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a b s t r a c t 

We propose a new predictor-corrector (PC) interior-point algorithm (IPA) for solving linear complementar- 

ity problem (LCP) with P ∗(κ) -matrices. The introduced IPA uses a new type of algebraic equivalent trans- 

formation (AET) on the centering equations of the system defining the central path. The new technique 

was introduced by Darvay and Takács (2018) for linear optimization. The search direction discussed in 

this paper can be derived from positive-asymptotic kernel function using the function ϕ(t) = t 2 in the 

new type of AET. We prove that the IPA has O 

(
(1 + 4 κ) 

√ 

n log 3 nμ0 

4 ε

)
iteration complexity, where κ is an 

upper bound of the handicap of the input matrix. To the best of our knowledge, this is the first PC IPA 

for P ∗(κ) -LCPs which is based on this search direction. 

© 2021 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

The linear complementarity problem (LCP) is a well-known 

roblem which includes linear programming (LP) and linearly con- 

trained (convex) quadratic programming problem (QP), as special 

ases. The most important basic results related to LCPs are sum- 

arized in the books of Cottle, Pang, & Stone (1992) and Kojima, 

egiddo, Noma, & Yoshise (1991) . Many classical applications of 

CPs can be found in different fields, such as optimization the- 

ry, game theory, economics, engineering, etc. Cottle et al. (1992) ; 

erris & Pang (1997) . For example, bimatrix games can be trans- 

ormed into LCPs under specific assumptions Lemke & Howson 

1964) . Kojima & Saigal (1979) used the degree theory in order 

o study LCPs. Furthermore, the Arrow–Debreu competitive market 

quilibrium problem with linear and Leontief utility functions can 

e also given as LCP ( Ye, 2008 ). More recent work of Brás, Eich-

elder, & Júdice (2016) connected the copositivity testing of ma- 

rices and solvability of special LCPs. Darvay, Illés, Povh, & Rigó

2020b) published a PC IPA for sufficient LCPs using the function 
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¯ (t) = t − √ 

t for AET, but tested numerically their algorithm be- 

ond the class of sufficient matrices, too. Numerical results pro- 

uced by the developed PC IPA for testing copositivity of matrices 

sing LCPs were very promising. Sloan & Sloan (2020) showed that 

olvability of LCPs related to quitting games ensures the existence 

f different ε-equilibrium solutions. There is no reported computa- 

ional study on this type of application of LCPs, yet. 

In the LCP we want to find vectors x , s ∈ R 

n , that satisfy the

onstraints 

M x + s = q , x s = 0 , x , s ≥ 0 , (LCP) 

here M ∈ R 

n ×n , q ∈ R 

n and xs denotes the Hadamard product of 

ectors x and s . The following notations are used to denote the 

easible region, the interior and the solutions set of LCP: 

F := { ( x , s ) ∈ R 

n 
� × R 

n 
� : −M x + s = q } , 

 

+ := { ( x , s ) ∈ R 

n 
+ × R 

n 
+ : −M x + s = q } , and 

F 

∗ := { ( x , s ) ∈ F : x s = 0 } . 
e denoted by R 

n 
�

the n -dimentional nonnegative orthant and by 

 

n + the positive orthant, respectively. We call a problem P ∗(κ) -LCP 

f the problem’s matrix of (LCP) is P ∗(κ) -matrix, i.e. 

1 + 4 κ) 
∑ 

i ∈ I + (x ) 

x i (Mx ) i + 

∑ 

i ∈ I −(x ) 

x i (Mx ) i ≥ 0 , ∀ x ∈ R 

n , (1)
 under the CC BY-NC-ND license 
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here 

 + (x ) = { 1 ≤ i ≤ n : x i (Mx ) i > 0 } and 

 −(x ) = { 1 ≤ i ≤ n : x i (Mx ) i < 0 } 
nd κ ≥ 0 is a nonnegative real number. We will assume through- 

ut the paper that F 

+ � = ∅ , there is an initial point (x 0 , s 0 ) ∈ F 

+ 

nd M is a P ∗(κ) -matrix. The class of P ∗ matrices is the set of

ll P ∗(κ) -matrices, where κ ≥ 0 . Väliaho (1996) showed that the 

lass of P ∗-matrices is equivalent to the class of sufficient matrices 

iven by Cottle, Pang, & Venkateswaran (1989) . The handicap of M

 Väliaho, 1996 ) is the smallest value of ˆ κ(M) ≥ 0 such that M is

 ∗( ̂  κ(M)) -matrix. Väliaho (1996) also proved that a matrix M is P ∗
f and only if the handicap ˆ κ(M) of M is finite. 

There are several methods for solving LCPs with different 

atrices, such as simplex ( Csizmadia, Csizmadia, & Illés, 2018; 

an de Panne & Whinston, 1964; 1969; Wolfe, 1959 ), criss-cross 

 Csizmadia & Illés, 2006; Csizmadia, Illés, & Nagy, 2013; den 

ertog, Roos, & Terlaky, 1993; Fukuda, Namiki, & Tamura, 1998; 

ukuda & Terlaky, 1997 ) or other pivot ( Lemke, 1968; van de Panne,

974 ) algorithms. However, the IPAs for solving LCPs received more 

ttention in last decades ( Kojima et al., 1991 ). It should be men-

ioned that LCPs belong to the class of NP-complete problems 

 Chung, 1989 ). In spite of this fact, due to the results of Kojima

t al. (1991) , if we suppose that the problem’s matrix has P ∗(κ) -

roperty, the IPAs solving these kind of LCPs usually have polyno- 

ial complexity in the handicap of the problem’s matrix, the size 

f the problem and the bitsize of the data. However, note that the 

orst-case iteration complexity of the IPAs for LCP depends on the 

pper bound of the handicap of the matrix M. de Klerk & Nagy 

2011) showed that the handicap of a P ∗(κ) -matrix may be expo- 

ential in its bit size. This means that if the handicap of the matrix 

s exponentially large in the size and bit size of the problem, then 

he known complexity bounds of IPAs may not be polynomial in 

he input size of the LCP. 

Potra & Liu (2005) proposed an IPA for sufficient LCPs which 

ses a wide neighbourhood of the central path and the algorithm 

oes not depend on the handicap of the problem. There are sev- 

ral known IPAs not depending on the handicap of the sufficient 

atrix, such as the IPAs given by Potra & Sheng (1997) , Potra & Liu

2005) , Illés & Nagy (2007) , Liu & Potra (2006) and Lešaja & Potra

2019) . The IPAs for solving sufficient LCPs have been also extended 

o general LCPs ( Illés, Nagy, & Terlaky, 2010a; 2010b ). Illés, Nagy, &

erlaky (2009, 2010a) generalized large-update, affine scaling and 

C IPAs for solving LCPs with general matrices. 

The PC IPAs perform a predictor and one or more corrector 

teps in a main iteration. The aim of the predictor step is to reach

ptimality, hence after an affine-scaling step a certain amount of 

eviation from the central path is allowed. The goal of the correc- 

or step is to return in the neighbourhood of the central path. The 

C IPAs turned out to be efficient in practice. The first PC IPA for 

O was given by Mehrotra (1992) and Sonnevend, Stoer, & Zhao 

1991) . Potra & Sheng (1996, 1997) defined PC IPAs for sufficient 

CPs. Mizuno, Todd, & Ye (1993) gave the first PC IPA for LO which

ses only one corrector step in a main iteration and these IPAs 

ere named Mizuno–Todd–Ye (MTY) type PC IPAs. Miao (1995) ex- 

ended the MTY IPA given in Mizuno et al. (1993) to P ∗(κ) -LCPs.

ollowing this result, several MTY type PC IPAs have been proposed 

mong others by Illés & Nagy (2007) , Kheirfam (2014) and Darvay 

t al. (2020b) . In Darvay et al. (2020b) the authors gave a unified

ramework to determine the Newton systems and scaled systems 

n case of PC IPAs using the AET technique. 

Barrier functions are often used for the determination of search 

irections in case of IPAs. By considering self-regular kernel func- 

ions, Peng, Roos, & Terlaky (2002) reduced the theoretical com- 

lexity of large-update IPAs. Later on, Lešaja & Roos (2010) pro- 

ided a unified analysis of IPAs for P ∗(κ) -LCPs that are based on
 t

2 
ligible kernel functions. Tunçel & Todd (1997) considered for the 

rst time a reparametrization of the central path system. Karimi, 

uo, & Tunçel (2017) used entropy-based search directions for 

P working in a wide neighbourhood of the central path. Darvay 

2003) proposed the AET technique for defining search directions 

n case of IPAs for LO. He divided both sides of the nonlinear equa- 

ion of the central path system by the barrier parameter μ. After 

hat he applied a continuously differentiable, invertible, monotone 

ncreasing function ϕ̄ : (ξ 2 , ∞ ) → R , where 0 ≤ ξ < 1 , on the mod-

fied nonlinear equation of the central path problem. The majority 

f the published IPAs for sufficient LCPs does not use any transfor- 

ation of the central path equations, which means that these IPAs 

se the identity map in the AET technique in order to define the 

earch directions. Darvay (20 03, 20 05) used the square root func- 

ion in the AET technique for LO. Later on, Darvay, Papp, & Takács 

2016) introduced an IPA for LO based on the direction using the 

unction ϕ̄ (t) = t − √ 

t . In her Ph.D. thesis, Rigó (2020) presented 

everal IPAs that use the function ϕ̄ (t) = t − √ 

t in the AET tech- 

ique. Recently, Kheirfam & Haghighi (2016) have proposed an IPA 

or P ∗(κ) -LCPs which uses the function ϕ̄ (t) = 

√ 

t 
2(1+ √ 

t ) 
in the AET 

echnique. Haddou, Migot, & Omer (2019) have recently introduced 

 family of smooth concave functions which leads to IPAs with 

he best known iteration bound. The AET technique has been also 

xtended to LCPs ( Achache, 2010; Asadi & Mansouri, 2012; 2013; 

sadi, Mansouri, & Darvay, 2017; Asadi, Zangiabadi, & Mansouri, 

016; Kheirfam, 2014; Mansouri & Pirhaji, 2013 ). 

Zhang & Xu (2011) used the equivalent form v 2 = v of the 

entering equation, where v = 

√ 

xs 
μ , μ > 0 . They considered the 

s = μv transformation. Darvay & Takács (2018) introduced a new 

ethod for determining class of search directions using a new type 

f AET of the centering equations. They modified the nonlinear 

quation v 2 = v by applying componentwisely a continuously dif- 

erentiable function ϕ : (ξ 2 , ∞ ) → R , 0 ≤ ξ < 1 to the both sides

f this equation. The properties of this function ϕ will be pre- 

ented in Section 2.2 . The relationship between the functions ϕ
nd ϕ̄ will be discussed later as a novelty of this paper. In Darvay 

 Takács (2018) the authors considered the function ϕ(t) = t 2 in 

rder to determine the new search directions. Zhang, Huang, Li, 

 Lv (2020) extended the feasible IPA given in Darvay & Takács 

2018) to P ∗(κ) -LCPs. Furthermore, Takács & Darvay (2018) gen- 

ralized the approach for determining search directions proposed 

n Darvay & Takács (2018) to SO and they showed that the corre- 

ponding kernel function is a positive-asymptotic kernel function. 

he positive-asymptotic kernel function was introduced by Darvay 

 Takács (2018) and differs from the class of kernel functions in- 

roduced by Bai, El Ghami, & Roos (2004) . 

In this paper we introduce a new PC IPA for solving P ∗(κ) -

CPs which uses the new type of AET given in Darvay & Takács 

2018) for LO. The proposed IPA applies the function ϕ(t) = t 2 

n the modified nonlinear equation v 2 = v in order to obtain the 

earch directions. In this sense, the corresponding kernel function 

s a positive-asymptotic kernel function. Similar to Darvay et al. 

2020b) we present the method for determining the Newton 

ystems and scaled systems in case of PC IPAs using this new 

ype of AET. We also present the complexity analysis of the 

roposed PC IPA. Due to the used search direction we have to 

nsure during the whole process of the IPA that the components 

f the vector v are greater than 

√ 

2 
2 , which makes the analysis 

ore difficult. In spite of this fact, we show that the introduced 

PA has O ((1 + 4 κ) 
√ 

n log 3 nμ0 

4 ε ) iteration complexity, where κ is 

he upper bound on the handicap of matrix M, μ0 is the starting, 

verage complementarity gap and ε is the final displacement from 

he complementarity gap, respectively. This is the first PC IPA for 

olving P ∗(κ) -LCPs which uses the function ϕ(t) = t 2 in the new

ype of AET. 
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The paper is organized as follows. In Section 2 we give some 

asic concepts and useful results about the P ∗(κ) -LCPs and P ∗(κ) -

atrices. Furthermore, in Section 2.2 , depending on the represen- 

ation of the nonlinear equation of the central path, a new way 

f applying the AET is discussed and compared to the earlier used 

ET technique. The usual, but important, scaling technique is dis- 

ussed together with the unique solvability of the Newton-system, 

s well. In Section 3 we present a method for determining search 

irections in case of PC IPAs for P ∗(κ) -LCPs by using the new

ype of AET approach. In Section 4 , the new PC IPA is presented.

hile, Section 5 contains the complexity analysis of the intro- 

uced PC IPA with the new search directions. In Section 6 nu- 

erical computations are presented and compared to the compu- 

ational performance of an earlier introduced PC IPA appeared in 

arvay et al. (2020b) that used different function ϕ in the AET. In 

ection 7 some concluding remarks are enumerated. 

. Algebraic equivalent transformation technique of the central 

ath equations 

In this section we summarize important definitions and results 

elated to P ∗(κ) -LCPs. Furthermore, we introduce the AET of the 

entral path equations. Following the steps of Darvay & Takács 

2018) , first we derive a known, equivalent description of the cen- 

ral path and then we apply the AET approach, see Section 2.2 . An

mportant novelty of the paper is that in this section we compare 

he two different AET techniques introduced in Darvay (2003) and 

arvay & Takács (2018) , respectively. An interesting observation is 

elated to the fact that the same search directions can be obtained 

n different ways. 

.1. Central path of sufficient LCPs 

The central path problem for (LCP) is: 

Mx + s = q , x , s > 0 , xs = μ e , (2)

here e denotes the n -dimensional vector of ones and 

> 0 . Kojima et al. (1991) showed that the sequence 

 (x (μ) , s (μ)) | μ > 0 } of solutions lying on the central path

arameterised by μ > 0 approaches a solution (x , s ) of the (LCP) . 

Illés, Roos, and Terlaky gave an elementary constructive proof 

or the existence and uniqueness of the central path for sufficient 

CPs in an unpublished manuscript in 1997. The constructive proof 

f Illés et al. appears in Theorem 3.6 in the Ph.D. thesis of Nagy

2009) . 

Similarly to Darvay & Takács (2018) , we use x , s > 0 and μ > 0 ,

ence we obtain: 

 s = μ e ⇔ 

x s 

μ
= e ⇔ 

√ 

x s 

μ
= e ⇔ 

x s 

μ
= 

√ 

xs 

μ
. 

ow the central path problem for (LCP) can be equivalently stated 

s 

Mx + s = q , x , s > 0 , 
x s 

μ
= 

√ 

xs 

μ
. (3)

ifferent forms of the central path problem (2) and (3) will be 

sed later in the AET context. 

An important result was proved in Lemma 4.1 of Kojima et al. 

1991) , which plays important role in the solvability of the Newton 

ystem. An important corollary of Lemma 4.1 presented in Kojima 

t al. (1991) is the following. 

orollary 2.1. Let M ∈ R 

n ×n be a P ∗(κ) -matrix, x , s ∈ R 

n + . Then, for

ll a ϕ ∈ R 

n the system 
3 
M�x + �s = 0 

S�x + X �s = a ϕ (4) 

as a unique solution (�x , �s ) , where X and S are the diagonal ma-

rices obtained from the vectors x and s . 

.2. Relationship between the two different types of AET approaches 

The goal of the AET technique introduced by Darvay (2003) is 

o represent the central path in a different way and to derive 

ewton-system from these representations depending on the con- 

inuously differentiable, invertible, monotone increasing function 

¯ : (ξ 2 , ∞ ) → R , where 0 ≤ ξ < 1 . 

Now, we can apply the AET to the central path problem in the 

orm (2) or (3) . In case of applying the AET method to (2) , we ob-

ain the following form of the central path 

Mx + s = q , x , s > 0 , ϕ̄ 

(
x s 

μ

)
= ϕ̄ (e ) . (5)

owever, if the AET is applied to (3) , using the continuously dif- 

erentiable, invertible function ϕ : (ξ 2 , ∞ ) → R , where 0 ≤ ξ < 1 ,

hen using the idea presented in Darvay & Takács (2018) , we get 

Mx + s = q , x , s > 0 , ϕ 

(
x s 

μ

)
= ϕ 

(√ 

x s 

μ

)
. (6)

The following interesting question arises: if we use different 

ransformed forms of the central path (say (5) and (6) ), is it nec-

ssary to use some extra criterion on functions ϕ? An answer will 

e given at the end of this subsection. 

An interesting observation is the connection between systems 

5) and (6) . For this, let ϕ̄ : (ξ 2 , ∞ ) → R 

¯ (t) = ϕ(t) − ϕ( 
√ 

t ) . (7) 

his leads to 

¯ 

(
x s 

μ

)
= ϕ 

(
x s 

μ

)
− ϕ 

(√ 

x s 

μ

)
. (8) 

ence, we have 

¯ 

(
x s 

μ

)
= ϕ̄ (e ) ⇔ ϕ 

(
x s 

μ

)
− ϕ 

(√ 

x s 

μ

)
= ϕ(e ) − ϕ( 

√ 

e ) 

⇔ ϕ 

(
x s 

μ

)
= ϕ 

(√ 

x s 

μ

)
. 

Majority of the published IPAs using the AET, derives the 

ewton-system from (5) , while only few, like the ones proposed 

y Darvay & Takács (2018) , and Zhang et al. (2020) applies the AET 

o (6) . We follow the second approach to derive the corresponding 

ewton-system. 

For an (x , s ) ∈ F 

+ our aim is to find search directions �x and

s such that 

−M(x + �x ) + (s + �s ) = q , 

ϕ 

(
xs 

μ
+ 

x �s + s �x + �x �s 

μ

)

= ϕ 

( √ 

xs 

μ
+ 

x �s + s �x + �x �s 

μ

) 

, 

We neglect the quadratic terms and apply Taylor’s theorem to 

he function ϕ̄ (t) = ϕ(t) − ϕ( 
√ 

t ) . Hence, after some calculations 

e obtain (4) with 

 ϕ = μ
−ϕ 

(
xs 
μ

)
+ ϕ 

(√ 

xs 
μ

)
ϕ 

′ ( xs 
μ

)
− 1 

2 
√ 

xs 
μ

ϕ 

′ (√ 

xs 
μ

) . (9) 



Zs. Darvay, T. Illés and P.R. Rigó European Journal of Operational Research xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: EOR [m5G; October 6, 2021;2:7 ] 

N

s

n

2

f

L  

(  

s

P

C

(

t

s

i

t

t

ϕ  

p  

c

b

T

t

q  

f  

c

(  

m

o  

w

t

t

f  

t

3

t  

a

3

d

F

�

H

(

t

t

−

w

p

F

C

t

ϕ  

h

p

r  

d

e

e  

b  

t

ϕ  

ϕ
t

n

a

p

m

P

3

t

t

t

s  

f

d

e  

t

f

f

a  

w  

g  

l

e

−

w

d  

e

(  

U

�

c

d

ow, from the denominator of the obtained fractional expres- 

ion, it is clear that we need extra assumption on the function ϕ, 

amely 

 t ϕ 

′ (t 2 ) − ϕ 

′ (t) > 0 , (10) 

or all t > ξ , with 0 ≤ ξ < 1 . 

emma 2.2. Consider ϕ̄ : (ξ 2 , ∞ ) → R as given in (7) . Then, ϕ̄ :

ξ 2 , ∞ ) → R is monotone increasing if and only if condition (10) is

atisfied for the function ϕ. 

roof. Using (7) we have ϕ̄ 

′ (t) = ϕ 

′ (t) − 1 
2 
√ 

t 
ϕ 

′ ( 
√ 

t ) . Hence, 

ϕ̄ 

′ (t) > 0 , ∀ t > ξ 2 if and only if ϕ 

′ (t) − 1 

2 

√ 

t 
ϕ 

′ ( 
√ 

t ) > 0 , 

∀ t > ξ 2 . (11) 

onsidering change of variable u := 

√ 

t in the second part of 

11) we obtain condition (10) . �

Depending on the used functions ϕ we can have different vec- 

ors a ϕ . In Darvay et al. (2020b) and Rigó (2020) the authors pre- 

ented the functions ϕ̄ already used in the literature in case of IPAs 

n order to derive complexity results for different class of optimiza- 

ion problems, including LO and sufficient LCPs, as well. 

Now, if a function ϕ satisfying condition (10) is applied to (6) , 

hen using (7) and Lemma 2.2 we immediately obtain an IPA with 

¯ applied to (5) . However, if a function ϕ̄ satifying ϕ̄ 

′ (t) > 0 is ap-

lied to (5) and we derive an IPA, we do not have guarantee that a

orreponding function ϕ exists, due to the fact that the connection 

etween ϕ̄ and ϕ is given as a functional equation given in Eq. (7) . 

hus, we do not have in this case immediately another descrip- 

ion of the IPA. In other words, we should consider the following 

uestion: can we find a corresponding function ϕ : (ξ 2 , ∞ ) → R

or a given ϕ̄ : (ξ 2 , ∞ ) → R , 0 ≤ ξ < 1 ? To answer this, we give

ounterexamples. Using the definition of the function ϕ̄ given in 

7) , we have lim t→ 0 ϕ̄ (t) = ϕ̄ (1) = 0 . However, the functions ϕ̄ are

onotone increasing. Hence, all the functions ϕ̄ that are defined 

n the whole interval (0 , ∞ ) , i.e. ξ = 0 , are counterexamples. It

ould be interesting to define a class of monotone increasing func- 

ions ϕ̄ for which we can assign corresponding functions ϕ. For 

his, we should solve the functional equation ϕ(t) − ϕ( 
√ 

t ) = ϕ̄ (t) 

or a given function ϕ̄ : (ξ 2 , ∞ ) → R . This leads to further research

opics. 

. Search directions in case of the new type of AET technique 

In this section we present a method to determine search direc- 

ions in case of IPAs for P ∗(κ) -LCPs, by using the new type of AET

pproach presented in Section 2.2 . 

.1. Scaling 

Let us consider 

v = 

√ 

x s 

μ
, d = 

√ 

x 

s 
, d x = 

d 

−1 �x √ 

μ
= 

v �x 

x 

, 

 s = 

d �s √ 

μ
= 

v �s 

s 
. (12) 

rom (12) we obtain 

x = 

x d x 

v 
and �s = 

s d s 

v 
. (13) 

ence, if we substitute these in the second equation of system 

4) we get 

x s d x 

v 
+ 

x s d s 

v 
= μ

2 v 
(
ϕ(v ) − ϕ(v 2 ) 

)
2 v ϕ 

′ (v 2 ) − ϕ 

′ (v ) 
. (14) 
4 
The transformed Newton system (4) with a ϕ given in (9) , ob- 

ained from (6) by applying the AET and then scaling it, leads to 

he following form of the scaled Newton-system: 

M̄ d x + d s = 0 , 

d x + d s = p ϕ , (15) 

here M̄ = DMD , D = diag(d ) and 

 ϕ = 

2 

(
ϕ(v ) − ϕ(v 2 ) 

)
2 v ϕ 

′ (v 2 ) − ϕ 

′ (v ) 
. (16) 

rom Theorem 3.5 proposed in Kojima et al. (1991) and 

orollary 2.1 it can be proved that system (15) has unique solu- 

ion. 

It should be mentioned that if we use the function 

 : 
(

1 
2 , ∞ 

)
→ R , ϕ(t) = t , which satisfies condition (10) , then we

ave 

 ϕ = 

2 v − 2 v 2 

2 v − e 
. (17) 

Interestingly enough that exactly the same vector p ϕ can be de- 

ived if the AET is applied to (5) with function ϕ̄ (t) = t − √ 

t . For

etails see papers Darvay, Illés, Kheirfam, & Rigó (2020a) ; Darvay 

t al. (2016) for LO and Darvay, Illés, & Majoros (2021) ; Darvay 

t al. (2020b) for sufficient LCPs. This can be proved by using (7) ,

ecause in this case we have ϕ̄ (t) = ϕ(t) − ϕ( 
√ 

t ) = t − √ 

t . Fur-

hermore, if we apply the AET to system (6) using the function 

(t) = t 2 , then we obtain the same system as if we apply ϕ̄ (t) =
(t) − ϕ( 

√ 

t ) = t 2 − t to system (5) . It should be mentioned, that 

his function has not been used in the literature in the AET tech- 

ique. Hence, the function ϕ(t) = t 2 used in the AET approach and 

pplied to (6) leads to novel search directions discussed in this pa- 

er. 

In the following subsection we give a general method of deter- 

ining the scaled predictor and scaled corrector systems in case of 

C IPAs using this new type of AET. 

.2. Search directions in case of PC IPAs 

Darvay et al. (2020b) gave a general framework to determine 

he scaled systems in case of PC IPAs for sufficient LCPs. Following 

he steps of their method, we give firstly the scaled corrector sys- 

em, which coincides with system (15) . This system has the unique 

olution: d 

c 
x = (I + M̄ ) −1 p ϕ , d 

c 
s = M̄ (I + M̄ ) −1 p ϕ . Analogous to the

ormula given in (13) we can define �c x = 

x d c x 
v and �c s = 

s d c s 
v . The 

ifference between this method and the one presented in Darvay 

t al. (2020b) is that we have different value of the vector p ϕ due

o the used function ϕ(t) = t 2 in the AET technique. In the trans- 

ormed Newton system (4) we decompose a ϕ given in (9) in the 

ollowing way using the idea presented in Darvay et al. (2020b) : 

 ϕ = f (x , s , μ) + g(x , s ) , (18)

here f : R 

n + × R 

n + × R � → R 

n with f (x , s , 0) = 0 and

 : R 

n + × R 

n + → R 

n . We set μ = 0 in (18) , because we would

ike to make as greedy predictor step as possible. From Darvay 

t al. (2020b) we obtain 

M̄ d x + d s = 0 , 

d x + d s = 

v g(x , s ) 

xs 
, (19) 

here M̄ = DMD . The unique solution of system (19) is 

 

p 
x = (I + M̄ ) −1 v g(x , s ) 

xs and d 

p 
s = M̄ (I + M̄ ) −1 v g(x , s ) 

xs . The differ-

nce between this approach and the one given in Darvay et al. 

2020b) lies in the different value of the vector a ϕ and of g(x , s ) .

sing (13) we can obtain the predictor search directions from 

p x = 

x d 
p 
x 

v and �p s = 

s d 
p 
s 

v . It should be mentioned that the de- 

omposition (18) is not trivial and we have no guarantee that such 

ecomposition exists for all functions ϕ suitable for AET. 
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. New PC IPA for P ∗(κ) -LCPs based on a new search direction 

In this section we introduce a PC IPA using the AET technique 

resented in Section 2.2 . We deal with the function ϕ : 
(

1 
2 , ∞ 

)
→ 

 , ϕ(t) = t 2 , so we obtain 

 ϕ = 

v − v 3 

2 v 2 − e 
. (20) 

t should be mentioned that the condition 2 t ϕ 

′ (t 2 ) − ϕ 

′ (t) >

 , ∀ t > ξ is satisfied in this case, where ξ = 

√ 

2 
2 . Note that we can

ssociate a corresponding kernel function to the search direction 

etermined by the function ϕ in the new type of AET approach. 

n this way, we obtain a positive-asymptotic kernel function, see 

arvay & Takács (2018) ; Rigó & Darvay (2018) : 

 : 

(√ 

2 

2 

, ∞ 

)
→ R �, ψ(t) = 

t 2 − 1 

4 

− log (2 t 2 − 1) 

8 

. 

Let us define the centrality measure δ : R 

n + × R 

n + × R + → R ∪ 

∞} as 

(x , s , μ) := δ(v ) := 

‖ 

p ϕ ‖ 

2 

= 

1 

2 

∥∥∥∥ v − v 3 

2 v 2 − e 

∥∥∥∥. (21) 

eside this, we give the τ -neighbourhood of a fixed point of the 

entral path as 

 2 (τ, μ) := { (x , s ) ∈ F 

+ : δ(x , s , μ) ≤ τ } , (22)

here δ(x , s , μ) is given in (21) , τ is a threshold parameter and

> 0 is fixed. 

First, we need to find the decomposition of a ϕ as it is given in

18) : 

 ϕ = 

μ x s 

2 (2 x s − μ e ) 
− x s 

2 

, 

ence f (x , s , μ) = 

μ x s 
2 (2 x s −μ e ) 

, which satisfies the condition 

f (x , s , 0) = 0 and g(x , s ) = − x s 
2 . In this case, the transformed

ewton system (4) with (9) is the following: 

M�x + �s = 0 , 

S�x + X �s = 

μ x s 

2 (2 x s − μ e ) 
− x s 

2 

. (23) 

Note that some IPAs use firstly corrector steps and after that 

redictor step, see Potra (2008) . Our algorithm also performs firstly 

 corrector step if the initial interior point is not well centered 

nd after that a predictor one. The PC IPA starts with (x 0 , s 0 ) ∈
 2 (τ, μ) for which δ(x 0 , s 0 , μ) ≤ τ . In a corrector step we obtain

 

c 
x and d 

c 
s by solving 

M̄ d 

c 
x + d 

c 
s = 0 , 

d 

c 
x + d 

c 
s = 

v − v 3 

2 v 2 − e 
, (24) 

here we used the scaling notations considered in Section 3.1 , 
¯
 = DMD and D = diag(d ) . From Theorem 3.5 given in Kojima

t al. (1991) and Corollary 2.1 it can be proved that system (24) has

nique solution: 

 

c 
x = (I + M̄ ) −1 v − v 3 

2 v 2 − e 
, d 

c 
s = M̄ (I + M̄ ) −1 v − v 3 

2 v 2 − e 
. 

rom 

c x = 

x d 

c 
x 

v 
and �c s = 

s d 

c 
s 

v 
(25) 

he �c x and �c s search directions can be easily obtained. Let 

 

c = x + �c x , s c = s + �c s . 

onsider the following notations: 

 

c = 

√ 

x 

c s c 

μ
, d 

c = 

√ 

x 

c 

s c 
, D 

+ = diag(d 

c ) , M̄ 

+ = D 

+ MD 

+ . 
5 
hen, the scaled predictor system is 

M̄ 

+ d 

p 
x + d 

p 
s = 0 , 

d 

p 
x + d 

p 
s = −v c 

2 

, (26) 

hich has the solution 

 

p 
x = −(I + M̄ 

+ ) −1 v 
c 

2 

, d 

p 
s = −M̄ 

+ (I + M̄ 

+ ) −1 v 
c 

2 

. (27) 

hen, using 

p x = 

x 

c 

v c 
d 

p 
x and �p s = 

s c 

v c 
d 

p 
s , (28) 

he search directions �p x and �p s can be easily calculated. The 

terate after a predictor step is 

 

p = x 

c + θ�p x , s p = s c + θ�p s , μp = 

(
1 − θ

2 

)
μ, 

here θ ∈ (0 , 1) is the update parameter. 

. Analysis of the PC IPA 

In the first part of the analysis we deal with the corrector step. 

.1. The corrector step 

In the corrector part of the proposed PC IPA we use the classi- 

al small-update step of IPAs. Therefore, the results of Zhang et al. 

2020) can be applied to analyse the corrector steps of the pro- 

osed PC IPA. It should be mentioned that the default value τ = 

1 
16(1+4 κ) 

given in Algorithm 4.1 is smaller than the upper bounds 

lgorithm 4.1 PC IPA for sufficient LCPs based on a new type of 

ET. 

et ε > 0 be the accuracy parameter, 0 < θ < 1 the update param- 

ter (default value θ = 

1 
4(1+4 κ) 

√ 

n 
) and τ the proximity parameter 

default value τ = 

1 
16(1+4 κ) 

). Furthermore, a known upper bound 

of the handicap ˆ κ(M) is given. Assume that for (x 0 , s 0 ) the

x 0 
)T 

s 0 = nμ0 , μ0 > 0 holds such that δ(x 0 , s 0 , μ0 ) ≤ τ and 

x 0 s 0 

μ0 >

1 
2 e . 

egin 

k := 0 ;
while 

(
x k 

)T 
s k > ε do 

begin 

(corrector step) 

compute (�c x k , �c s k ) from system (24) using (25); 

let ( x c ) 
k := x k + �c x k and ( s c ) 

k := s k + �c s k ;

(predictor step) 

compute (�p x k , �p s k ) from system (26) using (28); 

let ( x p ) 
k := ( x c ) 

k + θ�p x k and ( s p ) 
k := ( s c ) 

k + θ�p s k ;

(update of the parameters and the iterates) 

x k +1 := ( x p ) 
k 
, s k +1 := ( s p ) 

k 
, μk +1 := 

(
1 − θ

2 

)
μk ;

k:=k+1; 

end 

nd 

f centrality measures given in the following theorem and lemma, 

ence we can use these results in the analysis of the corrector step. 

urthermore, a detailed description of how the default values of 

he parameters have been chosen is given in Section 5.4 . In the 

ext theorem the strict feasibility of the full-Newton IPA is proved, 

here v c = 

√ 

x c s c 

μ . 
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heorem 5.1 (Theorem 1 in Darvay & Takács (2018) , and Lemma 

 in Zhang et al. (2020) ) . Let δ := δ(x , s , μ) < 

1 √ 

1+4 κ
and v > 

√ 

2 
2 e .

hen, we have (x c , s c ) ∈ F 

+ and v c ≥
√ 

1 − (1 + 4 κ) δ2 e . Moreover,

f we choose δ := δ(x , s , μ) < 

1 √ 

2(1+4 κ) 
, then we have v c > 

√ 

2 
2 e . 

The next lemma shows the quadratic convergence of the cor- 

ector step. 

emma 5.2 (Theorem 2 in Zhang et al. (2020) ) . Let δ := 

(x , s , μ) < 

1 √ 

2(1+4 κ) 
and v > 

√ 

2 
2 e . Then, 

c := δ(x 

c , s c , μ) ≤ 5(1 + 4 κ) δ2 

1 − 2(1 + 4 κ) δ2 

√ 

1 − (1 + 4 κ) δ2 . 

orollary 5.3. Let δ := δ(x , s , μ) ≤ 1 
2 
√ 

1+4 κ
and v > 

√ 

2 
2 e . Then, δc ≤

0(1 + 4 κ) δ2 . 

roof. From δ(x , s , μ) < 

1 
2 
√ 

1+4 κ
we have 

 − 2(1 + 4 κ) δ2 ≥ 1 

2 

. 

sing this, Lemma 5.2 and 

√ 

1 − (1 + 4 κ) δ2 ≤ 1 we obtain 

(x 

c , s c , μ) ≤ 5(1 + 4 κ) δ2 

1 − 2(1 + 4 κ) δ2 
≤ 10(1 + 4 κ) δ2 , 

hich yields the result. �

Next lemma provides an upper bound for the duality gap after 

 full-Newton step. 

emma 5.4 (Lemma 4 in Zhang et al. (2020) ) . Let δ := δ(x , s , μ)

iven as in (21) . Then, 

 

x 

c ) 
T 

s c < μ(n + 9 δ2 ) . 

.2. Technical lemmas 

In this subsection we present important results that will be 

sed in the next part of the analysis. We assume that M is a 

 ∗(κ) -matrix for a given κ ≥ ˆ κ(M) ≥ 0 . From −M�p x + �p s = 0 ,

e have 

1 + 4 κ) 
∑ 

i ∈ I + 
�p x i �

p s i + 

∑ 

i ∈ I −
�p x i �

p s i ≥ 0 , (29) 

here I + = { i : �p x i �
p s i > 0 } and I − = { i : �p x i �

p s i < 0 } . Using

12) we obtain d 

p 
x d 

p 
s = 

�p x �p s 
μ . Hence, (29) can be written as 

1 + 4 κ) 
∑ 

i ∈ I + 
d p x i 

d p s i 
+ 

∑ 

i ∈ I −
d p x i 

d p s i 
≥ 0 . (30) 

The following lemma is similar to that of Lemma 1 in the pa- 

er of Kheirfam (2014) and Lemma 5.3 in Darvay et al. (2020b) . 

owever, we use another type of AET transformation and different 

unction ϕ. 

emma 5.5. Let δc = δ(x c , s c , μ) = 

1 
2 

∥∥∥ v c −( v c ) 3 

2(v c ) 2 −e 

∥∥∥. Then, the following

nequality holds 

 d 

p 
x d 

p 
s ‖ < 

n (2 + κ)(1 + 4 δc ) 2 

4 

roof. Using the second equation of the scaled predictor system 

26) we obtain 

 

i ∈ I + 
d p x i 

d p s i 
≤ 1 

4 

‖ d 

p 
x + d 

p 
s ‖ 

2 = 

‖ v c ‖ 

2 

16 

. 
6 
sing the proof of Lemma 5.3 given in Darvay et al. (2020b) and 

rom the relation (30) we have 

‖ v c ‖ 

2 

4 

≥ ‖ d 

p 
x ‖ 

2 + ‖ d 

p 
s ‖ 

2 − 8 κ
∑ 

i ∈ I + 
d p x i 

d p s i 
≥ ‖ d 

p 
x ‖ 

2 

+ ‖ d 

p 
s ‖ 

2 − 1 

2 

κ‖ v c ‖ 

2 . (31) 

ence, ‖ d 

p 
x ‖ 2 + ‖ d 

p 
s ‖ 2 ≤

(
1 
4 + 

1 
2 κ

)‖ v c ‖ 2 < 

(
1 + 

1 
2 κ

)‖ v c ‖ 2 . Similar

o the proof of Lemma 5.3 of Darvay et al. (2020b) , we give an

pper bound for ‖ v c ‖ . Consider the notation σ c = ‖ e − v c ‖ , which

s the centrality measure used in Darvay (2003) ; Kheirfam (2014) . 

sing the relation (5.6) given in Darvay et al. (2020b) we have 

 v c ‖ ≤ √ 

n (σ c + 1) . (32) 

oreover, 

c = 

1 

2 

∥∥∥∥ v c − ( v c ) 3 

2(v c ) 2 − e 

∥∥∥∥ = 

1 

2 

∥∥∥∥ v c (e + v c ) 

2(v c ) 2 − e 
(e − v c ) 

∥∥∥∥
> 

1 

4 

‖ e − v c ‖ = 

σ c 

4 

, (33) 

here we used that the function h̄ (t) = 

t 2 + t 
2 t 2 −1 

> 

1 
2 , for t > 

√ 

2 
2 .

ence, we have σ c < 4 δc . Using (32) and (33) we get 

 v c ‖ < 

√ 

n (1 + 4 δc ) . (34) 

hus, 

 d 

p 
x d 

p 
s ‖ ≤ ‖ d 

p 
x ‖‖ d 

p 
s ‖ ≤ 1 

2 

(‖ d 

p 
x ‖ 

2 + ‖ d 

p 
s ‖ 

2 
)

≤ 1 

2 

(
1 + 

1 

2 

κ
)
‖ 

v c ‖ 

2 

< 

n (2 + κ)(1 + 4 δc ) 2 

4 

, 

hich proves the lemma. �

Consider

 v = d 

c 
x − d 

c 
s . (35) 

hen, we have 

 

c 
x = 

p ϕ + q v 

2 

, d 

c 
s = 

p ϕ − q v 

2 

and d 

c 
x d 

c 
s = 

p 

2 
ϕ − q 

2 
v 

4 

. (36) 

We give an upper bound for the norm of q v depending on the 

entrality measure. The proof technique is similar to the one given 

n Asadi, Mahdavi-Amiri, Darvay, & Rigó (2020) for P ∗(κ) -LCPs over 

artesian product of symmetric cones. 

emma 5.6 (c.f. Lemma 5.4 in Darvay et al. (2020b) and Lemma 

.1 in Asadi et al. (2020) ) . The following inequality holds: 

 q v ‖ ≤ 2 

√ 

1 + 4 κ δ, 

here δ = δ(x , s , μ) is the proximity measure given in (21) and it is

elated to the iterates before the corrector step. 

roof. The proof is similar to Lemma 5.4 given in Darvay et al. 

2020b) and Lemma 5.1 appeared in Asadi et al. (2020) . However, 

e consider a different search direction. In the proof we use only 

he d 

c 
x + d 

c 
s = p v equation, which is valid in our case as well, inde-

endently on the used search direction. �

The next subsection contains the analysis of the predictor step. 

.3. The predictor step 

Lemma 5.7 gives a sufficient condition for the strict feasibility 

f the predictor step. 

emma 5.7. Let (x c , s c ) > 0 , 0 < θ < 1 and μ > 0 such that δc :=
(x c , s c , μ) < 

1 
4 . Consider x p = x c + θ�p x and s p = s c + θ�p s . Let 

(δc , θ, n ) := (1 − 4 δc ) 2 − n (2 + κ) θ2 (1 + 4 δc ) 2 

2(2 − θ ) 
. 
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f z(δc , θ, n ) > 0 , then x p > 0 and s p > 0 . 

roof. Let us consider x p (α) = x c + α θ �p x and s p (α) = s c +
θ �p s , for 0 ≤ α ≤ 1 . Then, x p (α) = 

x c 

v c 
(v c + α θ d 

p 
x ) and s p (α) =

s c 

v c 
(v c + α θ d 

p 
s ) . Using relation (5.17) given in Darvay et al. 

2020b) and from the second equation of system (26) we obtain: 

 

p (α) s p (α) = μ
(
( v c ) 

2 + αθv c (d 

p 
x + d 

p 
s ) + α2 θ2 d 

p 
x d 

p 
s 

)
= μ

((
1 − 1 

2 

αθ
)
( v c ) 

2 + α2 θ2 d 

p 
x d 

p 
s 

)
. (37) 

ence, we obtain 

in 

( 

x 

p (α) s p (α) 

μ
(
1 − αθ

2 

)
) 

= min 

(
( v c ) 

2 + 

α2 θ2 

1 − αθ
2 

d 

p 
x d 

p 
s 

)
≥ min 

(
( v c ) 

2 
)

− 2 α2 θ2 

2 − αθ
‖ d 

p 
x d 

p 
s ‖ ∞ 

. 

e have 1 − σ c ≤ v c 
i 

≤ 1 + σ c , ∀ i = 1 , . . . , n. Using these bounds,

33) and δc < 

1 
4 we have 

in ( v c ) 
2 ≥ (1 − σ c ) 2 ≥ (1 − 4 δc ) 2 . (38) 

e will use that the real valued function f (α) = 

2 α2 θ2 

2 −αθ
is strictly 

ncreasing for 0 ≤ α ≤ 1 and each fixed 0 < θ < 1 . Moreover, from 

emma 5.5 and (38) we obtain 

in 

( 

x 

p (α) s p (α) 

μ
(
1 − αθ

2 

)
) 

≥ (1 − 4 δc ) 2 − 2 n (2 + κ) θ2 (1 + 4 δc ) 2 

4(2 − θ ) 

= z(δc , θ, n ) > 0 . (39) 

ence, we have x p (α) s p (α) > 0 for 0 ≤ α ≤ 1 . Therefore, x p (α)

nd s p (α) do not change sign on 0 ≤ α ≤ 1 . Using x p (0) = x c > 0

nd s p (0) = s c > 0 , we obtain x p (1) = x p > 0 and s p (1) = s p > 0 ,

hich yields the result. �

Let us introduce 

 

p = 

√ 

x 

p s p 

μp 
, 

here μp = 

(
1 − θ

2 

)
μ. If we substitute α = 1 in (37) and (39) we 

ave 

 

v p ) 
2 = ( v c ) 

2 + 

2 θ2 

2 − θ
d 

p 
x d 

p 
s and min ( v p ) 

2 ≥ z(δc , θ, n ) > 0 . 

(40)

he next lemma analyses the effect of a predictor step and the up- 

ate of μ on the proximity measure. 

emma 5.8. Let δc := δ(x c , s c , μ) < 

1 
4 , μ

p = 

(
1 − θ

2 

)
μ, where 0 <

< 1 , z(δc , θ, n ) > 

1 
2 and consider δ := δ(x , s , μ) given in (21) . The

terates after a predictor step are denoted as x p and s p . Then, we have

 

p > 

√ 

2 
2 e and 

p := δ(x 

p , s p , μp ) 

≤
√ 

z(δc , θ, n ) 
(
10(1 + 4 κ) δ2 + (1 − 4 δc ) 2 − z(δc , θ, n ) 

)
) 

4 z(δc , θ, n ) − 2 

. 

roof. Using z(δc , θ, n ) > 

1 
2 > 0 , from Lemma 5.7 we get x p > 0

nd s p > 0 , thus the predictor step is strictly feasible. From (40) we

btain 

in ( v p ) ≥
√ 

z(δc , θ, n ) > 

√ 

2 

2 

, 

hich yields the first part of the result. Beside this, 

p := 

1 

2 

∥∥∥∥ v p − ( v p ) 
3 

2 ( v p ) 
2 − e 

∥∥∥∥ = 

1 

2 

∥∥∥∥∥v p 
(
e − ( v p ) 

2 
)

2 ( v p ) 
2 − e 

∥∥∥∥∥. (41) 
7 
onsider h : 

(√ 

2 
2 , ∞ 

)
→ R , h (t) = 

t 
2 t 2 −1 

, which is a decreasing

unction with respect to t . Using this, (40) and (41) we get 

p ≤ min ( v p ) 

4 min ( v p ) 
2 − 2 

∥∥e − ( v p ) 
2 
∥∥

≤
√ 

z(δc , θ, n ) 

4 z(δc , θ, n ) − 2 

∥∥∥∥e − ( v c ) 
2 − 2 θ2 

2 − θ
d 

p 
x d 

p 
s 

∥∥∥∥
≤

√ 

z(δc , θ, n ) 

4 z(δc , θ, n ) − 2 

(∥∥e − ( v c ) 
2 
∥∥ + 

2 θ2 

2 − θ

∥∥d 

p 
x d 

p 
s 

∥∥)
. (42) 

sing the proof of Lemma 2 in Darvay & Takács (2018) we obtain 

he following upper bound for 
∥∥e − ( v c ) 

2 
∥∥: 

e − ( v c ) 
2 
∥∥ ≤

∥∥∥∥q 

2 
v 

4 

∥∥∥∥ + 

∥∥∥∥9 v 2 − 4 e 

v 2 
· p 

2 
ϕ 

4 

∥∥∥∥ (43) 

ence, using (43) and Lemma 5.6 we may write 

e − ( v c ) 
2 
∥∥ ≤

∥∥∥∥q 

2 
v 

4 

∥∥∥∥ + 

∥∥∥∥9 v 2 − 4 e 

v 2 
· p 

2 
ϕ 

4 

∥∥∥∥
< 

‖ q v ‖ 

2 

4 

+ 9 

‖ p ϕ ‖ 

2 

4 

≤ 10(1 + 4 κ) δ2 . (44) 

e used that 0 < 

9 v 2 −4 e 
v 2 

< 9 e for v > 

√ 

2 
2 e . From (42), (44) ,

emma 5.5 and the definition of the function z we get: 

p ≤
√ 

z(δc , θ, n ) 

4 z(δc , θ, n ) − 2 

(∥∥e − ( v c ) 
2 
∥∥ + 

2 θ2 

2 − θ

∥∥d 

p 
x d 

p 
s 

∥∥)

≤
√ 

z(δc , θ, n ) 
(
10(1 + 4 κ) δ2 + (1 − 4 δc ) 2 − z(δc , θ, n ) 

)
4 z(δc , θ, n ) − 2 

, 

(45) 

hich proves the second statement of the lemma. �

It should be mentioned that in Lemma 5.8 the condition 

(δc , θ, n ) > 

1 
2 should hold, because due to the used function 

(t) = t 2 in the new type of AET technique for the determination 

f the search directions, we have to ensure that in each iteration 

f the algorithm, the components of the vector v are greater than √ 

2 
2 . 

In the following lemma we give an upper bound for the duality 

ap after a main iteration. 

emma 5.9. Let 0 < θ < 1 . If δ ≤ 1 
16(1+4 κ) 

, x p and s p are the iterates

btained after the predictor step of the algorithm, then 

 

x 

p ) 
T 

s p ≤
(

1 − θ

2 

+ 

θ2 

8 

)
( x 

c ) 
T 

s c < 

3 nμp 

2(2 − θ ) 
. 

roof. Using (37) with α = 1 and the definition of v p we have 

 

x 

p ) 
T 

s p = μp e T ( v p ) 
2 = μe T 

((
1 − θ

2 

)
( v c ) 

2 + θ2 d 

p 
x d 

p 
s 

)

= 

(
1 − θ

2 

)
( x 

c ) 
T 

s c + μθ2 
(
d 

p 
x 

)T 
d 

p 
s . (46) 

e multiply the second equation of (26) by 
(
d 

p 
x 

)T 
and by 

(
d 

p 
s 

)T 
, 

espectively. After that, we sum the obtained two equations, 

ence 

d 

p 
x 

)T 
d 

p 
s = 

( x 

c ) 
T s c 

8 μ
− ‖ d 

p 
x ‖ 

2 + ‖ d 

p 
s ‖ 

2 

2 

≤ ( x 

c ) 
T s c 

8 μ
. (47) 

sing (46) and (47) we get 

 

x 

p ) 
T 

s p ≤
(

1 − θ

2 

+ 

θ2 

8 

)
( x 

c ) 
T 

s c . 
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4

O

i

6

p

(

f 0 < θ < 1 , then 

 − θ

2 

+ 

θ2 

8 

< 1 . (48) 

urhermore, if δ ≤ 1 
16(1+4 κ) 

and n ≥ 1 , then 

2 ≤ n 

256(1 + 4 κ) 2 
. 

sing this, μp = 

(
1 − θ

2 

)
μ, (48) and Lemma 5.4 we have 

 

x 

p ) 
T 

s p ≤
(

1 − θ

2 

+ 

θ2 

8 

)
( x 

c ) 
T 

s c < ( x 

c ) 
T 

s c < μ(n + 9 δ2 ) 

< 

μp 

1 − θ
2 

(
n + 

9 n 

256(1 + 4 κ) 2 

)
< 

2 μp n 

2 − θ

(
1 + 

9 

256 

)
= 

265 nμp 

256(2 − θ ) 
< 

3 nμp 

2(2 − θ ) 
, 

hich yields the result. �

.4. Determination of the values of the proximity and update 

arameters 

We choose the values of the parameters τ and θ in such a way 

hat after a corrector and a predictor step, the proximity measure 

ill not exceed the proximity parameter. The following lemma is a 

echnical one. 

emma 5.10. Let δ ≤ 1 
16(1+4 κ) 

be the centraltiy measure related to 

he iterates before the corrector step. Then, we have δc ≤ 10 
256(1+4 κ) 

< 

1 
4 . 

roof. Using 1 
16(1+4 κ) 

≤ 1 
2 
√ 

1+4 κ
, by applying Corollary 5.3 and 

rom κ ≥ 0 we have 

c ≤ 10(1 + 4 κ) δ2 ≤ 10 

256(1 + 4 κ) 
< 

1 

4 

, 

hich proves the lemma. �

Let (x , s ) ∈ N 2 (τ, μ) . Using Lemma 5.2 , after a corrector step

e have 

c := δ(x 

c , s c , μ) ≤ 5(1 + 4 κ) δ2 

1 − 2(1 + 4 κ) δ2 

√ 

1 − (1 + 4 κ) δ2 , 

hich is monotonically increasing with respect to δ, where δ < 

1 √ 

2(1+4 κ) 
. In this way, 

c ≤ 5(1 + 4 κ) τ 2 

1 − 2(1 + 4 κ) τ 2 

√ 

1 − (1 + 4 κ) τ 2 =: ω(τ ) . 

rom δ ≤ 1 
16(1+4 κ) 

and using Lemma 5.10 we have δc < 

1 
4 . Using 

emma 5.8 , after a predictor step and a μ-update we have 

p := δ(x 

p , s p , μp ) 

≤
√ 

z(δc , θ, n ) 
(
10(1 + 4 κ) δ2 + (1 − 4 δc ) 2 − z(δc , θ, n ) 

)
) 

4 z(δc , θ, n ) − 2 

, 

here δ := δ(x , s , μ) is the proximity measure given in (21) .

he function z(δc , θ, n ) is decreasing with respect to δc . Thus, 

(δc , θ, n ) ≥ z(ω(τ ) , θ, n ) . In Lemma 5.8 we have seen that the

unction h (t) = 

t 
2 t 2 −1 

, t > 

√ 

2 
2 is decreasing with respect to t , 

ence 

 ( 
√ 

z(δc , θ, n ) ) ≤ h ( 
√ 

z(ω(τ ) , θ, n ) ) . 

ote that (1 − 4 δc ) 2 − z(δc , θ, n ) = 

2 n (2+ κ) θ2 (1+4 δc ) 2 

4(2 −θ ) 
is increasing 

ith respect to δc . Using this and δ < τ , δc < ω(τ ) , we obtain √ 

z(δc , θ, n ) 
(
10(1 + 4 κ) δ2 + (1 − 4 δc ) 2 − z(δc , θ, n ) 

)
4 z(δc , θ, n ) − 2 
8 
≤
√ 

z(ω(τ )) , θ, n ) 
(
10(1 + 4 κ) τ 2 + (1 − 4 ω(τ )) 2 − z(ω(τ ) , θ, n ) 

)
4 z(ω(τ ) , θ, n ) − 2 

.

(49)

ur aim is to keep δp ≤ τ . For this, it suffices that √ 

z(ω(τ )) , θ, n ) 
(
10(1 + 4 κ) τ 2 + (1 − 4 ω(τ )) 2 − z(ω(τ ) , θ, n ) 

)
4 z(ω(τ ) , θ, n ) − 2 

≤ τ

etting τ = 

1 
16(1+4 κ) 

and θ = 

1 
4(1+4 κ) 

√ 

n 
, the above inequality holds. 

hus, x , s > 0 and δ(x , s , μ) ≤ 1 
16(1+4 κ) 

< 

1 √ 

2(1+4 κ) 
are maintained

uring the algorithm. This means that the proposed IPA is well de- 

ned. Furthermore, we have 

(δc , θ, n ) = (1 − 4 δc ) 2 − 2 n (2 + κ) θ2 (1 + 4 δc ) 2 

4(2 − θ ) 

≥ (1 − 4 ω(τ )) 2 − 2 n (2 + κ) θ2 (1 + 4 ω(τ )) 2 

4(2 − θ ) 
> 

1 

2 

, 

ence the predictor step is strictly feasible. The way we have cho- 

en the neighbourhood parameter shows that (x p , s p ) ∈ N 2 ( τ, μp ) . 

.5. Complexity bound 

The next lemma gives an upper bound for the number of itera- 

ions produced by the PC IPA. 

emma 5.11. Let x 0 and s 0 be strictly feasible, θ = 

1 
4(1+4 κ) 

√ 

n 
, μ0 = 

( x 0 ) 
T 

s 0 

n and δ(x 0 , s 0 , μ0 ) ≤ τ = 

1 
16(1+4 κ) 

. Moreover, let x k and s k be

he iterates obtained after k iterations. Then, 
(
x k 

)T 
s k ≤ ε for 

 ≥ 1 + 

⌈ 

2 

θ
log 

3 

(
x 

0 
)T 

s 0 

4 ε

⌉ 

. 

roof. Using Lemma 5.9 we have 

x 

k 
)T 

s k < 

3 nμk 

4 

(
1 − θ

2 

) = 

3 n 

(
1 − θ

2 

)k −1 
μ0 

4 

= 

3 

(
1 − θ

2 

)k −1 (
x 

0 
)T 

s 0 

4 

. 

he inequality 
(
x k 

)T 
s k ≤ ε holds if 

3 

(
1 − θ

2 

)k −1 

( x 0 ) 
T 

s 0 

4 ≤ ε. We take 

ogarithms, hence 

k − 1) log 

(
1 − θ

2 

)
+ log 

3 

(
x 

0 
)T 

s 0 

4 

≤ log ε. 

rom log (1 + θ ) ≤ θ , θ ≥ −1 , it follows that the above inequality 

olds if 

θ

2 

(k − 1) + log 
3 

(
x 

0 
)T 

s 0 

4 

≤ log ε. 

his yields the desired result. �

heorem 5.12. Let τ = 

1 
16(1+4 κ) 

and θ = 

1 
4(1+4 κ) 

√ 

n 
. Then, Algorithm 

.1 is well defined and requires at most 

 

(
(1 + 4 κ) 

√ 

n log 
3 nμ0 

4 ε

)
terations. The output is a pair (x , s ) satisfying x T s ≤ ε. 

. Numerical results 

We implemented a variant of the proposed PC IPA in the C++ 

rogramming language using the code presented in Darvay & Takó

2012) . We did all computations on a desktop computer with Intel 
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Table 1 

Numerical results for P ∗(κ) -LCPs from Illés & Morapitiye (2018) 

having positive handicap. 

n ϕ(t) = t 2 ; ϕ̄ (t) = t 2 − t ϕ(t) = t; ϕ̄ (t) = t − √ 

t 

Avg. Iter. CPU (s) Avg. Iter. CPU (s) 

10 19 0.003 18.9 0.0016 

20 20.5 0.041 20.2 0.0405 

50 18.1 0.2798 17.9 0.2741 

100 18.4 1.563 18.1 1.5241 

200 19 10.3192 18.5 10.0423 

500 19.2 146.905 19.2 147.1175 

Table 2 

Numerical results for P ∗(κ) -LCPs with matrix given in (50) . 

n ϕ(t) = t 2 ; ϕ̄ (t) = t 2 − t ϕ(t) = t; ϕ̄ (t) = t − √ 

t 

Nr. of Iter. CPU (s) Nr. of Iter. CPU (s) 

20 29 0.058 30 0.06 

50 45 0.67 46 0.688 

100 72 6.184 73 6.151 

300 181 307.276 181 307.081 

400 235 964.821 236 1016.09 
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i
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uad-core 2.6 GHz processor and 8 GB RAM. It should be men- 

ioned that the value of the parameter κ can be very large, which 

eads to a very small value of the parameter θ , see Theorem 5.12 .

his motivated us to make some modifications in the implementa- 

ion of the proposed PC IPA. 

Algorithm 6.1 illustrates the computational version of the theo- 

lgorithm 6.1 PC IPA from the implementation point of view. 

et ε = 10 −5 , x 0 = s 0 = e , μ0 = 1 , 0 < ρ < 1 , 0 < σ < 1 and lb = 

1 
2 .

egin 

k := 0 ;
while 

(
x k 

)T 
s k > ε do 

begin 

predictor step 

compute (�p x k , �p s k ) from system (26) using (28); 

αp 
x = min 

{ 

− x k 
i 

�p x k 
i 

| �p x k 
i 

< 0 , 1 ≤ i ≤ n 

} 

; 

αp 
s = min 

{ 

− s k 
i 

�p s k 
i 

| �p s k 
i 

< 0 , 1 ≤ i ≤ n 

} 

; 

αp = min { αp 
x , α

p 
s } ; 

( x p ) 
k := x k + ραp �p x k ; ( s p ) 

k := s k + ραp �p s k ;
corrector step 

μk 
c = σ

min { (x 
p 
i 

)k (
s 

p 
i 

)k 
: 1 ≤i ≤n } 

lb 
; 

compute (�c x k , �c s k ) from system (24) using (25); 

�x k = �p x k + �c x k ; �s k = �p s k + �c s k ;
αc 

x = min 

{
− (x 

p 
i 
) k 

�x k 
i 

| �x k 
i 

< 0 , 1 ≤ i ≤ n 

}
; 

αc 
s = min 

{
− (s 

p 
i 
) k 

�s k 
i 

| �s k 
i 

< 0 , 1 ≤ i ≤ n 

}
; 

αc = min { αc 
x , α

c 
s } ; 

( x c ) 
k := x k + ραc �x k ; ( s c ) 

k := s k + ραc �s k ;
x k +1 := ( x c ) 

k 
, s k +1 := ( s c ) 

k ; k := k + 1 ; 

end 

nd 

etical PC IPA given in Algorithm 4.1 . In the predictor step we cal-

ulated the maximal step size αp 
x and αp 

s to the boundary of non- 

egative orthant by using minimal ratio test. We considered the 

inimum value of these step sizes and we determined the vectors 

 

p and s p without modifying the actual points x k and s k . The value

f ρ in our case was 0.5. Note that the vectors x p and s p were used

n the computation of step lengths αc 
x , α

c 
s in the corrector step. 

The value of the parameter μ in the corrector step was calcu- 

ated as μk 
c = σ

min { (x 
p 
i 

)k (
s 

p 
i 

)k 
: 1 ≤i ≤n } 

lb 
, where 0 < σ < 1 , lb denotes a 

iven lower bound, which in our case is 1 
2 . In our case the value

f σ was 0.1. The way of determining the value of the parameter 
k 
c ensures that the components of the vector v are greater than a 

ositive constant, which is important in our case due to the used 

earch direction. It should be mentioned that we considered the 

earch directions obtained by the sum of the predictor and the cor- 

ector directions. In the determination of the step length in case of 

he corrector step we used the same strategy as in case of the pre-

ictor step. 

We tested the PC IPA on LCPs with sufficient matrices having 

ositive κ parameters generated by Illés & Morapitiye (2018) . We 

enerated the test problems in the following way: q := −Me + e . 

e considered x 0 = e and s 0 = e as starting points for our PC IPA. 

We have tested the PC IPA for all 61 P ∗(κ) -LCPs from the se-

ection given in Illés & Morapitiye (2018) . We could easily obtain 

esults for variants of the PC IPA using different functions ϕ in 

his new type of AET technique by changing the right hand side 

f the Newton-system. In our computational study we compared 

ur PC IPA using the function ϕ(t) = t 2 in system (6) with the
9 
ariant of the IPA which uses the ϕ(t) = t in the new type of 

ET technique characterized by system (6) . Note that in the case 

hen ϕ(t) = t is used, then the value of lb is 1 
4 , g(x , s ) = −xs

nd a ϕ = 

√ 

μxs 

2 
√ 

xs −√ 

μe 
. This yields the same direction as the one used 

n Darvay et al. (2020b) , where system (5) was considered with 

¯ (t) = t − √ 

t . Table 1 contains the average of iteration numbers 

nd CPU times (in seconds) for 10 given LCPs for each size n listed 

n the table. We can observe that the results are similar for both 

ariants of the PC IPA using the different search directions. 

de Klerk & Nagy (2011) proved that the handicap of the matrix 

an be exponential in the size of the problem. They considered the 

ollowing matrix which was proposed by Csizmadia: 

 = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

1 0 0 . . . 0 

−1 1 0 . . . 0 

−1 −1 1 . . . 0 

. . . 
. . . 

. . . 
. . . 

. . . 
−1 −1 −1 . . . 1 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

, (50) 

nd they proved that ˆ κ(M) ≥ 2 2 n −8 − 0 . 25 . However, in our com- 

utational study we obtained promising results for the two vari- 

nts of PC IPAs. The results are summarized in Table 2 . 

The obtained results can be further analysed, because it seems 

hat the practical iteration complexity is significantly better than 

he theoretical (worst case) guarantee for the special class of LCPs 

ith the lower triangular P -matrix M, introduced by Zs. Csizmadia. 

. Conclusions and further research 

In this paper we proposed a new PC IPA for solving P ∗(κ) -

CPs which uses the new type of AET given in Darvay & 

akács (2018) for LO. The presented IPA applies the function 

(t) = t 2 on the nonlinear equation v 2 = v in order to deter- 

ine the new search directions. The corresponding kernel function 

s a positive-asymptotic kernel function. Furthermore, similar to 

arvay et al. (2020b) , we presented the method for determining 

he Newton systems and scaled systems in case of PC IPAs using 

his new type of AET. Due to the used search direction we had 

o ensure during the whole process of the IPA that the compo- 

ents of the vector v were greater than 

√ 

2 
2 . In spite of this fact, 

e proved that the PC IPA retains polynomial iteration complexity 

n the handicap of the problem’s matrix, the size of the problem 

nd the deviation from the complementarity gap. This is the first 



Zs. Darvay, T. Illés and P.R. Rigó European Journal of Operational Research xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: EOR [m5G; October 6, 2021;2:7 ] 

P  

t

w

u

s

i

ϕ
b

F

n

d

A

R

T

B

b

R

c

t

R

A

A

A  

A  

A  

A  

B  

B  

C

C  

C  

C  

C  

C  

D

D

D

D  

D  

D  

D

D

D

d  

d  

F

F  

F  

H  

I

I

I  

I  

I  

K

K

K

K  

K  

L  

L

L

L

L

M

M

M

M

N

P  

P

C IPA for solving P ∗(κ) -LCPs which uses the function ϕ(t) = t 2 in

he new type of AET. Moreover, we also provided numerical results 

here we compared our PC IPA to another variant of this algorithm 

sing ϕ(t) = t in the new type of AET technique. As further re- 

earch, it would be interesting to find a class of monotone increas- 

ng functions ϕ̄ for which we can assign corresponding functions 

. This would lead to a case where we can establish equivalence 

etween the two approaches of the AET presented in this paper. 

urthermore, it would be interesting to define a PC IPA using this 

ew type of AET approach, where the central path parameter up- 

ate is adaptive, for example as it is in Potra & Wright (20 0 0) . 
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