
phase with the participants, which was an important step regarding the validity and
reliability of the conclusions. Due to the interviewees’ lack of time of the, this was only
possible by sending a written summary of the main conclusions by email. Conclusions
were finalized based on 19 feedback sheets.

Validity, reliability, and generalizability were considered in both a qualitative and
quantitative sense:

1. To improve validity, the two-year-long research and the five-year-long time horizon
were important to generate an in-depth understanding of the research area. The
quantitative text analysis was needed to explore patterns in the knowledge base.

2. Reliability was improved by using more than one interviewer, which was important
to balance between flexibility and consistency at the same time [88]. Moreover, the
volume of the analyzed text was also extensive (335 knowledge elements (separate
texts), 6345 terms, 84,285 tokens in total).

3. Generalizability was facilitated by the iteration of empirical data and earlier theo-
ries. It is important that, by following the iterative coding technique (similar to the
grounded theory method), the authors could produce a substantive theory valid
in a limited social context (e.g., innovative technology developments aiming at the
hydrogen economy), rather than a more abstract, formal, general theory [89].

3. Results
3.1. Building an Inter-Organizational Network and a Digital R&D Platform

From 2016, the P2X developer company has consciously built more and more connec-
tions to university knowledge hubs, all of which support special areas of its operations
(business and management, engineering, bio- and chemical technology, energy economics)
and also provided opportunities for constant development of new knowledge. On the
other hand, the growing number of industrial relationships revealed the company’s need
for applied (industrial) know-how development, which required partly the existing knowl-
edge of the P2X developer company and also the accessed knowledge through universities.
Recognizing its “bridge-like” role, the company has built its knowledge platform to facili-
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tate internal R&D and open innovation as well. Figure 5 shows the inter-organizational
knowledge network of P2X development.
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In this platform, the company collected and developed the technological know-hows
with its collaboration partners. The platform has three knowledge modules:

1. The “innovation problem solving/idea generation” module contains questions, an-
swers, and ideas about current and further technological developments. These are
the less mature knowledge elements.

2. The “digital know-how development” is useful for collaboratively codifying and de-
veloping know-hows, and collecting and storing data and information. These knowl-
edge elements are more mature; these are, e.g., proven best practices or market data.

3. The “e-learning” module has the most mature knowledge elements; the e-learning
materials, which provide concrete and proven guidance for prototype and (later)
plant management.

The fourth module of the platform is the “prototype/plant management” module,
which contains raw data about the prototype operations and provides remote monitoring
and remote-control functions.

3.2. The Content of the Know-How Flows on the Platform

Regarding the content of these knowledge elements, dynamically changing word
clouds can be seen. Figure 6 shows the word cloud based on the knowledge base of the
platform, colored by the year of uploading the content (from green (2018) to blue (2021)).
Considering the interviews as well, the main characteristics and dynamics of the know-how
base are the following:

1. At the launch of the platform (2018), prototype operation, control issues, and analyses
were in focus.



Sustainability 2021, 13, 9194 12 of 26

2. P2G technology and carbon dioxide are the most important terms in the know-
how base, the reason for which is that the company mainly focuses on biological
methanation technology, and carbon dioxide is a key input for methanation.

3. While biogas was in focus in 2018–2020, carbon capture became dominant in the
know-how development for 2020 and 2021. This is because of the startup company’s
growing number of industrial partnerships and is in line with the previous research,
which suggested that P2M and carbon capture (CC) could together become disruptive
in the future [90].

4. Renewable energy, hydrogen and methane production, system and process develop-
ment, and waste heat utilization are the main topics that are constantly important in
the know-how flow.
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Regarding the dynamics in the focus of know-how development, one can see from
Figure 7 that the importance of carbon capture emerged because of the company’s industrial
partners. This figure also shows that
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1. while academic influences on the know-how flows are divergent with smaller topics
in higher volume, industrial influences are converging toward decarbonization;

2. the startup company has more connections to academic knowledge bases in the
beginning but, with the development of the prototype and its own knowledge base,
industrial partners have increasingly opened up for the startup. It resulted in further
changes in the knowledge base.

These findings suggest that there is a clear need from industry towards a startup (or
the startup ecosystems) and also the academic sector for creating efficient solutions for
carbon capture. The interviewees also confirmed that industry actors are highly interested
in carbon capture (CC) and utilization technologies because of the economic threat of the
carbon tax or other costs related to CO2 emission [91]. It is also supported by the primary
sectoral connections of the knowledge contents, because carbon capture is mainly related
to economics, business and management in the case of academic and industrial sources
as well (based on the 50 most common terms, Figure 8). These sectoral connections of the
knowledge elements were categorized based on the interviews.
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3.3. Complementarities between the Knowledge Base of Industry Representatives and Universities

The results also suggest that academic and industrial knowledge sources during the
know-how flows focus on different aspects of P2X technology development, i.e., comple-
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mentary capabilities can be identified to profit from technological innovations [19]. Based
on the terms that appeared at least 10 times in the database (N = 649) and the interviews
with stakeholders, Figure 9 represents the appearance rate of the different terms (every
dot represents a term) in knowledge elements with specific attribute combinations (e.g.,
industrial source, and bio- or chemical technological relatedness). The significance of this
figure is that it shows the substantial complementarity between academia and industry
regarding key areas of collaborative P2X technology developments. It meant a further
step during the in-depth analysis, because it synthesized two former aspects with a new
one: key topics based on the appearance rate (Figures 6 and 7) and the sectoral connection
(Figure 8) with the source of the knowledge element. The figure shows that academic and
industrial partners mostly have different strengths regarding sectoral connections.
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1. Terms that often appear in know-hows from industrial sources are connected loosely
to bio- or chemical technology (I1 cell in the Figure) or energy economics (I3), while
know-hows from academia are often themed around these terms (A1 and A3).

2. Economics, business and management-related know-hows are mostly from industrial
knowledge sources (I2), while academic sources hardly appear on these topics in the
P2X segment (A2). This result can be explained by the early-stage nature of several
P2X technologies, which are not sufficiently mature yet to generate business problems
to be studied by researchers.

3. Regarding engineering, industrial sources were more dominant in the data, but this
difference compared to academia is weaker. Based on the interviews, this is because
the startup began its activity on a prototype level focusing on biotechnology, while
engineering becomes (became) increasingly relevant when scaling up the technology.

These results suggest that universities and research centers mostly contribute to bio-
or chemical technology-related energy economics-related areas at present, while industrial
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partners affect know-how development from business and management, and engineering
aspects. The synthesis of the raw data and interviews allowed the most important topics
where industrial and academic partners can affect the development of P2X technologies
in the future to be identified. Table 2 shows the main contributions and some of the most
related terms (from the 100 most common) based on Figure 9.

Table 2. Potential contributions of industrial and academic partners in the P2X segment.

Industry

Using chemical
absorption for carbon
capture (e.g.,
“ammonia”,
“prototype”, “control”,
“operation”)

Developing
decarbonization projects
and producing clean
fuels (e.g., “carbon
capture”, “project”,
“green”, “SNG”)

Gaining competitive advantage
on EU markets by reducing
energy costs, introducing novel,
more energy efficient
applications (e.g., “eu”,
“market”, “cost”, “scenarios”,
“first”, “applications”)

Increasing efficiency using
new solutions, implement
them with higher pressure
(e.g., “pressure”, “reactor”,
“data”, “control”)

Academia

Modeling reactions,
evaluating efficiencies
(e.g., “reaction”,
“performance”,
“efficiency”)

Developing innovative
business models with
CCS/CCU technologies
(e.g., “innovative”,
“combustion”,
“demonstration”,
“carbon”)

Studying scenarios about
integration and potential of
relevant technologies (e.g,
“assess”, “model”, “economics”,
“comparison”, “potential”,
“integration”)

Evaluation of efficiencies
by scaling up, integration,
and waste management
(“integration”, “reactor”,
“data”, “wastewater”,
“waste heat”)

Bio- or chemical
technology

Economics, business and
management Energy economics Engineering

Beyond the academia–industry and sectoral categorization, the knowledge elements
were categorized based on the interviews according to their:

1. primary technological focus, which contained five categories: P2H, P2M, P2G (P2H +
P2M), P2L, and CC

2. primary goal of the knowledge/know-how development (benchmarking and marketing
research, business development, scientific research, technology development, training).

These categories indirectly suggest some exploitation or exploration potential. For
example, better-known technologies, such as P2H with AEL or PEMEL, may belong to
the exploitation of the current knowledge and that is why business development and
training would be more relevant in their cases. In contrast, carbon capture may require
more exploration with scientific research and technology development. However, the
hierarchical clustering based on these categories, which may suggest some hierarchical
structure about what terms tend to belong to e exploitation or exploration, shows a more
complex picture. The extended constellation plot based on the 50 most common terms
and their interpretation based on the interviews is presented in Figure 10. The figure also
indicates the emerging knowledge network for P2X development.
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4. Discussion

Based on the iteration and synthesis of theory, qualitative and quantitative data
collection and analysis, exploitative and explorative learning should be interpreted, and
the role of collaboration partners should be analyzed.

4.1. Exploitative and Explorative Learning in the P2X Segment

The results suggest that exploitation and exploration can have several interpretations
at sector level, company level and on different time horizons. At sector level,

1. exploitation can be interpreted as:

a. the utilization of the core technological know-how base of the startup company
on a commercial scale (P2H and P2M with biological methanation). This inter-
pretation is supported by the technology readiness levels (TRL) as well. For
example, low-temperature electrolysis (AEL, PEMEL) are at TRL9 [92], and
there are grid-scale P2M plants as well [43,44];

b. the incremental improvement of these core technologies to increase efficiency
and consequently support the commercialization of these solutions (see point
a.). For example, these tasks can involve the utilization of low-temperature
waste heat [93], or different nutrition of the biocatalyst [94].

2. exploration can be interpreted as:
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a. developing new P2X technologies, especially P2L, which is only in the demon-
stration phase [95], but future investigations can focus on the Power-to-Ammonia
(P2A) process as well [96];

b. developing carbon capture solutions, which could solve the challenge of scaling
up the methanation technologies, as sourcing CO2 is a critical input factor [8].
Moreover, CO2 can be also required for P2L processes. The main carbon cap-
ture strategies are well known (post-combustion, pre-combustion, and oxyfuel
combustion), but there are different TRLs in the case of concrete solutions [97]
and their implementation on a commercial scale is also rare.

Considering the fundamental characteristics of P2X technologies, these sector-level in-
terpretations of exploitation and exploration have relevance in developing optimal energy
storage systems. In this area, important scientific advancements were recently published
that suggest that the wide range of the emerged technologies in the analyzed case for ex-
ploration and (later) exploitation are relevant at system level and in other cases as well. For
example, Lai et al. [98] proposed a new framework for long-term electrical power system
modeling, because different energy storage technologies need to be accounted for; Petkov
and Gabrielli [99] analyzed P2H as a seasonal energy storage option in low-carbon multi-
energy systems, where the interactions of energy carriers, such as electricity, natural gas
(methane), hydrogen or heat can enable new value propositions; while Sánchez et al. [100]
considered methane, methanol, dimethyl ether (DME) and ammonia to determine an
optimal infrastructure to provide energy storage or use these outputs in other energy
applications. In line with these approaches Figure 10 showed that exploration cannot
only mean technological exploration (e.g., P2L in grid-scale), but innovative approaches
to system integration; for example, P2G and fossil fuel power plants [101] or developing
hybrid renewable energy systems using already known technologies (e.g., wind turbines,
battery storage, internet of things and diesel generators) [102]. The same will be true with
the integration of novel P2X technologies, fulfilling an energy storage role, regarding which
future energy systems will certainly require (1) collaborative and (2) explorative learning
in practice:

(1) collaborative because of the heterogeneous knowledge base that is hardly owned by
one company or university;

(2) and explorative because of the complexity of these new, integrated systems.

At company level, exploitation and exploration however, depend on the previous and
present activities of the focal organization. The difference between a startup company and
a large energy company can be illustrative. For example, while P2M can mean the existing
business for a startup company, the knowledge base of which must be efficiently exploited
on a commercial scale, it can mean a new business for a large energy company, so P2M
must first be explored and channeled into the business activity.

Finally, the focus on exploitative and explorative learning is never static, neither at
sector level, nor at company level. While in 2016 P2H and P2M might have required
explorative learning from a company, in 2021 P2L and CC technologies might be explored
to (1) build a new business, (2) facilitate the exploitation of the core business, (3) or build
on the core business (as shown in Figure 8).

4.2. The Role of System Builders, Academic Partners, and Industrial Partners

Prior research indicated that, to face the challenges of the transition to a potential
hydrogen society with low (or zero) carbon emissions, cooperation on multiple levels
is inevitable. At the supranational level, a global approach should be taken to tackle
the global problem. International consensus is required, including clear standards and
targets for the applied technologies, as well as a timeline, agreed by a wide range of
countries and other actors, with the alignment of national policies [103]. Besides, for
the development and implementation of sustainable energy systems, the cooperation
of lower-level actors is also crucial. Companies in the renewable energy sector have to
be able to collect, identify, organize and use relevant information and its sources to be
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competitive [104]. Furthermore, multiple sources argue that, in the university-industry
knowledge-sharing network, a multidisciplinary and practice-oriented approach should be
taken with the involvement of academic institutions and local energy companies [105,106].
University-industry cooperation would not only allow firms to enrich their technical
knowledge and facilitate research activities [50], but it would also strengthen the trust
between universities and industries. Mutually proactive exchanges and joint knowledge
creation between universities and the industry would also provide universities with crucial
research infrastructure and integrate university resources to promote the development of
the energy-saving industry [105]. This research showed, however, that a central actor (a
system builder) might be needed to connect to academic and industrial partners. This is in
line with the earlier consideration that the actions of multiple and diverse actors involved
in related R&D and technology implementation activities are often misaligned [48].

System builders (local actors who drive the development and construction of a system,
e.g., a technology developer startup) not only play a central role in the implementation
of new sustainable technologies, but also in collecting relevant knowledge, as well as
connecting and enrolling other actors and ensure collaboration between them [49]. This
suggestion was supported by the presented empirical results, too, because the technology
developer startup was needed to develop an integrated R&D platform and connect industry
representatives and universities in Hungary, which have different strengths in the main
sectoral connections (bio- or chemical technology, economics, business and management,
energy economics, and engineering).

While system builders integrate exploitative and explorative learning and connect aca-
demic and industrial partners, it seems evident at first sight that universities and research
centers contribute to exploration, while energy companies contribute to exploitation. Based
on our empirical results, however, this is only partly true: the contribution to exploitation
or exploration in the P2X segment by academia or industry depends on the level of inter-
pretation of ambidexterity (sector level or company level). In the focal case, universities
mainly focused on developing new solutions that can improve the overall efficiency of
the P2H and P2M process chain (e.g., utilization of low-temperature waste heat). Even
though it requires innovations, these technologies represent the existing business of the
focal company, i.e., these developments support exploitative activities at company level. It
supports, however, exploration from the aspect of the sector, because P2H and P2M have
not been extensively implemented, neither in Hungary, nor worldwide.

On the other hand, the exploitative role of industrial actors can also be ambiguous.
Even though they could provide extensive knowledge of current infrastructure and op-
portunities, in the focal case the industrial partners drive exploration by focusing their
attention, and also the attention of the system builder startup and universities, on carbon
capture. Moreover, the results suggest that industrial partners can actively participate in
finding and implementing new solutions for carbon capture, which belongs to exploration
from the aspect of the technology developer startup (system builder) and the sector, as well
(as CC solutions are also rare, even pilot-scale ones).

In sum, universities could support the exploitative activities of technology developer
startups and large energy companies, and large energy companies could support the
explorative activities of universities and technology developer startups if they are connected
within an “innovation ecosystem”. This is a dynamic and adaptive system, in which actors
have different capabilities, roles, and motivations, but they collaborate for the success of
the innovation process [107]. Considering that these knowledge processes could happen in
the digital environment, this study showed that “digital innovation ecosystems” [108] are
relevant in the case of the development of the hydrogen economy as well.

Figure 11 summarizes the findings based on the synthesis of data collection, analyses,
and prior literature findings from the aspect of a P2X innovation ecosystem. As the subjects
of exploitation and exploration are never static, the table only provides a “snapshot”, but
underlines that the actors should bring about exploitation and exploration in cooperation,
due to their complementary capabilities.
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4.3. Analyzing the Correctness of the Presumption

The presumption for the research question was that a digital platform could support
the P2X technological know-how flows and so hydrogen economy development with
academic and industrial partners, where universities provide explorative knowledge,
while energy companies provide exploitative knowledge. Based on the extended case
study using a five-year time horizon and a hybrid (qualitative-quantitative) methodology,
the results suggest that the presumption is only partially true. Even though a digital
platform could indeed support know-how flows between universities and industry for P2X
and hydrogen economy development, the following points shade this presumption:

1. There is a need for a system builder (e.g., a technology developer startup), who
connects academic and industrial partners, integrates and participates in exploitative
and explorative learning activities at different levels (own company, large energy
company, and sector level), and so facilitates the formation of a(n) (digital) innovation
ecosystem for technological know-how flows.

2. Exploitation and exploration can have different interpretations at company level
and at sector level. Even though P2X technology development as a whole means
exploration for the energy sector or the innovation ecosystem, and certain technolo-
gies can be more mature, for certain organizations these technologies require either
exploitative learning for startups, or explorative learning for large energy companies.

3. Universities could contribute to exploitative learning (e.g., in the case of the commer-
cialization of P2H and P2M with incremental improvements for higher efficiency),
and large energy companies could contribute to explorative learning (e.g., by driving
the development of CC solutions) as well.

4. The subjects of exploitation and exploration change over time, both on a company and
a sector level. While P2G meant exploration five years ago, it can mean exploitation
today, as TRLs are high enough and business models become viable. CC, which
could solve challenges about CO2 input for P2M and P2L, thus facilitating the more
extensive use of renewable hydrogen, became one of the key areas of exploration.

5. Conclusions

This research focused on how the pace of hydrogen economy development could be
increased through P2X innovation-focused, digital inter-organizational knowledge net-
works containing industry representatives and universities. The main novelty of the results
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is that academia is also capable of supporting the exploitation of more mature technologies,
and large energy companies could also drive exploration. This conclusion extends their
expected role (i.e., academia drives exploration and industry drives exploitation) in the
P2X technology development processes. Furthermore, the findings also suggest that a third
actor, a “system builder” may also be needed to integrate exploitative-explorative learning
and facilitate the formation of a (digital) innovation ecosystem. The main contribution of
these conclusions to the literature is the applicability of network-based innovation manage-
ment theory for hydrogen economy research. This novelty also indicates, however, some
limitations and directions for future research. The main limitation of the conclusions is
that they are built on one extended case study. Even though iteration with earlier theories,
data collection and analyses, triangulation in the data sources (interviews and text data),
and also qualitative and quantitative methods were applied, this abductive approach only
allows the generation of a substantive theory. It is valid in a special context (i.e., the
(Hungarian) P2X segment) and does not represent a formal, general theory [89].

As this research can be considered one of the first steps towards the in-depth under-
standing of inter-organizational know-how flows for developing the hydrogen economy,
further research could take an even deeper approach to analyzing how intra-organizational
knowledge management of universities and large energy companies could contribute to
the success of P2X-oriented innovation ecosystems. For example, exploitation and explo-
ration require different knowledge management practices (e.g., generating or covering up
structural holes in the knowledge network or the employee network) [109–111]. From a
technical perspective, the integration of the analyzed technologies, such as power-to-gas us-
ing carbon capture solutions [112,113], might require a specific combination of exploitative
and explorative learning, which can be also researched in the future.

Despite these limitations, the authors believe that highlighting the central role of
the “system builder” of a digital innovation ecosystem, which allows the integration
of exploitative and explorative learning at different levels, could serve as a model for
technological contexts. Moreover, the explored areas (especially carbon capture), where
exploitative and explorative knowledge transfer is needed in the present and the near
future among universities and industry representatives, is useful, one hopes, to increase
the pace of developing the hydrogen economy.
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Abbreviations

AEL Alkaline electrolysis
CC Carbon capture
P2A Power-to-Ammonia
P2G Power-to-Gas
P2H Power-to-Hydrogen
P2L\ Power-to-Liquid
P2M Power-to-Methane
P2X Power-to-X
PEMEL Polymer electrolyte membrane electrolysis
SOEL Solid-oxide electrolysis
TRL Technology Readiness Level

Appendix A

Interview questions:

1. Main (conceptual) question:

How could the pace of developing the hydrogen economy through P2X innovation-
focused, digital inter-organizational knowledge networks containing industry actors and
universities be increased?

2. Categorization of certain knowledge elements (20–40 elements/interviewee; with
double checking the elements) according to their

i. primary source (industry/academia)
ii. primary technological focus
iii. primary (academic or industrial) sectoral connection
iv. primary goal (Categories in the case of ii–iv. attributes emerged continuously,

and recoding was needed at the end of the data collection)

3. Topics of the emerging sub-questions

- Reflecting on the categorization:

# Why does [the name of the knowledge element] belongs to [the mentioned
category by the interviewee], rather than to [an alternate category suggested by
one of the interviewers]?

# How does [the name of the knowledge element/a certain technological focus/a
certain sectoral connection/a goal of the know-how development] contribute to
the development and/or implementation of P2X technologies?

- Discovering the characteristics of the know-how development during the time
horizon:

# What inter-organizational connections does the company have, and how
have these connections been developed?

# How are inter-organizational know-how flows (knowledge development
processes) managed?

# What is the relevance of the digital platform?
# What are the main benefits of the academia-industry connections for

technology or business development?
# How have strategic plans and innovation focuses changed over time, and

what are the future plans now?
# What do exploitation and exploration mean in the case of technology

development and business development?

- Reflecting on the results of raw text analysis:

# What can be the reasons for the dominance of [a frequent term] in general?
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# What can be reasons for the dominance of [a frequent term] [in a certain
time horizon]/from the academic or industrial perspective/in the case of
[one of the previously identified sectoral connection]?

# What are the possible areas where academia and/or industry representa-
tives can contribute to the P2X development in the future?

# How and why can [a list from a certain group of terms based on hierarchical
clustering] be interrelated?

# How and why can [a certain group of terms based on hierarchical clustering]
be related to [another certain group of terms]?

# What technological solutions might require exploitative learning (i.e.,
focusing on the utilization of the solution in large scale), and what solu-
tions might require explorative learning (i.e., many new ideas, finding
new ways)?
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10. Csedő, Z.; Sinóros-Szabó, B.; Zavarkó, M. Seasonal Energy Storage Potential Assessment of WWTPs with Power-to-Methane

Technology. Energies 2020, 13, 4973. [CrossRef]
11. Felseghi, R.-A.; As, chilean, I.; Cobîrzan, N.; Bolboacă, A.M.; Raboaca, M.S. Optimal Synergy between Photovoltaic Panels and

Hydrogen Fuel Cells for Green Power Supply of a Green Building—A Case Study. Sustainability 2021, 13, 6304. [CrossRef]
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