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A B S T R A C T   

This paper aims to compare the efficiency of the conventional aggregation methods and the new, distance-based 
aggregation techniques in simulated and real-world group AHP cases. For the comparison, we not only applied 
rank correlation methods, but also examined the compatibility among the individual priority vectors of the group 
and the created common priority vector in the different consensus creation approaches. Results have shown that 
in small dimensions, both Euclidean Distance-Based Aggregation Method (EDBAM) and Aitchison Distance-Based 
Aggregation Method (ADBAM) outperform significantly the conventional techniques. In large dimensions, the 
dominance of EDBAM remains. Since the computational time of the proposed methods (especially EDBAM) is low 
and EDBAM maintains its efficiency in large-scale group AHP (proven by 96.000 simulation cases) in every 
possible dimension within the AHP domain, we can state in case of high number of evaluators, distance-based 
aggregation is a better approach than the conventional methods.   

1. Introduction 

Multi-criteria decision-making (MCDM) techniques were originally 
created to support the complex decisions of individuals, a few experts, or 
a couple of stakeholders in specific problems. As the range of applica-
tions extended, the possible number of decision-makers increased and 
the group approach emerged in not only theoretical, but also practical 
participatory problems. Recently, the number of participants in some 
MCDM surveys not seldom reaches thousand (Wu & Xu, 2018), mainly 
due to the significant role of e-democracy and social networks (Pal-
omares et al., 2014) or public involvement in public service develop-
ment (Duleba & Moslem, 2019). Chen & Liu (2006) created the first, 
widely accepted definition of a large-scale group: if more than 20 
decision-makers are involved, the decision process is considered as 
Large-scale Group Decision-Making (LSGDM). Other researchers argued, 
however (Huang et al., 2009), that in the case of five participants or 
over, the nature of preference aggregation transforms, thus the 

characteristics of LSGDM emerge. Nowadays it is a rapidly growing and 
very promising topic within the decision sciences but up to now, studies 
on LSGDM are still in its inceptive stage (Xu et al., 2018) and the 
available literature is very scarce in this domain. The most recent ad-
vancements can be connected to Liu et al., 2019; Song & Li, 2019; Ren 
et al., 2020, Chai & Ngai, 2020. 

Analytic Hierarchy Process (AHP) is undoubtedly one of the most 
popular MCDM methodologies. Like the other techniques, it is also 
capable of handling multiple decision-makers, Group AHP (GAHP) 
models are applied for problems with several participants. Although 
solving GAHP is almost as old as AHP itself (Aczél & Saaty, 1983), the 
topic is still in the focus of researchers (Marcarelli & Squillante, 2020; 
Amenta et al., 2021; Faizi et al., 2020). Owing to large-scale GAHP, most 
studies deal with finding the best solution to manage the transitivity and 
consistency of individual preferences in the aggregation procedure (Wu 
& Tu, 2021) or to approximate the evaluators’ intention in scoring as 
much as possible to reach accurate evaluation (Du & Shan, 2020). 
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A cardinal issue in GAHP is how to aggregate individual preferences 
and create a group consensus, which reflects the opinion of the set of 
participants most. The reigning techniques of aggregation are: Aggre-
gation of Individual Judgements (AIJ) (Aczél & Alsina, 1986), and Ag-
gregation of Individual Preferences (AIP) (Basak & Saaty, 1993, Keeney, 
2009). Both techniques apply the weighted arithmetic or weighted 
geometric mean of individual values, however, AIJ creates first a group 
matrix from the same entries of individual pairwise comparison matrices 
and uses the eigenvector method of AHP for this matrix afterward to 
derive weight vectors, while AIP computes first the individual weight 
vectors and then aggregates them by one of the mean calculations. Based 
on their comparative analysis, Ossadnik et al. (2016) stated that AIP has 
dominance over the AIJ technique from the aspect of preference ag-
gregation efficiency and from the practical point of view in handling a 
large number of participants (which is highly relevant for the objective 
of our paper). Within the AIP method, there is an ongoing debate on the 
application of weighted arithmetic mean (AIP WAMM) and weighted 
geometric mean (AIP WGMM). The only existing evidence for the pri-
macy of AIP WAMM is the remarkable work of Ishizaka & Labib (2011), 
in which they claimed that using the arithmetic mean provides more 
appropriate consensus creation than the geometric mean, however, they 
did not demonstrate this statement by simulation cases (our paper aims 
to contribute to this debate, please see Sub-section 3.1.). The main 
criticism against AIP (both forms, WAMM and WGMM) is that it could 
lead to a consensual priority vector which does not reflect the majority 
of priorities because it is subject to the influence of extreme opinions 
(Amenta et al., 2020). As a solution, Amenta et al. (2020) proposed a 
new procedure to create a common priority vector (CPVP) by a loss 
function minimization which is based on Euclidean norm and Euclidean 
distance measure. In CPVP, the saliences from the created consensual 
vector are minimized and thus, the distance between individual priority 
vectors and the common priority vector is mitigated. The authors 
demonstrated the new method on a real-world case study, however, 
simulation evidence was just remarked as further research. 

Distance-based consensus creation indeed seems very promising in 
substituting the conventional preference aggregation techniques. The 
logic of finding a common priority vector in the decision space which is 
capable of representing all individual preference vectors by its minimum 
proximity to the others is reasonable. However, it is possible that other 
distance measures provide better consensus than the Euclidean metrics. 

One of the most relevant of such different distance measures due to 
its widespread application in statistics, is the Aitchison distance 
(Aitchison et al., 2000, Stewart, 2017, Feng et al., 2020). Since the 
Aitchison measure is highly applicable in multi-dimensional scaling and 
non-Euclidean vector spaces (Quinn et al., 2018, Martín-Fernández 
et al., 2019), for determining a consensual priority vector in an n- 
dimensional decision space in case of n decision criteria, this metric 
worth investigating. Another strong argument for examining the 
Aitchison distance as a possible basis for preference vector aggregation 
is that this measure is generally used for simplexes for relative scale 
property (Hron et al., 2010), which is similar to the group AHP 
approach. Furthermore, we preliminary examined other metrics, e.g. 
Chebishev and Manhattan distances, and from a compatibility point of 
view (between the individual vectors and the compromise vector) they 
significantly underperformed the Euclidean and Aitchison metrics. 

The objective of our paper is to test the efficiency of different pref-
erence aggregation methods from the aspect of concordance between 
the individual rankings and the created consensual ranking in simulated 
large-scale decision-making cases. As listed above, the two techniques of 
the AIP method, WAMM and WGMM, furthermore two distance-based 
aggregations: the Euclidean Distance-Based Aggregation Method 
(EDBAM) and the Aitchison Distance-Based Aggregation Method 
(ADBAM) have been investigated. For concordance measure, first the 
modified form of the Kendall W calculation (Kendall, 1938) has been 
selected to detect the strength of the rank correlations between indi-
vidual and consensual priorities. Furthermore, we applied Spearman’s 

rank correlation coefficient (Kumar & Abirami, 2018), as another 
ordinal correlation method that deals with larger interval ([-1,1]) than 
the Kendall W to detect the possible negative correlation of the rankings. 
Moreover, we utilized Garuti’s compatibility index (Garuti, 2017) for 
cardinal comparison, considering not only the similarity of the orders 
but also the weight scores themselves. Note that the G index was 
compared to Saaty’s compatibility index (based on Hadamard calcula-
tions, Saaty, 2005), and found to be more general with higher perfor-
mance (Garuti, 2020). On top of that, the G index could outperform 
Jaccard’s index, Hilbert’s index, and the inner-vector product (IVP), 
thus can be considered as one of the most relevant compatibility mea-
sures between vectors. 

Due to the high difficulty of generating matrices with acceptable 
consistency ratio and the complexity of conducting a large number of 
simulations in the case of Spearman and Garuti calculations, we exam-
ined a smaller number of simulated matrices in this phase. In the large- 
scale procedure based on Kendall W, we randomly generated normalized 
vectors in different dimensions (following the AHP characteristics and 
the rule of Saaty from two dimensions to nine dimensions - because of 
Saaty’s concept (Saaty, 1994) on the maximum size of pairwise com-
parison matrices 9 × 9 to keep the consistency of evaluations) and 
examined the cases of five, ten, 100, 200,…, 1000 decision-makers. 
Afterwards, we computed the consensual group priority vector by the 
four different aggregation techniques and calculated the Kendall W 
value to measure each rank correlation. We repeated it 1000 times for 
each combination of dimensions and number of decision-makers. Alto-
gether 8x12.000 = 96.000 simulation cases were examined as we tested 
the eight different dimensions for 12 different evaluator numbers with 
the repetition of 1000 times, and for each case, four different Kendall W 
is computed by AIP WAMM, AIP WGMM, EDBAM and ADBAM aggre-
gation methods. The whole analysis is demonstrated in Section 3. 

In the next phase of simulations, we followed the original approach 
of AHP, and generated random pairwise comparison matrices in 
different dimensions using merely the values of the Saaty-scale and 
considering the consistency threshold of 10% for the Consistency Ratio 
in case of at most 6 alternatives (criteria) and 20% for even larger in-
stances. From 2 × 2 up to 9 × 9 sized matrices, 10 participants were 
assumed, their evaluations were derived by the eigenvector method and 
these weight vectors were aggregated by EDBAM, ADBAM, AIP WAMM, 
AIP WGMM and CPVP methods. The results were compared by both 
Spearman’s rank correlation coefficient and G compatibility index. 

Thus, for the first time in the literature of decision science and multi- 
criteria decision-making, we can compare the efficiency of the examined 
different aggregation approaches and recommend the most appropriate 
for large-scale group AHP decision-making. Moreover, we apply all 
examined aggregation methods on real-world data gained from a survey 
conducted in a Turkish city, Mersin, on citizen preferences towards 
public transport development issues. The preferences of ten evaluators 
are highlighted on five attributes and we demonstrate the difference in 
determining the common priority vectors and the different concor-
dances of the common priority vectors respect to the individual pref-
erence rankings. Different Kendall W values are computed from the case 
study which supports the simulation results and the initial idea: it is time 
for shift to distance-based methods in aggregating individual prefer-
ences in group AHP. 

The remainder of the paper is organized as follows. We introduce the 
AHP methodology in detail, along with the studied different aggregation 
methods and the measurements used in the comparisons in Section 2. 
The large-scale simulation results and the analysis of the gained infor-
mation can be found in Sub-section 3.1. More specific simulated group 
AHP examples are presented in Sub-section 3.2. using both ordinal and 
cardinal indicators. We present the above-mentioned real-world nu-
merical example in detail, based on the previously conducted group AHP 
survey in Sub-section 3.3. Finally, we draw some conclusions and make 
suggestions to the future appliers of the aggregation methods in Section 
4. 
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2. Methodology 

As we mentioned in the Introduction, the application of the Analytic 
Hierarchy Process is indeed widespread. It is based on the Pairwise 
Comparison Matrices (PCMs), which can be used both for determining 
the weights of the different criteria and for the rating of alternatives 
according to a criterion. The n × n matrix A = [aij] is a PCM if it is pos-
itive (aij > 0 for ∀i and j) and reciprocal (aji = 1/aij for ∀i and j). Its 
general element aij shows, how many times item i is better/larger/more 
important than element j. A PCM is said to be consistent if and only if 
aik = aijajk for ∀i,j,k,1 ≤ i,j,k ≤ n, and it is inconsistent in all other cases. 
In a practical decision problem the matrix is most likely to be incon-
sistent, however there can be significant differences in the degree of 

consistency that can be measured by the Consistency Ratio (CR): 

CR =
CI
RI

,

where RI is the average CI value of randomly generated PCMs of the 
same size, while: 

CI =
λmax − n

n − 1
,

where CI denotes the Consistency Index and λmax is the largest 
eigenvalue of the examined PCM. In AHP the acceptable consistency 
degree is generally indicated by CR < 0.1. 

Let us denote the number of evaluators in a group decision-making 
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problem by m, let w(k) =
(

w(k)
1 ,w(k)

2 ,⋯,w(k)
n

)T 
be the individual priority 

vector for decision-maker k (w(k)
i > 0 for ∀i = 1,2,⋯, n and 

∑n
i=1w(k)

i = 1 
for ∀k = 1,2,⋯,m). Besides the two proposed distance-based preference 
aggregation techniques, we also include two variants of the well-known 

Aggregation of Individual Preferences (AIP) as a benchmark in this 
paper. 

As for the AIP Weighted Arithmetic Mean Method (WAMM), the 
consensual preference vector w(A) is computed as the weighted arith-
metic mean of the individual priorities: 
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Fig. 1. Large-scale simulation results for the different aggregation methods.  
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w(A)
i =

∑m

k=1
akw(k)

i , i = 1, 2,⋯, n.

where ak is the weight of evaluator k and 
∑m

k=1ak = 1. In case of the 
AIP Weighted Geometric Mean Method (WGMM), the common prefer-
ence vector w(G) is obtained by calculating the weighted geometric mean 
of the individual priorities: 

w(G)

i =

∏m
k=1

(
w(k)

i

)ak

∑n
i=1
∏m

k=1

(
w(k)

i

)ak , i = 1, 2,⋯, n.

where 
∑m

k=1ak = 1 as before. 
Later, in the presentation of more specific examples, we also include 

the CPVP method (Amenta et al., 2020) in our examinations, which is 
based on the optimization of a loss function defined as follows. 

min
λk ,q

L(q, λk) =
∑m

k=1
ak‖Wk − λkqqT‖F

2 

Where ‖.‖F denotes the Frobenius norm (that is basically the matrix 
version of the Euclidean distance), 

∑m
k=1ak = 1 as before and Wk is 

defined by: 

Wk = λkqkqT
k 

where λk is the principal eigenvalue of the PCM related to evaluator 
k, while qk is the eigenvector connected to the principal eigenvalue. In 
order to obtain a numerical solution, one should use Algorithm 1 of 
Amenta et al., 2020, as the optimization is needed in two variables, 
which affect each other. This method is the closest to our proposals in its 
logic, thus it is important to include it in the paper, however, in the first, 

Table 1 
The ten normalized simulated preference vectors and the related aggregated 
priority vectors for n = 2.   

w1 w2 

DM1  0.100  0.900 
DM2  0.889  0.111 
DM3  0.125  0.875 
DM4  0.667  0.333 
DM5  0.111  0.889 
DM6  0.750  0.250 
DM7  0.667  0.333 
DM8  0.100  0.900 
DM9  0.833  0.167 
DM10  0.667  0.333 
EDBAM  0.667  0.333 
ADBAM  0.667  0.333 
AIPWAMM  0.491  0.509 
AIPWGMM  0.461  0.539 
CPVP  0.199  0.801  

Table 2 
Basic statistics of the G index, Spearman’s rank correlation coefficient and 
Kendall W of the aggregated priority vectors respect to the individual preference 
vectors for n = 2. Please see Fig. 2 for the graphical presentation.   

EDBAM ADBAM AIPWAMM AIPWGMM CPVP 

Average G index  0.640  0.640  0.551  0.542  0.518 
Average Spearman 

rho  
0.2  0.2  − 0.2  − 0.2  − 0.2 

Average Kendall W  0.6  0.6  0.4  0.4  0.4 
St. dev. G index  0.320  0.320  0.111  0.089  0.106 
St. dev. Spearman 

rho  
1.033  1.033  1.033  1.033  1.033 

St. dev. Kendall W  0.516  0.516  0.516  0.516  0.516  

Fig. 2. Box-plots of the G index, Spearman’s rank correlation coefficient and Kendall W of the aggregated priority vectors respect to the individual preference vectors 
for n = 2. 

Table 3 
The ten normalized simulated preference vectors and the related aggregated 
priority vectors for n = 3. Please see Fig.3 for the graphical presentation.   

w1 w2 w3 

DM1  0.073  0.671  0.256 
DM2  0.705  0.211  0.084 
DM3  0.674  0.226  0.101 
DM4  0.117  0.806  0.077 
DM5  0.489  0.067  0.444 
DM6  0.537  0.364  0.099 
DM7  0.078  0.750  0.171 
DM8  0.167  0.094  0.740 
DM9  0.600  0.300  0.100 
DM10  0.063  0.458  0.479 
EDBAM  0.446  0.359  0.195 
ADBAM  0.429  0.392  0.179 
AIPWAMM  0.350  0.395  0.255 
AIPWGMM  0.327  0.418  0.255 
CPVP  0.227  0.580  0.192  

Table 4 
Basic statistics of the G index, Spearman’s rank correlation coefficient and 
Kendall W of the aggregated priority vectors respect to the individual preference 
vectors for n = 3. Please see Fig. 3 for graphical presentation.   

EDBAM ADBAM AIPWAMM AIPWGMM CPVP 

Average G index  0.555  0.552  0.533  0.530  0.511 
Average Spearman 

rho  
0.25  0.25  0.2  0.2  0.2 

Average Kendall W  0.625  0.625  0.6  0.6  0.6 
St. dev. G index  0.161  0.146  0.104  0.100  0.163 
St. dev. Spearman 

rho  
0.791  0.791  0.632  0.632  0.632 

St. dev. Kendall W  0.395  0.395  0.316  0.316  0.316  
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large-scale phase of the simulations we only concentrate on the bench-
mark techniques (AIP WAMM and AIP WGMM) in the comparisons. 

2.1. Distance-based preference aggregation techniques 

The main reason for the preference aggregation methods that we 
propose is to look for the closest vector to the individual priority vectors 
according to a certain metric. Regarding the Euclidean Distance-Based 
Aggregation Method (EDBAM), the group preference vector w(E) is the 
solution of the following formula normalized to one: 

argminf (x)

Where x ∈ Rn and f(x) is defined as follows: 

f (x) =
∑m

k=1
(ak∙dE(w(k), x))

Where dE
(
w(k), x

)
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

(
w(k)

i − xi

)2
√

is the Euclidean distance, 

and 
∑m

k=1ak = 1 as before. Thus, we determine the vector in Rn that is 
the nearest one to the individual priority vectors and then normalize it to 
one. 

In case of the Aitchison Distance-Based Aggregation Method 
(ADBAM) we follow the same steps except that we are minimizing ac-
cording to the Aitchison distance,dA(., .): 

dA
(
w(k), x

)
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑n

i=1

[

log

(
w(k)

i

g(w(k))

)

− log
(

xi

g(x)

)]2
√
√
√
√

Where g(w(k)) and g(x) denote the geometric mean of the respective 
vectors and log(.) is the function of natural logarithm. 

In order to find the solution of the optimization problems connected 
to the distance-based methods, we use the method of Nelder & Mead 
(1965), which is a robust technique and uses only function values. In our 
simulations we apply the R implementation of this method, which can be 
seen as an algorithm below. 

2.2. The comparison of the techniques 

As for the comparison of the different preference aggregation 
methods, from the several techniques that can measure the degree of 
consensus, we examine various indicators. The first one is the Kendall 
coefficient of concordance (Kendall W) calculation, which provides an 
overall measure of agreement in ranking, as the prioritization of the 
alternatives or criteria is our major goal. In our case, the appropriate 
procedure is to supplement the rankings provided by the individual 
decision-makers with the consensual priority ranking calculated with 
the help of one of the aforementioned methods, and examine the 
strength of concordance. Kendall W has the common [0,1] range, and the 
higher its value is, the stronger the correlation in ranking. Thus, the 
technique that provides the highest Kendall coefficient of concordance 
for a given dataset has the strongest correlation in ranking with the 
preferences of the evaluators, accordingly, it can be considered as the 
best in that case. This way it is a suitable tool to compare the different 
preference aggregation methods with each other. However, keep in 
mind that not the value of the Kendall W itself, but the differences be-
tween the provided measures is the key, as the coefficient quantifies the 
concordance between the different individual evaluators as well. The 
Kendall W is a non-parametric statistic that can be calculated as follows. 

Let ri,k be the rank given to item i by decision-maker k, and Ri be the 
aggregated ranking of element i: 

Fig. 3. Box-plots of the G index, Spearman’s rank correlation coefficient and Kendall W of the aggregated priority vectors respect to the individual preference vectors 
for n = 3. 

Table 5 
The ten normalized simulated preference vectors and the related aggregated 
priority vectors for n = 4.   

w1 w2 w3 w4 

DM1  0.081  0.074  0.397  0.448 
DM2  0.174  0.051  0.520  0.255 
DM3  0.108  0.095  0.704  0.093 
DM4  0.259  0.508  0.056  0.177 
DM5  0.061  0.535  0.302  0.102 
DM6  0.472  0.339  0.106  0.082 
DM7  0.178  0.400  0.086  0.336 
DM8  0.249  0.203  0.051  0.497 
DM9  0.531  0.090  0.094  0.285 
DM10  0.043  0.699  0.174  0.084 
EDBAM  0.220  0.330  0.203  0.248 
ADBAM  0.231  0.313  0.189  0.268 
AIPWAMM  0.216  0.299  0.249  0.236 
AIPWGMM  0.220  0.288  0.231  0.261 
CPVP  0.178  0.432  0.202  0.188  

Table 6 
Basic statistics of the G index, Spearman’s rank correlation coefficient and 
Kendall W of the aggregated priority vectors respect to the individual preference 
vectors for n = 4. Please see Fig. 4 for graphical presentation.   

EDBAM ADBAM AIPWAMM AIPWGMM CPVP 

Average G index  0.551  0.551  0.542  0.544  0.547 
Average Spearman 

rho  
0.06  0.06  0.02  0.04  0.02 

Average Kendall W  0.53  0.53  0.51  0.52  0.51 
St. dev. G index  0.114  0.117  0.091  0.097  0.154 
St. dev. Spearman 

rho  
0.640  0.640  0.649  0.617  0.649 

St. dev. Kendall W  0.320  0.320  0.325  0.308  0.325  
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Ri =
∑m

k=1
ri,k, i = 1, 2,⋯, n 

Let us denote the mean of the aggregated ranking by R: 

R =
m(n + 1)

2 

The sum of squares deviation statistic of the aggregated rankings 
defined by the following: 

S =
∑n

i=1
(Ri − R)2 

Finally, the Kendall coefficient of concordance can be obtained from 
the formula below: 

W =
12S

m2(n3 − n)

When ties occur, W has to be modified by the following correction 
factor: 

Tk =
∑gk

i=1

(
t3
i − ti

)

where gk is the number of groups of ties for decision-maker k and ti is 
the number of tied ranks in the i th group of tied ranks. In this case the 
corrected Kendall coefficient of concordance can be calculated as 
follows. 

W =
12
∑n

i=1(Ri)
2
− 3m2n(n + 1)2

m2(n3 − n) − m
∑m

k=1Tk 

Fig. 4. Box-plots of the G index, Spearman’s rank correlation coefficient and Kendall W of the aggregated priority vectors respect to the individual preference vectors 
for n = 4. 

Table 7 
The ten normalized simulated preference vectors and the related aggregated 
priority vectors for n = 5.   

w1 w2 w3 w4 w5 

DM1  0.429  0.073  0.102  0.341  0.055 
DM2  0.152  0.038  0.127  0.100  0.582 
DM3  0.040  0.081  0.088  0.456  0.336 
DM4  0.317  0.171  0.372  0.042  0.097 
DM5  0.038  0.067  0.134  0.549  0.211 
DM6  0.034  0.135  0.199  0.048  0.583 
DM7  0.500  0.309  0.044  0.082  0.065 
DM8  0.066  0.515  0.052  0.255  0.112 
DM9  0.389  0.224  0.272  0.065  0.050 
DM10  0.200  0.404  0.211  0.043  0.142 
EDBAM  0.162  0.329  0.127  0.145  0.238 
ADBAM  0.152  0.271  0.127  0.145  0.305 
AIPWAMM  0.157  0.279  0.153  0.151  0.259 
AIPWGMM  0.162  0.244  0.145  0.149  0.300 
CPVP  0.144  0.352  0.117  0.132  0.255  

Table 8 
Basic statistics of the G index, Spearman’s rank correlation coefficient and 
Kendall W of the aggregated priority vectors respect to the individual preference 
vectors for n = 5.   

EDBAM ADBAM AIPWAMM AIPWGMM CPVP 

Average G index  0.514  0.516  0.512  0.514  0.499 
Average Spearman 

rho  
0.01  0.02  − 0.02  − 0.01  − 0.06 

Average Kendall W  0.490  0.485  0.500  0.485  0.490 
St. dev. G index  0.088  0.072  0.069  0.067  0.094 
St. dev. Spearman 

rho  
0.402  0.380  0.419  0.380  0.402 

St. dev. Kendall W  0.201  0.190  0.209  0.190  0.201  

Table 9 
The ten normalized simulated preference vectors and the related aggregated 
priority vectors for n = 6.   

w1 w2 w3 w4 w5 w6 

DM1  0.029  0.452  0.042  0.101  0.136  0.241 
DM2  0.100  0.316  0.065  0.042  0.027  0.450 
DM3  0.506  0.104  0.054  0.202  0.092  0.042 
DM4  0.086  0.034  0.295  0.050  0.086  0.449 
DM5  0.034  0.095  0.275  0.335  0.161  0.100 
DM6  0.384  0.025  0.329  0.112  0.054  0.096 
DM7  0.092  0.061  0.045  0.285  0.218  0.299 
DM8  0.062  0.096  0.124  0.555  0.133  0.030 
DM9  0.328  0.044  0.083  0.047  0.224  0.274 
DM10  0.413  0.253  0.028  0.058  0.192  0.057 
EDBAM  0.157  0.156  0.124  0.275  0.131  0.158 
ADBAM  0.116  0.161  0.134  0.304  0.114  0.172 
AIPWAMM  0.146  0.165  0.145  0.254  0.126  0.164 
AIPWGMM  0.115  0.163  0.144  0.286  0.115  0.176 
CPVP  0.144  0.157  0.138  0.286  0.119  0.156  

Table 10 
Basic statistics of the G index, Spearman’s rank correlation coefficient and 
Kendall W of the aggregated priority vectors respect to the individual preference 
vectors for n = 6.   

EDBAM ADBAM AIPWAMM AIPWGMM CPVP 

Average G index  0.508  0.508  0.504  0.505  0.507 
Average Spearman 

rho  
0.189  0.194  0.149  0.189  0.171 

Average Kendall W  0.580  0.523  0.523  0.509  0.523 
St. dev. G index  0.098  0.109  0.082  0.104  0.101 
St. dev. Spearman 

rho  
0.250  0.313  0.311  0.416  0.311 

St. dev. Kendall W  0.125  0.157  0.155  0.208  0.155  

S. Duleba and Z. Szádoczki                                                                                                                                                                                                                   



Expert Systems With Applications 196 (2022) 116667

8

We also use the well-known Spearman’s rank correlation coefficient 
(Spearman rho) that is applicable for two vectors, given by the formula 
below: 

ρ = 1 −
6
∑n

i=1d2
i

n3 − n 

where di is the difference of the rank of element i for the examined 
vectors. When there are ties in the ranks the equation is modified as 
follows: 

ρ =
cov(r1, r2)

σr1 σr2 

where r1 and r2 denote the rankings defined by the first and second 
examined vectors, cov(., .) is the covariance of two variables, while σ is 

the standard deviation of a variable. This indicator’s value is in the range 
[ − 1,1], thus it can also show the complete disagreement between two 
preference vectors, compared to the Kendall W measurement. 

As for the cardinal indicators, we use Garuti’s compatibility index (G 
index) (Garuti, 2020) that is also applicable for two preference vectors 
and defined as follows. 

G =
1
2
∑n

i=1

min
(

w(1)
i ,w(2)

i

)

max
(

w(1)
i ,w(2)

i

) (w(1)
i + w(2)

i )

Where w(1)
i and w(2)

i denote the i th element of the first and second 
examined vectors. The higher the G index, the more compatible the two 
respective vectors are. It is important to focus on both ordinal and car-
dinal measurements as there can be large contrasts between the results 
according to these indicators, because their calculation method and 
logic is different, indeed. 

In Sub-section 3.2. we compute the average Spearman rho-s and G 
indices of the individual preference vectors respect to the given aggre-
gated vectors and compare these averages for the aggregation methods 
to find the best techniques. 

3. Results 

3.1. Large-scale preference vector simulations 

In order to compare the performance of the different preference 
aggregation techniques in Large-scale Group Decision-Making problems, 
we completed a wide range of numerical simulations. We examined two 
to nine dimensional preference vectors (n), while the studied number of 
evaluators (m) were 5, 10, 100, 200, …, 1000. The simulation for a given 

Table 11 
The ten normalized simulated preference vectors and the related aggregated 
priority vectors for n = 7.   

w1 w2 w3 w4 w5 w6 w7 

DM1  0.497  0.255  0.051  0.043  0.083  0.041  0.030 
DM2  0.023  0.034  0.237  0.052  0.509  0.078  0.066 
DM3  0.024  0.244  0.056  0.262  0.140  0.055  0.219 
DM4  0.223  0.065  0.057  0.214  0.063  0.053  0.326 
DM5  0.064  0.036  0.303  0.071  0.360  0.081  0.084 
DM6  0.231  0.052  0.060  0.398  0.027  0.069  0.163 
DM7  0.062  0.273  0.076  0.299  0.022  0.114  0.153 
DM8  0.054  0.163  0.212  0.051  0.415  0.042  0.062 
DM9  0.052  0.213  0.099  0.064  0.127  0.136  0.309 
DM10  0.414  0.034  0.163  0.057  0.042  0.097  0.193 
EDBAM  0.211  0.096  0.116  0.120  0.227  0.147  0.083 
ADBAM  0.217  0.103  0.098  0.125  0.238  0.140  0.081 
AIPWAMM  0.203  0.101  0.129  0.123  0.213  0.135  0.096 
AIPWGMM  0.208  0.108  0.112  0.128  0.217  0.132  0.095 
CPVP  0.228  0.089  0.105  0.109  0.255  0.136  0.078  

Table 12 
Basic statistics of the G index, Spearman’s rank correlation coefficient and 
Kendall W of the aggregated priority vectors respect to the individual preference 
vectors for n = 7.   

EDBAM ADBAM AIPWAMM AIPWGMM CPVP 

Average G index  0.523  0.522  0.517  0.520  0.495 
Average Spearman 

rho  
0.196  0.232  0.096  0.232  0.157 

Average Kendall W  0.430  0.427  0.429  0.430  0.430 
St. dev. G index  0.051  0.049  0.051  0.049  0.057 
St. dev. Spearman 

rho  
0.377  0.314  0.460  0.377  0.377 

St. dev. Kendall W  0.188  0.157  0.230  0.188  0.188  

Table 13 
The ten normalized simulated preference vectors and the related aggregated priority vectors for n = 8.   

w1 w2 w3 w4 w5 w6 w7 w8 

DM1  0.088  0.080  0.063  0.024  0.143  0.351  0.051  0.199 
DM2  0.090  0.024  0.016  0.230  0.071  0.038  0.224  0.307 
DM3  0.191  0.082  0.024  0.149  0.030  0.317  0.044  0.163 
DM4  0.033  0.319  0.051  0.103  0.291  0.141  0.039  0.023 
DM5  0.403  0.099  0.031  0.091  0.018  0.237  0.079  0.042 
DM6  0.167  0.051  0.184  0.298  0.018  0.078  0.018  0.186 
DM7  0.237  0.318  0.059  0.090  0.023  0.129  0.016  0.129 
DM8  0.030  0.179  0.154  0.357  0.038  0.036  0.176  0.029 
DM9  0.097  0.028  0.167  0.024  0.066  0.136  0.197  0.286 
DM10  0.045  0.072  0.108  0.019  0.368  0.085  0.176  0.127 
EDBAM  0.141  0.120  0.085  0.136  0.096  0.164  0.099  0.159 
ADBAM  0.157  0.123  0.083  0.120  0.078  0.189  0.089  0.161 
AIPWAMM  0.138  0.125  0.086  0.138  0.107  0.155  0.102  0.149 
AIPWGMM  0.144  0.126  0.091  0.127  0.086  0.170  0.099  0.156 
CPVP  0.166  0.122  0.077  0.134  0.084  0.178  0.089  0.150  

Table 14 
Basic statistics of the G index, Spearman’s rank correlation coefficient and 
Kendall W of the aggregated priority vectors respect to the individual preference 
vectors for n = 8.   

EDBAM ADBAM AIPWAMM AIPWGMM CPVP 

Average G index  0.534  0.535  0.531  0.533  0.534 
Average Spearman 

rho  
0.248  0.245  0.240  0.240  0.233 

Average Kendall W  0.442  0.449  0.468  0.461  0.442 
St. dev. G index  0.057  0.064  0.053  0.060  0.059 
St. dev. Spearman 

rho  
0.433  0.366  0.445  0.334  0.433 

St. dev. Kendall W  0.216  0.183  0.222  0.167  0.216  
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(n,m) pair consists of the steps detailed below.  
Algorithm 2.: Process of the simulation 

Input: (n,m) pair of parameters.  
Output: The number of times when a method provided the highest Kendall W of 1000 

cases for AIP WAMM, AIP WGMM, EDBAM, and ADBAM.  
1. Generate m different n-dimensional random vectors, which are normalized to one 

(individual preference vectors).  
2. Apply the AIP WAMM, AIP WGMM, EDBAM and ADBAM methods on the 

individual vectors (detailed in Section 2) resulting in the following priority vectors: 
wAIPWAMM, wAIPWGMM,wEDBAM and wADBAM .  

3. Collect the rankings provided by the individual decision-makers and by the 
consensual priority ranking calculated according to the appropriate method in the 
following matrices: MAIPWAMM, MAIPWGMM,MEDBAM and MADBAM .  

4. The tie-corrected Kendall coefficient of concordance measure is calculated for the 
four matrices and those methods that provide the highest Kendall W are saved.  

5. Steps 1–4 are repeated 1000 times.  
Return: A (4-dimensional) vector contains the number of times when AIP WAMM, AIP 

WGMM, EDBAM, and ADBAM provided the highest Kendall W of 1000 cases.  

Based on this procedure, we examined a total of 8 × 12000 = 96000 
cases, and the efficiency of the preference aggregation techniques ac-
cording to the dimensions of the priority vectors and the number of 

Table 15 
The ten normalized simulated preference vectors and the related aggregated priority vectors for n = 9.   

w1 w2 w3 w4 w5 w6 w7 w8 w9 

DM1  0.045  0.072  0.052  0.043  0.046  0.392  0.154  0.023  0.173 
DM2  0.041  0.187  0.051  0.404  0.071  0.028  0.127  0.076  0.016 
DM3  0.094  0.053  0.226  0.315  0.029  0.016  0.026  0.118  0.123 
DM4  0.135  0.177  0.020  0.070  0.023  0.030  0.148  0.325  0.071 
DM5  0.225  0.235  0.135  0.158  0.028  0.088  0.076  0.035  0.019 
DM6  0.233  0.046  0.165  0.172  0.052  0.015  0.055  0.094  0.168 
DM7  0.333  0.036  0.127  0.020  0.098  0.045  0.023  0.269  0.050 
DM8  0.225  0.235  0.135  0.158  0.028  0.088  0.076  0.035  0.019 
DM9  0.233  0.046  0.165  0.172  0.052  0.015  0.055  0.094  0.168 
DM10  0.333  0.036  0.127  0.020  0.098  0.045  0.023  0.269  0.050 
EDBAM  0.207  0.107  0.136  0.158  0.050  0.056  0.067  0.122  0.096 
ADBAM  0.215  0.105  0.145  0.148  0.059  0.045  0.075  0.122  0.086 
AIPWAMM  0.190  0.112  0.120  0.153  0.052  0.076  0.076  0.134  0.086 
AIPWGMM  0.206  0.115  0.134  0.136  0.062  0.057  0.082  0.127  0.081 
CPVP  0.219  0.103  0.130  0.144  0.057  0.048  0.063  0.155  0.080  

Table 16 
Basic statistics of the G index, Spearman’s rank correlation coefficient and 
Kendall W of the aggregated priority vectors respect to the individual preference 
vectors for n = 9.   

EDBAM ADBAM AIPWAMM AIPWGMM CPVP 

Average G index  0.599  0.599  0.582  0.588  0.593 
Average Spearman 

rho  
0.380  0.382  0.377  0.375  0.375 

Average Kendall W  0.690  0.691  0.688  0.688  0.688 
St. dev. G index  0.147  0.143  0.125  0.126  0.129 
St. dev. Spearman 

rho  
0.421  0.445  0.420  0.436  0.420 

St. dev. Kendall W  0.210  0.222  0.210  0.218  0.210  

Table 17 
The normalized AHP scores of ten individual respondents in the public transport development survey.   

Approachability Directness Time availability Speed Reliability 

Evaluator1  0.2406  0.2940  0.1408  0.1388  0.1858 
Evaluator2  0.2575  0.1448  0.2244  0.1246  0.2488 
Evaluator3  0.2886  0.0717  0.1257  0.2535  0.2604 
Evaluator4  0.1853  0.2881  0.1707  0.1332  0.2227 
Evaluator5  0.2160  0.4059  0.0609  0.2129  0.1043 
Evaluator6  0.0524  0.3127  0.2296  0.3135  0.0918 
Evaluator7  0.0615  0.1586  0.2587  0.3635  0.1577 
Evaluator8  0.2930  0.0721  0.2771  0.1625  0.1953 
Evaluator9  0.2608  0.2143  0.1311  0.1546  0.2393 
Evaluator10  0.2708  0.2189  0.2510  0.1739  0.0854  

Table 18 
The normalized consensual priority vector of EDBAM.  

EDBAM 

Approachability  0.2276 
Directness  0.2234 
Time availability  0.1792 
Speed  0.1776 
Reliability  0.1922 
Kendall W  0.1521  

Table 19 
The calculation of Kendall W in case of EDBAM.  

Criteria Rank of 
Evaluator1 

… Rank of 
EDBAM 

Ri  (Ri − R)
2  

Approachability 2 … 1 23 100 
Directness 1 … 2 30 9 
Time 

availability 
4 … 4 38 25 

Speed 5 … 5 40 49 
Reliability 3 … 3 34 1 
n = 5 m = 11 S =

184 
R = 33  W = 0.1521  

Table 20 
The normalized consensual priority vector of ADBAM.  

ADBAM 
Approachability 0.2269 

Directness  0.2215 
Time availability  0.1764 
Speed  0.1761 
Reliability  0.1990 
Kendall W  0.1521  
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evaluators became comparable. As the different methods can provide 
exactly the same ranking of the items, it is important to note that ties 
might occur between them according to the Kendall W measure. It is also 
notable that in the simulation process we used equal weights for every 
decision-maker. Fig. 1 highlights the results of the simulations, one can 
see the number of times, when the different techniques provided the 
highest Kendall W for different preference vector dimensions (2 to 9) 
depending on the number of decision-makers. The entire data of the 
simulations are presented in Appendix A 

Because of the ties, it is visible that there are basically always more 
than 1000 first places for a given (n,m) pair in our outcomes, however 
the larger the priority vectors are, the lower the number of ties. Probably 
the most remarkable point is that EDBAM provides the best aggregation 
efficiency in every examined case, thus its dominance is indeed strong, 
and for higher n parameters the difference between the methods is larger 
as well. It is also interesting that for n = 2 EDBAM and ADBAM even 
provide the best coefficient of concordance 1000 times out of 1000 
possible ones for all examined m. For smaller and mid-sized (2 ≤ n ≤ 6)
priority vectors ADBAM also produces better efficiency compared to the 
AIP based methods, moreover for small dimensions it has approximately 
the same results as EDBAM. However, its efficiency is decreasing in the 
number of dimensions, and for large priority vectors (7 ≤ n ≤ 9) even 
AIP WAMM tends to overtake it. This is probably due to the higher 
unknowns in finding the nearest consensus vector in higher dimensions 
of preference vectors. It is also clear that AIP WGMM provides the least 
favorable efficiency in every studied case, thus the Arithmetic Mean 
variant definitely outperforms the Geometric one among the AIP 
methods. 

Based on all the simulations, it is important to emphasize that the 
computational process of the consensual vector for EDBAM on an 
average PC remained very low, around one second even in higher 
dimensional cases and for higher number of decision-makers. On the 
other hand, ADBAM turned out to be a computationally more difficult 
problem, although its running time also remained around one minute for 
larger priority vectors even in the case of 1000 decision-makers. 

Thus, we must highlight the fact that according to our results EDBAM 
is indeed dominant in its efficiency compared to the other methods, it is 
also fast and easy to implement, therefore it seems to be an excellent 
choice to apply in case of Large-scale Group Decision-Making problems. 

3.2. Specific simulated Group-AHP examples 

In this sub-section, we present the results of PCM-examples in 
different dimensions (2 to 9) relevant in AHP methodology (see Saaty’s 
maximum 9x9 rule, Saaty, 1994) considering relevant thresholds for the 
consistency: CR < 0.1 for at most 6 dimensions and CR < 0.2 from 7 until 
9 alternatives (criteria). In each case, we generate ten different random 
matrices, derive their priority vectors (by the eigenvector method), and 
then aggregate them by five different methods: EDBAM, ADBAM, AIP 
WAMM, AIP WGMM, and the CPVP method (Amenta et al., 2020) 
assuming equal weights of the decision-makers. Owing to the condition 
of applying different comparison methods and overcome the pitfalls of 
Kendall W (only positive interval and ordinal aspect), we utilize 
Spearman’s rank correlation coefficient (its related interval is [-1,1]) 
and Garuti’s index (for measuring cardinal differences) to detect the 
performance of the possible aggregation methods. Regarding the diffi-
culty of PCM generations with the proper consistency ratio, we refer to 
Bozoki and Rapcsak, 2008. The authors declared that for PCMs larger 
than 6× 6, it is very difficult to find a randomly generated matrix that 
meets the CR < 0.1 criterion, in case of the largest matrix sizes 8 × 8 and 
9 × 9 no appropriate example was found out of 10 million simulated 

Table 21 
The calculation of Kendall W in case of ADBAM.  

Criteria Rank of 
Evaluator1 

… Rank of 
ADBAM 

Ri  (Ri − R)
2  

Approachability 2 … 1 23 100 
Directness 1 … 2 30 9 
Time 

availability 
4 … 4 38 25 

Speed 5 … 5 40 49 
Reliability 3 … 3 34 1 
n = 5 m = 11 S =

184 
R = 33  W = 0.1521  

Table 22 
The normalized consensual priority vector of AIP WAMM.  

AIPWAMM 

Approachability  0.2126 
Directness  0.2181 
Time availability  0.1870 
Speed  0.2031 
Reliability  0.1792 
Kendall W  0.1289  

Table 23 
The calculation of Kendall W in case of AIP WAMM.  

Criteria Rank of 
Evaluator1 

… Rank of AIP 
WAMM 

Ri  (Ri − R)
2  

Approachability 2 … 2 24 81 
Directness 1 … 1 29 16 
Time 

availability 
4 … 4 38 16 

Speed 5 … 3 38 36 
Reliability 3 … 5 36 9 
n = 5 m = 11 S =

156 
R = 33  W = 0.1289  

Table 24 
The normalized consensual priority vector of AIP WGMM.  

AIPWGMM 

Approachability  0.2052 
Directness  0.2099 
Time availability  0.1902 
Speed  0.2106 
Reliability  0.1841 
Kendall W  0.0959  

Table 25 
The calculation of Kendall W in case of AIP WGMM.  

Criteria Rank of 
Evaluator1 

… Rank of AIP 
WGMM 

Ri  (Ri − R)
2  

Approachability 2 … 3 26 49 
Directness 1 … 2 30 9 
Time 

availability 
4 … 4 37 16 

Speed 5 … 1 36 9 
Reliability 3 … 5 36 9 
n = 5 m = 11 S =

92 
R = 33  W = 0.0959  
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cases. 
For this reason, we generated ten appropriate PCMs that meet with 

the aforementioned thresholds for each dimension. The related results 
are presented in Tables 1–16. The hypothetic decision-makers are 
denoted by DM, while the elements of the preference vectors are referred 
to as wi (i = 1,⋯, 9). It is important to emphasize that the differences 
between the provided averages of G indices and Spearman’s rank cor-
relation coefficients (Spearman rho-s) show the performance of the ag-
gregation methods, not the indicators themselves, as the randomly 
generated individual preferences are colorful enough to decrease the 
average of these measurements. The related randomly generated PCMs 
can be found in Appendix B. 

The derived weight vectors are heterogeneous in the two- 
dimensional simulation example for the ten hypothetical evaluators, 
and we can detect a rank conflict between the aggregation of the pro-
posed distance-based methods and the two benchmark and CPVP tech-
niques (Table 1). Table 2 shows how the compatibility index and the 
Spearman rank correlation index indicate the performance of aggrega-
tion techniques. For convenience, we also attach the calculated Kendall 
W values of the specific simulation results. Moreover, standard de-
viations of all three indices are presented by values and exhibited by 
box- plots along with the mean values of G-index, Spearman rho and 
Kendall W. 

Thick lines represent the median values and the size of the horizontal 
column the interquartile-range. As could be expected based on the large- 
scale simulations, both EDBAM and ADBAM outperform the other three 
methods not only in ordinal (indicated by Spearman rho, and Kendall 
W), but also in cardinal (G index) compatibility. The gap of performance 
is also significant, the G index measures from 0 to 1, the Spearman rho 
from − 1 to 1. We note that the threshold of compatibility in the case of G 
index is 0.9 so better performance is imaginable but for the known ag-
gregation methods, the two proposed techniques provide the best 
compromise vector. 

In three dimensions, the supremacy of our proposed techniques 
remained but the gap between the performance of EDBAM and ADBAM, 
and the other three methods had decreased (Table 3 and Table 4). This 
phenomenon also corresponds to the results of the large-scale simula-
tions (see Fig. 1). Even though the differences are smaller, the distance- 
based aggregation approach indicates better results than the other well- 
proven approaches. 

Interestingly, in the fourth dimension, the relative gap between the 
distance-based methods and the other techniques increased in the case 
of the Spearman index and Kendall W (the absolute gap remained small), 
while the G index indicated a slightly smaller difference (Table 5 and 
Table 6). The CPVP method performed somewhat better than the two 
benchmark AIP WAMM and AIP WGMM techniques considering the G- 
index but for ranking approaches (Spearman and Kendall) it is still in the 
last position. The dominance of our approach remained also in this 
dimension. In the followings, the difference among the aggregation 
techniques is smaller, so we only present the values and not the box plots 
in the cases from five to nine dimensions. 

The fifth dimension (Table 7) reduced the differences both for the G 
index and Spearman rho. As Table 8 indicates, AIP WGMM tied with 
EDBAM and ADBAM became just slightly better than the other com-
petitors by the G index. For the Spearman’s rank correlation coefficient, 
the proposed aggregation techniques kept their primacy, while Kendall 
W indicated a very slight primacy of the AIP WAMM. 

In the sixth dimension (Table 9), the difference in performance was 
further mitigated (Table 10). However, a slight advantage of the 

distance-based methods could still be detected, especially ADBAM per-
formed well, which slightly contradicts the large-scale simulation re-
sults. Considering Kendall W, EDBAM has kept the strong primacy as 
could be expected by the vector simulations. In the following, we 
introduce the results of the large dimensional (7,8,9) simulation cases 
(Tables 1–16). 

In large dimensions, the alterations of rank correlation and 
compatibility indices are very similar in all aggregation types. Some 
slight advantage of the distance-based methods remained but we cannot 
exclude that further simulation cases might bring a different ranking in 
performance. As one can see, although the differences are not huge, the 
distance-based aggregation methods provide the best G index and 
Spearman rho for every dimension. Even though in the eighth dimension 
the slight advantage of AIP WAMM occurred, the results of Kendall W 
calculations also supported our assumption of better performance of the 
EDBAM and ADBAM. This supports the former results and also extends 
the findings to the cardinal indicators. We should highlight the fact that 
these techniques tend to perform better, when there are serious contrasts 
in the individual preferences, while in case of large agreement between 
the individuals, all the aggregation methods provide indeed similar re-
sults. These outcomes also suggest that our findings do not depend on 
the applied comparison methods. Thus, based on these simulated ex-
amples, in the case of AHP-specific circumstances (using the Saaty-scale, 
and thresholds for the CR) the distance-based methods outperform not 
only the AIP techniques, but the CPVP method as well. 

In the next sub-section, we utilize the proposed aggregation methods 
on real-world data, gained by a group AHP survey on public transport 
development in Turkey. In the comparison of performance, we apply the 
two benchmark methods, AIP WAMM and AIP WGMM to examine, 
whether the outcomes of the real-world decision analysis correspond the 
large-scale simulation results. Consequently, we used the Kendall W 
measure in the next phase to reflect the success of the aggregation 
techniques. 

3.3. A real-world application 

In December 2017, a group AHP survey was conducted in the Turkish 
big city, Mersin with the participation of citizens (Duleba & Moslem, 
2018). All attributes of public transport supply quality were mapped, 
and the created questionnaire followed strictly the rules of AHP, it 
contained a hierarchical criteria structure, and the participants 
compared the criteria pair-wisely, according to the branches of the de-
cision tree. Altogether 97 evaluators participated, the computed Con-
sistency Ratio was below 0.1, and thus, based on Saaty’s rule, all 
evaluations could be considered tolerably inconsistent. 

For the demonstration of the relation of distance-based aggregation 
and the conventional AIP WAMM and AIP WGMM, we selected one 
branch of the decision tree of transport supply quality. It includes five 
criteria: Approachability, Directness, Time availability, Speed, and 
Reliability. Approachability stands for bus line access and connected 
services; Directness means the simplicity of reaching the destination 
without shifting vehicles; Time availability represents the time frame 
when using a certain vehicle; Speed means the speed of the whole travel 
process, while Reliability represents the on-time arrivals and keeping 
the schedule. For a more detailed description of the attributes, please see 
Lakatos & Mandoki (2021). 

We selected ten respondents out of the citizen pattern to make it 
visible, how the two distance-based methods, the EDBAM and the 
ADBAM perform in aggregating the individual preferences compared to 
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the two conventional aggregation approaches, the AIP WAMM and AIP 
WGMM. Following the characteristics of group AHP, the priority vector 
coordinates of the individual evaluators are normalized to one. It is 
worth emphasizing that all participants had equal weights related to the 
final decision, so we did not differentiate the evaluators at all in the 
citizen pattern neither by age nor by other demographical or social 
characteristics. 

Table 17 demonstrates the calculated normalized AHP scores of the 
ten individual evaluators. 

We can observe that the respondents had a very different image of 
the need for improvement of specific public transport supply quality 
attributes in the conducted survey. For instance, Evaluator 6 allocated 
merely 0.0524 to the Approachability criterion and 0.3135 to Speed 
(which means that Speed has much more importance in system devel-
opment than ameliorating the Approachability issue of transport ser-
vice), while Evaluator 10 judged Approachability 0.2708 and the Speed 
only 0.1739. Since the normalized scores and the priority rankings differ 
to a large extent, it is difficult to obtain a consensual priority vector and 
ranking. Also, the value of Kendall concordance coefficient is expected 
to be very low due to the high diversity of the respondent opinions. In 
the following, we present the calculated common priority vector based 
on the four examined techniques. Furthermore, we calculate the Kendall 
W value between the common priority vector and the ten individual 
priority vectors and compare the results. Evidently, those techniques 
that reach a higher Kendall W value can be considered more efficient 
due to the higher concordance of individual and group rankings. As no 
ties occur in our problem, we can use the uncorrected version of the 
Kendall W. 

First, in Table 18 we calculate the common priority vector by the 
Euclidean distance measure based on Algorithm 1. 

Consequently, by the Euclidean distance minimization, Approach-
ability has reached the highest importance score in the common priority 
vector with 0.2276 and Speed has been ranked last. The normalized 
scores are relatively close to each other, which can be explained by the 
diverse preference evaluations of the ten individuals, however, the 
ranking is quite clear. Following the rank correlation formula of Kendall 
W, the calculation in Table 19 can be exhibited. 

Now, in Table 20 we present the common priority vector calculation 
by the Aitchison distance. 

Using the Aitchison distance minimization for creating the common 
priority vector, we obtain exactly the same ranking as in the Euclidean 
case (EDBAM). Note that Approachability has been ranked to the first 
place again by a slightly lower normalized score (0.2269), the order is 
the same and Speed gained a little less importance value than in the 
previous case. Next in Table 21 we demonstrate the Kendall W calcu-
lation for this case. 

For the comparison, we calculate the consensual vector by the con-
ventional AIP Weighted Arithmetic Mean Method in Table 22. 

AIP WAMM has produced totally different ranking of the criteria 
while keeping relatively close values of the normalized coordinates. 
Directness has taken over Approachability and Speed has been ranked 
higher than Reliability and Time availability. The total difference of the 
most prioritized attribute (0.2181) and the least prioritized one (0.1792) 
has remained almost the same but the order has changed significantly. 
This has had an impact on the Kendall W value, which is calculated in 
many details in Table 23. 

Finally, in Table 24 we do the same for AIP Weighted Geometric 
Mean Method. 

The coordinates of the common priority vector gained by AIP WGMM 
are still relatively close, but the ranking has been modified again, mainly 

compared to the distance-based rankings. Speed has taken the first place 
in the order of attribute importance, while Approachability (0.2052), 
Time availability (0.1902), and Reliability (0.1841) has been seeded 
3rd, 4th, and 5th. The Kendall W value, which is calculated in Table 25, 
reflects the similarity of the criteria order of the calculated common 
priority vector and the rankings of individual priority vectors in WGMM 
aggregation technique. 

4. Conclusions 

In our paper, we demonstrated the primacy of distance-based ag-
gregation methods EDBAM and ADBAM in small and mid-dimensional 
(2 ≤ n ≤ 6) priority vectors and the dominancy of EDBAM for large 
dimensional (7 ≤ n ≤ 9) cases compared to the two most popular ag-
gregation methods; AIP WAMM and AIP WGMM in group AHP. As ev-
idence, we provided 96.000 simulation cases on normalized randomly 
generated vectors and also tested the efficiency of the proposed ap-
proaches on a real-world group AHP example. 

Furthermore, we conducted a second simulation phase, in which 
pairwise comparison matrices were generated from two to nine di-
mensions (altogether 80) with acceptable consistency degree and the 
derived priority vectors were aggregated by the examined methods 
amended by the CPVP approach, moreover, their performance was 
tested by the Spearman rho, Kendall W, and the Garuti index. In smaller 
dimensions, the distance-based methods significantly outperformed the 
competitors, while in larger cases (7, 8, 9) the difference was mitigated 
but still palpable. 

Results have shown that it is worth searching for a common priority 
vector, which is situated by the minimum (Euclidean or Aitchison) total 
distance from the individual priority vectors, and thus, we gain higher 
rank correlation and compatibility than applying the conventional ag-
gregation methods or the recently emerged CPVP aggregation. This 
statement is even more relevant for large-scale group decision-making, 
because most aggregation techniques lose their efficiency if the num-
ber of evaluators (the number of individual priority vectors) grow. 

In final conclusion, we emphasize that Euclidean Distance-Based 
Aggregation Method or Aitchison Distance-Based Aggregation Method 
dominate all other examined techniques in terms of efficiency measured 
by correlation and compatibility indices, especially in smaller di-
mensions (2 to 6). Moreover, their computational time is very low, and 
the methods are applicable for 1000 participants and most likely for 
even bigger patterns of decision-makers. We also note that in real de-
cision problems, large pairwise comparison matrices are very seldom, 
thus our findings are even more relevant in practical decision support. 
According to our results, ADBAM can be especially recommended for 
those decision problems in which just a few alternatives exist, and the 
computational time can be larger, while EDBAM for more alternatives 
(up to nine) and quicker decisions. 

Owing to the limitation of our research, we note that there are other 
possible aggregation techniques in the scientific literature besides AIP 
WAMM, AIP WGMM, or CPVP. We did not test the Aggregation of In-
dividual Judgements (AIJ) method cases, mainly due to its complicated 
use in large-scale decision-making, and did not examine other solutions, 
e.g. consistency-based aggregations either. Also, for complete assurance, 
large-scale matrix simulations will be necessary to conduct to analyze 
the nature of EDBAM and ADBAM aggregation techniques. However, we 
emphasize that this type of simulation is very difficult to execute, e.g. for 
analyzing the 5-dimensional case (5x5 matrices) merely one sufficiently 
consistent PCM (CR < 0.1) can be found by the generation of 500 (see 
Bozoki and Rapcsak, 2008). Consequently, if we examine 1000 cases, for 
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1000 simulated participants, the approximate number of the necessary 
pairwise comparisons matrices is 500.000.000. 

As a remark for further research, the group of the tested aggregation 
techniques can be extended. Moreover, it is worth investigating models 
outside the AHP methodology, for instance, TOPSIS and VIKOR, which 
are also distance-based methods themselves. The case of different 
weights of individual decision-makers is to be further investigated, as 
well. 

However, based on our simulation results and case study, we can 
state that a step forward has been taken towards the shift from the 
conventional aggregation methods to distance-based aggregation in 
large-scale group decision-making. 
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Appendix A  

Table 26 
The data of the simulations in details for small (n = 2,3) dimensional preference vectors.   

n = 2 n = 3 

m EDBAM ADBAM AIPWAMM AIPWGMM EDBAM ADBAM AIPWAMM AIPWGMM 

5 1000 1000 820 781 904 875 766 714 
10 1000 1000 904 865 881 856 728 632 
100 1000 1000 841 785 867 844 655 570 
200 1000 1000 810 761 854 834 677 577 
300 1000 1000 817 756 863 836 654 563 
400 1000 1000 830 782 864 843 667 596 
500 1000 1000 810 765 858 836 682 570 
600 1000 1000 813 766 853 820 652 573 
700 1000 1000 828 763 853 854 655 557 
800 1000 1000 824 776 862 859 652 569 
900 1000 1000 818 768 869 842 641 555 
1000 1000 1000 819 772 867 868 628 534  

Table 27 
The data of the simulations in details for mid-sized (n = 4,5) dimensional preference vectors.   

n = 4 n = 5 

m EDBAM ADBAM AIPWAMM AIPWGMM EDBAM ADBAM AIPWAMM AIPWGMM 

5 774 716 643 502 663 550 554 388 
10 781 740 622 506 674 555 478 313 
100 738 700 513 411 670 527 432 244 
200 751 692 536 365 672 561 402 255 
300 742 684 505 388 652 487 409 248 
400 724 684 493 386 647 512 381 220 
500 753 686 525 374 661 516 417 237 
600 749 686 495 333 626 544 449 221 
700 751 701 519 344 661 509 404 215 
800 751 698 491 373 663 539 427 208 
900 745 681 504 349 662 507 378 235 
1000 738 701 510 376 641 532 389 206  
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Appendix B  

Table 29 
The data of the simulations in details for large (n = 8,9) dimensional preference vectors.   

n = 8 n = 9 

m EDBAM ADBAM AIPWAMM AIPWGMM EDBAM ADBAM AIPWAMM AIPWGMM 

5 538 253 430 106 489 210 405 127 
10 606 253 342 74 578 170 347 70 
100 535 256 302 55 537 195 322 53 
200 557 246 276 61 528 207 302 44 
300 544 220 307 67 547 181 298 38 
400 549 242 288 44 522 187 302 56 
500 545 224 304 63 508 195 306 39 
600 521 246 267 78 512 211 288 53 
700 531 235 296 63 534 191 296 38 
800 525 236 304 64 509 193 306 41 
900 540 230 304 59 516 194 306 40 
1000 531 246 305 49 516 204 291 43  

Table 30 
The generated random PCMs using the Saaty-scale for n = 2.  

1 0.111 1 8 1 0.143 1 2 1 0.125 

9 1 0.125 1 7 1 0.5 1 8 1 
1 3 1 2 1 0.111 1 5 1 2 
0.333 1 0.5 1 9 1 0.2 1 0.5 1  

Table 31 
The generated random PCMs using the Saaty-scale for n = 3.  

1 0.125 0.25 1 4 7 1 4 5 1 0.111 2 1 8 1 

8 1 3 0.25 1 3 0.25 1 3 9 1 8 0.125 1 0.167 
4 0.333 1 0.143 0.333 1 0.2 0.333 1 0.5 0.125 1 1 6 1 
1 2 4 1 0.143 0.333 1 2 0.2 1 2 6 1 0.143 0.125 
0.5 1 5 7 1 6 0.5 1 0.143 0.5 1 3 7 1 1 
0.25 0.2 1 3 0.167 1 5 7 1 0.167 0.333 1 8 1 1  

Table 28 
The data of the simulations in details for mid-sized and larger (n = 6,7) dimensional preference vectors.   

n = 6 n = 7 

m EDBAM ADBAM AIPWAMM AIPWGMM EDBAM ADBAM AIPWAMM AIPWGMM 

5 608 448 464 261 585 334 428 182 
10 636 447 409 212 578 344 377 141 
100 616 388 344 140 578 304 297 107 
200 644 408 331 140 575 284 312 91 
300 628 387 314 165 580 284 303 84 
400 612 413 319 164 551 296 322 100 
500 624 396 341 127 584 275 295 89 
600 603 385 304 152 555 312 277 93 
700 628 405 319 148 561 318 281 100 
800 609 379 350 125 565 331 271 93 
900 612 383 338 125 570 282 298 99 
1000 584 425 298 146 557 314 273 93  
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Table 35 
The generated random PCMs using the Saaty-scale for n = 7.  

1 8 4 7 8 8 8 1 0.5 0.143 1 0.111 0.125 0.111 1 0.167 0.2 0.2 0.125 0.111 0.25 

0.125 1 6 8 7 9 9 2 1 0.2 0.333 0.143 0.5 0.5 6 1 9 1 1 6 2 
0.250 0.167 1 0.5 0.5 1 4 7 5 1 9 0.111 6 7 5 0.111 1 0.125 0.25 3 0.143 
0.143 0.125 2 1 0.25 0.333 3 1 3 0.111 1 0.167 0.333 2 5 1 8 1 5 6 0.5 
0.125 0.143 2 4 1 4 3 9 7 9 6 1 7 6 8 1 4 0.2 1 4 0.5 
0.125 0.111 1 3 0.25 1 0.5 8 2 0.167 3 0.143 1 1 9 0.167 0.333 0.167 0.25 1 0.25 
0.125 0.111 0.25 0.333 0.333 2 1 9 2 0.143 0.5 0.167 1 1 4 0.5 7 2 2 4 1 
1 8 3 2 2 7 0.25 1 1 0.2 3 0.143 1 0.5 1 5 9 0.333 5 5 2 
0.125 1 3 0.333 2 1 0.125 1 1 0.111 0.333 0.143 1 0.167 0.2 1 0.5 0.2 2 0.25 1 
0.333 0.333 1 0.143 2 0.333 0.5 5 9 1 9 0.5 7 3 0.111 2 1 0.2 3 2 0.111 
0.5 3 7 1 7 6 0.5 0.333 3 0.111 1 0.125 3 1 3 5 5 1 5 9 6 
1 0.5 0.5 0.143 1 4 0.2 7 7 2 8 1 1 9 0.2 0.5 0.333 0.2 1 0.2 0.111 
0.143 1 3 0.167 0.25 1 0.25 1 1 0.143 0.333 1 1 1 0.2 4 0.5 0 5 1 0.333 
4 8 2 2 5 4 1 2 6 0.333 1 0.111 1 1 0.5 1 9 0.167 9 3 1 
1 0.167 0.333 0.143 4 2 0.25 1 0.333 0.143 1 0.2 3 1 1 0.2 1 0.25 0.167 1 0.2 
6 1 3 2 5 4 2 3 1 0.5 5 0.333 3 7 5 1 3 4 4 0.5 0.5 
3 0.333 1 0.25 4 1 0.167 7 2 1 3 0.167 7 6 1 0.333 1 4 1 1 0.25 
7 0.5 4 1 8 8 2 1 0.2 0.333 1 0.111 4 0.2 4 0.25 0.25 1 0.25 0.5 0.25 
0.25 0.2 0.25 0.125 1 0.111 0.167 5 3 6 9 1 3 8 6 0.25 1 4 1 1 0.2 
0.5 0.25 1 0 9 1 3 0.333 0.333 0.143 0.25 0.333 1 1 1 2 1 2 1 1 0.5 
4 0.5 6 0.5 6 0.333 1 1 0.143 0.167 5 0.125 1 1 5 2 4 4 5 2 1        

1 3 7 8 9 3 4               
0.333 1 0.143 0.2 0.25 0.333 0.2               
0.143 7 1 4 4 5 0.333               
0.125 5 0.25 1 2 0.2 0.333               
0.111 4 0.25 0.5 1 0.5 0.125               
0.333 3 0.2 5 2 1 0.5               
0.25 5 3 3 8 2 1         

Table 34 
The generated random PCMs using the Saaty-scale for n = 6.  

1 0 0.5 0.125 0.167 0.2 1 0.2 2 3 7 0.111 1 8 3 5 5 9 

8 1 7 7 6 2 5 1 8 8 7 0.5 0.125 1 3 0.500 1 4 
2 0.143 1 0.5 0.25 0.125 0.5 0.125 1 2 5 0.125 0.333 0.333 1 0.143 0.333 1 
8 0.143 2 1 1 0.2 0.333 0.125 0.5 1 2 0.167 0.2 2 7 1 3 4 
6 0.167 4 1 1 1 0.143 0.143 0.2 0.5 1 0.125 0.2 1 3 0.333 1 2 
5 0.5 8 5 1 1 9 2 8 6 8 1 0.111 0.25 1 0.25 0.5 1 
1 2 0.333 4 0.5 0.143 1 0.2 0.143 0.111 0.5 0.143 1 9 2 2 7 6 
0.5 1 0.111 0.5 0.25 0.143 5 1 0.5 0.25 0.25 1 0.111 1 0.111 0.2 0.333 0.143 
3 9 1 8 5 0.5 7 2 1 1 3 3 0.5 9 1 4 6 6 
0.25 2 0.125 1 1 0.143 9 4 1 1 2 6 0.5 5 0.25 1 2 1 
2 4 0.2 1 1 0.125 2 4 0.333 0.5 1 2 0.143 3 0.167 1 1 0.5 
7 7 2 7 8 1 7 1 0.333 0.167 0.5 1 0.167 7 0.167 1 2 1 
1 2 5 0.125 0.333 0.2 1 1 0.25 0.143 0.5 4 1 7 7 4 2 1 
0.5 1 1 0.5 0.333 0.125 2 1 0.5 0.111 1 5 0.143 1 1 1 0.143 0.125 
0.2 1 1 0.2 0.25 0.2 4 2 1 0.167 0.5 3 0.143 1 1 5 0.333 0.2 
8 2 5 1 1 1 7 9 6 1 6 8 0.25 1 0.2 1 0.2 0.25 
3 3 4 1 1 1 2 1 2 0.167 1 6 0.5 7 3 5 1 1 
5 8 5 1 1 1 0.25 0.2 0.333 0.125 0.167 1 1 8 5 4 1 1       

1 2 8 7 4 7             
0.5 1 8 3 3 4             
0.125 0.125 1 0.333 0.143 0.5             
0.143 0.333 3 1 0.333 0.5             
0.25 0.333 7 3 1 9             
0.143 0.25 2 2 0.111 1        
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Table 36 
The generated random PCMs using the Saaty-scale for n = 8.  

1 3 0.5 4 0.5 0.111 2 1 1 2 9 0.2 4 5 0.125 0.143 

0.333 1 1 4 0.333 1 0.5 0.5 1 1 1 0.111 0.167 1 0.143 0.125 
2 1 1 3 0.333 0.143 2 0.167 0.111 1 1 0.111 0.125 0.111 0.125 0.111 
0.25 0.25 0.333 1 0.111 0.25 0.333 0.125 5 9 9 1 2 7 3 0.333 
2 3 3 9 1 0.111 6 0.5 0.25 6 8 0.5 1 2 0.143 0.333 
9 1 7 4 9 1 4 1 0.2 1 9 0.143 0.5 1 0.2 0.111 
0.5 2 0.5 3 0.167 0.25 1 0.167 8 7 8 0.333 7 5 1 0.5 
1 2 6 8 2 1 6 1 7 8 9 3 3 9 2 1 
1 1 4 3 7 0.2 9 2 1 0.333 0.333 0.167 0.111 0.333 1 1 
1 1 4 0.2 2 0.333 4 0.2 3 1 9 2 1 9 5 8 
0.25 0.25 1 0.2 0.5 0.2 0.25 0.111 3 0.111 1 1 0.125 0.333 0.5 4 
0.333 5 5 1 5 0.2 3 2 6 0.5 1 1 0.333 0.333 3 9 
0.143 0.5 2 0.2 1 0.2 0.5 0.167 9 1 8 3 1 5 8 5 
5 3 5 5 5 1 7 1 3 0.111 3 3 0.2 1 9 8 
0.111 0.25 4 0.333 2 0.143 1 0.5 1 0.2 2 0.333 0.125 0.111 1 2 
0.5 5 9 0.5 6 1 2 1 1 0.125 0.25 0.111 0.2 0.125 0.5 1 
1 3 9 4 9 8 3 8 1 9 1 0.25 9 3 9 1 
0.333 1 8 0.5 5 0.125 1 6 0.111 1 0.333 0.25 7 0.5 6 0.125 
0.111 0.125 1 0.25 4 0.167 1 0.167 1 3 1 0.2 7 3 7 4 
0.25 2 4 1 7 0.2 1 3 4 4 5 1 6 6 8 0.5 
0.111 0.2 0.25 0.143 1 0.111 0.333 0.5 0.111 0.143 0.143 0.167 1 0.111 0.5 0.2 
0.125 8 6 5 9 1 2 7 0.333 2 0.333 0.167 9 1 9 0.5 
0.333 1 1 1 3 0.5 1 4 0.111 0.167 0.143 0.125 2 0.111 1 0.111 
0.125 0.167 6 0.333 2 0.143 0.25 1 1 8 0.25 2 5 2 9 1 
1 0.333 8 5 8 2 7 4 1 0 0.167 0.2 0.3 0.333 0.25 2 
3 1 4 1 9 4 9 7 4 1 4 0.143 9 7 0.25 6 
0.125 0.25 1 0.25 7 0.5 8 0.25 6 0.25 1 1 6 2 2 5 
0.2 1 4 1 3 0.2 4 0.25 5 7 1 1 7 8 5 7 
0.125 0.111 0.143 0.333 1 0.2 4 0.125 3 0.111 0.167 0.143 1 3 0.2 0.5 
0.5 0.25 2 5 5 1 8 1 3 0.143 0.5 0.125 0.333 1 0.25 1 
0.143 0.111 0.125 0.25 0.25 0.125 1 0.125 4 4 0.5 0.2 5 4 1 9 
0.25 0.143 4 4 8 1 8 1 0.5 0.167 0.2 0.143 2 1 0.111 1 
1 5 0.5 7 1 1 0.5 0.5 1 0.2 0.333 5 0.125 2 0.167 0.111 
0.2 1 0.333 2 0.167 0.167 0.167 0.2 5 1 0.333 4 0.167 2 0.167 0.333 
2 3 1 3 9 0.5 2 0.143 3 3 1 4 0.5 0.5 1 1 
0.143 0.5 0.333 1 0.333 0.143 0.2 0.143 0.2 0.25 0.25 1 0.111 0.167 0.2 0.167 
1 6 0.111 3 1 0.333 0.111 0.5 8 6 2 9 1 3 6 6 
1 6 2 7 3 1 0.333 0.5 0.5 0.5 2 6 0.333 1 1 0.5 
2 6 0.5 5 9 3 1 0.5 6 6 1 5 0.167 1 1 4 
2 5 7 7 2 2 2 1 9 3 1 6 0.167 2 0.25 1  
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uleba and Z. Szádoczki                                                                                                                                                                                                                   



ExpertSystemsW
ithApplications196(2022)116667

18

Table 37 
The generated random PCMs using the Saaty-scale for n = 9.  

1 0.5 2 1 0.167 0.111 0.333 5 0.333 1 0.111 1 0.333 0.3 1 0.2 0.333 6 

2 1 4 1 2 0.111 0.5 6 0.2 9 1 9 0.125 5 8 1 2 9 
0.5 0.25 1 5 2 0.125 0.167 2 0.333 1 0.111 1 0.5 0.5 2 0.333 1 2 
1 1 0.2 1 3 0.125 0.167 3 0.143 3 8 2 1 8 6 9 4 8 
6 0.5 0.5 0.333 1 0.125 0.2 1 0.111 3 0.2 2 0.125 1 5 0.333 2 4 
9 9 8 8 8 1 2 5 8 1 0.125 0.5 0.167 0.2 1 0.5 0.143 2 
3 2 6 6 5 0.5 1 5 1 5 1 3 0.111 3 2 1 4 7 
0.2 0.167 0.5 0.333 1 0.2 0.2 1 0.125 3 0.5 1 0.25 0.5 7 0.25 1 8 
3 5 3 7 9 0.125 1 8 1 0.167 0.111 0.5 0.125 0.25 0.5 0.143 0.125 1 
1 7 0.167 0.333 4 5 6 0.5 0.333 1 1 3 8 6 2 1 0.25 2 
0.143 1 0.167 0.333 3 6 5 0.25 0.333 1 1 9 6 7 8 1 0.25 6 
6 6 1 0.333 7 8 9 6 0.5 0.333 0.111 1 0.5 1 0.5 0.125 0.111 0.167 
3 3 3 1 9 9 5 4 9 0.125 0.167 2 1 4 8 1 0.333 0.5 
0.25 0.333 0.143 0.111 1 6 1 0.167 0.333 0.167 0.143 1 0.25 1 0.333 0.333 0.25 0.143 
0.2 0.167 0.125 0.111 0.167 1 0.333 0.167 0.333 0.5 0.125 2 0.125 3 1 0.167 0.167 0.2 
0.167 0.2 0.111 0.2 1 3 1 0.5 0.167 1 1 8 1 3 6 1 0.2 9 
2 4 0.167 0.25 6 6 2 1 3 4 4 9 3 4 6 5 1 9 
3 3 2 0.111 3 3 6 0.333 1 0.5 0.167 6 2 7 5 0.111 0.111 1 
1 1 6 1 8 4 1 8 5 1 2 2 2 5 7 5 7 2 
1 1 3 2 7 5 5 8 5 0.5 1 0.5 0.125 2 2 1 0.333 0.2 
0.167 0.333 1 1 2 2 5 8 9 0.5 2 1 2 6 9 5 1 2 
1 0.5 1 1 5 2 6 7 4 0.5 8 0.5 1 9 7 5 2 1 
0.1 0.143 0.5 0.2 1 0.333 0.125 1 2 0.2 0.5 0.167 0.111 1 5 5 0.125 0.333 
0.25 0.2 0.5 0.5 3 1 3 5 7 0.143 0.5 0.111 0.143 0.2 1 0.2 0.167 0.111 
1 0.2 0.2 0.167 8 0.333 1 2 6 0.2 1 0.2 0.2 0.2 5 1 3 0.2 
0.125 0.125 0.125 0.143 1 0.2 0.5 1 9 0.143 3 1 0.5 8 6 0.333 1 0.167 
0.2 0.2 0.111 0.25 0.5 0.143 0.167 0.111 1 0.5 5 0.5 1 3 9 5 6 1 
1 9 9 8 7 5 7 1 8 1 0.5 0.333 0.25 0.143 0.2 0.125 0.333 0.125 
0.111 1 0.143 1 0.143 0.5 3 0.333 2 2 1 2 2 0.111 0.111 9 1 0.5 
0.11 7 1 8 2 6 6 0.125 4 3 1 1 1 0.333 0.143 4 0.5 0.2 
0.125 1 0.125 1 0.25 0.5 0.5 0.143 0.143 4 0.5 1 1 0.333 0.143 2 0.25 1 
0.143 7 0.5 4 1 5 9 0.333 0.5 7 9 3 3 1 4 7 6 1 
0.2 2 0.167 2 0.2 1 4 0.167 2 5 9 7 7 0.25 1 2 1 1 
0.143 0.333 0.167 2 0.111 0.25 1 0.143 1 8 0.111 0.25 0.5 0.143 0.5 1 0.111 0.111 
1 3 8 7 3 6 7 1 8 3 1 2 4 0.167 1 9 1 0.5 
0.125 0.5 0.25 7 2 0.5 1 0.125 1 8 2 5 1 1 1 9 2 1 
1 0.2 0.333 2 0.2 0.125 0.2 0.333 0.25 1 9 3 6 1 5 6 6 8 
5 1 0.143 9 1 1 9 4 2 0.111 1 0.167 5 0.111 6 3 4 2 
3 7 1 7 1 6 7 6 5 0.333 6 1 3 0.143 4 6 2 5 
0.5 0.111 0.143 1 0.125 0.143 0.111 0.25 0.333 0.17 0.2 0.333 1 0.2 0.333 7 3 0.333 
5 1 1 8 1 0.333 2 1 0.5 1 9 7 5 1 7 5 9 7 
8 1 0.167 7 3 1 1 1 0.2 0.2 0.167 0.25 3 0.143 1 8 2 1 
5 0.111 0.143 9 0.5 1 1 1 1 0.167 0.333 0.167 0.143 0.2 0.125 1 1 0.25 
3 0.25 0.167 4 1 1 1 1 2 0.167 0.25 0.5 0.333 0.111 0.5 1 1 0.111 
4 0.5 0.2 3 2 5 1 0.5 1 0.125 0.5 0.2 3 0.143 1 4 9 1  

S. D
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