Corvinus
Corvinus

Sztochasztikus népesség-előrejelzés magyar adatokon

Varga, Lívia (2020) Sztochasztikus népesség-előrejelzés magyar adatokon. Manual. Budapesti Corvinus Egyetem, Budapest. (Unpublished)

[img]
Preview
PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
1MB

Abstract

Jelen kutatás első felének célja annak bemutatása, hogy a nemzetközi szakirodalomban elterjedt sztochasztikus mortalitási modellek alkalmasak-e a halálozási arányszám előrejelzésére Magyarországon és a kapott eredmények felhasználhatóak-e a magyar népességszám modell alapú, valószínűségi előreszámításához. Lee és Carter 1992-ben megalkotott modellje nagy hatást gyakorolt a sztochasztikus mortalitási modellek fejlődésére. Lee és Carter modelljéből kiindulva jött létre az általánosított kor–periódus–kohorsz modellkeret (angolul ’generalized age–period–cohort stochastic mortality models’, röviden GAPC). Jelen tanulmány ennek a modellcsaládnak a tagjait ismerteti, illetve alkalmazza magyar adatokon. A cél a legjobban illeszkedő modell megtalálása. (...)

Item Type:Monograph (Manual)
Subjects:General statistics
Funders:ITM Kooperatív Doktori Program, NKFIH
References:

Ágoston et al. (2019): Ágoston, Kolos Csaba – Burka, Dávid – Kovács, Erzsébet – Vaskövi, Ágnes – Vékás, Péter, 2019, Klaszterelemzési eljárások halandósági adatokra. Statisztikai Szemle 97(7), pp 629–655.
https://doi.org/10.20311/stat2019.7.hu0629

Alkema et al. (2010): Alkema, Leontine – Raftery, Adrian E. – Gerland, Patrick – Clark, Samuel J. – Pelletier, Francois – Buettner, Thomas, 2010, Probabilistic projections of the total fertility rate for all countries. Working Paper No. 97, Center for Statistics and the Social Sciences, University of Washington.
https://csss.uw.edu/Papers/wp97.pdf

Alkema et al. (2011): Alkema, Leontine – Raftery, Adrian E. – Gerland, Patrick – Clark, Samuel J. – Pelletier, Francois – Buettner, Thomas – Heilig, Gerhard K., 2011, Probabilistic projections of the total fertility rate for all countries. Demography 48(3), pp 815–839.
https://doi.org/10.1007/s13524-011-0040-5

Arató et al. (2009): Arató, Miklós – Bozsó, Dávid – Elek, Péter – Zempléni, András, 2009, Forecasting and simulating mortality tables. Mathematical and Computer Modelling 49(3–4), pp 805–813.
https://doi.org/10.1016/j.mcm.2008.01.012

Bajkó et al. (2015): Bajkó, Attila – Maknics, Anita – Tóth, Krisztián – Vékás, Péter, 2015, A magyar nyugdíjrendszer fenntarthatóságáról. Közgazdasági Szemle 62(12), pp 1229–1257.
https://doi.org/10.18414/KSZ.2015.12.1229

Brillinger (1986): Brillinger, D. R., 1986, The natural variability of vital rates and associated statistics. Biometrics 42(4), pp 693–734.
https://doi.org/10.2307/2530689

Brouhns et al. (2002): Brouhns, Natacha – Denuit, Michel – Vermunt, Jeroen K., 2002, A Poisson log-bilinear regression approach to the construction of projected lifetables. Insurance: Mathematics and Economics 31(3), pp 373–393.
https://doi.org/10.1016/S0167-6687(02)00185-3

Cairns et al. (2006): Cairns, Andrew J. G. – Blake, David – Dowd, Kevin, 2006, A two-factor model for stochastic mortality with parameter uncertainty: Theory and calibration. Journal of Risk and Insurance 73(4), pp 687–718.
https://doi.org/10.1111/j.1539-6975.2006.00195.x

Ediev (2013): Ediev, Dalkhat M., 2013, Comparative importance of the fertility model, the total fertility, the mean age and the standard deviation of age at childbearing in population projections. Presented at IUSSP International Population Conference, 26–31 August 2013. Busan, South Korea. https://iussp.org/sites/default/files/event_call_for_papers/TF%20MS%20SD_what%20matters_StWr.pdf

Enders (2014): Enders, Walter, 2014, Applied econometric time series. Wiley Series, 4th edition, New York.
Hunt–Blake (2014): Hunt, Andrew – Blake, David, 2014, A general procedure for constructing mortality models. North American Actuarial Journal 18(1), pp 116–138.
https://doi.org/10.1080/10920277.2013.852963

Hunt–Blake (2015): Hunt, Andrew – Blake, David, 2015, On the structure and classification of mortality models. Pensions Institute Working Paper PI-1506
http://www.pensions-institute.org/wp-content/uploads/2019/workingpapers/wp1506.pdf

Klinger (1992): Klinger, András (szerk.), 1992, Történeti statisztikai idősorok, 1867-1992, I. kötet, Népesség–népmozgalom. Központi Statisztikai Hivatal, Budapest.
Lee (2000): Lee, Ronald, 2000, The Lee-Carter method for forecasting mortality, with various extensions and applications. North American Actuarial Journal 4(1), pp 80–93.
https://doi.org/10.1080/10920277.2000.10595882

Lee–Carter (1992): Lee, Ronald – Carter, Lawrence R., 1992, Modeling and forecasting U.S. mortality. Journal of the American Statistical Association 87(419), pp 659–671.
https://doi.org/10.2307/2290201

Lee–Miller (2001): Lee, Ronald – Miller, Timothy, 2001, Evaluating the performance of the Lee-Carter method for forecasting mortality. Demography 38(4), pp 537–549.
https://doi.org/10.1353/dem.2001.0036

Lee–Tuljapurkar (1994): Lee, Ronald D. – Tuljapurkar, Shripad, 1994, Stochastic population forecasts for the United States: Beyond high, medium and low. Journal of the American Statistical Association 89(428), pp 1175–1189.
https://doi.org/10.2307/2290980

Li–Gerland (2009): Li, Nan – Gerland, Patrick, 2009, Modelling and projecting the postponement of childbearing in low-fertility countries. Presented at the IUSSP International Population Conference, 27 September–2 October 2009. Marrakesh, Morocco.
https://iussp2009.princeton.edu/papers/90315

Plat (2009): Plat, Richard, 2009, On stochastic mortality modeling. Insurance: Mathematics and Economics 45(3), pp 393–404.
https://doi.org/10.1016/j.insmatheco.2009.08.006

Renshaw–Haberman (2006): Renshaw, Arthur – Haberman, Steven, 2006, A cohort-based extension to the Lee-Carter model for mortality reduction factors. Insurance: Mathematics and Economics 38(3), pp 556–570.
https://doi.org/10.1016/j.insmatheco.2005.12.001

Ševčíková et al. (2011): Ševčíková, Hana – Alkema, Leontine – Raftery, Adrian E., 2011, bayesTFR: An R package for probabilistic projections of the total fertility rate. Journal of Statistical Software 43(1), pp 1–29.
https://doi.org/10.18637/jss.v043.i01

Ševčíková et al. (2016): Ševčíková, Hana – Li, Nan – Kantorová, Vladimíra – Gerland, Patrick – Raftery, Adrian E., 2016, Age-specific mortality and fertility rates for probabilistic population projections. In Schoen, Robert (ed.), Dynamic Demographic Analysis. The Springer Series on Demographic Methods and Population Analysis 39. Cham, Springer, pp 285–310.
https://doi.org/10.1007/978-3-319-26603-9_15

Thatcher et al. (1998): Thatcher, A. Roger – Kannisto, Väinö – Vaupel, James W., 1998, The force of mortality at ages 80 to 120. Odense Monographs on Population Aging Series, No. 5, Odense University Press.
https://www.demogr.mpg.de/Papers/Books/Monograph5/ForMort.htm

Vékás (2019): Vékás, Péter, 2019, Az élettartam-kockázat modellezése. Budapesti Corvinus Egyetem, Budapest. ISBN 978-963-503-768-1
http://unipub.lib.uni-corvinus.hu/4112/1/elettartam_0612.pdf

Villegas et al. (2018): Villegas, Andrés M. – Kaishev, Vladimir K. – Millossovich, Pietro, 2018, StMoMo: An R package for stochastic mortality modeling. Journal of Statistical Software 84(3), pp 1–38. https://doi.org/10.18637/jss.v084.i03

Wilmoth (1993): Wilmoth, John R., 1993, Computational methods for fitting and extrapolating the Lee–Carter model of mortality change. Technical Report, Department of Demography, University of California, Berkeley.
https://u.demog.berkeley.edu/~jrw/Papers/LCtech.pdf

ID Code:7334
Deposited By: Ádám Hoffmann
Deposited On:25 Mar 2022 10:34
Last Modified:06 Jan 2023 10:20

Repository Staff Only: item control page

Downloads

Downloads per month over past year

View more statistics