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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract 

In modern industries, there is a significant repository of sensor data, which contains a large amount of information. Unfortunately, this rich source 
of information is undervalued and underutilized, and its full potential is not fully exploited by modern day manufacturers. In the Industry 4.0 era, 
exploiting these powerful datasets is becoming critical for manufacturers’ survival and competitiveness in the age of artificial intelligence. 
Cooperative and mutual efforts between academia and the industrial sector to take advantage of these rich datasets have the potential to reap 
extraordinary benefits for business, the economy and society. Applying the latest artificial intelligence methods could increase production 
efficiencies and reduce environmental impacts. In view of the availability of large amounts of sensor data and its lack of full utilization, this 
research proposes an artificial intelligence solution that combines data envelopment analysis (DEA), machine learning-based simulation and 
genetic algorithms to optimize the efficiency of production systems through recommendations of the optimal model settings. First, DEA is used 
to identify the efficient and inefficient states of a production system, this information is input to the second step to build a machine learning model 
that makes predictions through simulations and production efficiency scenarios. Then, a genetic algorithm proposes an optimal scenario with the 
corresponding settings. The main research contribution of this proposed solution is its unique combination of DEA with machine learning models 
and genetic algorithms. 
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1. Introduction 

Production systems are dynamic and fast paced. Lean 
manufacturing, a production system philosophy, seeks to 
remove all types of production waste to consequently improve 
production efficiency. Most of the time, it is worth improving 
production systems’ efficiency, even in the slightest way, as 
modern industries are in a continuous race for positive results. 
As science and technology advance, an increasing number of 
techniques are used in support of lean production systems. 
Industry 4.0, also called the fourth industrial revolution, 
encompasses a wide range of advanced technologies, such as 
artificial intelligence (AI), robotics, the internet of things and 
cloud computing, which are all changing production paradigms 
and business models. In short, Industry 4.0 automates industrial 

processes and integrates advanced technology with the 
workforce to increase production efficiency. 

Given the abundance of sensor data generated by highly 
automated and interconnected production systems, it makes 
sense for industries, in their continuing drive for waste 
reduction, to utilize these rich data depositories as a resource. 
This study proposes an artificial intelligence solution that 
combines data envelopment analysis (DEA), machine learning 
(ML) and genetic algorithms (GA) to increase production 
efficiencies by finding optimal production settings and 
configurations. Hence, the proposed AI solution contributes to 
the extension of Industry 4.0 and lean manufacturing 
techniques for modern industries. This article has eight 
sections. Section 1 introduces the motivation and the 
background. Section 2 discusses the state-of-the-art of ML, GA 
and DEA. Section 3 provides an overview of the proposed 
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1. Introduction 

Production systems are dynamic and fast paced. Lean 
manufacturing, a production system philosophy, seeks to 
remove all types of production waste to consequently improve 
production efficiency. Most of the time, it is worth improving 
production systems’ efficiency, even in the slightest way, as 
modern industries are in a continuous race for positive results. 
As science and technology advance, an increasing number of 
techniques are used in support of lean production systems. 
Industry 4.0, also called the fourth industrial revolution, 
encompasses a wide range of advanced technologies, such as 
artificial intelligence (AI), robotics, the internet of things and 
cloud computing, which are all changing production paradigms 
and business models. In short, Industry 4.0 automates industrial 

processes and integrates advanced technology with the 
workforce to increase production efficiency. 

Given the abundance of sensor data generated by highly 
automated and interconnected production systems, it makes 
sense for industries, in their continuing drive for waste 
reduction, to utilize these rich data depositories as a resource. 
This study proposes an artificial intelligence solution that 
combines data envelopment analysis (DEA), machine learning 
(ML) and genetic algorithms (GA) to increase production 
efficiencies by finding optimal production settings and 
configurations. Hence, the proposed AI solution contributes to 
the extension of Industry 4.0 and lean manufacturing 
techniques for modern industries. This article has eight 
sections. Section 1 introduces the motivation and the 
background. Section 2 discusses the state-of-the-art of ML, GA 
and DEA. Section 3 provides an overview of the proposed 
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solution and describes the model inputs, components and 
outputs in depth. Finally, Section 4 concludes this article with 
the benefits, limitations and potential future steps for the 
research. The suggested AI solution can be implemented in the 
industrial sector as an add-on decision support system for 
SCADA (supervisory control and data acquisition) systems. 

2. Literature review 

2.1. DEA and machine learning 

DEA is a well-established technique to identify the 
efficiency frontier of multiple input–output systems. DEA was 
initially proposed to evaluate the activities of business entities; 
however, it can be extended to other problems where multiple 
input–output combinations can be observed with differing 
efficiencies. The technique is based on mathematical 
programming and assumes that there is no noise in the data. If 
the data have noise, then the approximation of the efficiency 
frontier may be overstated [1]. 

Research [2] aims to establish a linkage between the DEA 
method and the ML algorithm by measuring and predicting the 
DEA efficiency performance of Chinese manufacturing 
companies in 2016. In these scenarios, ML is integrated into 
DEA with the intent of predicting the efficiency of the 
manufacturers, but the process does not involve any 
optimization or sensor data. Moreover, [3] has a more general 
approach, mixing DEA and machine learning to evaluate the 
financing efficiency of 39 listed agricultural companies in 
China from 2013 to 2017. The influencing factors that have a 
higher weight on the ML model are explored and discussed. 
Similarly, [4] uses a hybrid model of DEA and a decision tree 
algorithm to evaluate the efficiency of ports. Combining DEA 
and ML has also been used for computational optimization. In 
manuscript [5], a hybrid DEA-Adaboost model is proposed to 
simplify the supplier selection process. The results show that 
the approach reduced the time consumption and computational 
complexity. 

Combinations of DEA and ML has been widely documented 
in the literature for different purposes. However, DEA 
calculations of manufacturing systems via production sensor 
data for production efficiency optimization have not yet been 
fully explored by researchers. 

2.2. Machine learning and genetic algorithms 

There are many scenarios when ML can be combined with 
GA; ML can speed up GA when used as a fitness function, or 
GA can be used to optimize the tuning of ML model 
hyperparameters. Another underexplored use case is the usage 
of ML as a fitness function when it is not possible to have a 
fitness function equation. 

The literature on the combined usage of ML and GA is large 
and diverse. [6, 7] combine GA with ML to select the optimal 
feature subset. Similarly, [8] combines the two methods to find 
the optimal hyperparameters for classification systems and 
improved model performances. [9] compares the two 
methodologies, one is based on deep Q-learning and another is 
based on genetic algorithms. Furthermore, [10,11] combine 

GA and ML to explore the advantages in the acceleration of 
searches. This approach is similar to our proposal to some 
extent, as it uses ML as a fitness function for GA; however, the 
reasons are different, as their focus is on speeding up GA by 
mixing ML with it. In these two research papers, fitness 
functions are possible to calculate but the challenge is in the 
calculation expense of repeatedly doing it. The difference is 
that our research combines ML and GA because it is not 
possible to calculate GA chromosome fitness without it and not 
for the purpose of accelerating the computational time. In short, 
no research combining ML with the GA’s fitness function for 
the purpose of optimizing production systems was found. 

2.3. Combination machine learning, DEA and genetic 
algorithm 

Although combining ML with GA, or DEA with ML, has 
been widely discussed in the literature, we did not find any 
research combining all three. In addition to the combination of 
these three methods, this research is novel in applying this 
approach to production efficiency optimizations. The 
combination of the three methods can open new paths of 
research and help enlarge the usage of hybrid artificial 
intelligence models in Industry 4.0. Therefore, the main 
scientific contribution of this solution is the unique 
combination of DEA with ML models and GA. In addition, this 
study opens the possibility for applying these combinations in 
different industries for optimization problems. 

3. Model overview 

The proposed AI solution reads a dataset of sensor signals 
and input parameters by the user, processes this information, 
and generates recommendations of optimal settings and 
configurations that aim to maximize production efficiency. The 
model has 3 main components, DEA, ML and GA, which, 
when combined, work as a powerful AI solution capable of 
predicting the relative production efficiencies of different 
settings and configurations. Moreover, GA component uses 
these predictions to search for different settings and 
configurations using the user’s inputs, and selects the optimal 
ones. The system is outlined at a high level in Fig. 1. 

The Inputs phase is the first step of the system, containing 
the initial settings prior to the model’s calculations. There are 6 
inputs required by the AI solution: 

 
• Machine learning methods 
• Hyperparameters grid range 

Figure 1 AI solution macroprocess 
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• Pre-processing methods 
• CSV with sensors data 
• Desired production output 
• Configuration and settings parameters that the user 

can select and adjust. 
 

Once the initial inputs are ready, the model starts to act. The 
first step is data preparation and a DEA calculation using 
historical data. During this phase, outliers are removed, and the 
relative production efficiencies are calculated. The second step 
is to train a machine learning model capable of predicting the 
relative production efficiency given a set of sensor values, 
settings and configurations. Finally, the GA simulates different 
settings and configurations and selects the optimal one for the 
desired production output, using the ML model as the fitness 
function to calculate relative production efficiencies. As a result 
of all the steps, the optimal settings and configuration can be 
used as parameters for achieving the desired production output. 

3.1. Model inputs 

3.1.1. Machine learning methods 
Relative production efficiency is a continuous data type; on 

the other hand, sensor data and configuration parameters can 
be a mix of binary and numerical data. There are three ML 
models recommended for this type of data: linear regression 
(LN), regression trees (RT) and neural networks (NN), which 
are the ML model types capable of achieving such results [12]. 

This research proposes the use of elastic net (LN method),
gradient boosting (RT method) and support vector machine 
(RT method), which are well-known, industry standard ML 
methods used to predict continuous data based on 
continuous/binary dependent variables [13, 14, 15]. For more 
flexibility, the user is able to choose which one of those 
methods to use, or multiple methods can be selected, and the 
best fit will be selected by the AI component. It is worth noting 
that the calculation time for fitting the model is directly 
proportional to the number of models included. Neural 
network-based methods are not included because they can 
significantly increase the training time [16]. 

3.1.2. Hyperparameter grid range 
Hyperparameter tuning is one of the most crucial phases of 

ML model training. The most common practice for tuning 
hyperparameters considers the selection of an ad hoc range of 
common hyperparameter values and empirically searches for 
the best fit [17]. For the proposed research, a fixed range of the 
most common values of hyperparameters can be used, or this 
range of values can be set manually by the user. However, large 
ranges of values can lead to long training times. 

3.1.3. Pre-processing methods 
Data pre-processing is an essential step of ML modelling. 

Pre-processing delivers higher quality data before ML training 
and consequently improves the prediction performance. Min-
Max Scaler, Standard Scaler, Max-Abs Scaler, Robust Scaler, 
Quantile Transformer (Normal), Quantile Transformer 
(Uniform) and Power Transformer are conventional pre-

processing techniques. Current practices for selecting pre-
processing methods typically involve trying variations of these 
methods and selecting the most accurate one [18]. Hence, 
similar to the previous inputs, the suggested AI solution should 
provide options to the user to include all or some of those pre-
processing methods. The best fit from the selected pre-
processing methods will be used in the ML model. Similar to 
the previous input, the training time increases as more possible 
pre-processing methods are selected. 

3.1.4. Sensor data of various historical operations output 
A CSV dataset containing sensor signals is the primary 

source of data for the ML model. This dataset should include 
continuous data such as infeed speed, pressure, temperature, 
and the binary signals of the configuration parameters 
indicating the operation status of a feature/input. Other sensor 
data may fall outside of the control of the operations and can 
be collected by external sensors or public data sources (e.g., 
weather forecasts). However, one of the major problems in ML 
is the selection of the most representative features by taking 
into account the possible disadvantages that can exist. A large 
number of features or signals used as dependant variables, 
noise data and irrelevant data should be avoided and not 
included in the model’s dataset [19]. 

3.1.5. Desired production output 
The sensor data, that indicate the production output, should 

be specified since it will be used for DEA and used further on 
as a dependent variable in the machine learning model. 
Moreover, the desired production output should be stated since 
it represents what output needs to be achieved at the maximum 
possible production efficiency. Desired production outputs 
might include values that originate from production plans or 
contractual obligations as well as production forecasts. This 
stated value should be appended to the column of the dataset 
containing the actual production output so that each line 
containing sensor data will also have a value of the production 
output. The last line of the dataset should contain the current 
desired production output, together with the latest sensor 
measured values. 

3.1.6. Manipulable settings and configuration parameters 
Production systems have multiple signals, and some of these 

data can be manipulated by adjusting production input settings, 
or choosing from different configuration parameters. Some of 
these settings or configuration parameters cannot be, or can 
only be, changed within boundaries for various reasons. Safety, 
product specifications and environmental awareness are some 
examples of why some settings or parameters are immutable. 

In the proposed solution, the user should determine which 
of those values can be manipulated, and those pointed out by 
the user will be the ones that the AI model will try to optimize. 

3.2. Data preparation and DEA 

Data preparation and DEA calculation are the first 
components of the AI solution. During this step, two predefined 
inputs are used from the historical data (CSV): the recorded 
values of the manipulable input settings, which were set by the 
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user, and the recorded values of the sensor data. These sensor 
data are either production output values or production input 
values that were achieved as a result of the manipulable input 
settings. 

At this phase, two main processes can be performed in 
parallel, as seen in Fig. 2. On the left branch of Fig. 2, CSV 
data are used to perform DEA and calculate the productive 
efficiency of the decision-making units (DMUs, the different 
valid configurations and combinations of input–output values), 
which will then pass through an outlier removal performed by 
the interquartile range (IQR) method. Outlier removal is an 
important pre-processing method for machine learning models. 
The usage of such a method can significantly improve the 
accuracy of the ML model [20, 21]. In contrast, keeping 
outliers in the dataset increases the error variance and reduces 
the power of the statistical tests; therefore, outlier removal is 
recommended for most ML models [22]. The pre-processed 
sensor dataset with an attached relative productive efficiency is 
the result of the left branch. This new dataset will be later used 
on the ML model training. 

On the right branch of Fig. 2, information given by the user 
of what manipulable input settings were used, together with the 
CSV dataset containing all sensor data, are used to determine 
the data range and data type of the manipulable input settings. 
Considering that not all input settings can be manipulated, 
determining which inputs can be manipulated is necessary for 
the production efficiency optimization. There can be many 
reasons why some inputs cannot be manipulated. Input 
variables could be measuring external variables that are outside 
of the control of the operations (e.g., external temperature) or 
variables that, for specific reasons, are not flexible for changes. 
Safety parameters, product specification and environmental 
awareness are some examples of types of production system 
concerns that can make an input value unchangeable. 

Data types are needed to classify the manipulable input data 
into binary or continuous types. The data types and a possible 
range of values of sensor data are later used to generate an 
initial population and mutate offspring during the GA phase. 
The scalability of the DEA method in handling a large portion 
of datasets extracted from the manufacturing sensors is limited 
by the number of variables the LP solver is allowed to handle 
(e.g., the Python package (PyDEA)), using the PuLP package 
and IBM ILOG CPLEX as a solver is limited to 10000 
variables as an academic licence). Data will be stratified and 
downsampled to meet these limitations. 

3.3. Machine learning model training 

Machine learning model training is the next step for the 
proposed AI solution after DEA and data preparation. At this 
phase, the previously treated dataset will be used as input to 
find the optimal ML model capable of predicting the 
production efficiency given a set of sensor data configurations. 
However, splitting the data into training and test datasets 
should be done before the training starts. Splitting datasets is a 
common practice in ML algorithms. A train-test split separates 
a portion of data to be used exclusively for validation, 
producing more robust and unbiased models [23, 24]. 60/40, 
70/30, 75/25 and 80/20 are common proportions used for the 
train-test split. The proposed train-test split proportion for this 
AI system is 70/30 since it is commonly used in many previous 
studies, but other common values could also be implemented 
[25, 26]. 

As mentioned before, the user can select multiple ML 
methods, possible hyperparameter values and pre-processing 
methods. All these parameters will be validated, and their 
scores will be checked. The best model will be selected through 
an exhaustive search method called a grid search. Grid search 
is a hyperparameter optimization method that simply makes a 
complete search over a given subset of the hyperparameter 
space. This subset of parameters has a well-known possible 
range of values for each ML model, and the process of choosing 
the optimal one is an empirical process; therefore, grid 
searching through these possible values is a common practice. 
Fig. 3 describes the machine learning model training steps via 
a process flowchart. 

Raising the number of possible values within the common 
optimal range can significantly increase the training time; 
hence, this input set should be chosen carefully by the user. 
Genetic algorithms have been intensively discussed as an 
alternative for grid search, and many studies have obtained 
good results with this approach [27]. However, this AI solution 
uses grid search, using GA to find the optimal production 
settings by using ML as a fitness function to predict a given 
efficiency; hence, the computational resources focus on that. 
The GA phase will be described in more detail in the next 
section. Another consideration worth mentioning is that this AI 
solution extends the grid search to the chosen ML and the pre-
processing methods mentioned in Section 3.1. Hence, the 
model’s hyperparameters are not the only consideration as 
possible values for the model optimization. Extending grid 

Figure 3. Machine learning model training flowchart 

Figure 2. Data preparation and DEA flowchart 



532 Joao Henrique Cavalcanti  et al. / Procedia CIRP 107 (2022) 528–533
 Joao Henrique Cavalcanti et al. / Procedia CIRP 00 (2019) 000–000  5 

search is a common technique and is supported by the Python 
library scikit-learn [28]. 

[29] suggests the employment of R-squared as the standard 
statistical measure to evaluate regression analyses in any 
scientific area, and this research complies with it. Therefore, R-
squared is the chosen scoring method to grid search the optimal 
model. 

3.4. Genetic Algorithm 

The final component of the proposed AI system is the 
genetic algorithm. At this phase, the GA simulates different 
input settings and selects the optimal one using the ML model 
that was previously trained as the GA fitness function. The 
fitness function is part of the GA and is responsible for 
evaluating the quality of each potential solution. A flowchart 
of this phase is described in Fig. 4. 

Manipulable input setting ranges and types are inputs from 
the previous data preparation phase, and they will be used to 
randomly generate an initial population for the algorithm. 
Afterwards, the trained ML model calculated in the previous 
step comes to action as the fitness function of the GA. 
Therefore, the initial randomly generated setup for sensors has 
their predicted efficiency calculated by the ML model, and 
every prediction done by the model should consider the desired 
production output as one of the dependent variables. This will 
result in a subset of different production settings and their 
respective efficiencies, which will be divided between worst 
and best settings. Moreover, the worst and best settings are then 
selected for crossover. There are other selection/crossover 
methods, such as selecting only the strongest and the crossover 
themselves; however, the best-worst selection criteria leads to 
better performance [30]. The genetic algorithm will be 
controlled by constraint boundaries for the parameters, so it 
will not generate infeasible solutions. 

Afterwards, the best crossover with the worst settings 
occurs, creating offspring who have a mix of settings inherited 
from their parents. Similar to what happens in nature, the 
generated offspring are randomly affected by mutations. 
Mutations are one of the key engines of genetic algorithms 
since they maintain the genetic diversity from one population 
to the next population [31]. In this research, mutating means 
that some of the offspring genes inherited from their parents 
can suffer from random mutations at a 10% rate, and if a 
mutation occurs, 10% of the chromosome’s genes are randomly 
mutated. The mutation rate in GA must be a low value because 
high mutation rates lead to a primitive random search and no 
convergence; on the other hand, too low mutation rates can lead 
to local maxima. Based on previous research, the mentioned 
rates are considered good candidates for GA tuning [32]. If the 
local maxima problem persists, the user can change the 
mutation rate to higher values, or if no convergence is found, 
mutation rates can be decreased. 

After mutation, the previously trained ML model comes to 
action again, and the new population passes through the same 
process as the initial population. Hence, production efficiency 
is predicted by the ML model for each chromosome of the 
newly generated population. Finally, the GA checks if any 
termination criteria have been reached; if yes, the optimal 

solution is given. Otherwise, the algorithm returns to the 
selection phase where the best/worst chromosomes are chosen, 
later matched with crossover, and eventually mutated. The 
process repeats until at least one of the termination criteria is 
met. 

There are three termination criteria, a timeout of 10 minutes, 
100% efficient chromosomes and efficiency convergence. A 
ten-minute timeout is needed because production environments 
are fast paced and dynamic; therefore, waiting too long for a 
decision can make the decision useless and inapplicable. 
Moreover, sensor data can change significantly during the 
calculation time, causing prediction errors. However, finding 
an optimal solution with 100% relative production efficiency 
leads to termination, indicating that the genetic algorithm 
succeeded. There may be cases when 100% relative efficiency 
cannot be reached, and the iteration of GA does not give a 
better efficiency than the ones stored from previous 
generations. For that case, the algorithm should also be 
terminated because of convergence. When termination is 
reached, the user receives a recommendation of the 
manipulable input settings and configuration parameters, and 
the production system can be set to achieve optimal efficiency. 

Conclusion 

Although combining DEA-ML and ML-GA has been 
widely discussed in the literature, we did not find studies of a 
combination of the three methods in the literature. In this 
research, a combination of DEA, GA and ML was proposed 
and described, creating a hybrid artificial intelligence solution 
capable of optimizing production efficiency through 
manufacturing sensor data. Implementing such an AI solution 
can reduce production costs by optimizing resource usage and 
delivering economic and environmental benefits. 

This new approach opens up space for different research 
directions, indicating to the scientific community that many 
problems may be resolved by such an AI mix. Furthermore, the 
implementation of this newly proposed solution in different 

Figure 4.  Genetic algorithm flowchart. 
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manufacturing fields can extend the capabilities of Industry 
4.0. 

Successful implementations require some new 
considerations. Limitations on calculation times and the 
dynamics of a changing production systems environment must 
be observed for each implementation case. Balancing the 
benefits of having a complex model with the cost of the 
calculation time should be adjusted. Decoupling GA from 
DEA-ML might be needed in cases where the DEA-ML 
calculation time is not suitable for the production system type. 
In that case, DEA-ML can be calculated at a different time 
frequency than GA; however, this may lead to inaccurate 
predictions, as some newer data are not included in the ML 
model. On the other hand, reducing the dataset to include only 
recent sensor signals can significantly improve the calculation 
time but may impact the prediction performance. 

Implementation of the suggested AI solution is currently in 
the prototype phase, and further research regarding the impact 
of such a solution in a real production environment is ongoing. 
The suggested AI solution will be first implemented in the 
energy generation industry as an add-on decision support 
system for the SCADA production system. In the future, other 
SCADA-based industries can be explored. 
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