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Abstract—Exercise generation is a subject worthy of investigation. In our 
previous papers, a new multi-objective harmony search metaheuristic algorithm 
called EGAL was presented, designed to address a widely recognised problem: 
generating diverse exercises to measure students’ knowledge on various topics. 
An improved metaheuristic algorithm (EGAL+) has since been created, and it is 
presented in this study. The aim of this research was to further develop EGAL 
and to investigate the differences between the original and the new algorithm. 
This newly acquired algorithm preserved the advances of EGAL – the generated 
exercises cover as many areas of the course as possible, the difficulty of the 
exercises are equal, and they are diverse. Moreover, the improved algorithm is 
also usable for non-expert users, since the introduced input fields are restricted 
to the ones which are freely editable. It is sufficient for the user to be proficient 
in their own field and to operate the program with subject-specific questions. 
These statements were confirmed by running EGAL+ on a large number of 
samples. 
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1 Introduction  

Creating and correcting tests are slow and difficult tasks in education. This is one of 
the practical reasons why exercise generation has been at the forefront of research for 
a long time. Generating exercises represents a challenging problem that has been iden-
tified by many researchers. Manually creating exercises is time-consuming, so several 
powerful exercise-generating systems have been proposed over the last few years, and 
many online learning platforms, which are robust and complex systems, generate exer-
cises automatically. Later in this chapter, some examples of such systems are provided. 
These exercise-generating systems are useful for teachers because they save time and 
effort, and teacher workload is reduced as these tools are suitable not only for generat-
ing exercises, but also for correcting, evaluating and grading the answers. These tools 
are also useful for students because most of these systems are personalised and give 
effective feedback. 
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Some of these tools apply different levels of difficulty to handle students with dif-
ferent knowledge levels. Many were developed specifically for a particular field, such 
as language learning (grammar vocabulary trainers), engineering studies, mathematics 
or geometry exercises, SQL tasks etc. However, some of these tools are developed for 
general purposes. Some examples for these different types of exercise generators will 
now be enumerated. 

It should be noted that the use of metaheuristic algorithms to solve educational prob-
lems is a common practice. Two recent examples are a genetic algorithm solution for a 
multi-objective optimisation problem, to create exam schedules [1], or a harmony 
search metaheuristic solution for automatic composition of instructional units [2]; how-
ever, there are many other similar examples [3], [4], [5], [6], [7], [8], [9], [10]. 

The generation of exercises has been extensively studied for a long time by many 
researchers e.g. [11], [12], [13], [14], [15], [16], [17], [18], [19]. Many automated ex-
ercise generation systems can be included in the Data Science domain. Data science 
emerged as a new field over the last few years, and new data science algorithms were 
developed to generate exercises [20]. Whereas the generation of exercises is a con-
stantly evolving field of science, research published in the last decade has been exam-
ined in this chapter. 

However, not only have topic-specific approaches been developed, but such tools 
have also been developed based on the way of reaching students. A template-based 
MOOC (Massive Open Online Course) approach is proposed by [12] to automate the 
teaching life cycle addressing creation of problems. The authors present suitable solu-
tions and grading. 

The key characteristics of MOOCs were identified by [21] which affect the affinity 
of students to online educational systems over a longer period. The most important 
measurements are the user’s affinity towards teaching content, difficulty, workload, and 
the duration of a lesson. 

As emphasised in [11], most of the former solutions could not handle general prob-
lems, but only specified questions. The authors proposed a general solution for repre-
senting user inputs in the automated exercise generation process.  

Some other applications prioritise personalisation. The ODALA+ (Ontology Driven 
Auto-evaluation Learning Approach) is presented by [22] for developing suitable exer-
cises, which is a learning system on user personalisation. The authors have shown that 
developing adapted learning materials is an activity of fundamental importance. 
Knowledge, skills, and behaviour information was collected from the evaluation mod-
ule and was integrated into ODALA+. 

Next, some specific problem-solving applications will be presented. A solution is 
proposed by [23], which was developed to produce SQL questions automatically. This 
system uses difficulty levels and gives feedback for the users to help them improve 
their knowledge. The teachers do not need to create SQL questions, only database 
schemes.  

A solution is offered by [24] for teaching differential equations in the field of Math-
ematics. It is personalised, because the student is identified using his or her answer 
history record of past answers, and the difficulty of the problems are optimised accord-
ing to his or her knowledge. 
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Numerous task generation systems have been developed to support language learn-
ing. An approach is developed by [25] to generate FITB (Fill In The Bank English) 
learning exercises. 

Some other applications prioritise ease of use, in that way similar of our EGAL+ 
algorithm. Passarola, a simple, powerful, exercise generation system was developed in 
such a way that anyone without a computer science background can use it to generate 
exercises. The researchers offer a specific language for creating more complex types of 
exercise than usual, such as multiple choice, data type or file comparisons [26]. The 
target is not a specific subject, as the system can solve general problems. The publica-
tion offers a set of examples of exercises created for courses that range from Mathe-
matics to Music and Geography. 

Moodle, one of the most popular LMSs (a learning management system is a form of 
software that users apply in the web-based learning process) is also capable of generat-
ing exercises for students and teachers. During such generation, different conditions 
may be specified. Various plug-ins have also been developed for Moodle. However, no 
solution can be found neither in Moodle nor among the plug-ins nor in any other LMS 
to the specific problem which is described in the next paragraph.  

An overview of EGAL+, together with a description of the ways in which it differs 
from and is similar to the above, now follows. The purpose of this algorithm is to gen-
erate multiple different subsets of predetermined tasks (i.e. exercises) to test students’ 
knowledge on various topics, in such a way that firstly, the quality of these subsets 
should be good enough according to a predefined quality matrix (i.e. they should cover 
the most important parts of the topics as much as possible), and secondly, the exercises 
are of equal difficulty. It is up to the teacher to decide which parts of the topics are the 
most important. These tasks are selected by the teacher based on which discipline – 
statistics, mathematics, informatics, language, and so on – he or she wants to assess 
students' knowledge of. For example, the topic can be the cascading style sheet subject 
in web development, and the parts can be some concrete CSS formatting, or another 
example can be the English grammar knowledge of verb tenses, and the parts can be 
the past tense of some concrete verbs. The previous examples [27], [28],[29] are uni-
versity level exercises, but EGAL and EGAL+ can be used with students of different 
age and different knowledge depending on the teachers’ choice. 

Exercises should be diverse (according to a matrix and a diversity scale, which are 
both inserted into the multi-objective fitness function). Although the difficulties of 
these tasks can be different from each other, the difficulty of the subsets of the tasks 
should be the same. This is a problem without any satisfactory solution, as is shown in 
the above examples. Our previous studies have addressed this deficit. Unfortunately, 
the optimisation algorithm presented in our former publications has been usable only 
by researchers skilled in the field. Only they have been able to properly reconstruct and 
use it, based on the detailed information in our previous publications. The EGAL algo-
rithm has now been transformed to an “easy-to-use” program, in a way that end users 
with no computer science and optimisation background could also use it, with certain 
restrictions and improvements. The improved metaheuristic algorithm (EGAL+) is pre-
sented in this paper. The goal of this research is to improve EGAL and to show the 
differences between EGAL and the newly acquired EGAL+. 
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Satisfying the needs mentioned previously – the quality of the subsets and the diffi-
culty of the exercises – represents a much smaller-scale problem than that addressed by 
the other solutions in this chapter. One relevant difference is that EGAL+ is not a com-
plex system, for example, this solution is not personalised and does not give feedback 
for the users.  

On the other hand, this solution resembles other solutions previously described in 
this paper in the sense that is general, i.e. the problem can come from any field of sci-
ence, e.g. statistics, mathematics, informatics, language, and so on, since EGAL+ will 
solve the problem regardless.  

To summarise, in reviewing the literature it is found that - although many complex, 
adaptive, personalised, easy-to-use and effective exercise generating systems have been 
developed - such a tool capable of solving exactly the specified problem - to generate 
multiple different subsets of predetermined tasks, in such a way that the quality of these 
subsets should be good enough according to a predefined quality matrix, and the exer-
cises are of equal difficulty – does not yet exist. No similar solution has previously been 
found, since the predefined quality matrix gives the solution a unique character, and no 
problem statement has previously been found where multiple different subsets of pre-
determined tasks are generated. Moreover, achieving all these things with an interface 
designed for non-expert users is also unprecedented, indicating that the added value of 
the EGAL+ algorithm is unquestionable. 

2 End user problem 

EGAL+ is an improvement of the EGAL algorithm, which was published in our 
former papers [27], [28], [29]. It will be shown that the original EGAL algorithm can 
be transformed for use by end users without a computer science and optimisation back-
ground, with some restrictions and improvements. In this paper the new algorithm 
EGAL+ will be presented, which differs in many respects from the original EGAL al-
gorithm. The most important modifications are (i) choosing appropriate initial param-
eters; (ii) limiting the number of zeros in the quality matrix (iii); inserting a new func-
tion, which handles the difficulty problem and (iv) improving the fitness function. 

EGAL+ is a web-based app that can be used via any current browser. Before going 
into the details of the system, it should be described how the EGAL+ algorithm is dis-
played to a user. A demonstration is available at https://egalplus.azurewebsites.net/. 
Here the user can run general cases – where the tasks are Task1, Task2, etc. –, and a 
specific CSS example can be run here as well – when the tasks are CSS formats. This 
example is one of those that were investigated in our former publications [27]. 

It should be noted that hosting the new algorithm imposes certain restrictions as re-
gards running time. The probability of these restrictions occurring is small, but if the 
reader would like to check the algorithm without restrictions, it is recommended to use 
the GitHub code. The algorithm’s code can be found at: https://github.com/balazs-dom-
sodi-h53osf/EGALplus. In the readme.txt file, the reader can find a detailed user guide. 

A brief explanation of how to run EGAL+ with the help of a short example now 
follows. When the teacher wants to generate some exercises using EGAL+, he/she first 
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sets the following parameters: (i) PopSize: the number of the students in the class, for 
whom he or she wants to generate PopSize pieces of exercises, which are different and 
have acceptable quality according to a predefined quality matrix, (ii) NoT: the number 
of the optional tasks, (iii) the name of the tasks according to the specific problem, which 
in this example are: Task1, Task2, etc., (iv) TSize: the number of questions in one ex-
ercise, (v) difficulty: the difficulty of the tasks. 

As mentioned previously, the purpose of the end user - for example, a teacher - is to 
generate multiple different subsets of predetermined tasks (i.e. exercises) to test 
students’ knowledge. The first requirement of the teacher is that the quality of the sub-
sets should be good enough according to a predefined quality matrix (i.e. they should 
cover the most important fields as much as possible). Consequently, the teacher sets the 
quality values in the quality E matrix (see Figure 1), which is a symmetric matrix. The 
matrix contains elements between 0 and 10, and has NoT rows and columns. The values 
of the elements indicate how much the user wishes to use the corresponding tasks in 
the same exercise. A value of zero means the two tasks cannot be run simultaneously, 
and a value of ten means they should appear together. In-between values indicate that 
the teacher prefers to include these tasks at the same time. A value closer to zero indi-
cates that the tasks appear together less often. 

 
Fig. 1. Quality matrix 
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The second – and also important – expectation of the teacher that exercises should 
be diverse and although the difficulty of the tasks (“difficulty”) can be different, the 
difficulty of the subsets, i.e. the sum of the difficulty of the selected tasks (“Difficulty”) 
has to be of the same value, because it is assumed that one would like to use fair exer-
cises. As the teacher sets the difficulty values of the tasks (see Figure 2), he or she can 
select these values from the set: {1,2,3,4,5}. 

 
Fig. 2. Task difficulty values 

The program – or more precisely, a function of the program – will offer three possi-
bilities for the teacher – low, medium, and high – as the Difficulty value of the exercise. 
The user can choose one of these three values as can be seen in Figure 3. 

 
Fig. 3. Difficulty value of an exercise 
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After these steps, by clicking the run button, the user receives the result: PopSize 
pieces exercises which are different and have acceptable quality according to a prede-
fined quality matrix. A part of an output example is shown in Figure 4. In this case the 
chosen Difficulty value was 28. 

 
Fig. 4. A part of an EGAL+ output 

In the EGAL program, the user can choose the above parameters, and the cumulated 
Difficulty value as well, independently of each other. In that process the user must be 
proficient at optimisation to select the right difficulty values, because occasionally the 
parameter settings could be contradictory. Some extreme examples are examined be-
low. If every difficulty value is even but the exercise Difficulty value is not even, the 
parameter values are contradictory. Another contradictory case would be if a too big or 
too small a cumulated Difficulty value is selected: in this case, the freedom of the al-
gorithm would be reduced. Another possible error would be if the user sets a NoT value 
which is less than the TSize value; in this case the values are contradictory, or the free-
dom of the heuristic algorithm has lost. Several other problematic examples could be 
shown. 

It can be concluded that the user who selects the parameters must be familiar with 
metaheuristics, or the user and the optimisation expert must work together closely to 
choose the right input values. The EGAL program required the user to be a person with 
a solid knowledge of metaheuristics and optimisation. In the case of the EGAL+ pro-
gram, the user can not choose contradictory parameter values. While developing 
EGAL+, the goal was to provide a modified, more user-friendly algorithm that anyone 
without an optimisation background can use to create powerful exercises. 
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3 An improved harmony search algorithm 

In this chapter the improved exercise generation process, EGAL+, is introduced, 
with a special emphasis on improvements. Detailed description of the original EGAL 
can be found in our previous publications. Here the unchanged code parts are only 
briefly summarised, and details are given of those parts that are new or different in 
EGAL+.  

It was not possible to use an exact algorithm to solve the exercise-generating prob-
lem mentioned above because the number of possible cases was unmanageable, so a 
harmony search (HS) metaheuristic algorithm [30] was applied. Since HS is a popula-
tion-based heuristic algorithm, it converges to a global maximum or minimum. In the 
harmony memory – namely population – there are binary vectors for this algorithm. 
The fitness function value represents the quality of a vector. The quality of the individ-
ual value is maximised by maximising the fitness function value. In searching for the 
global optimum, the fitness function value should be maximised through further im-
provisations [30]. 

At the beginning of the HS, the corresponding parameters are set. These are (i) the 
harmony memory size (HM), (ii) the maximum generation number (iii), the HMCR 
(harmony consideration rate), and (iv) the PAR (pitch adjustment rate). After that the 
population of random vectors is initialised. The following is the improvisation step. 
According to Lee and Geem [30] a new harmony is improvised using HMCR and PAR 
probabilities. The quality of the population improves by each iteration until the algo-
rithm is terminated.  

The detailed description of EGAL+ is shown in the following. The first step sets the 
parameters. In this case, the harmony memory is the size of the population (PopSize), 
and the low and upper bounds are 10 and 100. HMCR and PAR were set as recom-
mended by Lee and Geem to HMCR=0.5 and PAR=0.2. The Epsilon value was set low 
enough for the program to run long enough so that metaheuristics could give results 
which meet the specified requirements detailed in Chapter 2 with Epsi-
lon=0.0000000001. This statement will be confirmed with the run results being shown 
later. The user can select only the PopSize value, as the other values are fixed. 

At this point, the improvisation process had to be changed a little. If the user freely 
selects the difficulty values, the extreme situation occurs very rarely where the modifi-
cation of the vector selected from the memory will not be successful at all. To solve 
this problem, if the modification does not occur after a specified period, a totally new 
vector is generated instead of the modified one. The probability of this case occurring 
is negligibly small. 

It should be noted that depending on the other parameter settings, it is possible that 
they have a different value than the one specified, which would make the algorithm 
more efficient, run faster, or possibly give slightly better fitness values. For now, this 
increase in efficiency is not studied, because the primary goal of the research is to de-
velop an easy-to-use program for the end user. The parameter calibration problem is 
worthy of further investigation in the future. 

For the following parameters, upper and lower limits are specified, and the users are 
free to choose the values between the limits, which are presented in Table 1. 
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Table 1.  Parameter settings 

Parameters Minimum 
value 

Maximum 
value Note 

HM=PopSize 10 100 The number of students for whom exercises should be 
generated 

Number of Tasks (NoT) 20 50 The optional tasks count 
TSize NoT/4 NoT/2 The number of the questions in one exercise 

E quality matrix values 0 10 
The maximum number of zeros: (((NoT-
1+TSize*2)/2)*(NoT-TSize*2))/10 
maximum number of zeros in a row: (NoT-TSize)/4 

difficulty values 1 (easy) 5 (difficult) The user is completely free to choose from the values of 
{1,2,3,4,5}  

In the next step, the user sets the quality values in the quality matrix E. The procedure 
was described in detail in the previous chapter. One of the most important differences 
between EGAL and EGAL+ is the how the E matrix values are handled. In the case of 
EGAL, the user had to understand the optimisation and had to select the matrix values 
in such a way to run the algorithm without freezing. In EGAL+ a user can select rela-
tively freely the values of the matrix, but this problem of freedom must be managed. It 
is necessary to limit the number of zeros in the matrix and the number of zeros in a 
row/column, to prevent the user from entering too many zeros. The result of too many 
zero values can be a problem. For example, the program loses its freedom and cannot 
run. You can find the suitable limits in Table 1. These limits are calculated in the fol-
lowing way: first those cases are specified for which the number of the zeros will pre-
vent the algorithm from running. Then these limits are relaxed until the required free-
dom is reached and the algorithm will run. This statement is to be confirmed later. 

Since EGAL+ is HS, the following is the initialisation. The initial population con-
sists of random vectors. Every vector contains TSize pieces of 1-bits, and NoT-Tsize 
zeros. If the ith bit of a vector is zero, the ith task is not chosen, otherwise it is chosen.  

In the next step, the fitness function values are calculated. In the case of EGAL the 
goal was to maximise the quality of exercises, and the distance between individuals in 
the population simultaneously. These features were inserted into the fitness function. 
In the case of EGAL+, the purpose is the same, but the fitness function had to be mod-
ified, because the user can select most of the parameters freely without optimisation 
knowledge. The two operands are the same, the modifications are the deleted normali-
sation of the operands, and inserting new ratio multipliers in the function.  

The first operand of the fitness function was calculated as described, where p is an 
individual and E is the quality matrix: 

 𝐹𝐹𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑝𝑝) = ∑ ∑ 𝑝𝑝[𝑖𝑖] ∗ 𝑝𝑝[𝑗𝑗] ∗ 𝐸𝐸[𝑖𝑖, 𝑗𝑗]𝑁𝑁𝑁𝑁𝑁𝑁−1
𝑗𝑗=0

𝑁𝑁𝑁𝑁𝑁𝑁−1
𝑓𝑓=0  (1) 

The second operand in the fitness function is the diversity measure. The distance of 
two vectors in the same population equals the number of different digits. Then the di-
versity measure (D) of the p vector is determined. It is equal to the sum of the diversity 
for all vectors in the population.  

218 http://www.i-jet.org



Paper—Development of the Improved Exercise Generation Metaheuristic Algorithm EGAL+ for End… 

The selection function combines these two operands with an addition operation. In 
the case of the diversity and fitness values the ranges may differ. In the case of EGAL+, 
the fitness function was modified due to the free parameter settings. Initially, the nor-
malisation was deleted, then afterwards the values in the second operand were divided 
by PoPSize/20. The purpose in doing this was that in the case of every parameter value, 
the quality operand was more, or at least as, important as the difference operand. It was 
aimed to keep the ratio of the two operands between 0.1 and 1. In the next chapter it is 
shown that this value is within the required limits in all parameter settings. After these 
steps, the fitness function will be equal to the sum of the first operand and to the second 
operand*20/PopSize. 

The last important difference between the original and the new algorithms is how 
the user selects the Difficulty value for the exercises. First the user selects the difficulty 
values for the tasks between 1 (easy) and 5 (difficult). In the previous chapter the free-
dom problem that can occur when a non-expert user selects a cumulative Difficulty 
value is demonstrated. The EGAL+ program will offer three possibilities for the teacher 
- low, medium, and high - as the Difficulty value of the exercise according to the se-
lected difficulty values. These values were calculated in such a way as to give enough 
freedom to the program. It is shown in detail below how the three values were calcu-
lated. 

Since examining all possible combinations is to be avoided for performance reasons, 
a heuristic solution is used instead of an exact algorithm. A function in the program 
randomly lists the possible difficulty combinations and puts the task sequences which 
already have been examined into a “taboo list”, which stores them in a vector, so they 
will not be double-checked unnecessarily. A form of taboo list is used [31], with the 
difference that it is not FIFO; nothing is deleted from it. In addition, the possible total 
difficulties and their occurrences are collected in a two-dimensional vector. If the oc-
currence number of a total difficulty value exceeds a predetermined value (2 * Pop-
Size), the user is allowed to select it. This function is stopped when it is considered that 
it has given a sufficient and well-distributed total number of difficulties. The number 
of pieces is three, because easy, medium, and difficult exercises are to be generated. 

The distribution problem was solved according to the following heuristic: the mini-
mum and maximum cumulative Difficulty values are considered and half of their dis-
tance (difference_goal) is taken as the starting value. The program is run for a prede-
termined time interval and the outputs are examined: whether the three values are re-
turned whose distance is “difference goal” or not. If they have not been returned yet, 
the difference goal value is decreased by one again and again, always examining 
whether the three values are returned or not. This step is repeated until three values are 
returned: x1, x2, x3 as “easy”, “medium”, “difficult” values for the distance-goal dis-
tance from each other. The viability of this part of the program will be confirmed with 
random run results. 

After this, more improvisation phases follow until the algorithm is terminated, which 
occurs if the average fitness value of the last 10 populations did not improve more than 
Epsilon.  

The most important difference between the original and the new algorithms were (i) 
how the parameters were handled: some of them were fixed and some of them could be 
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chosen by the user between some limits, (ii) how the number of zeros in the E matrix 
was limited, (iii) how the D difference was handled: a function was calculated and the 
user could choose only from the generated results and (iv) how the ratio was inserted 
into the fitness function. With these and some other minor modifications, the algorithm 
could be transformed for end users without computer science and optimisation back-
ground. By the end of the algorithm, the population will consist of exercises which are 
different and have acceptable quality according to a predefined quality matrix - these 
are guaranteed by the fitness function - and the Difficulty of the exercises will be equal. 
This statement will be confirmed in the next chapter, in which the program is run on a 
large number of samples. 

4 Computational results 

Reviewing the relevant literature indicates that there is no formerly existing algo-
rithm which solves exactly the specific problem described in the Introduction, so the 
result of this algorithm cannot be compared with the results of other formerly existing 
algorithms. To illustrate the essence and viability of this algorithm, detailed computa-
tional results are given in this chapter. Random values were selected for each possible 
parameter between the upper and lower limits given in Table 1, and computational re-
sults were given for each case. All procedures were coded in the PHP 7.0 language. All 
computational results were acquired on a Laptop with Intel Core i7-9750H 2.6 GHz 
CPU and 16.0 GB RAM. 

250 such random parameter sets were created, and the algorithm was performed for 
20 runs for each instance, so the number of the total run is 5000. Aggregated results are 
shown in Table 2. (More detailed results can be found here: https://github.com/balazs-
domsodi-h53osf/EGALplus/raw/main/result.xlsx.) Fitness function values, fitness 
function value improvements, difference values, the ratio of the two fitness function 
operands and solution times can be found in the tables. For these values, you can find 
minimum and maximum, average, and standard deviation values rounded to three dec-
imal places.  

Table 2.  Computational results 

 Minimum Maximum Average Standard deviation 
Fitness value improvement (%) 1.12% 14.95% 3.54% 0.55% 
Difference (%) 2.182 25.235 13.445 0.162 
Operands ratio  0.122 0.993 0.323 0.005 
Solution time (sec) 4.000 1243.000 45.026 3.822 

The results of the tables show that the algorithm ran for each random parameter set, 
and the improvement of the fitness function values can be seen. In addition, the ratio of 
the two fitness function operands is between 0.1 and 1 as mentioned before, the mini-
mum value was 0.122 and the maximum value was 0.993. Although the solution times 
are in most cases within acceptable limits (0-360 sec), a few higher values can be found 
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– higher than 360 seconds (1.64% of all cases). In the next chapter, a planned improve-
ment will be mentioned to reduce these high results. The results show that the difficulty 
problem is solved, and the exercises are different in one population. When the algorithm 
is run using the same parameter sets twenty times, the detailed standard deviation val-
ues confirm the robustness of the algorithm. 

A detailed discussion of how the set goals were met now follows. As stated at the 
beginning of this article, the goal of this research was to improve EGAL and to show 
the differences between EGAL and the newly acquired EGAL+. Firstly, this new algo-
rithm has managed to preserve the advances of EGAL – the generated exercises cover 
as many areas of the course as possible according to the predefined quality matrix and 
the multi-objective fitness function, the exercises are diverse according to the diversity 
measure, and their difficulty are equal. Furthermore, the improved algorithm has be-
come usable for end users without a computer science and optimisation background 
since the newly introduced input fields are restricted to the ones which can be changed 
freely without breaking the program. It is sufficient for the user to be an expert in their 
field and to upload the program with questions adequate to the subject. One of the most 
significant changes in the algorithm is that the background calculation of the difficulty 
options was introduced so that the user can only select from the available goals calcu-
lated by the program. The statement – the program gives correct results within prede-
termined acceptable time using values within the allowed limits – was confirmed by 
running the algorithm on a large number of samples. 

As previously mentioned, the results obtained here could not be compared to earlier 
research findings, so the detailed run results were investigated on their own to corrob-
orate our statements. These values showed that the set goals have been achieved, and 
that EGAL+ is viable, efficient, robust and solves the specific problem described in the 
Introduction. 

5 Conclusions and future improvements 

When the algorithm was created, the goal was to generate more subsets of predefined 
tasks (i.e. exercises) to test students’ knowledge in such a way that the quality of these 
subsets should be good enough according to a predefined quality matrix (i.e. should 
cover the main topics of a course as much as possible) and exercises should be diverse 
(according to a matrix and a diversity measure, which are inserted into the multi-objec-
tive fitness function). Moreover, although the difficulty of these tasks might be different 
from each other, the difficulty values of the subsets needed to be equal.  

In this paper it has been shown that, according to the initial hypothesis, this algorithm 
could be made available for use by end users without a computer science and optimi-
sation background subject to certain restrictions and improvements. The improved me-
taheuristic algorithm (EGAL+) was created and presented in this study. The hypothesis 
for this improved algorithm was confirmed by running it on a large number of samples.  

Many improvements for this algorithm are planned in the future. A self-learning 
EGAL+ algorithm is planned to be developed in the future, where the difficulty values 
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are updated using the results gained from users. It is also planned to modify the repre-
sentations of the individuals in a certain way, with an expected decrease in run times. 
Furthermore, it is to be examined how this algorithm could be integrated into a learning 
content management system, for example into Moodle. The parameter calibration prob-
lem, as mentioned earlier, is also worthy of future investigation. Finally, it is also worth 
examining how the “group problem” and the “precedence relation problem” mentioned 
in [28] and [29] could be integrated into the algorithm. 
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