
Paper—Development of the Improved Exercise Generation Metaheuristic Algorithm EGAL+ for End…

Development of the Improved Exercise Generation
Metaheuristic Algorithm EGAL+ for End Users

https://doi.org/10.3991/ijet.v17i11.28099

Blanka Láng(), Balázs Dömsödi
Corvinus University of Budapest, Budapest, Hungary

blanka.lang@uni-corvinus.hu

Abstract—Exercise generation is a subject worthy of investigation. In our
previous papers, a new multi-objective harmony search metaheuristic algorithm
called EGAL was presented, designed to address a widely recognised problem:
generating diverse exercises to measure students’ knowledge on various topics.
An improved metaheuristic algorithm (EGAL+) has since been created, and it is
presented in this study. The aim of this research was to further develop EGAL
and to investigate the differences between the original and the new algorithm.
This newly acquired algorithm preserved the advances of EGAL – the generated
exercises cover as many areas of the course as possible, the difficulty of the
exercises are equal, and they are diverse. Moreover, the improved algorithm is
also usable for non-expert users, since the introduced input fields are restricted
to the ones which are freely editable. It is sufficient for the user to be proficient
in their own field and to operate the program with subject-specific questions.
These statements were confirmed by running EGAL+ on a large number of
samples.

Keywords—exercise generation problem, multi-objective optimisation,
harmony search metaheuristic algorithm, web-based applications, end-user
development

1 Introduction

Creating and correcting tests are slow and difficult tasks in education. This is one of
the practical reasons why exercise generation has been at the forefront of research for
a long time. Generating exercises represents a challenging problem that has been iden-
tified by many researchers. Manually creating exercises is time-consuming, so several
powerful exercise-generating systems have been proposed over the last few years, and
many online learning platforms, which are robust and complex systems, generate exer-
cises automatically. Later in this chapter, some examples of such systems are provided.
These exercise-generating systems are useful for teachers because they save time and
effort, and teacher workload is reduced as these tools are suitable not only for generat-
ing exercises, but also for correcting, evaluating and grading the answers. These tools
are also useful for students because most of these systems are personalised and give
effective feedback.

210 http://www.i-jet.org

https://doi.org/10.3991/ijet.v17i11.28099
https://doi.org/10.3991/ijet.v17i11.28099

Paper—Development of the Improved Exercise Generation Metaheuristic Algorithm EGAL+ for End…

Some of these tools apply different levels of difficulty to handle students with dif-
ferent knowledge levels. Many were developed specifically for a particular field, such
as language learning (grammar vocabulary trainers), engineering studies, mathematics
or geometry exercises, SQL tasks etc. However, some of these tools are developed for
general purposes. Some examples for these different types of exercise generators will
now be enumerated.

It should be noted that the use of metaheuristic algorithms to solve educational prob-
lems is a common practice. Two recent examples are a genetic algorithm solution for a
multi-objective optimisation problem, to create exam schedules [1], or a harmony
search metaheuristic solution for automatic composition of instructional units [2]; how-
ever, there are many other similar examples [3], [4], [5], [6], [7], [8], [9], [10].

The generation of exercises has been extensively studied for a long time by many
researchers e.g. [11], [12], [13], [14], [15], [16], [17], [18], [19]. Many automated ex-
ercise generation systems can be included in the Data Science domain. Data science
emerged as a new field over the last few years, and new data science algorithms were
developed to generate exercises [20]. Whereas the generation of exercises is a con-
stantly evolving field of science, research published in the last decade has been exam-
ined in this chapter.

However, not only have topic-specific approaches been developed, but such tools
have also been developed based on the way of reaching students. A template-based
MOOC (Massive Open Online Course) approach is proposed by [12] to automate the
teaching life cycle addressing creation of problems. The authors present suitable solu-
tions and grading.

The key characteristics of MOOCs were identified by [21] which affect the affinity
of students to online educational systems over a longer period. The most important
measurements are the user’s affinity towards teaching content, difficulty, workload, and
the duration of a lesson.

As emphasised in [11], most of the former solutions could not handle general prob-
lems, but only specified questions. The authors proposed a general solution for repre-
senting user inputs in the automated exercise generation process.

Some other applications prioritise personalisation. The ODALA+ (Ontology Driven
Auto-evaluation Learning Approach) is presented by [22] for developing suitable exer-
cises, which is a learning system on user personalisation. The authors have shown that
developing adapted learning materials is an activity of fundamental importance.
Knowledge, skills, and behaviour information was collected from the evaluation mod-
ule and was integrated into ODALA+.

Next, some specific problem-solving applications will be presented. A solution is
proposed by [23], which was developed to produce SQL questions automatically. This
system uses difficulty levels and gives feedback for the users to help them improve
their knowledge. The teachers do not need to create SQL questions, only database
schemes.

A solution is offered by [24] for teaching differential equations in the field of Math-
ematics. It is personalised, because the student is identified using his or her answer
history record of past answers, and the difficulty of the problems are optimised accord-
ing to his or her knowledge.

iJET ‒ Vol. 17, No. 11, 2022 211

Paper—Development of the Improved Exercise Generation Metaheuristic Algorithm EGAL+ for End…

Numerous task generation systems have been developed to support language learn-
ing. An approach is developed by [25] to generate FITB (Fill In The Bank English)
learning exercises.

Some other applications prioritise ease of use, in that way similar of our EGAL+
algorithm. Passarola, a simple, powerful, exercise generation system was developed in
such a way that anyone without a computer science background can use it to generate
exercises. The researchers offer a specific language for creating more complex types of
exercise than usual, such as multiple choice, data type or file comparisons [26]. The
target is not a specific subject, as the system can solve general problems. The publica-
tion offers a set of examples of exercises created for courses that range from Mathe-
matics to Music and Geography.

Moodle, one of the most popular LMSs (a learning management system is a form of
software that users apply in the web-based learning process) is also capable of generat-
ing exercises for students and teachers. During such generation, different conditions
may be specified. Various plug-ins have also been developed for Moodle. However, no
solution can be found neither in Moodle nor among the plug-ins nor in any other LMS
to the specific problem which is described in the next paragraph.

An overview of EGAL+, together with a description of the ways in which it differs
from and is similar to the above, now follows. The purpose of this algorithm is to gen-
erate multiple different subsets of predetermined tasks (i.e. exercises) to test students’
knowledge on various topics, in such a way that firstly, the quality of these subsets
should be good enough according to a predefined quality matrix (i.e. they should cover
the most important parts of the topics as much as possible), and secondly, the exercises
are of equal difficulty. It is up to the teacher to decide which parts of the topics are the
most important. These tasks are selected by the teacher based on which discipline –
statistics, mathematics, informatics, language, and so on – he or she wants to assess
students' knowledge of. For example, the topic can be the cascading style sheet subject
in web development, and the parts can be some concrete CSS formatting, or another
example can be the English grammar knowledge of verb tenses, and the parts can be
the past tense of some concrete verbs. The previous examples [27], [28],[29] are uni-
versity level exercises, but EGAL and EGAL+ can be used with students of different
age and different knowledge depending on the teachers’ choice.

Exercises should be diverse (according to a matrix and a diversity scale, which are
both inserted into the multi-objective fitness function). Although the difficulties of
these tasks can be different from each other, the difficulty of the subsets of the tasks
should be the same. This is a problem without any satisfactory solution, as is shown in
the above examples. Our previous studies have addressed this deficit. Unfortunately,
the optimisation algorithm presented in our former publications has been usable only
by researchers skilled in the field. Only they have been able to properly reconstruct and
use it, based on the detailed information in our previous publications. The EGAL algo-
rithm has now been transformed to an “easy-to-use” program, in a way that end users
with no computer science and optimisation background could also use it, with certain
restrictions and improvements. The improved metaheuristic algorithm (EGAL+) is pre-
sented in this paper. The goal of this research is to improve EGAL and to show the
differences between EGAL and the newly acquired EGAL+.

212 http://www.i-jet.org

Paper—Development of the Improved Exercise Generation Metaheuristic Algorithm EGAL+ for End…

Satisfying the needs mentioned previously – the quality of the subsets and the diffi-
culty of the exercises – represents a much smaller-scale problem than that addressed by
the other solutions in this chapter. One relevant difference is that EGAL+ is not a com-
plex system, for example, this solution is not personalised and does not give feedback
for the users.

On the other hand, this solution resembles other solutions previously described in
this paper in the sense that is general, i.e. the problem can come from any field of sci-
ence, e.g. statistics, mathematics, informatics, language, and so on, since EGAL+ will
solve the problem regardless.

To summarise, in reviewing the literature it is found that - although many complex,
adaptive, personalised, easy-to-use and effective exercise generating systems have been
developed - such a tool capable of solving exactly the specified problem - to generate
multiple different subsets of predetermined tasks, in such a way that the quality of these
subsets should be good enough according to a predefined quality matrix, and the exer-
cises are of equal difficulty – does not yet exist. No similar solution has previously been
found, since the predefined quality matrix gives the solution a unique character, and no
problem statement has previously been found where multiple different subsets of pre-
determined tasks are generated. Moreover, achieving all these things with an interface
designed for non-expert users is also unprecedented, indicating that the added value of
the EGAL+ algorithm is unquestionable.

2 End user problem

EGAL+ is an improvement of the EGAL algorithm, which was published in our
former papers [27], [28], [29]. It will be shown that the original EGAL algorithm can
be transformed for use by end users without a computer science and optimisation back-
ground, with some restrictions and improvements. In this paper the new algorithm
EGAL+ will be presented, which differs in many respects from the original EGAL al-
gorithm. The most important modifications are (i) choosing appropriate initial param-
eters; (ii) limiting the number of zeros in the quality matrix (iii); inserting a new func-
tion, which handles the difficulty problem and (iv) improving the fitness function.

EGAL+ is a web-based app that can be used via any current browser. Before going
into the details of the system, it should be described how the EGAL+ algorithm is dis-
played to a user. A demonstration is available at https://egalplus.azurewebsites.net/.
Here the user can run general cases – where the tasks are Task1, Task2, etc. –, and a
specific CSS example can be run here as well – when the tasks are CSS formats. This
example is one of those that were investigated in our former publications [27].

It should be noted that hosting the new algorithm imposes certain restrictions as re-
gards running time. The probability of these restrictions occurring is small, but if the
reader would like to check the algorithm without restrictions, it is recommended to use
the GitHub code. The algorithm’s code can be found at: https://github.com/balazs-dom-
sodi-h53osf/EGALplus. In the readme.txt file, the reader can find a detailed user guide.

A brief explanation of how to run EGAL+ with the help of a short example now
follows. When the teacher wants to generate some exercises using EGAL+, he/she first

iJET ‒ Vol. 17, No. 11, 2022 213

https://egalplus.azurewebsites.net/
https://github.com/balazs-domsodi-h53osf/EGALplus
https://github.com/balazs-domsodi-h53osf/EGALplus

Paper—Development of the Improved Exercise Generation Metaheuristic Algorithm EGAL+ for End…

sets the following parameters: (i) PopSize: the number of the students in the class, for
whom he or she wants to generate PopSize pieces of exercises, which are different and
have acceptable quality according to a predefined quality matrix, (ii) NoT: the number
of the optional tasks, (iii) the name of the tasks according to the specific problem, which
in this example are: Task1, Task2, etc., (iv) TSize: the number of questions in one ex-
ercise, (v) difficulty: the difficulty of the tasks.

As mentioned previously, the purpose of the end user - for example, a teacher - is to
generate multiple different subsets of predetermined tasks (i.e. exercises) to test
students’ knowledge. The first requirement of the teacher is that the quality of the sub-
sets should be good enough according to a predefined quality matrix (i.e. they should
cover the most important fields as much as possible). Consequently, the teacher sets the
quality values in the quality E matrix (see Figure 1), which is a symmetric matrix. The
matrix contains elements between 0 and 10, and has NoT rows and columns. The values
of the elements indicate how much the user wishes to use the corresponding tasks in
the same exercise. A value of zero means the two tasks cannot be run simultaneously,
and a value of ten means they should appear together. In-between values indicate that
the teacher prefers to include these tasks at the same time. A value closer to zero indi-
cates that the tasks appear together less often.

Fig. 1. Quality matrix

214 http://www.i-jet.org

Paper—Development of the Improved Exercise Generation Metaheuristic Algorithm EGAL+ for End…

The second – and also important – expectation of the teacher that exercises should
be diverse and although the difficulty of the tasks (“difficulty”) can be different, the
difficulty of the subsets, i.e. the sum of the difficulty of the selected tasks (“Difficulty”)
has to be of the same value, because it is assumed that one would like to use fair exer-
cises. As the teacher sets the difficulty values of the tasks (see Figure 2), he or she can
select these values from the set: {1,2,3,4,5}.

Fig. 2. Task difficulty values

The program – or more precisely, a function of the program – will offer three possi-
bilities for the teacher – low, medium, and high – as the Difficulty value of the exercise.
The user can choose one of these three values as can be seen in Figure 3.

Fig. 3. Difficulty value of an exercise

iJET ‒ Vol. 17, No. 11, 2022 215

Paper—Development of the Improved Exercise Generation Metaheuristic Algorithm EGAL+ for End…

After these steps, by clicking the run button, the user receives the result: PopSize
pieces exercises which are different and have acceptable quality according to a prede-
fined quality matrix. A part of an output example is shown in Figure 4. In this case the
chosen Difficulty value was 28.

Fig. 4. A part of an EGAL+ output

In the EGAL program, the user can choose the above parameters, and the cumulated
Difficulty value as well, independently of each other. In that process the user must be
proficient at optimisation to select the right difficulty values, because occasionally the
parameter settings could be contradictory. Some extreme examples are examined be-
low. If every difficulty value is even but the exercise Difficulty value is not even, the
parameter values are contradictory. Another contradictory case would be if a too big or
too small a cumulated Difficulty value is selected: in this case, the freedom of the al-
gorithm would be reduced. Another possible error would be if the user sets a NoT value
which is less than the TSize value; in this case the values are contradictory, or the free-
dom of the heuristic algorithm has lost. Several other problematic examples could be
shown.

It can be concluded that the user who selects the parameters must be familiar with
metaheuristics, or the user and the optimisation expert must work together closely to
choose the right input values. The EGAL program required the user to be a person with
a solid knowledge of metaheuristics and optimisation. In the case of the EGAL+ pro-
gram, the user can not choose contradictory parameter values. While developing
EGAL+, the goal was to provide a modified, more user-friendly algorithm that anyone
without an optimisation background can use to create powerful exercises.

216 http://www.i-jet.org

Paper—Development of the Improved Exercise Generation Metaheuristic Algorithm EGAL+ for End…

3 An improved harmony search algorithm

In this chapter the improved exercise generation process, EGAL+, is introduced,
with a special emphasis on improvements. Detailed description of the original EGAL
can be found in our previous publications. Here the unchanged code parts are only
briefly summarised, and details are given of those parts that are new or different in
EGAL+.

It was not possible to use an exact algorithm to solve the exercise-generating prob-
lem mentioned above because the number of possible cases was unmanageable, so a
harmony search (HS) metaheuristic algorithm [30] was applied. Since HS is a popula-
tion-based heuristic algorithm, it converges to a global maximum or minimum. In the
harmony memory – namely population – there are binary vectors for this algorithm.
The fitness function value represents the quality of a vector. The quality of the individ-
ual value is maximised by maximising the fitness function value. In searching for the
global optimum, the fitness function value should be maximised through further im-
provisations [30].

At the beginning of the HS, the corresponding parameters are set. These are (i) the
harmony memory size (HM), (ii) the maximum generation number (iii), the HMCR
(harmony consideration rate), and (iv) the PAR (pitch adjustment rate). After that the
population of random vectors is initialised. The following is the improvisation step.
According to Lee and Geem [30] a new harmony is improvised using HMCR and PAR
probabilities. The quality of the population improves by each iteration until the algo-
rithm is terminated.

The detailed description of EGAL+ is shown in the following. The first step sets the
parameters. In this case, the harmony memory is the size of the population (PopSize),
and the low and upper bounds are 10 and 100. HMCR and PAR were set as recom-
mended by Lee and Geem to HMCR=0.5 and PAR=0.2. The Epsilon value was set low
enough for the program to run long enough so that metaheuristics could give results
which meet the specified requirements detailed in Chapter 2 with Epsi-
lon=0.0000000001. This statement will be confirmed with the run results being shown
later. The user can select only the PopSize value, as the other values are fixed.

At this point, the improvisation process had to be changed a little. If the user freely
selects the difficulty values, the extreme situation occurs very rarely where the modifi-
cation of the vector selected from the memory will not be successful at all. To solve
this problem, if the modification does not occur after a specified period, a totally new
vector is generated instead of the modified one. The probability of this case occurring
is negligibly small.

It should be noted that depending on the other parameter settings, it is possible that
they have a different value than the one specified, which would make the algorithm
more efficient, run faster, or possibly give slightly better fitness values. For now, this
increase in efficiency is not studied, because the primary goal of the research is to de-
velop an easy-to-use program for the end user. The parameter calibration problem is
worthy of further investigation in the future.

For the following parameters, upper and lower limits are specified, and the users are
free to choose the values between the limits, which are presented in Table 1.

iJET ‒ Vol. 17, No. 11, 2022 217

Paper—Development of the Improved Exercise Generation Metaheuristic Algorithm EGAL+ for End…

Table 1. Parameter settings

Parameters Minimum
value

Maximum
value Note

HM=PopSize 10 100 The number of students for whom exercises should be
generated

Number of Tasks (NoT) 20 50 The optional tasks count
TSize NoT/4 NoT/2 The number of the questions in one exercise

E quality matrix values 0 10
The maximum number of zeros: (((NoT-
1+TSize*2)/2)*(NoT-TSize*2))/10
maximum number of zeros in a row: (NoT-TSize)/4

difficulty values 1 (easy) 5 (difficult) The user is completely free to choose from the values of
{1,2,3,4,5}

In the next step, the user sets the quality values in the quality matrix E. The procedure
was described in detail in the previous chapter. One of the most important differences
between EGAL and EGAL+ is the how the E matrix values are handled. In the case of
EGAL, the user had to understand the optimisation and had to select the matrix values
in such a way to run the algorithm without freezing. In EGAL+ a user can select rela-
tively freely the values of the matrix, but this problem of freedom must be managed. It
is necessary to limit the number of zeros in the matrix and the number of zeros in a
row/column, to prevent the user from entering too many zeros. The result of too many
zero values can be a problem. For example, the program loses its freedom and cannot
run. You can find the suitable limits in Table 1. These limits are calculated in the fol-
lowing way: first those cases are specified for which the number of the zeros will pre-
vent the algorithm from running. Then these limits are relaxed until the required free-
dom is reached and the algorithm will run. This statement is to be confirmed later.

Since EGAL+ is HS, the following is the initialisation. The initial population con-
sists of random vectors. Every vector contains TSize pieces of 1-bits, and NoT-Tsize
zeros. If the ith bit of a vector is zero, the ith task is not chosen, otherwise it is chosen.

In the next step, the fitness function values are calculated. In the case of EGAL the
goal was to maximise the quality of exercises, and the distance between individuals in
the population simultaneously. These features were inserted into the fitness function.
In the case of EGAL+, the purpose is the same, but the fitness function had to be mod-
ified, because the user can select most of the parameters freely without optimisation
knowledge. The two operands are the same, the modifications are the deleted normali-
sation of the operands, and inserting new ratio multipliers in the function.

The first operand of the fitness function was calculated as described, where p is an
individual and E is the quality matrix:

 𝐹𝐹𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑝𝑝) = ∑ ∑ 𝑝𝑝[𝑖𝑖] ∗ 𝑝𝑝[𝑗𝑗] ∗ 𝐸𝐸[𝑖𝑖, 𝑗𝑗]𝑁𝑁𝑁𝑁𝑁𝑁−1
𝑗𝑗=0

𝑁𝑁𝑁𝑁𝑁𝑁−1
𝑓𝑓=0 (1)

The second operand in the fitness function is the diversity measure. The distance of
two vectors in the same population equals the number of different digits. Then the di-
versity measure (D) of the p vector is determined. It is equal to the sum of the diversity
for all vectors in the population.

218 http://www.i-jet.org

Paper—Development of the Improved Exercise Generation Metaheuristic Algorithm EGAL+ for End…

The selection function combines these two operands with an addition operation. In
the case of the diversity and fitness values the ranges may differ. In the case of EGAL+,
the fitness function was modified due to the free parameter settings. Initially, the nor-
malisation was deleted, then afterwards the values in the second operand were divided
by PoPSize/20. The purpose in doing this was that in the case of every parameter value,
the quality operand was more, or at least as, important as the difference operand. It was
aimed to keep the ratio of the two operands between 0.1 and 1. In the next chapter it is
shown that this value is within the required limits in all parameter settings. After these
steps, the fitness function will be equal to the sum of the first operand and to the second
operand*20/PopSize.

The last important difference between the original and the new algorithms is how
the user selects the Difficulty value for the exercises. First the user selects the difficulty
values for the tasks between 1 (easy) and 5 (difficult). In the previous chapter the free-
dom problem that can occur when a non-expert user selects a cumulative Difficulty
value is demonstrated. The EGAL+ program will offer three possibilities for the teacher
- low, medium, and high - as the Difficulty value of the exercise according to the se-
lected difficulty values. These values were calculated in such a way as to give enough
freedom to the program. It is shown in detail below how the three values were calcu-
lated.

Since examining all possible combinations is to be avoided for performance reasons,
a heuristic solution is used instead of an exact algorithm. A function in the program
randomly lists the possible difficulty combinations and puts the task sequences which
already have been examined into a “taboo list”, which stores them in a vector, so they
will not be double-checked unnecessarily. A form of taboo list is used [31], with the
difference that it is not FIFO; nothing is deleted from it. In addition, the possible total
difficulties and their occurrences are collected in a two-dimensional vector. If the oc-
currence number of a total difficulty value exceeds a predetermined value (2 * Pop-
Size), the user is allowed to select it. This function is stopped when it is considered that
it has given a sufficient and well-distributed total number of difficulties. The number
of pieces is three, because easy, medium, and difficult exercises are to be generated.

The distribution problem was solved according to the following heuristic: the mini-
mum and maximum cumulative Difficulty values are considered and half of their dis-
tance (difference_goal) is taken as the starting value. The program is run for a prede-
termined time interval and the outputs are examined: whether the three values are re-
turned whose distance is “difference goal” or not. If they have not been returned yet,
the difference goal value is decreased by one again and again, always examining
whether the three values are returned or not. This step is repeated until three values are
returned: x1, x2, x3 as “easy”, “medium”, “difficult” values for the distance-goal dis-
tance from each other. The viability of this part of the program will be confirmed with
random run results.

After this, more improvisation phases follow until the algorithm is terminated, which
occurs if the average fitness value of the last 10 populations did not improve more than
Epsilon.

The most important difference between the original and the new algorithms were (i)
how the parameters were handled: some of them were fixed and some of them could be

iJET ‒ Vol. 17, No. 11, 2022 219

Paper—Development of the Improved Exercise Generation Metaheuristic Algorithm EGAL+ for End…

chosen by the user between some limits, (ii) how the number of zeros in the E matrix
was limited, (iii) how the D difference was handled: a function was calculated and the
user could choose only from the generated results and (iv) how the ratio was inserted
into the fitness function. With these and some other minor modifications, the algorithm
could be transformed for end users without computer science and optimisation back-
ground. By the end of the algorithm, the population will consist of exercises which are
different and have acceptable quality according to a predefined quality matrix - these
are guaranteed by the fitness function - and the Difficulty of the exercises will be equal.
This statement will be confirmed in the next chapter, in which the program is run on a
large number of samples.

4 Computational results

Reviewing the relevant literature indicates that there is no formerly existing algo-
rithm which solves exactly the specific problem described in the Introduction, so the
result of this algorithm cannot be compared with the results of other formerly existing
algorithms. To illustrate the essence and viability of this algorithm, detailed computa-
tional results are given in this chapter. Random values were selected for each possible
parameter between the upper and lower limits given in Table 1, and computational re-
sults were given for each case. All procedures were coded in the PHP 7.0 language. All
computational results were acquired on a Laptop with Intel Core i7-9750H 2.6 GHz
CPU and 16.0 GB RAM.

250 such random parameter sets were created, and the algorithm was performed for
20 runs for each instance, so the number of the total run is 5000. Aggregated results are
shown in Table 2. (More detailed results can be found here: https://github.com/balazs-
domsodi-h53osf/EGALplus/raw/main/result.xlsx.) Fitness function values, fitness
function value improvements, difference values, the ratio of the two fitness function
operands and solution times can be found in the tables. For these values, you can find
minimum and maximum, average, and standard deviation values rounded to three dec-
imal places.

Table 2. Computational results

 Minimum Maximum Average Standard deviation
Fitness value improvement (%) 1.12% 14.95% 3.54% 0.55%
Difference (%) 2.182 25.235 13.445 0.162
Operands ratio 0.122 0.993 0.323 0.005
Solution time (sec) 4.000 1243.000 45.026 3.822

The results of the tables show that the algorithm ran for each random parameter set,
and the improvement of the fitness function values can be seen. In addition, the ratio of
the two fitness function operands is between 0.1 and 1 as mentioned before, the mini-
mum value was 0.122 and the maximum value was 0.993. Although the solution times
are in most cases within acceptable limits (0-360 sec), a few higher values can be found

220 http://www.i-jet.org

https://github.com/balazs-domsodi-h53osf/EGALplus/raw/main/result.xlsx
https://github.com/balazs-domsodi-h53osf/EGALplus/raw/main/result.xlsx

Paper—Development of the Improved Exercise Generation Metaheuristic Algorithm EGAL+ for End…

– higher than 360 seconds (1.64% of all cases). In the next chapter, a planned improve-
ment will be mentioned to reduce these high results. The results show that the difficulty
problem is solved, and the exercises are different in one population. When the algorithm
is run using the same parameter sets twenty times, the detailed standard deviation val-
ues confirm the robustness of the algorithm.

A detailed discussion of how the set goals were met now follows. As stated at the
beginning of this article, the goal of this research was to improve EGAL and to show
the differences between EGAL and the newly acquired EGAL+. Firstly, this new algo-
rithm has managed to preserve the advances of EGAL – the generated exercises cover
as many areas of the course as possible according to the predefined quality matrix and
the multi-objective fitness function, the exercises are diverse according to the diversity
measure, and their difficulty are equal. Furthermore, the improved algorithm has be-
come usable for end users without a computer science and optimisation background
since the newly introduced input fields are restricted to the ones which can be changed
freely without breaking the program. It is sufficient for the user to be an expert in their
field and to upload the program with questions adequate to the subject. One of the most
significant changes in the algorithm is that the background calculation of the difficulty
options was introduced so that the user can only select from the available goals calcu-
lated by the program. The statement – the program gives correct results within prede-
termined acceptable time using values within the allowed limits – was confirmed by
running the algorithm on a large number of samples.

As previously mentioned, the results obtained here could not be compared to earlier
research findings, so the detailed run results were investigated on their own to corrob-
orate our statements. These values showed that the set goals have been achieved, and
that EGAL+ is viable, efficient, robust and solves the specific problem described in the
Introduction.

5 Conclusions and future improvements

When the algorithm was created, the goal was to generate more subsets of predefined
tasks (i.e. exercises) to test students’ knowledge in such a way that the quality of these
subsets should be good enough according to a predefined quality matrix (i.e. should
cover the main topics of a course as much as possible) and exercises should be diverse
(according to a matrix and a diversity measure, which are inserted into the multi-objec-
tive fitness function). Moreover, although the difficulty of these tasks might be different
from each other, the difficulty values of the subsets needed to be equal.

In this paper it has been shown that, according to the initial hypothesis, this algorithm
could be made available for use by end users without a computer science and optimi-
sation background subject to certain restrictions and improvements. The improved me-
taheuristic algorithm (EGAL+) was created and presented in this study. The hypothesis
for this improved algorithm was confirmed by running it on a large number of samples.

Many improvements for this algorithm are planned in the future. A self-learning
EGAL+ algorithm is planned to be developed in the future, where the difficulty values

iJET ‒ Vol. 17, No. 11, 2022 221

Paper—Development of the Improved Exercise Generation Metaheuristic Algorithm EGAL+ for End…

are updated using the results gained from users. It is also planned to modify the repre-
sentations of the individuals in a certain way, with an expected decrease in run times.
Furthermore, it is to be examined how this algorithm could be integrated into a learning
content management system, for example into Moodle. The parameter calibration prob-
lem, as mentioned earlier, is also worthy of future investigation. Finally, it is also worth
examining how the “group problem” and the “precedence relation problem” mentioned
in [28] and [29] could be integrated into the algorithm.

6 References

[1] Son Ngo Tung, Jaafar, J. B., Aziz, I. A., Hoang Giang Nguyen, & Anh Ngoc Bui. (2021).
Genetic Algorithm for Solving Multi-Objective Optimization in Examination Timetabling
Problem. International Journal of Emerging Technologies in Learning, 16(11): 4–24. https://
doi.org/10.3991/ijet.v16i11.21017

[2] Hnida, M., Idrissi, M. K., & Bennani, S. (2018). Automatic Composition of Instructional
Units in Virtual Learning Environments. International Journal of Emerging Technologies in
Learning (IJET), 13(06): 86–100. https://doi.org/10.3991/ijet.v13i06.8107

[3] Tu, C., Liu, Y., & Zheng, L. (2021). Hybrid Element Heuristic Algorithm Optimizing Neural
Network-Based Educational Courses. Wireless Communications & Mobile Computing, 1–
12. https://doi.org/10.1155/2021/9581793

[4] Lewis, R. (2012). A time-dependent metaheuristic algorithm for post enrolment-based
course timetabling. Annals of Operations Research, 194(1): 273–289. https://doi.org/10.10
07/s10479-010-0696-z

[5] Vaziri, S., Zaretalab, A., & Sharifi, M. (2020). Development of multi-objective simulated
annealing based decision support system for course timetabling with consideration
preferences of teachers and students. Muṭālı̒āt-i Mudīriyyat-i Ṣan̒atī, 17(55): 35–64. https://
doi.org/10.22054/JIMS.2019.29331.1982

[6] Al-Betar, M. A., Khader, A. T. , & Zaman, M. (2012). University course timetabling using
a hybrid harmony search metaheuristic algorithm. IEEE Transactions on Systems, Man and
Cybernetics Part C: Applications and Reviews, 42(5): 664–681. https://doi.org/10.1109/
TSMCC.2011.2174356

[7] Xiangliu Chen, Xiao-Guang Yue, Rita Yi Man Li, Ainur Zhumadillayeva, & Ruru Liu.
(2021). Design and Application of an Improved Genetic Algorithm to a Class Scheduling
System. International Journal of Emerging Technologies in Learning (IJET), 16(01): 44–59.
https://doi.org/10.3991/ijet.v16i01.18225

[8] Sukstrienwong, A. (2017). A Genetic-algorithm Approach for Balancing Learning Styles
and Academic Attributes in Heterogeneous Grouping of Students. International Journal of
Emerging Technologies in Learning, 12(3): 4–25. https://doi.org/10.3991/ijet.v12i03.5803

[9] Liping Wu. (2015). The application of Coarse-Grained Parallel Genetic Algorithm with
Hadoop in University Intelligent Course-Timetabling System. International Journal of
Emerging Technologies in Learning, 10(8): 11–15. https://doi.org/10.3991/ijet.v10i8.5206

[10] Alam, T., Qamar, S., Dixit, A., & Benaida, M. (2020). Genetic Algorithm: Reviews,
Implementations, and Applications. International Journal of Engineering Pedagogy (IJEP),
10(6), 57–77. https://doi.org/10.3991/ijep.v10i6.14567

[11] Nentwich, V., Fischer, N., Sonnenbichler, A. C., & Geyer-Schulz, A. (2016). Computer
aided exercise generation: A framework for human interaction in the automated exercise
generation process. ICETE 2016 - Proceedings of the 13th International Joint Conference
on e-Business and Telecommunications, 2: 57–63. https://doi.org/10.5220/00059477005700
63

[12] Sadigh, D., Seshia, S. A., and Gupta, M. (2012). Automating exercise generation: A step

222 http://www.i-jet.org

https://doi.org/10.3991/ijet.v16i11.21017
https://doi.org/10.3991/ijet.v16i11.21017
https://doi.org/10.3991/ijet.v13i06.8107
https://doi.org/10.1155/2021/9581793
https://doi.org/10.1007/s10479-010-0696-z
https://doi.org/10.1007/s10479-010-0696-z
https://doi.org/10.22054/JIMS.2019.29331.1982
https://doi.org/10.22054/JIMS.2019.29331.1982
https://doi.org/10.1109/TSMCC.2011.2174356
https://doi.org/10.1109/TSMCC.2011.2174356
https://doi.org/10.3991/ijet.v16i01.18225
https://doi.org/10.3991/ijet.v12i03.5803
https://doi.org/10.3991/ijet.v10i8.5206
https://doi.org/10.3991/ijep.v10i6.14567
https://doi.org/10.5220/0005947700570063
https://doi.org/10.5220/0005947700570063

Paper—Development of the Improved Exercise Generation Metaheuristic Algorithm EGAL+ for End…

towards meeting the MOOC challenge for embedded systems. In Proceedings of the
Workshop on Embedded and Cyber-Physical Systems Education, pp 1–8, Tampere. ACM.
https://doi.org/10.1145/2530544.2530546

[13] Arianna Zanetti, Elena Volodina, & Johannes Graën. (2021). Automatic Generation of
Exercises for Second Language Learning from Parallel Corpus Data. International Journal
of TESOL Studies, 3(2): 55–70. https://doi.org/10.46451/ijts.2021.06.05

[14] Eryiğit, G., Bektaş, F., Ali, U., & Dereli, B. (2021). Gamification of complex morphology
learning: the case of Turkish. Computer Assisted Language Learning, 1–29. https://doi.org/
10.1080/09588221.2021.1996396

[15] Malafeev, A. (2014). Language Exercise Generation: Emulating Cambridge Open Cloze.
International Journal of Conceptual Structures and Smart Applications (IJCSSA), 2(2): 20–
35. https://doi.org/10.4018/IJCSSA.2014070102

[16] Almeida, J. J., Araujo, I., Brito, I., Carvalho, N., Machado, G. J., Pereira, R. M. S., &
Smirnov, G. (2013). Math exercise generation and smart assessment. 2013 8th Iberian
Conference on Information Systems & Technologies (CISTI). pp 1–6.

[17] Gómez-Abajo, P., Guerra, E., De Lara, J., & Merayo, M. G. (2018). A tool for domain-
independent model mutation. Science of Computer Programming, 163: 85–92. https://doi.
org/10.1016/j.scico.2018.01.008

[18] Pilán, I., Volodina, E., & Borin, L. (2016). Candidate sentence selection for language
learning exercises: from a comprehensive framework to an empirical evaluation. Traitement
Automatique Des Langues, 57(3): 67–91.

[19] García, I., Benavides, C., Alaiz, H., & Alonso, A. (2013). A Study of the Use of Ontologies
for Building Computer-Aided Control Engineering Self-Learning Educational Software.
Journal of Science Education & Technology, 22(4): 589–601. https://doi.org/10.1007/s109
56-012-9416-6

[20] Chrysafiadi, K., & Virvou, M. (2013). Student modeling approaches: A literature review for
the last decade. Expert Systems with Applications, 40(11): 4715–4729. https://doi.org/10.
1016/j.eswa.2013.02.007

[21] Adamopoulos, P. (2013). What makes a great MOOC? An interdisciplinary analysis of
student retention in online courses. In Thirty Fourth International Conference on Information
Systems, pp 1–21.

[22] Bouarab-Dahmani, F., Si-Mohammed, M., Comparot, C., Charrel, P.-J. (2011). Adaptive
Exercises Generation Using an Automated Evaluation and a Domain Ontology: The
ODALA+ Approach. International Journal of Emerging Technologies in Learning (IJET),
6(2): 4–10. https://doi.org/10.3991/ijet.v6i2.1562

[23] Basse, A., Diatta, B., Ouya, S. (2021). Ontology-Based System for Automatic SQL
Exercises Generation Advances in Intelligent Systems and Computing, 1192 AISC, pp. 738-
749.

[24] Ono, K., & Konaka, E. (2017). Automatic exercise generation and their equating on a
coursework of differential equations. 2017 56th Annual Conference of the Society of
Instrument and Control Engineers of Japan, SICE 2017, 2017–November. pp151–156.
https://doi.org/10.23919/SICE.2017.8105450

[25] Mehta, S., & Smetannikov, I. (2020). Finding the Blank with Sequence Labeling for English
Learning. 2020 International Conference on Control, Robotics and Intelligent System.
https://doi.org/10.1145/3437802.3437834

[26] Almeida, J. J., Araujo, I., Brito, I., Carvalho, N., Machado, G. J., Pereira, R. M. S., &
Smirnov, G. (2013). PASSAROLA: High-order exercise generation system. 2013 8th
Iberian Conference on Information Systems & Technologies (CISTI). pp 1–5.

[27] Láng, B.; Kardkovács, T. Zs. (2016). Solving exercise generation problems by diversity
oriented meta-heuristics, In: Shuang, Cang; Yan, Wang (eds.) SKIMA: 2016 10th
International Conference on Software, Knowledge, Information Management &
Applications: University of Information Technology, December 15- 17 2016, Chengdu,

iJET ‒ Vol. 17, No. 11, 2022 223

https://doi.org/10.1145/2530544.2530546
https://doi.org/10.46451/ijts.2021.06.05
https://doi.org/10.1080/09588221.2021.1996396
https://doi.org/10.1080/09588221.2021.1996396
https://doi.org/10.4018/IJCSSA.2014070102
https://doi.org/10.1016/j.scico.2018.01.008
https://doi.org/10.1016/j.scico.2018.01.008
https://doi.org/10.1007/s10956-012-9416-6
https://doi.org/10.1007/s10956-012-9416-6
https://doi.org/10.1016/j.eswa.2013.02.007
https://doi.org/10.1016/j.eswa.2013.02.007
https://doi.org/10.3991/ijet.v6i2.1562
https://doi.org/10.23919/SICE.2017.8105450
https://doi.org/10.1145/3437802.3437834

Paper—Development of the Improved Exercise Generation Metaheuristic Algorithm EGAL+ for End…

China, pp. 49-54, https://doi.org/10.1109/SKIMA.2016.7916196
[28] LÁNG, B. (2019). Solving Exercise Generation Problems Using the Improved EGAL

Metaheuristic Algorithm. SEFBIS Journal, 13: 23–31.
[29] Láng, B. (2020). Solving Exercise Generation Problems Using the Improved EGAL

Metaheuristic Algorithm with Precedence Constraints (Vol. 1135). Springer International
Publishing. 569-579 https://doi.org/10.1007/978-3-030-40271-6

[30] Lee, K. S., & Geem, Z. W. (2005). A new meta-heuristic algorithm for continuous
engineering optimization: harmony search theory and practice. Computer Methods in
Applied Mechanics and Engineering, 194(36): 3902–3933. https://doi.org/10.1016/j.cma.
2004.09.007

[31] Glover, F. (1986). Future paths for integer programming and links to artificial intelligence.
Computers and Operations Research, 13(5): 533–549. https://doi.org/10.1016/0305-0548
(86)90048-1

7 Authors

Blanka Láng is an associate professor at Corvinus University of Budapest. Her re-
search area are harmony and genetic metaheuristic algorithm development, linear re-
gression model selection, exercise generation problems.

Balázs Dömsödi is an MSc Student in Business Informatics Engineering at Corvinus
University of Budapest. His research interests are harmony metaheuristic algorithm de-
velopment and exercise generation problems (email: balazs.domsodi@stud.uni-corvi-
nus.hu).

Article submitted 2021-11-05. Resubmitted 2022-02-14. Final acceptance 2022-02-14. Final version pub-
lished as submitted by the authors.

224 http://www.i-jet.org

https://doi.org/10.1109/SKIMA.2016.7916196
https://doi.org/10.1007/978-3-030-40271-6
https://doi.org/10.1016/j.cma.2004.09.007
https://doi.org/10.1016/j.cma.2004.09.007
https://doi.org/10.1016/0305-0548(86)90048-1
https://doi.org/10.1016/0305-0548(86)90048-1

