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We propose a new predictor-corrector (PC) interior-point algorithm (IPA) for solving linear complementar-
ity problem (LCP) with P, (k)-matrices. The introduced IPA uses a new type of algebraic equivalent trans-
formation (AET) on the centering equations of the system defining the central path. The new technique
was introduced by Darvay and Takacs (2018) for linear optimization. The search direction discussed in
this paper can be derived from positive-asymptotic kernel function using the function ¢(t) = t? in the

new type of AET. We prove that the IPA has O((l +4k)/nlog 31‘6‘0

upper bound of the handicap of the input matrix. To the best of our knowledge, this is the first PC IPA
for P, (x)-LCPs which is based on this search direction.
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1. Introduction

The linear complementarity problem (LCP) is a well-known
problem which includes linear programming (LP) and linearly con-
strained (convex) quadratic programming problem (QP), as special
cases. The most important basic results related to LCPs are sum-
marized in the books of Cottle, Pang, & Stone (1992) and Kojima,
Megiddo, Noma, & Yoshise (1991). Many classical applications of
LCPs can be found in different fields, such as optimization the-
ory, game theory, economics, engineering, etc. Cottle et al. (1992);
Ferris & Pang (1997). For example, bimatrix games can be trans-
formed into LCPs under specific assumptions Lemke & Howson
(1964). Kojima & Saigal (1979) used the degree theory in order
to study LCPs. Furthermore, the Arrow-Debreu competitive market
equilibrium problem with linear and Leontief utility functions can
be also given as LCP (Ye, 2008). More recent work of Bras, Eich-
felder, & Judice (2016) connected the copositivity testing of ma-
trices and solvability of special LCPs. Darvay, Illés, Povh, & Rigd
(2020b) published a PC IPA for sufficient LCPs using the function
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@(t) =t — /t for AET, but tested numerically their algorithm be-
yond the class of sufficient matrices, too. Numerical results pro-
duced by the developed PC IPA for testing copositivity of matrices
using LCPs were very promising. Sloan & Sloan (2020) showed that
solvability of LCPs related to quitting games ensures the existence
of different e-equilibrium solutions. There is no reported computa-
tional study on this type of application of LCPs, yet.

In the LCP we want to find vectors X, s € R", that satisfy the
constraints

—Mx+s=q, xs=0, x,s>0, (LCP)

where M € R™", q ¢ R" and xs denotes the Hadamard product of

vectors X and s. The following notations are used to denote the

feasible region, the interior and the solutions set of LCP:
Fi={(Xs) eRE xRy : —MX+s=q},

Fti={(Xs) eR" xR" : ~Mx+s=q}, and

Fri={(X,8) € F:xs =0}.

We denoted by Rf, the n-dimentional nonnegative orthant and by

R" the positive orthant, respectively. We call a problem P, («x)-LCP
if the problem’s matrix of (LCP) is P, (x)-matrix, i.e.

(1+4k) > x(Mx)i+ Y x(Mx); =0, VxeR" (1)

iel; (x) iel- (x)
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where
I,(x) ={1<i<n:x(Mx); >0} and
I-(x) ={1 <i<n:x(Mx); <0}

and x > 0 is a nonnegative real number. We will assume through-
out the paper that F* ¢, there is an initial point (x0,s%) e F+
and M is a P,(x)-matrix. The class of P, matrices is the set of
all P,(x)-matrices, where x > 0. Viliaho (1996) showed that the
class of P,-matrices is equivalent to the class of sufficient matrices
given by Cottle, Pang, & Venkateswaran (1989). The handicap of M
(Vdliaho, 1996) is the smallest value of £ (M) > 0 such that M is
P, (& (M))-matrix. Véliaho (1996) also proved that a matrix M is P,
if and only if the handicap £ (M) of M is finite.

There are several methods for solving LCPs with different
matrices, such as simplex (Csizmadia, Csizmadia, & Illés, 2018;
van de Panne & Whinston, 1964; 1969; Wolfe, 1959), criss-cross
(Csizmadia & Illés, 2006; Csizmadia, Illés, & Nagy, 2013; den
Hertog, Roos, & Terlaky, 1993; Fukuda, Namiki, & Tamura, 1998;
Fukuda & Terlaky, 1997) or other pivot (Lemke, 1968; van de Panne,
1974) algorithms. However, the IPAs for solving LCPs received more
attention in last decades (Kojima et al., 1991). It should be men-
tioned that LCPs belong to the class of NP-complete problems
(Chung, 1989). In spite of this fact, due to the results of Kojima
et al. (1991), if we suppose that the problem’s matrix has P, (x)-
property, the IPAs solving these kind of LCPs usually have polyno-
mial complexity in the handicap of the problem’s matrix, the size
of the problem and the bitsize of the data. However, note that the
worst-case iteration complexity of the IPAs for LCP depends on the
upper bound of the handicap of the matrix M. de Klerk & Nagy
(2011) showed that the handicap of a P,(x)-matrix may be expo-
nential in its bit size. This means that if the handicap of the matrix
is exponentially large in the size and bit size of the problem, then
the known complexity bounds of IPAs may not be polynomial in
the input size of the LCP.

Potra & Liu (2005) proposed an IPA for sufficient LCPs which
uses a wide neighbourhood of the central path and the algorithm
does not depend on the handicap of the problem. There are sev-
eral known IPAs not depending on the handicap of the sufficient
matrix, such as the IPAs given by Potra & Sheng (1997), Potra & Liu
(2005), Illés & Nagy (2007), Liu & Potra (2006) and LeSaja & Potra
(2019). The IPAs for solving sufficient LCPs have been also extended
to general LCPs (Illés, Nagy, & Terlaky, 2010a; 2010b). Illés, Nagy, &
Terlaky (2009, 2010a) generalized large-update, affine scaling and
PC IPAs for solving LCPs with general matrices.

The PC IPAs perform a predictor and one or more corrector
steps in a main iteration. The aim of the predictor step is to reach
optimality, hence after an affine-scaling step a certain amount of
deviation from the central path is allowed. The goal of the correc-
tor step is to return in the neighbourhood of the central path. The
PC IPAs turned out to be efficient in practice. The first PC IPA for
LO was given by Mehrotra (1992) and Sonnevend, Stoer, & Zhao
(1991). Potra & Sheng (1996, 1997) defined PC IPAs for sufficient
LCPs. Mizuno, Todd, & Ye (1993) gave the first PC IPA for LO which
uses only one corrector step in a main iteration and these IPAs
were named Mizuno-Todd-Ye (MTY) type PC IPAs. Miao (1995) ex-
tended the MTY IPA given in Mizuno et al. (1993) to P, (k)-LCPs.
Following this result, several MTY type PC IPAs have been proposed
among others by Illés & Nagy (2007), Kheirfam (2014) and Darvay
et al. (2020b). In Darvay et al. (2020b) the authors gave a unified
framework to determine the Newton systems and scaled systems
in case of PC IPAs using the AET technique.

Barrier functions are often used for the determination of search
directions in case of IPAs. By considering self-regular kernel func-
tions, Peng, Roos, & Terlaky (2002) reduced the theoretical com-
plexity of large-update IPAs. Later on, LeSaja & Roos (2010) pro-
vided a unified analysis of IPAs for P,(k)-LCPs that are based on
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eligible kernel functions. Tuncel & Todd (1997) considered for the
first time a reparametrization of the central path system. Karimi,
Luo, & Tuncgel (2017) used entropy-based search directions for
LP working in a wide neighbourhood of the central path. Darvay
(2003) proposed the AET technique for defining search directions
in case of IPAs for LO. He divided both sides of the nonlinear equa-
tion of the central path system by the barrier parameter . After
that he applied a continuously differentiable, invertible, monotone
increasing function ¢ : (£2, 00) — R, where 0 < £ < 1, on the mod-
ified nonlinear equation of the central path problem. The majority
of the published IPAs for sufficient LCPs does not use any transfor-
mation of the central path equations, which means that these IPAs
use the identity map in the AET technique in order to define the
search directions. Darvay (2003, 2005) used the square root func-
tion in the AET technique for LO. Later on, Darvay, Papp, & Takacs
(2016) introduced an IPA for LO based on the direction using the
function @(t) =t — +/t. In her Ph.D. thesis, Rigd (2020) presented
several IPAs that use the function @(t) =t —+/t in the AET tech-
nique. Recently, Kheirfam & Haghighi (2016) have proposed an IPA
for P, (x)-LCPs which uses the function ¢(t) = Z(T‘% in the AET

technique. Haddou, Migot, & Omer (2019) have recently introduced
a family of smooth concave functions which leads to IPAs with
the best known iteration bound. The AET technique has been also
extended to LCPs (Achache, 2010; Asadi & Mansouri, 2012; 2013;
Asadi, Mansouri, & Darvay, 2017; Asadi, Zangiabadi, & Mansouri,
2016; Kheirfam, 2014; Mansouri & Pirhaji, 2013).

Zhang & Xu (2011) used the equivalent form v2 =v of the

centering equation, where v = /"ﬁs, i > 0. They considered the

xs = v transformation. Darvay & Takacs (2018) introduced a new
method for determining class of search directions using a new type
of AET of the centering equations. They modified the nonlinear
equation v2 = v by applying componentwisely a continuously dif-
ferentiable function ¢ : (§2,00) - R, 0 <& <1 to the both sides
of this equation. The properties of this function ¢ will be pre-
sented in Section 2.2. The relationship between the functions ¢
and ¢ will be discussed later as a novelty of this paper. In Darvay
& Takacs (2018) the authors considered the function ¢(t) = t2 in
order to determine the new search directions. Zhang, Huang, Li,
& Lv (2020) extended the feasible IPA given in Darvay & Takacs
(2018) to P.(k)-LCPs. Furthermore, Takacs & Darvay (2018) gen-
eralized the approach for determining search directions proposed
in Darvay & Takacs (2018) to SO and they showed that the corre-
sponding kernel function is a positive-asymptotic kernel function.
The positive-asymptotic kernel function was introduced by Darvay
& Takacs (2018) and differs from the class of kernel functions in-
troduced by Bai, El Ghami, & Roos (2004).

In this paper we introduce a new PC IPA for solving P, (k)-
LCPs which uses the new type of AET given in Darvay & Takacs
(2018) for LO. The proposed IPA applies the function ¢(t) =t2
on the modified nonlinear equation v2 = v in order to obtain the
search directions. In this sense, the corresponding kernel function
is a positive-asymptotic kernel function. Similar to Darvay et al.
(2020b) we present the method for determining the Newton
systems and scaled systems in case of PC IPAs using this new
type of AET. We also present the complexity analysis of the
proposed PC IPA. Due to the used search direction we have to
ensure during the whole process of the IPA that the components
of the vector v are greater than ? which makes the analysis
more difficult. In spite of this fact, we show that the introduced
IPA has O((1 +4«)+/nlog %) iteration complexity, where « is
the upper bound on the handicap of matrix M, u? is the starting,
average complementarity gap and ¢ is the final displacement from
the complementarity gap, respectively. This is the first PC IPA for
solving P, (k)-LCPs which uses the function ¢(t) = t? in the new
type of AET.
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The paper is organized as follows. In Section 2 we give some
basic concepts and useful results about the P, (k)-LCPs and P, (x)-
matrices. Furthermore, in Section 2.2, depending on the represen-
tation of the nonlinear equation of the central path, a new way
of applying the AET is discussed and compared to the earlier used
AET technique. The usual, but important, scaling technique is dis-
cussed together with the unique solvability of the Newton-system,
as well. In Section 3 we present a method for determining search
directions in case of PC IPAs for P,(x)-LCPs by using the new
type of AET approach. In Section 4, the new PC IPA is presented.
While, Section 5 contains the complexity analysis of the intro-
duced PC IPA with the new search directions. In Section 6 nu-
merical computations are presented and compared to the compu-
tational performance of an earlier introduced PC IPA appeared in
Darvay et al. (2020b) that used different function ¢ in the AET. In
Section 7 some concluding remarks are enumerated.

2. Algebraic equivalent transformation technique of the central
path equations

In this section we summarize important definitions and results
related to P,(x)-LCPs. Furthermore, we introduce the AET of the
central path equations. Following the steps of Darvay & Takacs
(2018), first we derive a known, equivalent description of the cen-
tral path and then we apply the AET approach, see Section 2.2. An
important novelty of the paper is that in this section we compare
the two different AET techniques introduced in Darvay (2003) and
Darvay & Takacs (2018), respectively. An interesting observation is
related to the fact that the same search directions can be obtained
in different ways.

2.1. Central path of sufficient LCPs

The central path problem for (LCP) is:

-Mx+s=q, Xx,s>0, Xxs=ue, (2)

where e denotes the n-dimensional vector of ones and
pu>0. Kojima et al. (1991) showed that the sequence
{(x(u).s()) | u >0} of solutions lying on the central path
parameterised by p > 0 approaches a solution (x,s) of the (LCP).

Illés, Roos, and Terlaky gave an elementary constructive proof
for the existence and uniqueness of the central path for sufficient
LCPs in an unpublished manuscript in 1997. The constructive proof
of Illés et al. appears in Theorem 3.6 in the Ph.D. thesis of Nagy
(2009).

Similarly to Darvay & Takacs (2018), we use X,s > 0 and u > 0,
hence we obtain:

XS XS XS XS
XS=jles —=e& |[—=e& — = [—.
w ' nwo\n

Now the central path problem for (LCP) can be equivalently stated

as
X,s >0, Xs _ ﬁ. (3)
nooyu

Different forms of the central path problem (2) and (3) will be
used later in the AET context.

An important result was proved in Lemma 4.1 of Kojima et al.
(1991), which plays important role in the solvability of the Newton
system. An important corollary of Lemma 4.1 presented in Kojima
et al. (1991) is the following.

-Mx+s=q,

Corollary 2.1. Let M € R™" be a P.(x)-matrix, X,s € R'.. Then, for
all ay, € R" the system
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—-MAx+ As =0
SAX +XAs = a, (4)

has a unique solution (AX, As), where X and S are the diagonal ma-
trices obtained from the vectors X and s.

2.2. Relationship between the two different types of AET approaches

The goal of the AET technique introduced by Darvay (2003) is
to represent the central path in a different way and to derive
Newton-system from these representations depending on the con-
tinuously differentiable, invertible, monotone increasing function
@:(%2,00) > R, where 0 < & < 1.

Now, we can apply the AET to the central path problem in the
form (2) or (3). In case of applying the AET method to (2), we ob-
tain the following form of the central path

-Mx+s=q, X,s>0, @(%):q‘)(e). (5)

However, if the AET is applied to (3), using the continuously dif-
ferentiable, invertible function ¢ : (£§2,00) — R, where 0 <& <1,
then using the idea presented in Darvay & Takacs (2018), we get

XS XS
-Mx+s=q, Xs>0, (—): — ). 6
q o\ w( m (6)

The following interesting question arises: if we use different
transformed forms of the central path (say (5) and (6)), is it nec-
essary to use some extra criterion on functions ¢? An answer will
be given at the end of this subsection.

An interesting observation is the connection between systems
(5) and (6). For this, let ¢ : (§2,00) - R
P(t) = (t) — (V). (7)

This leads to

5(22)=o() (%),

Hence, we have

w(%) — g o w(%) —w(ﬁ) — p(e) — p(Ve)
o(3) o2

Majority of the published IPAs using the AET, derives the
Newton-system from (5), while only few, like the ones proposed
by Darvay & Takacs (2018), and Zhang et al. (2020) applies the AET
to (6). We follow the second approach to derive the corresponding
Newton-system.

For an (x,s) € F* our aim is to find search directions Ax and
As such that

M+ AX) + (s+ As) =q,
<xs XAS + SAX + AxAs)

ol =+

w 22

XS XAS +SAX+ AXAs
= (p — 4+ B
M M

We neglect the quadratic terms and apply Taylor’s theorem to
the function @(t) = ¢(t) — ¢(+/f). Hence, after some calculations
we obtain (4) with

P b R Vi I
' ()~ (V3)

(9)

a, =
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Now, from the denominator of the obtained fractional expres-
sion, it is clear that we need extra assumption on the function g,
namely

2t/ () - ¢' () > 0, (10)
forallt > & with0 <& < 1.

Lemma 2.2. Consider @ : (§2,00) — R as given in (7). Then, ¢ :
(&2, 00) — R is monotone increasing if and only if condition (10) is
satisfied for the function ¢.

Proof. Using (7) we have @’ (t) = ¢’ (t) — ziﬁgo/(«/f). Hence,

@'(t) >0, Vt > &% if and only if ¢'(t) — ﬁ¢ '(Vt) > 0,

Ve s E2 (1)

Considering change of variable u:=+/t in the second part of
(11) we obtain condition (10). O

Depending on the used functions ¢ we can have different vec-
tors a,. In Darvay et al. (2020b) and Rig6 (2020) the authors pre-
sented the functions ¢ already used in the literature in case of IPAs
in order to derive complexity results for different class of optimiza-
tion problems, including LO and sufficient LCPs, as well.

Now, if a function ¢ satisfying condition (10) is applied to (6),
then using (7) and Lemma 2.2 we immediately obtain an IPA with
¢ applied to (5). However, if a function ¢ satifying ¢’(t) > 0 is ap-
plied to (5) and we derive an IPA, we do not have guarantee that a
correponding function ¢ exists, due to the fact that the connection
between ¢ and ¢ is given as a functional equation given in Eq. (7).
Thus, we do not have in this case immediately another descrip-
tion of the IPA. In other words, we should consider the following
question: can we find a corresponding function ¢ : (£2,00) — R
for a given ¢ : (§2,00) > R, 0 <& < 1? To answer this, we give
counterexamples. Using the definition of the function ¢ given in
(7), we have lim;_, ¢ @(t) = ¢ (1) = 0. However, the functions ¢ are
monotone increasing. Hence, all the functions ¢ that are defined
on the whole interval (0, o), i.e. £ =0, are counterexamples. It
would be interesting to define a class of monotone increasing func-
tions ¢ for which we can assign corresponding functions ¢. For
this, we should solve the functional equation ¢(t) — @(+/t) = @(t)
for a given function ¢ : (2, co) — R. This leads to further research
topics.

3. Search directions in case of the new type of AET technique

In this section we present a method to determine search direc-
tions in case of IPAs for P, (x)-LCPs, by using the new type of AET
approach presented in Section 2.2.

3.1. Scaling

Let us consider

-1
v Xs d— §, dX:d Ax:vAx
V i S
_dAs vAs
d; = TR s (12)
From (12) we obtain
AX = xd, and As= sd, (13)

Hence, if we substitute these in the second equation of system
(4) we get
2v(p(v) — p(v?))

=M g ) gy (14)

xsd, xsdg
V' V'
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The transformed Newton system (4) with a, given in (9), ob-
tained from (6) by applying the AET and then scaling it, leads to
the following form of the scaled Newton-system:

—de + ds =0,

dy +ds = py, (15)
where M = DMD, D = diag(d) and
2 (p(v) — p(v?))
2ve'(v?) — @' (V)

From Theorem 3.5 proposed in Kojima et al. (1991) and
Corollary 2.1 it can be proved that system (15) has unique solu-
tion.

It should be mentioned that if we wuse the function
¢ : (3, 00) > R, @(t) =t, which satisfies condition (10), then we
have
2v — 2v?

2v—e ’

Interestingly enough that exactly the same vector p, can be de-
rived if the AET is applied to (5) with function ¢(t) =t — +/t. For
details see papers Darvay, Illés, Kheirfam, & Rigé (2020a); Darvay
et al. (2016) for LO and Darvay, Illés, & Majoros (2021); Darvay
et al. (2020b) for sufficient LCPs. This can be proved by using (7),
because in this case we have @(t) = @(t) — @(v/t) =t — +/t. Fur-
thermore, if we apply the AET to system (6) using the function
@(t) =t2, then we obtain the same system as if we apply ¢@(t) =
@(t) — p(/f) =t2 —t to system (5). It should be mentioned, that
this function has not been used in the literature in the AET tech-
nique. Hence, the function ¢(t) = t2 used in the AET approach and
applied to (6) leads to novel search directions discussed in this pa-
per.

In the following subsection we give a general method of deter-
mining the scaled predictor and scaled corrector systems in case of
PC IPAs using this new type of AET.

o = (17)

3.2. Search directions in case of PC IPAs

Darvay et al. (2020b) gave a general framework to determine
the scaled systems in case of PC IPAs for sufficient LCPs. Following
the steps of their method, we give firstly the scaled corrector sys-
tem, which coincides with system (15). This system has the unique
solution: d$ = (I+M)~'p,, dS = I\7I(I+I\7[)* Pw Analogous to the
formula given in (13) we can define A‘x = X and A‘s = 5 . The
difference between this method and the one presented in Dalvay
et al. (2020Db) is that we have different value of the vector p, due
to the used function ¢(t) = t2 in the AET technique. In the trans-
formed Newton system (4) we decompose a, given in (9) in the
following way using the idea presented in Darvay et al. (2020b):

a, = f(x.s. 1) +g(X.9), (18)
where  f:R" xR? xRg — R" with f(x,5,0)=0 and
g:R} xR} - R". We set £=0 in (18), because we would
like to make as greedy predictor step as possible. From Darvay
et al. (2020b) we obtain
_de + ds = 07

vg(X,s)

dx +ds = XS ’ (19)

where M =DMD. The unique solution of system (19) is
d) = 1+ M)~ 1¥EES  and  d? = M(I+ M) "% The differ-
ence between this approach and the one given in Darvay et al.
(2020b) lies in the different value of the vector a, and of g(x,s).
Using (13) we can obtain the predictor search directions from
APX = X—Sf and APs = ﬁ. It should be mentioned that the de-
composition (18) is not trivial and we have no guarantee that such
decomposition exists for all functions ¢ suitable for AET.
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4. New PC IPA for P, («)-LCPs based on a new search direction

In this section we introduce a PC IPA using the AET technique
presented in Section 2.2. We deal with the function ¢ : (},00) —
R, ¢(t) = t2, so we obtain
vV
T 2vi-e’

It should be mentioned that the condition 2t¢’(t2) —¢’(t) >
0,Vt > £ is satisfied in this case, where & = g Note that we can
associate a corresponding kernel function to the search direction
determined by the function ¢ in the new type of AET approach.

In this way, we obtain a positive-asymptotic kernel function, see
Darvay & Takacs (2018); Rigé & Darvay (2018):

2 2
w:<?,oo)—>R@, t2—1 log(2t N

t) =

YO =" ]
Let us define the centrality measure § : R"” x R x Ry — RU

{oo} as

(20)

Py

v—v3
2v2 —e

. Pl _ 1
3(x,8, ) :==68(v) = 5 =3
Beside this, we give the t-neighbourhood of a fixed point of the

central path as
No(T, ) :={(x,8) e F© : 8(X,s, u) < 7}, (22)
where §(x,s, i) is given in (21), T is a threshold parameter and
> 0 is fixed.

First, we need to find the decomposition of a, as it is given in
(18):

. 21)

2 = UXS XS
YT 202xs—ue) 2
Xs . . .
hence f(x,s, )= m which satisfies the condition

f(x,5,0)=0 and g(x,s) =-%*. In this case, the transformed
Newton system (4) with (9) is the following:
-MAx+ As =0,
UXS XS
SAX+XAS= ————— — —.
+ 2(2xs—pue) 2
Note that some IPAs use firstly corrector steps and after that
predictor step, see Potra (2008). Our algorithm also performs firstly
a corrector step if the initial interior point is not well centered
and after that a predictor one. The PC IPA starts with (x0,s%) ¢
Ny (T, ) for which §(x%,s%, 1) < 7. In a corrector step we obtain
d and df by solving

(23)

—Md + dS = 0,
v—v3
d; +ds = e (24)

where we used the scaling notations considered in Section 3.1,
M =DMD and D = diag(d). From Theorem 3.5 given in Kojima
et al. (1991) and Corollary 2.1 it can be proved that system (24) has
unique solution:

c __ 7\ -1 V- [ Y '71"7"3
d,=(I+M) e d =M1+ M) Ve
From
C C
Ax = dex and Acs= 3% (25)

the Ax and A°€s search directions can be easily obtained. Let
X=X+ AX, s‘=s+ ASs.

Consider the following notations:

cgC C -
Ve = /";, dc = /%, D* = diag(d®), M* = D*MD".
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Then, the scaled predictor system is
—M+d? +d? =0,

d>+db = 7; (26)
which has the solution
p -1V p 7+ 11V
& =—-(+M)" 5, di=-M"I+M")" = (27)
Then, using
x¢ s
APX = Edf and APs= Edﬁ’, (28)

the search directions APx and APs can be easily calculated. The
iterate after a predictor step is

XP =X+ OAPX, SP=s"+0APs, uP= (1 — g)u
where 0 € (0, 1) is the update parameter.

5. Analysis of the PC IPA

In the first part of the analysis we deal with the corrector step.
5.1. The corrector step

In the corrector part of the proposed PC IPA we use the classi-
cal small-update step of IPAs. Therefore, the results of Zhang et al.
(2020) can be applied to analyse the corrector steps of the pro-
posed PC IPA. It should be mentioned that the default value t =
m given in Algorithm 4.1 is smaller than the upper bounds

Algorithm 4.1 PC IPA for sufficient LCPs based on a new type of
AET.

Let € > 0 be the accuracy parameter, 0 < # < 1 the update param-
eter (default value 6 = and tthe proximity parameter

1
A7)
(default value 7 = m). Furthermore, a known upper bound

k of the handicap & (M) is given. Assume that for (x°,s%) the
(xO)Ts0 =nu0, 19 > 0 holds such that §(x?,s%, u%) <t and ’i—ﬁo >

e
begin
k:=0;
while (x")Ts" > ¢ do
begin
(corrector step)
compute (Axk, Acsk) from system (24) using (25);
let (x6)K :=xk + Acxk and (s¢)¥ := sk + Acsk;
(predictor step)
compute (APxk, APsk) from system (26) using (28);
let (xP)K := (x©)¥ + O APxK and (sP)* := (s)F + 6 APsk;
(update of the parameters and the iterates)
xk+1 = (xp)k’ gk+1 = (sp)k’ Ml<+1 = (1 _ %)Mk;
k:=k+1;
end
end

of centrality measures given in the following theorem and lemma,
hence we can use these results in the analysis of the corrector step.
Furthermore, a detailed description of how the default values of
the parameters have been chosen is given in Section 5.4. In the
next theorem the strict feasibility of the full-Newton IPA is proved,

where v¢ = /%.
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Theorem 5.1 (Theorem 1 in Darvay & Takacs (2018), and Lemma

. L 1 V2
3 in Zhang et al. (2020)). Let § :=§(x,s, 1) < Wizwrs and v > e,

1 — (1 +4«k)52 e. Moreover,
, then we have v¢ > ?e.

Then, we have (x¢,s¢) € F* and v¢ >

1
V2(1+4K)

The next lemma shows the quadratic convergence of the cor-
rector step.

if we choose § :=8(x,s, ) <

Lemma 5.2 (Theorem 2 in Zhang et al. (2020)). Let & :
1 V2
S(X,s, 1) < NPT and v > Y=e. Then,
5(1 +4k)82

C._ C € \/ﬁ
8'_6(X’S’M)51—2(1+4K)82 1—(1+4k)s2.

Corollary 5.3. Let § := §(X,s, i) < Nﬁ and v > ?e. Then, 8¢
10(1 + 4« )82.

IA

1
Proof. From §(X, s, i) < s e have

1-2(144k)8% > 1.

2
Using this, Lemma 5.2 and /1 — (1 + 4« )82 < 1 we obtain
2
S5 ) < LA 161 ¢ a2,

1-2(1+4«)82 ~
which yields the result. O

Next lemma provides an upper bound for the duality gap after
a full-Newton step.

Lemma 5.4 (Lemma 4 in Zhang et al. (2020)). Let § :=8(X,s, u)
given as in (21). Then,

x)"s¢ < pu(n +982).
5.2. Technical lemmas

In this subsection we present important results that will be
used in the next part of the analysis. We assume that M is a
P, (k)-matrix for a given k > k(M) > 0. From —MAPXx + APs =0,
we have

(1+4K) > " APxAPs;+ )" APx;APs; > 0, (29)
iel iel_

where I, = {i: APx;APs; >0} and I_ = {i: APx;APs; < 0}. Using
(12) we obtain dfd? = %. Hence, (29) can be written as

(1+41)) didl + > dfdl > 0. (30)

iel, iel_

The following lemma is similar to that of Lemma 1 in the pa-
per of Kheirfam (2014) and Lemma 5.3 in Darvay et al. (2020b).
However, we use another type of AET transformation and different
function ¢.

3
1
Lemma 5.5. Let §¢ = 5(x‘, s, i) = 3 07 e

vee(v)® ” Then, the following
inequality holds
n(2 + k) (1 + 482

4

Proof. Using the second equation of the scaled predictor system
(26) we obtain

ldeds]| <

1 V¢ 2
Yapar < g +azy = VI

iely
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Using the proof of Lemma 5.3 given in Darvay et al. (2020b) and
from the relation (30) we have

[Ivell®

7 = 1217 + 12| — 8 3 dPd > [|d7|)?

iel,
1
+ ||d§’||2—§K||VC||2- (31)

Hence, [|d}[|? + [|dF]12 < (5 + 3x)[IVelI% < (1 + S«)[ve]|2. Similar
to the proof of Lemma 5.3 of Darvay et al. (2020b), we give an
upper bound for ||v¢||. Consider the notation o¢ = ||e — v¢||, which
is the centrality measure used in Darvay (2003); Kheirfam (2014).
Using the relation (5.6) given in Darvay et al. (2020b) we have

Iv]l < vn(o®+1). (32)
Moreover,
1 v¢ — (v6)3 1 ve(e +v°)
c_ 1 _ - v
¥ =5lawz_e| = 2|27 —e €V
1 c of
> Z”e*"”—js (33)

where we used that the function h(t) = thzzt‘l > % for t > 4
Hence, we have o¢ < 4§°¢. Using (32) and (33) we get

V]| < v/n(1 +468°). (34)

Thus,
PP NPT T ar2 py2y - 1 1 o2
221l = 1421121 < 5 (121 + 12 1) = 5 (1-+ 5 ) IV
n(2 4+ «)(1 4482
<

2 ,
which proves the lemma. O
Consider
qy =d, —d;. (35)
Then, we have
2 _ o2
=Pt g P ang g - pV’4 T 36

We give an upper bound for the norm of q, depending on the
centrality measure. The proof technique is similar to the one given
in Asadi, Mahdavi-Amiri, Darvay, & Rig6 (2020) for P, (x )-LCPs over
Cartesian product of symmetric cones.

Lemma 5.6 (c.f. Lemma 5.4 in Darvay et al. (2020b) and Lemma
5.1 in Asadi et al. (2020)). The following inequality holds:

lavll <2v/1+4x 6.

where § = 8(X, s, ju) is the proximity measure given in (21) and it is
related to the iterates before the corrector step.

Proof. The proof is similar to Lemma 5.4 given in Darvay et al.
(2020b) and Lemma 5.1 appeared in Asadi et al. (2020). However,
we consider a different search direction. In the proof we use only
the df + d$ = p, equation, which is valid in our case as well, inde-
pendently on the used search direction. O

The next subsection contains the analysis of the predictor step.
5.3. The predictor step

Lemma 5.7 gives a sufficient condition for the strict feasibility
of the predictor step.

Lemma 5.7. Let (x¢,s°) >0, 0 <6 <1 and u > 0 such that 6 :=
8(XC, s 1) < %. Consider XP = X¢ + 6 APx and sP = s¢ + 6 APs. Let
n(2 + k)02 (1 + 46°)2

2(2-60) ’

2(8,0,n) := (1 —48% —
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If z(6€,6,n) > 0, then XP > 0 and sP > 0.

Proof. Let us consider xP(x) =Xx‘+a 6 APx and sP(a)=s‘+
o 0 APs, for 0 <« < 1. Then, xP () = ﬁ—z(vc +a6db) and sP(a) =
‘5,—2 (v +a 6 dP). Using relation (5.17) given in Darvay et al.
(2020b) and from the second equation of system (26) we obtain:

XP(a)sP (o) = pu((v)? + v (df + d?) + o 62 did?)
- M((] - %a@)(vc)z + o262 dfdg). (37)

Hence, we obtain

min (W) = min ((VC) + «?6?

dpdp) > min ((v)°)

2a9

57 18 oo

We have 1—0551/[.‘§1+05,
(33) and &8¢ < } we have

Vi=1,...,n. Using these bounds,

min (V)2 > (1 -0 > (1 — 482 (38)

We will use that the real valued function f(«) = 2962 is strictly
increasing for 0 <« <1 and each fixed 0 <9 < 1. Moreover from
Lemma 5.5 and (38) we obtain

[ xXP(a)sP(a) 2
XS Y 1 4592 —
min ( =) ) ( )

2n(2 + k)02 (1 + 48°)2
12-0)

=2z(5%6,n) > 0. (39)

Hence, we have xP(a)sP(«) > 0 for 0 <« < 1. Therefore, xP(«)
and sP(«) do not change sign on 0 <« < 1. Using xP(0) =x° > 0
and sP(0) =s¢ > 0, we obtain xP(1) =xP > 0 and sP(1) =sP > 0,
which yields the result. O

Let us introduce

VP — XPspP

up’
where uP = (1 - %)u. If we substitute o =1 in (37) and (39) we
have

min (v")2 >z(8%6,n) > 0.
(40)

The next lemma analyses the effect of a predictor step and the up-
date of i on the proximity measure.

2
()2 = (v9)% + %d}:df and

Lemma 5.8. Let ¢ :=8(x, s, 1) < %, uP = (1—%)u, where 0 <
0 <1, z(6%0,n) > % and consider § := §(X, s, () given in (21). The
iterates after a predictor step are denoted as XP and sP. Then, we have

vP > ?e and
8P 1= 5(xP,sP, uP)

V2(8¢,6,n)(10(1 + 4K)82 + (1 — 48)% — 2(5%, 0, n)))
= 4z(5¢,0,n) —2 ’

Proof. Using z(5¢,60,n) > % >0, from Lemma 5.7 we get x? >0
and sP > 0, thus the predictor step is strictly feasible. From (40) we
obtain

. 2
min (vP) > /z(5¢,0,n) > g
which yields the first part of the result. Beside this,

(v") vP(e - (v")?)
2(vP) 2(vp)? —e

1

p-_
8P = =5
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Consider h: oo) — R, h(t) = 2[{_1, which is a decreasing
function with respect to t. Using this, (40) and (41) we get
in (vP
= it —31e~ @]
4min (vP)* -2
V/2(8¢,0,n) 202
= (5.0,m) -2 H — (- 9" a
z(86¢,6,n
< el w2 ). )

Using the proof of Lemma 2 in Darvay & Takacs (2018) we obtain
the following upper bound for ||e — (v)*|:

9v2 — 4e P>
_ (yC\2 i)
R e )
Hence, using (43) and Lemma 5.6 we may write
2 q2 9v2 —4e P;
le-*| < Z |+~ %
2 2
< ”q‘Z” +9 ||le| <10(1 + 482, (44)

We used that 0 < 225% _9e for v> ge. From (42), (44),

Lemma 5.5 and the definition of the function z we get:

57 < gy s (le- ool 225 e

4z(6¢,60,n) —
V2(8¢,0, 1) (10(1 + 4K)82 + (1 — 48)% — 2(5%, 0, n))

- 4z(8¢,0,n) -2 ’
(45)

which proves the second statement of the lemma. O

It should be mentioned that in Lemma 5.8 the condition

z(8%,0,n) >% should hold, because due to the used function

@(t) = t2 in the new type of AET technique for the determination
of the search directions, we have to ensure that in each iteration

of the algorithm, the components of the vector v are greater than
V2

2
In the following lemma we give an upper bound for the duality
gap after a main iteration.

Lemma 5.9. [et 0 <0 <1.If§ < m, XP and sP are the iterates
obtained after the predictor step of the algorithm, then

2
(xP)TsP < (1 - % + 08>(XC)TSC <

Proof. Using (37) with a = 1 and the definition of vP» we have

(x")'s? = pPel (vP)* = pe! ((1 - 2) (v)* + ezdﬁdé’)

%) T T
= (1 - 2)(xf) ¢+ 6% (df) d?.

We multiply the second equation of (26) by (d}Z)T and by (df)T,
respectively. After that, we sum the obtained two equations,
hence

(a2)"a? =

3nuP
22-6)

(46)

(x)'s _ dRI” + dE]? _ (x)'se
81 2 - 8u
Using (46) and (47) we get

(x)'sP < <1 —§+ )(x) s,

(47)
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If 0 <6 <1, then
6 62

Furhermore, if § < and n > 1, then

1
T6(1+4)
2"
= 256(1 + 4k )2’
Using this, P = (1 - %)u (48) and Lemma 5.4 we have

2
(xP)TsP < (1 - % + 98) x)'s¢ < (x)''s¢ < pu(n+982)

14 9n 2uPn 9
1% 7 (”* 256(1 +4K)2> <39 (1 * ﬁ)
265nuP 3nuP
T 256(2-0) " 22-0)
which yields the result. O

A

5.4. Determination of the values of the proximity and update
parameters

We choose the values of the parameters t and 6 in such a way
that after a corrector and a predictor step, the proximity measure
will not exceed the proximity parameter. The following lemma is a
technical one.

1
Lemma 5.10. Let § < 157,75

the iterates before the corrector step. Then, we have 8¢ <
1

i

be the centraltiy measure related to
10
256(1+4K) ~

Proof. Using 16(]17,() < ﬁ, by applying Corollary 5.3 and

from k > 0 we have

10 1
c 2 —
8¢ <10(1 +4«k)é 5256(1+4/{)<4’

which proves the lemma. O

Let (x,8) € N5(t, u). Using Lemma 5.2, after a corrector step
we have

o srve o 5(1 + 4k )82 3
) ._8(x,s,,u)§—1_2(1_1_4’()62\/1—(14—4/()8 ,

which is monotonically increasing with respect to §, where § <

1 i
NI In this way,
5(1 + 4k )T?
< — = /1-(1+4K)12 = 0(7).
=T 2arane Y - IHa0T =e
From § < m and using Lemma 5.10 we have 8¢ < 1. Using

Lemma 5.8, after a predictor step and a p-update we have
8P 1= 5(xP,sP, uP)

V2(8¢,6,n)(10(1 + 4K)82 + (1 — 48°)% — 2(5%, 0, n)))
<
- 4z(5¢,0,n) —2 ’
where § :=§(x,s, ) is the proximity measure given in (21).
The function z(8¢,0,n) is decreasing with respect to &¢. Thus,
z(8%,60,n) > z(w(t),0,n). In Lemma 5.8 we have seen that the
function h(t) = %{—71 t> @ is decreasing with respect to t,
hence

h(y/z(8¢,0,n)) <h(y/z(w(T), 0, n)).

Note that (1 —48°)% —z(6%,0,n) = W is increasing

with respect to &¢. Using this and § < 7, ¢ < w(t), we obtain

V/2(8¢,0, 1) (10(1 + 4K)82 + (1 — 48)% — 2(5%, 6, n))
4z(8¢,60,n) -2
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Vz(w(1)), 6, n)(lO(] +4K)T2 + (1 - 4w(1))? - 2(w(7), 0, 1))
= 2z(w(7).0.n) -2

(49)
Our aim is to keep 8P < 7. For this, it suffices that

VZ(@(1)),60,1)(10(1 + 46) 7% + (1 - 4(7))? - 2(w(7), 6, 1))
4z(w(T),0,n) -2

1 1

a0 40 = sao 7
1 1

Thus, X,s > 0 and 6(X,s, ) < 6T ra0 < NPTy

during the algorithm. This means that the proposed IPA is well de-
fined. Furthermore, we have

2n(2 + k)02 (1 + 45°)2

<t

Setting T = the above inequality holds.

are maintained

2(8%,0,n) = (1 —468%2 —

42-6)
2n(2+k)02(1 +4w(1))?* 1
> (1-4w(1))* - i2-0) > 5

hence the predictor step is strictly feasible. The way we have cho-
sen the neighbourhood parameter shows that (x?, sP) € N> (T, uP).

5.5. Complexity bound

The next lemma gives an upper bound for the number of itera-
tions produced by the PC IPA.

0 0 i ; _ 1 0_
Lemma 5.11. Let x” and s° be strictly feasible, 0 = samaom W=

01740
% and §(x0,s%, u%) <1 = Moreover, let x* and s* be

1

6(1+4)°
) ) N T

the iterates obtained after k iterations. Then, (x*) s* < e for

0\ <0
I<zl+’7;log3(x)s—‘.

4e

Proof. Using Lemma 5.9 we have

k-1 k-1 T
(x")Tsk ) 3nuk _ 3n(1 - %)( uO _ 3(1 - %) (xo) SO.
G-y A :

k-1
3(1-2 %07 s0
The inequality (x")Tsk < ¢ holds if %

logarithms, hence

0 3(x°)Ts°
(k—=1)log(1- 5 +logT < loge.

From log(1+6) <6, 6 > —1, it follows that the above inequality
holds if

< €. We take

3(x%)"s0
—%(k— 1)+ log% <loge.
This yields the desired result. O

‘1 .
Theorem 5.12. Let T = ieewral and 6 = Then, Algorithm

4.1 is well defined and requires at most

o<(1 +4x)/rlog 3””0>

1
4(1+4x)vn

4e
iterations. The output is a pair (X, s) satisfying X's < €.
6. Numerical results
We implemented a variant of the proposed PC IPA in the C++

programming language using the code presented in Darvay & Také
(2012). We did all computations on a desktop computer with Intel
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quad-core 2.6 GHz processor and 8 GB RAM. It should be men-
tioned that the value of the parameter x can be very large, which
leads to a very small value of the parameter 6, see Theorem 5.12.
This motivated us to make some modifications in the implementa-
tion of the proposed PC IPA.

Algorithm 6.1 illustrates the computational version of the theo-

Algorithm 6.1 PC IPA from the implementation point of view.

Lete =10, x"=s"=e, u®=1,0<p<1,0<0 <land lb= 1.
begin
k:=0;
while (x")Ts" > ¢ do
begin
predictor step
compute (APxk, APsk) from system (26) using (28);

R .
1 .
MX;JA X <0,1 5151’!},

af:min{—
af = min —i|AP5"<01<i<n :
s — Apsf i 9 — — ’

aP = min{o?, of};

(xP)K .= xk + paP APxK;
corrector step

,u,lé . min{(xf)k(lslf)k: 1<i<n}

compute (AxK, Ask) from system (24) using (25);

Axk = APxK 4 Acxk; Ask = APsk 4 Acsk;

(sP)¥ := sk + parP APsk;

’

. xP)k .
a§:m1n{—('l|Ax’.‘<O,1515n:
Ax; 1
. (sPHk K .
Cc __ .
ozs_mm{—A'sk |[Asf <0, 1<i<ny;
1

of = minfog, of};
xOK 1= xK + part Axk;
xk+l = (XC)k’

()X := sk + pacAsk;

skl (sO% ki=k+1;
end

end

retical PC IPA given in Algorithm 4.1. In the predictor step we cal-
culated the maximal step size &f and o« to the boundary of non-
negative orthant by using minimal ratio test. We considered the
minimum value of these step sizes and we determined the vectors
XP and sP without modifying the actual points x* and s. The value
of p in our case was 0.5. Note that the vectors xP and sP were used
in the computation of step lengths ag, f in the corrector step.
The value of the parameter w in the corrector step was calcu-

. p\kp\k. —ie
w, where 0 < o < 1, Ib denotes a

lated as uk =o

given lower bound, which in our case is % In our case the value
of o was 0.1. The way of determining the value of the parameter
1k ensures that the components of the vector v are greater than a
positive constant, which is important in our case due to the used
search direction. It should be mentioned that we considered the
search directions obtained by the sum of the predictor and the cor-
rector directions. In the determination of the step length in case of
the corrector step we used the same strategy as in case of the pre-
dictor step.

We tested the PC IPA on LCPs with sufficient matrices having
positive x parameters generated by Illés & Morapitiye (2018). We
generated the test problems in the following way: q := —Me +e.
We considered x° = e and s® = e as starting points for our PC IPA.

We have tested the PC IPA for all 61 P.(k)-LCPs from the se-
lection given in Illés & Morapitiye (2018). We could easily obtain
results for variants of the PC IPA using different functions ¢ in
this new type of AET technique by changing the right hand side
of the Newton-system. In our computational study we compared
our PC IPA using the function ¢(t) =t? in system (6) with the
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Table 1

Numerical results for P.(k)-LCPs from Illés & Morapitiye (2018)
having positive handicap.

n ety =t @) =t2—t @t)=t; @) =t-t
Avg. Iter.  CPU (s) Avg. Iter.  CPU (s)
10 19 0.003 18.9 0.0016
20 20.5 0.041 20.2 0.0405
50 18.1 0.2798 17.9 0.2741
100 184 1.563 18.1 1.5241
200 19 10.3192 18.5 10.0423
500 19.2 146.905 19.2 147.1175
Table 2
Numerical results for P, (k)-LCPs with matrix given in (50).
n )=t pt)=t2—t @)=t; @t)=t-t
Nr. of Iter. ~ CPU (s) Nr. of Iter. ~ CPU (s)
20 29 0.058 30 0.06
50 45 0.67 46 0.688
100 72 6.184 73 6.151
300 181 307.276 181 307.081
400 235 964.821 236 1016.09

variant of the IPA which uses the ¢(t) =t in the new type of
AET technique characterized by system (6). Note that in the case
when ¢(t) =t is used, then the value of Ib is %, g(X,s) = —Xxs

and a, = #jﬁe This yields the same direction as the one used

in Darvay et al. (2020b), where system (5) was considered with
@(t) =t — +/t. Table 1 contains the average of iteration numbers
and CPU times (in seconds) for 10 given LCPs for each size n listed
in the table. We can observe that the results are similar for both
variants of the PC IPA using the different search directions.

de Klerk & Nagy (2011) proved that the handicap of the matrix
can be exponential in the size of the problem. They considered the
following matrix which was proposed by Csizmadia:

1 0 0 .. 0
-1 1 0 .. ©

mM—|-1 -1 1 ... of (50)
-1 -1 -1 ... 1

and they proved that £ (M) > 22"-8 —0.25. However, in our com-
putational study we obtained promising results for the two vari-
ants of PC IPAs. The results are summarized in Table 2.

The obtained results can be further analysed, because it seems
that the practical iteration complexity is significantly better than
the theoretical (worst case) guarantee for the special class of LCPs
with the lower triangular P-matrix M, introduced by Zs. Csizmadia.

7. Conclusions and further research

In this paper we proposed a new PC IPA for solving P, (k)-
LCPs which uses the new type of AET given in Darvay &
Takacs (2018) for LO. The presented IPA applies the function
@(t) =t? on the nonlinear equation v2 =v in order to deter-
mine the new search directions. The corresponding kernel function
is a positive-asymptotic kernel function. Furthermore, similar to
Darvay et al. (2020b), we presented the method for determining
the Newton systems and scaled systems in case of PC IPAs using
this new type of AET. Due to the used search direction we had
to ensure during the whole process of the IPA that the compo-
nents of the vector v were greater than g In spite of this fact,
we proved that the PC IPA retains polynomial iteration complexity
in the handicap of the problem’s matrix, the size of the problem
and the deviation from the complementarity gap. This is the first
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PC IPA for solving P, («x)-LCPs which uses the function ¢(t) = t2 in
the new type of AET. Moreover, we also provided numerical results
where we compared our PC IPA to another variant of this algorithm
using ¢(t) =t in the new type of AET technique. As further re-
search, it would be interesting to find a class of monotone increas-
ing functions ¢ for which we can assign corresponding functions
@. This would lead to a case where we can establish equivalence
between the two approaches of the AET presented in this paper.
Furthermore, it would be interesting to define a PC IPA using this
new type of AET approach, where the central path parameter up-
date is adaptive, for example as it is in Potra & Wright (2000).
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