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a b s t r a c t 

In a two-sided matching market when agents on both sides have preferences the stability of the solution 

is typically the most important requirement. However, we may also face some distributional constraints 

with regard to the minimum number of assignees or the distribution of the assignees according to their 

types. These two requirements can be challenging to reconcile in practice. In this paper we describe two 

real applications, a project allocation problem and a workshop assignment problem, both involving some 

distributional constraints. We used integer programming techniques to find reasonably good solutions 

with regard to the stability and the distributional constraints. Our approach can be useful in a variety of 

different applications, such as resident allocation with lower quotas, controlled school choice or college 

admissions with affirmative action. 
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. Introduction 

A centralised matching scheme has been used since 1952 in the

S to allocate junior doctors to hospitals [40] . Later, the same tech-

ology has been used in school choice programs in large cities,

uch as New York [3] and Boston [4] . Similar schemes have been

stablished in Europe for university admissions and school choice

s well. For instance, in Hungary both the secondary school and

he higher education admission schemes are organised nationwide,

ee [12] and [13] , respectively. Furthermore, it can also be used

o allocate courses to students under priorities [20] . In the above

entioned applications it is common that the preferences of the

pplicants and the rankings of the parties on the other side are

ollected by a central coordinator and a so-called stable allocation

s computed based on the matching algorithm of Gale and Shapley

26] . Two-sided matching markets, and the above applications in

articular, have been extensively studied in the last decades, see
� A preliminary version of this paper has appeared in the proceedings of the 10th 

apanese-Hungarian Symposium on Discrete Mathematics and its Applications, 2017. 
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43] and [35] for overviews from game theoretical and computa-

ional aspects, respectively. 

In this paper we describe two recent applications at the Corvi-

us University of Budapest, where we used a similar method with

ome interesting caveats. In the first application we had to allocate

tudents to projects in such a way that the number of students

llocated to each project is between a lower and an upper quota,

ogether with an additional requirement over the distribution of

he foreign students. This is a natural requirement present in many

pplications, such as the Japanese resident allocation scheme [30] .

n the second application we scheduled students to companies for

olving case studies in a conference, and here again we faced some

istributional constraints. 

We decided to use integer programming techniques for solv-

ng both applications. We had at least three reasons for choos-

ng this technique. The first is that with IP formulations we can

asily encode those distributional requirements that the organisers

equested, so this solution method is robust to accommodate spe-

ial features. The second reason is that the computational problem

ecame NP-hard as the companies submitted lists with ties. Using

ies in the ranking was by our recommendation to the companies,

ecause ties give us more flexibility when finding a stable solution

nder the distributional constraints. We describe this issue more in

etail shortly. Finally, our third reason for choosing IP techniques

as that it facilitates multi-objective optimisation, e.g. finding a
nder the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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a  
most-stable solution if a stable solution does not exist under the

strict distributional constraints. 

The usage of integer programming techniques for solving two-

sided stable matching problems is very rare in the applications,

and the theoretical studies on this topic have only started very

recently. The reason is that the problems are relatively large in

most applications, and the Gale-Shapley type heuristics are usually

able to find stable solutions, even in potentially challenging cases.

A classical example is the resident allocation problem with cou-

ples, which has been present in the US application for decades, and

it is still solved by the Roth-Peranson heuristic [42] . The underly-

ing matching problem is NP-hard [39] , but heuristic solutions are

quite successful in practice, see also [14] on the Scottish applica-

tion. However, integer programming and constraint programming

techniques have been developed very recently and they turned out

to be powerful enough to solve large random instances [15,18,21] .

Similarly encouraging results have been obtained for some spe-

cial college admission problems, which are present in the Hungar-

ian higher education system. These special features also make the

problem NP-hard in general, but at least one of these challenging

features, turned out to be solvable even with real data involving

more than 150,0 0 0 applicants [6] . Finally, the last paper that we

highlight with regard to this topic deals with the problem of find-

ing stable solutions in the presence of ties [34] . However, we are

not aware of any papers that would study IP techniques for the

problem of distributional constraints. 

Distributional constraints are present in many two-sided

matching markets. In the Japanese resident allocation the gov-

ernment wants to ensure that the doctors are evenly distributed

across the country, and to achieve this they imposed lower quo-

tas on the number of doctors allocated in each region [27,30–

32] . Distributional objectives can also appear in school choice

programs, where the decision makers want to control the socio-

ethnical distribution of the students [2,17,22,23,33] . Nguyen and

Vohra [37] studied a special case where soft constraints are im-

posed on the proportion of different types of students. Further-

more, the same kind of requirements are implemented in college

admission schemes with affirmative action [1] such as the Brazilian

college admission system [8] and the admission scheme to Indian

engineering schools [9] . 

Finally, there is a recent line of research by mathematicians on

so-called classified stable matchings, where the problem of finding

a stable solution under lower and upper quotas over certain types

of applicants. Huang [28] gave an efficient algorithm for laminar

set systems, which was generalised by Fleiner and Kamada [25] is

a matroid framework, and further extended by Yokoi [44] for poly-

matroids. Finally, Yokoi provided an efficient method for finding

an envy-free matching for so-called paramodular lower and up-

per quota functions, if such a solution exists, and she also proves

that the problem is NP-hard in the general setting. A model with

one-sided preferences and ditributional constraints was studied re-

cently in [7] . 

When stable solutions do not exist for the strict distributional

constraints then we either need to relax stability or to adjust the

distributional constraints. In this study we will consider the trade-

off between these two goals, and develop some reasonable solution

concepts. 

Here, we briefly describe our definitions and solution concepts,

the precise formulations will follow as we develop our model and

solution concepts under extending sets of constraints. In our model

the applicants submit their strict preferences on the companies

and the companies provide weak rankings over the applicants. The

companies have lower and upper quotas respecting the number

of assignees. A matching is feasible if it respects these quotas. A

matching is stable if for any applicant-company pair not in the

matching either the applicant prefers her matching or the com-
any has filled its upper quota with weakly higher ranked appli-

ants. A matching is envy-free if no applicant has a justified envy

owards another applicant, meaning that she prefers the company

here the other applicant is admitted to her assignment and she is

lso ranked strictly higher by that company than the other appli-

ant. An envy-free matching may be wasteful, meaning that there

an be unfilled companies that are preferred by some applicants to

heir assignments. A matching is stable if and only if it is envy-free

nd non-wasteful. When the applicants have types then we may

lso have lower and upper quotas with respect to the types, which

ave to be obeyed for the feasibility of the matching. These quo-

as may apply for individual companies (as in our first application),

or sets of companies, or for all companies (as in our second appli-

ation). In our model (and motivating applications) the applicants

re partitioned according to their types (such as domestic and for-

ign students). A matching is within-type envy-free if there is no

ustified envy between any two students of the same type. 

Regarding the solution concepts, we are focusing on “almost

tability”. A stable matching may not exist when both lower and

pper quotas are imposed. In this case a natural solution is to look

or an envy-free matching, which is as non-wasteful as possible. If

nvy-free matching does not exist either, then we may want to find

 feasible matching where the number of pairs with justified envy

s minimised. If the applicants have types and an envy-free match-

ng does not exist, then we can look for within-type envy-free

atchings. This solution is guaranteed to exist under some natural

ssumptions, which are satisfied in our applications ( Theorem 1 ).

e can also characterise these matchings by the usage of type-

pecific scores, where the applicants of certain types can get ex-

ra scores ( Theorem 2 ). Finally, among the within-type envy-free

atchings we may want to minimise envy across types, i.e. min-

mise the pairs of applicants with different types that have justi-

ed envies. In this minimisation we can simply take the number

f such pairs, or alternatively we can consider the intensity of the

nvy (how much higher the rejected applicant is compared to an

nfairly accepted applicant) and we may aim to minimise the total

ntensity of the envies. 

We developed integer programming formulations to solve these

roblems arising from two real applications, and we report the so-

utions that we obtained in our case studies. 

. Definitions and preliminaries 

Many-to-one stable matching markets have been defined in

any contexts in the literature. In the classical college admissions

roblem by Gale and Shapley [26] the students are matched to

olleges. In the computer science literature this problem setting

s typically called Hospital / Residents problem (HR), due to the

ational Resident Matching Program (NRMP) and other related ap-

lications. In our paper we will refer the two sets as applicants

 = { a 1 , . . . , a n } and companies C = { c 1 , . . . c m 

} . Let u j denote the

pper quota of company c j . 

Regarding the preferences, we assume that the applicants pro-

ide strict rankings over the companies, but the companies may

ave ties in their rankings. The preference lists of the applicants

ay be incomplete in our model (so not all the applicant-company

air is possible), but in our applications the preference lists are

omplete, and this condition is also used in some of our theoreti-

al results. This model is sometimes referred to as Hospital / Resi-

ents problem with Ties (HRT) in the computer science literature,

ee e.g. [35] . In our context, let r ij denote the rank of company c j 
n a i ’s preference list, meaning that applicant a i prefers c j to c k if

nd only if r ij < r ik . Let s ij be an integer representing the score of a i
y company c j , meaning that a i is preferred over a k by company c j 

f s ij > s kj . Note that here two applicants may have the same score

t a company, so s i j = s k j is possible. Let s̄ denote the maximum
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2 Strategyproofness is an important desiderata in matching markets. However, 

there are many applications where the mechanisms used are not (fully) strate- 

gyproof, see [11] . The solution concepts that we use in our approach, stability 

and envy-freeness seem to provide some guarantee against manipulation by naïve 

agents. This is because stability (and envy-freeness) can be validated by the cutoff

scores, which are the scores of the weakest admitted applicants at the companies 

(or universities in college admissions). The naïve agents believe that they cannot 

affect the cutoff scores, which is actually a realistic assumption in many large ap- 

plications, and thus under that assumption submitting their true preferences is ob- 

viously the best strategy. We had no complain reported about this aspect of our 

mechanism from the students’ side. 
ossible score at any company and let E be the set of applications.

 matching is a subset of applications, where each applicant is as-

igned to at most one company and the number of assignees at

ach company is less than or equal to the upper quota. A matching

s complete if every student is allocated. A matching is said to be

table if for any applicant-company pair not included in the match-

ng either the applicant is matched to a more preferred company

r the company filled its upper quota with applicants of the same

r higher scores. 

In the classical college admission problem, that we refer to as

R, a stable solution is guaranteed to exist, and the two-versions

f the Gale-Shapley algorithm [26] find either a student-optimal

r a college optimal solution, respectively. Furthermore, this algo-

ithm can be implemented to run in linear time in the number

f applications. Moreover, the student-proposing variant was also

roved to be strategyproof for the students [40] , which means that

o student can ever get a better partner by submitting false pref-

rences. Finally, the so-called Rural Hospitals Theorem [41] states

hat the same students are matched in every stable solution, the

umber of assignees does not vary across stable matchings for any

ollege, and for the less popular colleges where the upper quota is

ot filled the set of assigned students is fixed. 

When extending the classical college admission problem with

he possibility of having ties in the colleges’ rankings, that we re-

erred to as an HRT instance, the existence of a stable solution is

till guaranteed, since we can break the ties arbitrarily, and a sta-

le solution for the strict preferences is also stable for the origi-

al ones. However, now the set of matched students and the size

f the stable matchings can vary. Take just the following simple

xample: we have two applicants, a 1 and a 2 first applying to col-

ege c 1 with the same score and applicant a 2 also applies to college

 2 as her second choice. Here, if we break the tie at c 1 in favour

f a 1 then we get the matching a 1 c 1 , a 2 c 2 , whilst if we break the

ie in favour of a 2 then the resulting stable matching is a 2 c 1 (thus

 1 is unmatched). The problem of finding a maximum size stable

atching turned out to be NP-hard [36] , and has been studied ex-

ensively in the computer science literature, see e.g. [35] . Note that

hen the objective of an application is to find a maximum size

table matching, such as the Scottish resident allocation scheme

29] , then the mechanism is not strategyproof. To see this, we just

ave to reconsider the above example, and assume that originally

 1 also found c 2 acceptable and would rank it second, just like a 2 .

y removing c 2 from her list, a 1 is now guaranteed to get c 1 in

he maximum size stable solution, however, for the original true

references a 2 would have an equal chance to get her first choice

 1 . 

.1. Introduction of lower quotas 

In our first application the organisers of the project allocations

anted to ensure a minimum number of students for each com-

any. Similar requirements have been imposed for the Japanese

egions with regard to the number of residents allocated there. In

ur model, we introduce a lower quota l j for each company c j and

e require that in a feasible matching the number of assignees at

ny company is between the lower and upper quotas. Stability is

efined as before. We refer to the setting with strict preferences

s Hospitals / Residents problem with Lower quotas (HRL) and the

ase with ties is referred to as Hospitals / Residents problem with

ies and Lower Quotas (HRTL). 

Regarding HRL, the Rural Hospitals Theorem implies that the

xistence of a stable matching that obeys both the lower an up-

er quotas can be decided efficiently. This is because we just find

ne stable matching by considering the upper quotas only, and if

he lower quotas are violated then there exists no stable solution

nder these distributional constraints. This problem can be still
olved efficiently when the sets of companies have common lower

nd upper quotas in a laminar system, see [25] . 

However, the problem of deciding the existence of a stable

atching for HRTL is NP-hard. To see this, we just have to re-

ark that the problem of finding a complete stable matching for

RT with unit quotas is also NP-hard [36] , so if we require both

ower and upper quotas to be equal to one for all companies then

he two problems are equivalent. Furthermore, no mechanism that

nds a stable matching whenever there exists one can be strate-

yproof. 2 

.2. Adding types and distributional constraints 

In our first application, the organisers want to distribute the

oreign students across the projects almost equally. In our second

pplication, there are target numbers for the total number of Hun-

arian, European and other participants and there are also specific

ower quotas for Hungarian students by some companies. These

pplications motivate our problems with applicant types and dis-

ributional constraints. 

Let T = { T 1 , . . . , T p } be the set of types, where t ( a i ) denotes the

ype of applicant a i . For a company c j , let l k 
j 

and u k 
j 

denote the

ower and upper quota for the number of assignees of type T k . Fur-

hermore, we may also set lower and upper quotas for any type

f applicants for a set of companies. In particular, we denote the

ower and upper quotas for the total number of applicants of type

 

k assigned in the matching by L k and U 

k , respectively. The set of

easibility constraints for the matching is now extended with these

ower and upper quotas. Yet, the original stability condition, which

oes not consider the types of the applicants, remains the same. 

. Solution concepts and integer programming formulations 

In all of our formulations we use binary variables x ij ∈ {0, 1} for

ach application coming from applicant a i to company c j . This can

e seen as a characteristic function of the matching, where x i j = 1

orresponds to the case when a i is assigned to c j . 

When describing the integer formulations, first we keep the sta-

ility condition fixed while we implement the set of distributional

onstraints. Then we investigate the ways one can relax stability or

nd most-stable solutions under the distributional constraints. 

.1. Finding stable solutions under distributional constraints 

In this subsection we gradually add constraints to the model

hile keeping the classical stability condition. 

lassical HR instance 

First we describe the basic IP formulation for HR described in

10] . The feasibility of a matching can be ensured with the follow-

ng two sets of constraints. ∑ 

j:(a i ,c j ) ∈ E 
x i j ≤ 1 for each a i ∈ A (1) 
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∑ 

i :(a i ,c j ) ∈ E 
x i j ≤ u j for each c j ∈ C (2)

Note that (1) implies that no applicant can be assigned to more

than one company, and (2) implies that the upper quotas of the

companies are respected. 3 

To enforce the stability of a feasible matching we can use the

following constraint. ( ∑ 

k : r ik ≤r i j 

x ik 

) 

· u j + 

∑ 

h :(a h ,c j ) ∈ E,s h j >s i j 

x h j ≥ u j for each (a i , c j ) ∈ E (3)

Note that for each ( a i , c j ) ∈ E , if a i is matched to c j or to a more

preferred company then the first term provides the satisfaction of

the inequality. Otherwise, when the first term is zero, then the sec-

ond term is greater than or equal to the right hand side if and only

if the places at c j are filled with applicants with higher scores. 

Among the stable solutions we can choose the applicant-

optimal one by minimising the following objective function. ∑ 

(a i ,c j ) ∈ E 
r i j · x i j 

Modification for HRT 

When the companies can express ties the following modi-

fied stability constraints, together with the feasibility constraints

(1) and (2) , lead to stable matchings. Note that here the only dif-

ference between this and the previous constraint is that the strict

inequality s hj > s ij became weak. ( ∑ 

k : r ik ≤r i j 

x ik 

) 

· u j + 

∑ 

h :(a h ,c j ) ∈ E,s h j ≥s i j 

x h j ≥ u j for each (a i , c j ) ∈ E (4)

Extension with lower quotas 

Here, we only add the lower quotas for every company. ∑ 

i :(a i ,c j ) ∈ E 
x i j ≥ l j for each c j ∈ C (5)

Adding distributional constraints 

As additional constraints we require the number of assignees of

a particular type to be between the lower and upper quotas for

that type at a company. ∑ 

i : t(a i )= T k , (a i ,c j ) ∈ E 
x i j ≤ u 

k 
j for each c j ∈ C and T k ∈ T (6)

∑ 

i : t(a i )= T k , (a i ,c j ) ∈ E 
x i j ≥ l k j for each c j ∈ C and T k ∈ T (7)

We can also add similar constraints for sets of companies, or for

the overall number of assignees at certain types at all companies.

We describe the latter, as we will use it when solving our second

application. ∑ 

i, j: t(a i )= T k , (a i ,c j ) ∈ E 
x i j ≤ U 

k for each T k ∈ T (8)

∑ 

x i j ≥ L k for each T k ∈ T (9)
i, j: t(a i )= T k , (a i ,c j ) ∈ E 

3 These conditions are standard for the assignment problem as well, see a survey 

on this problem and its variants [38] and an interesting application on marriage 

markets [19] . 

s  

s  

n  

t  

O  
.2. Relaxing stability 

Adding additional constraints to the problem can cause the lack

f a stable matching, even if we added some flexibility with the

ies. 

One way to find a most-stable solution is to introduce nonneg-

tive deficiency variables, d ij for each application and add them to

he left side of the stability constraint (4) . By minimising the sum

f these deficiencies as a first objective we can obtain a solution

hich is close to be stable. 

 ∑ 

k : r ik ≤r i j 

x ik 

) 

· u j + 

∑ 

h :(a h ,c j ) ∈ E,s h j ≥s i j 

x h j + d i j ≥ u j for each (a i , c j ) ∈ E 

(10)

Note that here, if a pair ( a i , c j ) is blocking for the assignment

hen we need to add more compensation d ij if the number of as-

ignees at c j that the company prefers to a i is large. This approach

an be reasonable if we want to avoid the refusal of a very good

andidate at a company. We call this solution as matching with

inimum deficiency . 

Alternatively, if we just want to minimise the number of block-

ng pairs then we can set d ij to be binary and minimise the sum of

hese variables under the following modified constraints. 

 ∑ 

k : r ik ≤r i j 

x ik 

) 

· u j + 

∑ 

h :(a h ,c j ) ∈ E,s h j ≥s i j 

x h j + d i j · u j 

≥ u j for each (a i , c j ) ∈ E (11)

Here, every blocking pair should be compensated by the same

mount, so the number of blocking pairs in minimised. Note that

his concept has already been studied in the literature for various

odels under the name of almost stable matchings , see e.g. [18] . 

.3. Adjusting upper capacities, envy-free matchings 

A different way of enforcing the lower quota is to relax stability

y artificially decreasing the capacities of the companies. This was

lso the solution in the resident allocation scheme in Japan [30] ,

here the government introduced artificial upper quotas for each

f the hospitals, so that in each region the sum of these artificial

pper bounds summed up to the target capacity for that region. In

he case of our motivating example of project allocation, one sim-

le way of achieving the lower quotas was by reducing the upper

uotas at every company. 

In this solution what we essentially get is a so-called envy-

ree matching , studied in [5,45,46] . For a matching M applicant a i 
as justified envy towards a j if a i prefers M ( a j ) to M ( a i ) and a i

s ranked strictly higher than a j at M ( a j ). If a matching is free of

ustified envy then we call it envy-free . A matching that is stable

ith respect to the artificial upper quotas, is envy-free for the orig-

nal quotas. This means that the only blocking pairs that may oc-

ur with regard to the original upper quotas are due to the empty

lots created by the difference between the original and the artifi-

ial quotas, that we call open-slot blockings . 

However, one may not want to reduce the upper quotas of the

ompanies in the same way, perhaps some more popular compa-

ies should be allowed to have more students than the less popu-

ar ones. Furthermore, maybe the decision on which upper quotas

hould be reduced should be made depending on their effect of

atisfying the lower quotas (or other requirements). Thus, we may

ot want to set the artificial upper quotas in advance, but keep

hem as variables, by ensuring envy-freeness in a different way.

ne alternative way of enforcing envy-freeness is by the following
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et of constraints. ∑ 

 : r ik ≤r i j 

x ik ≥ x h j ∀ (a i , c j ) , (a h , c j ) ∈ E, s i j > s h j (12)

Constraints (12) will ensure envy-freeness, by making sure that

f applicant a h is assigned to company c j and applicant a i has

igher score than a h at c j then a i must be assigned to c j or to a

ore preferred company. 

.4. Within-type priorities 

So far we have only considered different approaches of relax-

ng stability or enlarging the set of feasible solutions in order to

atisfy the distributional constraints. In this subsection we study

lternative solution concepts and methods for the case when the

istributional constraints are type-dependent. This is the case also

n our motivating application, where special requirements are set

or the foreign students assigned to the companies. 

When the number of students of a type does not achieve the

inimum required at a place then there are two well-known ap-

roaches. For instance in a school choice scenario, where the ratio

f an socio-ethnic group should be improved (see e.g. [2] ) then one

ossible affirmative action is to increase the scores of that group

f students as much as needed. The other usual solution is to set

ome reserved seats to those students (see e.g. [8] ). 

In our project allocation application our requirement is to have

t least one foreign student assigned to every company. If in a sta-

le solution this condition would be violated for a popular com-

any that ranks the foreign students low then we can try to en-

orce the admission of a foreign student by increasing the scores

f the foreign students at this company. By adjusting the scores of

 certain type of students at a company we mean that we increase

or decrease) the scores of these students at that company by the

ame amount of points. We call a matching stable with type-specific

cores , if the matching is stable for some type-specifically adjusted

cores. The second approach is to devote one place at each com-

any to foreign students. For this one seat the foreign students will

ave higher priority than the locals irrespective of their scores, but

or the rest of the spaces the usual score-based rankings apply. We

all this concept as stable matching with reserved seats for types .

ote that neither of these two concepts can always ensure that we

et at least one foreign student at each company, since they may

ll have high scores and they may all dislike a particular company.

owever, this situation changes if we also allow to decrease the

cores of a group of students. We will describe this case after dis-

ussing the third approach. 

Finally, as a third approach, we can also extend the concept

f envy-free matchings for types. We do not require any stability

ith regard to students of different types, but we do require envy-

reeness for students of the same type. Thus the so-called within-

ype envy-free matchings will be those who satisfy the following set

f constraints. 4 ∑ 

 : r ik ≤r i j 

x ik ≥ x h j 

 (a i , c j ) , (a h , c j ) ∈ E, s i j > s h j , t(a i ) = t(a h ) = T k , T k ∈ T (13) 

That is, if a i and a h have the same type and a h is assigned to

 j then the higher ranked a i must also be assigned to c j or to a

ore preferred company. Note that with this modification we ex-

end the set of feasible solutions compared to the set of envy-free

atchings. Another important observation that is motivated by our

roject allocation problem is that under some realistic assumptions
4 This solution concept was called within-type �-compatibility by Echenique and 

enmez [22] . 
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 within-type envy-free matching always exists, that we will show

n the following theorem. 

heorem 1. Suppose that all the companies are acceptable to every

tudent and that the sum of the lower quotas with regard to each

ype is less than or equal to the number of students of that type, and

he sum of the lower quotas across types for a company is less than

r equal to the upper quota of that company, then a complete within-

ype envy-free matching always exists and can be found efficiently. 

roof. We construct a within-type envy-free matching separately

or each type and then we merge them at the end of the process.

hen considering a particular type T k , we set artificial upper quo-

as at the companies to be equal to the type-specific lower quotas

i.e. l k 
j 

for company c j ) and we find a stable matching M k for this

ype. This stable matching must exist, since we assumed that all

he companies are acceptable to every student and the number of

tudents in every type is at least as much as the sum of the lower

uotas for that type. We create matching M by merging the sta-

le matchings for the types, i.e. M = M 1 ∪ M 2 ∪ · · · ∪ M p . Note that

o upper quota is violated in M , since we assumed that the sum of

he lower quotas across types for any company c j is less than equal

o the upper quota of c j . By the stability of M k for every type T k it

ollows that matching M is within-type envy-free. If there is still

 company c j , where the overall lower quota ( l j ) is not yet met,

hen we increase an artificial upper quota for some type T k at c j 
o that there is still some unmatched applicants of this type. This

djustment will affect the corresponding stable matching M k for

his type, and therefore also M by allocating one more applicant of

ype T k to c j in both M k and M . Since the total number of appli-

ants is greater or equal to the sum of the lower quotas, we must

e able to achieve the lower quotas at all companies in this way.

inally, if there are still some unmatched applicants then we in-

rease some artificial upper quotas for their types one-by-one at

ny company c j , where the original upper quota is not yet reached

n M . At the end of this iterative process we obtain a complete

ithin-type envy-free matching, M . �

We note that there is a closely related solution concept in-

roduced by Yokoi [45] which results in a within-type envy-free

atching when restricted to our model, that we describe in de-

ails below. The model studied in that paper is the more general

o-called classified stable matching problem where each student

an have several types (e.g. gender, field of study, nationality) and

he lower and upper quotas are set for every type. When putting

heir more general model in our context a student a i has justified

nvy towards another student a k at company c j if a k is assigned

o c j , a i prefers c j to her assignment, c j ranks a i higher than a k ,

nd no lower and upper quota is violated for any type when re-

lacing a k with a i at c j . It is easy to see that under the assump-

ions of Theorem 1 an envy-free matching always exists as defined

y Yokoi and such a solution is a within-type envy-free match-

ng according to our definitions. Finally we remark that this model

f Yokoi is originated from the classified stable matching problem

ntroduced in [28] , and further generalised in [25,44] . A common

eature of these papers that the laminar nature of the set require-

ents makes the problem polynomial time solvable. A closely re-

ated model was studied in [24] without the laminar assumption,

here the problem was proved to by NP-hard and was solved by

nteger programming techniques. 

Let us abbreviate a complete within-type envy-free matching as

WTEFM. Now, we will compare this concept of CWTEFM with sta-

le matchings with type-specific scores and observe that they are

ssentially the same. 
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Theorem 2. Under the assumptions of Theorem 1 a complete match-

ing is within-type envy-free if and only if it is stable with type-specific

scores. 

Proof. Suppose first that M is a complete stable matching with

type-specific scores, we will see that M is also within-type envy-

free by definition. Suppose for a contradiction that there is a stu-

dent a i who has justified envy against student a h of the same

type at company c j , i.e. a h is assigned to c j whilst a i has higher

score at c j than a h and a i is assigned to a less preferred company.

This would mean that the pair { a i , c j } is blocking for the adjusted

scores, since both students get the same adjustment at c j , contra-

dicting with the stability of M . 

Suppose now that M is a CWTEFM. Let us adjust the scores of

the students according to their types at each company such that

the weakest students admitted have the same scores across types.

Matching M is stable with regard to the adjusted scores, because if

a student a i is not admitted to a company c j and any better place

of her preference then it must be the case that her score at c j was

less than or equal to the score of the weakest assigned student

of the same type at c j , which means that the adjusted score of a i 
at c j is less than or equal to the adjusted score of every assigned

student at c j . �

Instead of using the above described processes of setting type-

specific artificial upper quotas or making adjustments for the

scores of different types, we can also get a CWTEFM directly by

an IP formulation. We shall simply use the feasibility and distribu-

tional constraints together with (13) and with an objective function

maximising the number of students assigned. This approach is not

just more robust than the above described two heuristics, but it

has also the advantage that we can enforce additional optimality

or fairness criteria. As an additional fairness criterion we may aim

to minimise the envy across types. We can achieve this by adding

deficiency variables to the left hand side of constraints (12) for

students of different types, as described in (14) below, and then

minimising the sum of the deficiencies. We refer to this solution

as Min#E-CWTEFM, that is complete within-type envy-free matching

with minimum number of envy across types . 

∑ 

k : r ik ≤r i j 

x ik + d j 
ih 

≥ x h j ∀ (a i , c j ) , (a h , c j ) ∈ E, t(a i ) 	 = t(a h ) (14)

However, we may find an envy more justified, if the score dif-

ference between the two applicants involved is higher. Thus, by

taking the score differences as the intensities of the envies, we can

also aim to find a refined solution where the total intensities of the

envies is minimised, by using the following objective function: 

∑ 

(s i j − s h j ) · d j 
ih 
. 

We call the corresponding solution complete within-type envy-

free matching with minimum envy intensities across types , abbrevi-

ated as MinEI-CWTEFM. 

If the solution is still not unique then we can further refine

it, by considering two additional objectives. Regarding the wel-

fare of the students, we may want to minimise the total rank of

the students, leading to a Pareto-optimal assignment for them un-

der the constraints. We denote these solutions as MinRank-Min#E-

CW TEFM and MinRank-MinEI-CW TEFM, depending whether we

minimised the number of envies or the envy intensities in the

previous round. Finally, an alternative objective can be to min-

imise the number of blocking pairs due to open slots. This can be

achieved by adding binary deficiency variables to the first term of

the left side of the stability constraints, as follows. 
 ∑ 

k : r ik ≤r i j 

x ik + d i j 

) 

· u j + 

∑ 

h :(a h ,c j ) ∈ E 
x h j ≥ u j for each (a i , c j ) ∈ E 

(15)

We can then minimise the sum of these deficiency variables

nd find a matching within the restricted solution set that min-

mises the number of open-slot blockings. We denote these so-

utions as MinOSB-Min#E-CWTEFM and MinOSB-MinEI-CWTEFM,

epending whether we minimised the number of envies or the

nvy intensities. 

. First application: CEMS project allocation 

CEMS Alliance is a global co-operation of leading business

chools, multinational corporations and social partners in higher

ducation domain. These entities run together the CEMS Master in

nternational Management (MIM) one-year graduate program that

s accessible for graduate students of the partner institutions in 29

ountries in five continents. During the one-year-program students

pend one semester at their home institution and one semester

t another partner institution somewhere abroad, and they always

earn in an international environment. CEMS MIM has been ranked

s a leading master program by Financial Times in recent years. 

Within the framework of the MIM program each student must

arry out a business project during the Spring semester account-

ng for 15ECTS credits (that is half of the workload of the entire

emester). The consultancy-like projects are designed as real life

earning experience. Business projects are done in small groups of

–6 students in which ideally at least one student comes from

 foreign school, hence business project teams are culturally di-

erse. Business projects are offered and supervised by the corpo-

ate partners throughout the semester and they usually last for

hree months. 

Students learn about the business projects during a kickoff

vent at the beginning of the semester from company represen-

atives and they also receive written descriptions of the projects.

fter the kickoff event corporate partners evaluate all students ac-

ording to their CV-s, and students also rank the business projects

n the same time. The school assigns students to the individual

rojects based on these evaluations and rankings. 

At Corvinus University of Budapest the authors of this paper

ave been given the task of redesigning the allocation mechanism

n 2016. In previous years the mechanism was a simple immediate

cceptance mechanism (also known as the Boston mechanism [4] ),

here the students submitted their CV-s to their first choice com-

anies, the companies evaluated the candidates and then they ac-

epted the best candidates up to their quotas and rejected the rest.

he rejected students then submitted their CV-s to further compa-

ies, but those companies which have already filled their positions

id not accept more applications. This mechanism was heavily crit-

cized in the literature on school choice due to its unfairness and

lso because this mechanism is highly manipulable, therefore in

any cities it has been replaced by other algorithms, mainly by

he deferred acceptance (or Gale-Shapley) algorithm, see e.g. [4] . 

.1. Solution plan 

In 2016 there were 25 students, including 20 local and 5 for-

ign students, and 5 companies. The initial upper quotas were set

o 6 and the lower quotas were set to 4 at all companies. The pro-

ramme coordinator decided to set an upper quota of 2 for the for-

ign students at each company to enforce diversity. In 2017 there

as a slight change in the distributional criteria, the number of

tudents allocated to each company was set to be between 3 and
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Table 1 

The results of the 2016 matching run with the number of all and for- 

eign students assigned to the companies and the total rank of the stu- 

dents. 

2016 profiles all/foreign total rank 

Solution 1: MinRank-Stable 6 1 6 6 6 34 

u i = 6 1 0 0 2 2 

Solution 2: MinRank-Stable 6 2 6 6 5 35 

l i = 2 , u i = 6 1 0 1 2 1 

Solution 3: MinRank-Stable 6 4 5 5 5 40 

u 1 = 6 , u i = 5(i = 2 . 5) 1 0 0 2 2 

Solution 4: MinRank-Stable 5 5 5 5 5 41 

u i = 5 0 2 0 2 1 

Solution 5: MinRank-EF 5 4 6 6 4 38 

l i = 4 , u i = 6 0 2 1 2 0 

Solution 6: MinOSB-EF 6 4 6 5 4 39 

l i = 4 , u i = 6 1 1 1 2 0 
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 and at least one foreign student was required to be allocated to

very company. 

Our first solution plan was to ask the students to rank all the

ompanies in a strict order and to ask the companies to evaluate

ll the CV-s and rank the students weakly by giving them scores

etween 1 and 10. 5 Our intention with allowing ties was to enlarge

he set of stable solutions, even though we understand that this

airness concept is a bit weaker, since we may accept a student and

eject another one with the same score. Allowing ties also makes

he problem NP-hard already with lower quotas, as we described

n the introduction. Yet, if the ties were not allowed then the set of

table (and envy-free) solutions would be much smaller and thus

t would be harder to satisfy the distributional constraints. 

We remark that the conditions of Theorem 1 are satisfied for

oth 2016 and 2017, since all the students have to rank (and ac-

ept) all the companies and in 2017 we were required to have at

east one foreign student at each company, where the number of

oreign students was more than the number of companies. There-

ore a complete within-type envy-free matching always existed.

ithin this set of solutions we decided to minimise the number of

nvies across types and their intensities as the primal objectives.

s secondary objectives we tried to minimise the total rank and

he number of open-slot blockings. 

Finally, since in both years it was possible to decrease the upper

uotas at all companies by one (and set them to 5 instead of 6),

e also examined these solutions. This was reasonable as allocat-

ng very different numbers of students to the companies seemed

roblematic, especially if some of the most popular companies was

orced not to fill its quota, while less popular companies did. 

.2. Results in 2016 

The most important results of the 2016 matching run are col-

ected in Table 1 . 

In 2016 the upper bound of two for the foreign students were

lways satisfied without considering it, so we leave out this ques-

ion from the discussion and we focus only on common lower quo-

as. We were not able to find a stable solution for the original quo-

as of 4–6, since one of the companies (number 2) was very un-

opular and the highest number of students that we could match

here in a stable solution was 2, this is Solution 2 in Table 1 . (For

he record, we also checked which would be the minimum rank

olution among the stable ones, that is Solution 1.) Therefore we

ecreased the upper quotas of all companies to 5, except the most

opular company (number 1) and found a stable matching with
5 Most companies gave only integer scores, but some submitted half-integer 

cores as well, so ties indeed occurred. 

m  

a  

f  

s  
inimum total rank (Solution 3). Note that this matching is envy-

ree for the original quotas. Finally we considered the possibility

f decreasing all the upper quotas to 5, as described in Solution 4.

rom the latter two solutions the decision maker decided to choose

olution 4, since it was not substantially different from Solution

 and for the companies it seemed to be easier to communicate

he common decrease of upper quotas, compared to the case when

nly one company has a larger number of students. 

Recently, after carefully investigating the solution concepts de-

cribed in this paper, we did another check on the possible results

nd computed Solutions 5 and 6. Solution 5 is an envy-free solu-

ion where the total rank is minimised. It was interesting to ob-

erve that the most popular company (number 1) does not fill its

pper quota, leading to many open-slot blockings at that company.

olution 6 is also envy-free, but here the open-slot blockings are

inimised, but this resulted in a small decrease in the total rank. 

.3. Results in 2017 

The results of the 2017 matching run are summarised in

able 2 . In 2017 the number of students was 40 among which 13

ere from abroad and the number of companies was 8. Due to

he higher proportion of foreign students, the organisers decided

o require the allocation of at least one foreign student to each

ompany. The initial call suggested groups of sizes between 3 and

, but in this year also we investigated the solutions when every

pper quota was decreased to 5. In the latter case the lower quo-

as for the foreign students were not automatically satisfied, so we

ound within-type envy-free solutions and then as a first objective

e either minimised the number of envies across types or we min-

mised the intensities of the envies. As a secondary objective we

ried to minimise the total rank (there was no open-slots blocking

hen the upper quotas were commonly set to 5). 

Solution 1 is envy-free, and the total rank is minimised. As intu-

tively expected, the two least popular companies have only three

tudents allocated each and a medium popular company has four

tudents, whilst the popular companies receive six students. Solu-

ions 2 and 3 are both within-type envy free for upper quotas 5.

olution 2 minimises the number of envies as the first objective

nd then the total rank. Solution 3 minimises the intensities of the

nvies and then the total rank. (Note that we also computed the

inimal envy solutions without requiring within-type envy free-

ess, and essentially we received the same two solutions.) It is in-

eresting to know that only one justified envy was present in both

olutions 2 and 3, and the intensity of this envy was 1 in Solution

 and 

1 
2 in Solution 3. However, these two solutions were rather

ifferent, and Solution 2 had much smaller total rank. Thus So-

ution 2 was clearly found better than Solution 3 by the decision

aker. When comparing the first two solutions, the decision maker

elected Solution 2, due to the more balanced sizes of groups. 

.4. Discussion, further questions 

Here we discuss our findings and possible questions for the fu-

ure. 

Importance of the distributional requirements. We have con-

idered our distributional constraints as hard bounds, the only re-

axation we tested was the common decrease of the upper quotas.

owever, in many applications the distributional goals are softer,

nd thus may be violated. For instance, in school choice the exact

roportionality with regard to ethnicity or gender may be too de-

anding and unnecessary to satisfy, these are rather just general

ims. In such situations one may insist on the stability or the envy

reeness of the solution and want to satisfy the distributional con-

traints as much as possible. Finally, the trade-off between fairness
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Table 2 

The results of the 2017 matching run with the number of all and foreign students assigned to 

the companies and the total rank of the students. 

2017 profiles all/foreign total rank 

Solution 1: MinRank-EF 6 3 6 6 6 3 6 4 66 

l i = 3 , u i = 6 1 1 1 4 1 1 3 1 

Solution 2: MinRank-Min#E-CWTEFM 5 5 5 5 5 5 5 5 85 

u i = 5 , wEF, min 1 3 2 3 1 1 1 1 

Solution 3: MinRank-MinEI-CWTEFM 5 5 5 5 5 5 5 5 105 

u i = 5 1 4 1 2 1 1 1 2 
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and distributional goals may be balanced by relaxing both require-

ments at the same time. 

Stability versus envy-freeness. Leaving some slots empty to

satisfy the distributional constraints is a natural way to relax sta-

bility. This is also used in the Japanese resident allocation pro-

gramme, where artificial upper quotas have been set to the hospi-

tals in order to satisfy the regional lower quotas [30] . However, the

open-slot blocking can also be seen as unfair from both the stu-

dents’ and the companies’ points of views, especially when a pop-

ular company has to give up an intern. Note also that the open-slot

blockings are relative to the original quotas. In our application the

decision maker ended up choosing solutions in both years where

the upper quotas of the companies were commonly reduced by

one. These solutions admit a high number of open-slot blockings

regarding the original quotas, whilst if they are envy free for the

original quotas then they are also stable (with no open-slot block-

ings) for the decreased quotas. Thus these chosen solutions can be

seen more fair from the students’ point of view, as they do not

regret their rejections by a company with an open slot. 

Importance of within-type envy-freeness. In our analyses we

assumed that within-type envy-freeness is an important require-

ment that we obeyed in all solutions. Note that in the 2017 run

we also tested the solution when this requirement was relaxed and

we did not find a significant difference in the solutions. It is an in-

teresting question how important this requirement is, and the an-

swer can depend on the actual application. If the separation of the

types is significant and there is a big difference between their per-

formance (e.g. regarding the ethnicity in college admission) then

within-type envy-freeness can be crucial. 

Minimising the number of justified envies or their intensi-

ties. In our 2017 run we had a significant difference between our

two recommended solutions based on minimising the number of

justified envies and their intensities, respectively. In our case the

former solution had much better total ranking for the students,

but one can easily create an example where the opposite would

happen. If the intensities of the blocking are minimised then this

means that the average difference between the scores of the stu-

dents who have envy towards one another is small. This can be

more acceptable than having large score differences. In fact, if the

maximum score difference is not higher than the one in our appli-

cation, then we could say that this solution could be seen as to be

weakly stable if the scoring by the companies were less finer, say

used score range 1–5 instead of the current range of 1–10. 

Strict versus weak rankings. Using ties in the rankings of the

companies was by our recommendation in order to enlarge the

set of stable (or envy-free) matchings. However, in this case sta-

bility (and envy-freeness) is weaker, the rejection of a student by

a company can be explained by the admittance of another student

with equal score or higher. Thus, this can be seen unfair by the

rejected student, therefore in many applications (e.g. school choice

in New York, Boston and college admissions in Ireland and Turkey)

the ties are broken by lotteries or by other random factors. Ties

make the problem of satisfying lower quotas NP-hard, whilst this

is a polynomial-time solvable problem for strict rankings, see e.g.
T  
25] . Furthermore, the mechanism can become highly manipulable

y the students for ties depending on the goals of the optimisation.

Incentive issues. A mechanism is strategy-proof for the stu-

ents if neither of them can get a better match by submitting

alse preferences. This property holds for the student-proposing

eferred-acceptance mechanism in the classical college admission

odel of Gale and Shapley (see e.g. [43] ). Strategy-proofness can

lso be satisfied by modified variants of the deferred-acceptance

echanism for the case of lower quotas, as suggested also for the

apanese resident allocations [27,30,31] . However, if we allow ties

nd we consider goals such as rank-minimisation then our mech-

nism becomes manipulable. A simple manipulation strategy for a

edium-strong student can be to put her top choice as first choice,

ut instead of putting her true second choice in the second slot

he can put some companies which are not achievable for her in

ny stable solution. If there is another student with the very same

core and very same preferences submitting her true preferences

nd there is only one place left at their most preferred company

hen the rank-maximising algorithm will assign the manipulating

tudent there, and the truth-telling student to the second com-

any, since the alternative solution by exchanging the two students

ould result in higher total rank. Despite of this issue of manipu-

ability, we believe that the expected gains of manipulations are

egligible and their risks can be high, so in a Bayesian sense it is

nlikely that a student could get a positive expected gain by ma-

ipulating. However, we admit that this hypothesis would be very

ard to prove formally. 

Bounding the length of preference lists. In 2016 there were

5 students and 5 companies, in 2017 there were 40 students and

 companies, so the screening costs of the companies have in-

reased a lot. If this tendency will continue then the organisers

f the programme may need to reconsider the requirement of pro-

iding full rankings. A reasonable solution in such situations is to

ave two rounds. In the first the students are required to rank

 fixed number of companies, say five), and it is not guaranteed

hat all the students can be allocated to acceptable companies that

hey ranked. In the second round either no preferences are asked

rom the students or the organisers can elicit the preferences of

he unmatched students over the companies with remaining po-

itions. This is a standard technique also in school choice (e.g. in

ew York [3] ), although here we would face new challenges to en-

ure the satisfaction of the distributional requirements. 

. Second application: workshop assignment 

After running the 2016 project allocation, we received very pos-

tive feedbacks from the students, and in fact two students ap-

roached us asking for a help in selecting and assigning confer-

nce participants to companies involved in a case study workshop

ithin the conference. 

The number of participants to be selected was 60, and they had

o be assigned to three companies in a given proportion, the first

ompany had to receive 16 students and at least 8 Hungarians, the

econd and the third companies had to receive 22 students each.

here were 13 pre-selected students (the country leaders of the or-
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anisation) whose assignments were fixed in advance, so we only

ad to select and assign the 47 remaining slots. 

The conference organisers also agreed on the proportion of the

ocal, regional and other students to be selected. In particular, we

ad to select 25 Hungarian students from the 29 Hungarian appli-

ants, further 12 regional students from the 15 regional applicants

outside Hungary) and 10 other students from the 19 other appli-

ants (outside the region). Thus, we had overall exact quotas (i.e.

qual lower and upper quotas) for each type of students, just as

escribed in (8) and (9) . 

In order to satisfy these requirements we thought that we not

nly try to keep the solution within-type envy-free, which is also

table with type-specific scores as proved in Theorem 2 , but we

ried to keep the extra scores given to each type of students be

he same across companies. We call this solution concept a sta-

le matching with equal type-specific scores . With an iterative test-

ng we could indeed find such a stable solution by adding 7 extra

oints to all Hungarian students, 3 extra points to all regional stu-

ents, and zero to the other students, where the students had to

ank all the three companies and the companies gave scores (1–10)

n all the applicants. 

It is an interesting question whether a stable matching with

qual type-specific scores always exists in our model, under the

ssumption that all pairs are acceptable. We state this as a conjec-

ure below and prove it for two types. 

onjecture 3. When all the pairs are acceptable then a stable match-

ng with equal type-specific scores always exists for exact quotas. 

To prove the conjecture for two types, we will use some well-

nown theorems listed below. 

heorem 4 (Well-known results on HR/HRT instances) . 

i) (Characterisation, see e.g. [29] ) A matching M is weakly stable for

an instance I of HRT if and only if it is stable for an instance I ′ of

HR that is obtained by some tie-breaking from I. 

ii) (Rural hospitals [41] ) For an instance I of HR the set of allocated

students and the number of seats filled at the companies are fixed

across the stable matchings. 

ii) (Vacancy chains [16] ) Suppose that I is an instance of HR. If I ′ is

obtained from I by adding a new student a i then the set of allo-

cated students either 1) remains the same, 2) it is extended by a i ,

or 3) it is extended by a i and another student, a j becomes unal-

located. If I ′ is obtained from I by increasing the upper quota of a

company then the set of allocated students either 1) remains the

same, or 2) it is extended by one student. 

roof. [of Conjecture 3 for two types] Suppose that we have

 project allocation problem with two types of students, A 1 =
 a 1 , a 2 , . . . , a n 1 } and A 2 = { a n 1 +1 , a n 1 +2 , . . . , a n 1 + n 2 } , companies C =
 c 1 , . . . , c m 

} and exact quotas L 1 = U 

1 and L 2 = U 

2 . Let U denote

he total capacity, i.e., U = 

∑ 

j=1 .m 

u j . Without loss of generality we

uppose that L 1 + L 2 = U with L 1 ≤ n 1 and L 2 ≤ n 2 , and m ≤ n 1 + n 2 ,

hich implies that all the weakly stable matchings have size U ,

ince we assume that every student-company pair is mutually ac-

eptable. Let e denote the extra score given to students of the first

ype. Note that if e is a high number then all the first type stu-

ents are admitted up to the total quota and if e is very small

negative) then all the second type student are admitted up to the

otal quota. However, the number of first type students admitted

oes not necessarily grow when we increase e . 6 Let I denote the
6 The following example illustrates this. Let us have A 1 = { a 1 , a 2 , a 3 } and A 2 = 

 a 4 , a 5 } , and C = { c 1 , c 2 , c 3 } with quota 1 at each company. Suppose that every stu- 

ent prefers c 1 to c 2 and c 2 to c 3 . The students have the following scores: s 1 , 1 = 

 , s 1 , 2 = 7 , s 1 , 3 = 1 , s 2 , 1 = 1 , s 2 , 2 = 1 , s 2 , 3 = 3 , s 3 , 1 = 1 , s 3 , 2 = 1 , s 3 , 3 = 1 , s 4 , 1 = 6 , 

 4 , 2 = 1 , s 4 , 3 = 6 , s 5 , 1 = 2 , s 5 , 2 = 6 , s 5 , 3 = 2 . When no extra score is added to A 1 then 

b  

e  

t

s

t

riginal instance of HRT and let I e be the instance of HRT obtained

fter adding points e to all students in A 

1 . For a matching M let

 M | 1 denote the number of first type student allocated and simi-

arly, let | M | 2 denote the number of second type students allocated

n M . The goal is to find a suitable extra score e such that there ex-

sts a weakly stable matching M for I e such that | M| 1 = L 1 (which

mplies that | M| 2 = L 2 ). In fact, we will construct a HR instance I ′ e ,
btained from I e by tie-breaking, such that matching M is stable

or I ′ e with the required distributional property. 

As we already noted, if e is a large negative number then | M| 1 =
 for any stable matching M in I e and if e is a very large positive

umber then | M| 1 = min { n 1 , m } . For instance I e of HRT, let I < 1 e de-

ote the HR instance where all the ties are broken in favour of A 

1 

tudents (and among the students of the same type we use an ar-

itrary tie-breaking, say, according to their indices). Similarly, let

 

< 2 
e denote the HR instance, where we break all the ties in favour

f A 

2 students. First, we have to observe that I < 1 e is the same as

 

< 2 
e +1 for any e . Note also that the number of allocated first type stu-

ents (and their set) is fixed for any HR instance by Theorem 4 /ii)

cross all stable matchings. Therefore there must exist a number e

uch that for any stable matching M e −1 for instance I < 1 e −1 (= I < 2 e ) we

ave | M e −1 | 1 ≤ L 1 , and for any stable matching M e for instance I < 1 e 

e have | M e | 1 ≥ L 1 . We will show that there is an instance I ′ e , ob-

ained by tie-breaking from I e , such that for every stable matching

he number of allocated A 

1 students is exactly L 1 . 

We start from I < 2 e and we will gradually transform it into I < 1 e 

y giving higher priority in the tie-breaking to one A 

1 student in

ach step. Let I 0 e = I < 2 e , and for each i ∈ [1 .n 1 ] let I i e denote the HR

nstance where we favour the students { a 1 , . . . , a i } over students in

 

2 , who are favoured to students in { a i +1 , . . . , a n 1 } . What we will

how is that if M is any stable matching for I i e and M 

′ is any stable

atching for I i +1 
e then | M| 1 − 1 ≤ | M 

′ | ≤ | M| 1 + 1 , so the number

f A 

1 students allocated can either increase or decrease by at most

ne. This will imply that we must get an instance I i e , where the

umber of first type students is exactly L 1 . 

To prove the above inequalities we have to consider two situ-

tions. First, let us assume that a i +1 is unmatched in M (and so

n every stable matching for I i e ). Thus M would also be stable if we

emove a i +1 from I i e . Let us now put back a i +1 , but with higher pri-

rity, creating instance I i +1 
e . By Theorem 4 /iii) either the number of

 

1 students remains the same or it increases by one. Suppose now

hat a i +1 is allocated in M to company c j . M will remain stable if

e remove both a i +1 and one seat at c j from I i e , while the num-

er of A 

1 students allocated in the reduced matching decreases by

ne. If we add back one seat at c j and subsequently we also add

ack a i +1 with increased priority, creating instance I i +1 
e , then from

heorem 4 /iii) we know that in each of these two steps the num-

er of A 

1 students matched either remains the same or increases

y one. So, in overall, the number of A 

1 students can either de-

rease by one, remain the same, or increase by one. This completes

ur proof. �

. Conclusion 

We investigated different solution concepts for stable match-

ng problems with distributional constraints motivated by two real

pplications where we had to design the allocation mechanism.

e chose integer programming as the solution technique which

roved to be successful for these relatively small applications. We

elieve that our solution concepts and techniques could be consid-

red in other applications as well, such as controlled school choice
he unique stable matching is M = { a 1 c 2 , a 2 c 3 , a 4 c 1 } , and when we increase the 

core of students in A 1 then the unique stable matching is M 

′ = { a 1 c 1 , a 4 c 3 , a 5 c 2 } , 
hus the number of first type students allocated decreases. 
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and university admission with affirmative action. As far as the par-

ticipants are concerned, we have received very positive feedbacks

from both the students and the companies, especially compared to

the previous years. There are still plenty of interesting questions to

investigate mostly about the importance of different fairness crite-

ria and the trade-off between fairness and the distributional re-

quirements. 
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