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Abstract

Data is everything — at least this is one of the main messages of the ongoing industrial revolution. Manufacturing companies all over the world are
expanding their digital infrastructure and knowledge on data analysis in the hope of increasing their KPIs with the help of artificial intelligence
(AI). Although several well-designed data-driven solutions are available, the most crucial part, data preparation is still not fully supported. In this
paper a framework is presented for processing sensor data of machining processes with variable cycle times in an unstable environment. Traditional
and novel Al algorithms are tested on the data of a vulcanization process from the automotive industry, namely from tire manufacturing’s curing
phase. The process in question consists of several subprocesses, and the quality of curing is mostly dependent of the status of a specific type
of machine tool. Conventional methods (e.g., examining the cured product manually) are currently used for failure recognition, however the
examination is only feasible after a long delay due to the extreme level of heat, which leads to unnecessary and unwanted scrap production.
Therefore, a more sophisticated and complex approach is required to increase quality score. A combination of mathematical methods is proposed
combining t-SNE feature representation, convolutional neural network, and linear programming optimization. The model highly relies on the
tool’s continuous degradation characteristics. The threshold for the given binary classification is set by maximizing the accuracy of the detection
model. The main contribution of the research is the method of inconsistent sensor data manipulation which supports a unique combination of Al
models for early failure recognition.
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1. Introduction

The evolution of manufacturing systems is driven by the
Adaptive Cognitive Manufacturing System (ACMS) paradigm
which emphasizes the role of cognitive faculties even in the
highly digitized ecosystem of manufacturing [5]. No doubt, in-
dustrial data analytics, processing of big data by machine learn-
ing and visualization techniques have an immense potential
in supporting or re-constructing human decision-making in a
number of distinct fields of manufacturing, albeit the generic
challenges are many [4, 19]. Along with the broadly and in-
depth discussed issues of the 5V (i.e., volume, velocity, variety,
veracity, and value) and security, which all are critical in man-
ufacturing applications [6], here we would like to emphasize
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yet another aspect: knowledge distilled in any form from mas-
sive data sources should comply with the models and prelimi-
nary background knowledge of the technical (and business) sys-
tem at hand. For the time being, just those algorithmic methods
which are able to work over large datasets are hardly capable
of considering — let alone exploiting — the available engineer-
ing background knowledge [8]. Furthermore, non-representable
engineering knowledge, experience and intuition often provide
very successful insights and heuristic solutions. Hence, captur-
ing the human factor must be integral in any data-driven model
development and adaptation.

The focus of this work is set to quality control in tire man-
ufacturing, and in particular to the vulcanization process. The
industrial motivation of our research is provided by the problem
of detecting leakage in a tool — the so-called bladder — which is
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used in one of the last stages of tire production. Wrong bladder
may incorrigibly deteriorate the quality of the final product. The
routine and most reliable solution of this problem is still based
on manual inspection and human sensing (see section 2). Since
explicit knowledge is hardly available in this problem domain,
but data is generated continuously in real-time, and experience
of previous quality checks are accumulating, it is expedient to
apply data analytics in combination with the basic background
knowledge of the production technology.

The application of machine learning (ML), and more re-
cently, big data analytics have been suggested in quality con-
trol for quite a time (see [15], and [21]). Broad-sweeping re-
views as well as generic frameworks designed for industrial
data analytics point to fault diagnostics and predictive analyt-
ics as some of the most promising application fields of the
novel techniques [4, 13, 14, 12]. Here, dealing directly with
physical processes, one should expect that data comes from a
highly nonstationary environment, from various and typically
asynchronous data sources, burdened by noise and inconsisten-
cies. Hence, it is a challenge how to adapt advanced ML tech-
niques performing extremely well in other domains such as vi-
sual recognition or text processing [4, 12] To the best of our
knowledge, the above targeted application of ML is still with-
out preliminaries. E.g., using the terms “machine learning” and
tire production” in a Scopus database search resulted only in
six articles, all related to different areas of production.

Recently, machine learning methods have been developed
for indirect tire pressure monitoring [20]. Here, the loss of pres-
sure could reliably be detected by a combination of decision
tree and support vector machine techniques, using speed and
vibration characteristics in the time and frequency domains.
The predictor was suggested as a low-cost, redundant backup
to expensive safety-sensitive sensor-based solutions. Tire per-
formance prediction by means of various regression techniques
was investigated in [7]. Note that in both studies the best
method emerged from a numerical comparison of alternative
ML techniques.

In what follows, after presenting the industrial background
of tire manufacturing (section 2), we expose the specific re-
search problem (section 3) and present in detail our research
methodology (section 4). Experimental results are summarized
in section 5, and conclusions including future work are dis-
cussed in section 6.

2. Industrial background

Numerous factories produce pneumatic tires around the
world according to relatively standardized methods and ma-
chinery. Tires are a complex combination of various elements
which require a wide range of ingredients. Fig. 1 summarizes
the main steps of tire production, in which curing (vulcaniza-
tion) is a key step followed by final quality check.

Tire manufacturing initializes with processing the raw ma-
terials namely natural or synthetic rubber, chemicals, steel and
textiles. The composition of these raw materials varies depend-
ing on the size, flexibility, grip and resistance required. Next,
various tire components such as fabric and steel cords, bead
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Fig. 1. Main phases of tire production.

wires, calender and extruder are manufactured. The next stage
is the assembly when the tire is built from these components in
a tire building machine. The result of this stage is the so-called
green tire, which is still a flexible tire without any groove on the
outer surface. In the following, curing or vulcanization stage,
heat and pressure is applied to the green tire in order in form
it into its final shape. During this stage, the green tire is placed
by a robot into a mold inside the curing press machine and after
a short idle time the curing process starts. A rubber bladder is
inserted into the green tire and as it is filled with steam or gas it
starts to inflate. The inflated bladder presses the green tire to the
mold, taking on the tread pattern and sidewall lettering. Heating
and annealing schedule, as well as processing time depend on
the required features of the tire. The curing time of a standard
green tire is between 10-15 minutes. The final stage is quality
control which is in the focus of our current study.

After curing is complete, the tire is removed from the mold
for cooling and then testing. Each tire is inspected for flaws
such as bubbles in the rubber of the tread, sidewall, and inte-
rior. The most typical cause of flaws is a wrong, leaking blad-
der. This tool has a planned lifetime after which it is replaced,
but sometimes it starts to leak before unexpectedly. When leak-
age happens, so-called pinholes or micro leaks appear on the
inner side of the tire. Because of the homogeneity of its sur-
face and the dark color of the tire the testing cannot be made by
visual data processing and well-proven Al algorithms. Testing
has to be done by human workforce, manually, by relying on
tactile sensing. However, during the vulcanization process tires
are heated up to 200 °C, hence manual inspection can be per-
formed only after an hour. During this time, 4-6 more tires are
being cured with the leaked bladder therefore scrap is produced.
The goal of scrap production reduction motivates the current
work to detect and tell by the end of a curing cycle whether the
bladder is leaked or not.

3. Problem statement

Instead of putting the product to delayed, expensive and te-
dious manual testing, our goal is to anticipate the result of the
quality test from production related process and sensory data.
Of course, there is a dilemma: indirect testing of the product
involves risks, but, on the other hand, it can be done with-
out delay, hence the use of a wrong tool (i.e., bladder) can be
averted. If false negative decisions can reliably be avoided, then
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false positive decisions can still be followed by manual test-
ing. Hence, resulting in less scrap, increased yield, shorter cy-
cle times and less demanding working conditions, the overall
impact of the automatic quality check can be positive.

All in all, our problem statement is as follows:

e Given basic parameters of tyres, time-stamped informa-
tion on the status of tyre building machines, sensory data
of the cyclic production processes, as well as records of
the quality checks of the tyres made during the respective
cycles,

e Find a predictor that indicates by using solely the product
and real-time process data if the risk of using a wrong
bladder exceeds a threshold,

e Such that prediction accuracy of human inspectors is ap-
proached while false negative decisions are minimized.

This is a high-dimensional, non-linear problem containing
mixed-type (i.e., numerical and categorical) features and multi-
ple datasets. The bulk of the data is so-called data-in-motion [4]
generated in the course of a cyclic manufacturing process. In
this problem domain, subsequent data records attached to the
same builder machine are strongly related in time. Hence, when
looking for useful patterns in historical data records, this neigh-
borhood or locality is to be exploited. This assumption gives a
hint as for which ML methods to investigate as candidates. Sec-
ondly, it is a technologically feasible hypothesis that a bladder,
once leaking, cannot undergo a self-healing process. Hence, the
probability of leakage in a bladder can but increase in time, let
it be generated by any method.

4. Methodology

This research is based on data collected by sensors located
in several curing press machines in a tire manufacturing plant.
To systematically carry out the research steps, we followed the
CRISP-DM methodology [2], adapted to data-rich applications
in manufacturing [10], as shown also in Fig. 2 below:

1. Business/domain understanding focuses on understand-
ing the research objectives and requirements from a busi-
ness/domain perspective, which we detailed in section 1.

2. Data understanding starts with an initial data collection
and proceeds with steps to get familiar with the data, to
identify data quality problems, to discover first insights
into the data, as discussed in section 4.1.

3. Data preparation/manipulation covers all activities to con-
struct the final dataset (data that will be fed into the mod-
eling tool(s)) from the initial raw data. Section 4.2 is sum-
marizing these activities.

4. Modeling selects and applies the appropriate modelling
techniques, determines the key parameters and calibrates
them to optimal values. In our case, models are presented
in section 4.3.

5. Evaluation assesses the validity of results and reviews the
steps executed to construct the model, to be certain it prop-
erly achieves the business objectives. ML model evalua-
tion is discussed in section 5.

6. Deployment embeds the model into its application envi-
ronment. The current work does not include deployment
challenges.
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Fig. 2. Workflow of the analytical and learning process.
4.1. Data understanding

Data is generated continuously in real time from three kinds
of sources: (1) the controllers of the curing presses (registered
in the Manufacturing Execution System), (2) the status regis-
ter of the machines, as well as (3) sensors attached to the ma-
chines. Each data record is timestamped, but the sources are
not synchronized. In a harsh physical production environment
like this, data transmission delays, missing data, outliers are all
common.

First, there are data available from production. This data
source provides information on cycle level, where each cycle
is characterized by the following:

o The cycle start timestamp.

o The exact press machine ID on which the cycle was run-
ning.

e The bladder ID the cycle was made with.

e The type of tire cured in the cycle.

Secondly, there is data on the status of each curing press
machine. This is a simple timestamped binary (on/off) data in-
dicating the start of the curing process.

Third, data is collected also by physical sensors. Altogether
there are five sensors in each machine which collect data con-
tinuously, measuring the femperature and pressure in different
locations inside the press. Each sensory data record contains
3 attributes: a timestamp, the sensor name and the measured
value.

It is important to highlight that the beginning of a cycle and
beginning of a curing process are not exactly same. The cycle
includes other auxiliary activities besides the curing process,
such as application and removal of the tire or bladder change.
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4.2. Data manipulation

Merging the production and sensor data together and sort-
ing by timestamp allows to split the sensor data by cycle, i.e.
to collect all the corresponding observations during the curing
process. Since also the length of each intermediate step is also
known, the sensor data between each cycle can be broken down
into further steps. After this transformation a list of the mea-
sured sensor values for each sensor type by press, cycle and
step is created. Figure 3 presents the structure of the raw data
and the data after this transformation.

(1) ?2)

Cycle |Bladder | Press | Tire type |Cycle start Timestamp Status
col  |Bol POl |TOl 2020-10-21 10:33:04 2020-10-21 10:34:10 [On
02 |Bol POl 2020-10-21 10:45:30
03 |BO3 2020-10-21 10:44:10 | Off
PO1’s timeline:
1 1 1 | )
Je! s = = o
o™ W WY BTN S
Ao Ao A\ A\ A
1% step.
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3 /m”’ e
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POl 2020-10-21 10:34:10 [S_1 / por |cor [sept [0 [0 fea o
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—

Fig. 3. Structure and relations of data available. The given tables are: (1) pro-
duction data, (2) process status data and (3) sensor value data. Table (4) contains
lists of sensor values of a specific cycle separated by intermediate process steps.

The lists defined by this way do not have the same length
(because of varying cycle times and missing sensor logs), there-
fore several statistics are calculated to characterize the mea-
sured temperatures and pressures in each step. The chosen
statistics are: count, mean, standard deviation, minimum, first
quartile, median, third quartile, maximum, mode, maximum ab-
solute step, maximum relative step, minimum absolute step,
minimum relative step, value change, area under the curve and
arc length. The goal is to detect the failure (leakage) at the end
of each cycle therefore a last transformation is required to turn
the data into a certain structure:

o features: A cycle ID, and the corresponding information
following from production data, such as press machine,
type of tire etc. and the statistics for each sensor and step,
such as the average internal temperature in step 1, the
minimum internal temperature in step 2 and so on.

o label: A binary variable that indicates if there was a leak-
age in that cycle.

All in all for each cycle there are around 650 features, since
there were 5 sensor types, 16 statistics and 7 or 8 steps for each
cycle.

4.3. Modelling
Deeplnsight
Due to the large number of features, it is reasonable to use
some dimensionality reduction technique. On the other hand
neural networks are widely used and have promising results
on image-related problems. Combining so-called t-SNE fea-
ture reduction and convolutional neural networks (CNNSs) is a
powerful tool called Deeplnsight, published in details in [17].
The idea is to generate point clouds from standard tabular data
based on their similarities and then feed a CNN with these gen-
erated images. The architecture of the trained CNN is presented
in Fig. 4.
Input Convolutional layer

BatchNorm Pooling Fully connected  Output

Output of t-SNE 16 filter, 3x3 kernel size, ReLU + ReLU max, 2x2 pool size 128, ReLU sigmoid
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Fig. 4. A proposed architecture of the CNN model inspired by [17].
Isotonic regression
Isotonic regression or monotone regression is a method of
fitting the closest monotone increasing function over a set of
observations [1]. Practically speaking, isotonic regression can
be formalized as the solution of a small quadratic programming
model:

N
minimize Z (x; — &) 6))
i=0

subj. to: X; > X Vi=1.N 2)

The objective function (1) is the sum of element-wise dif-
ferences between the given observations and the fitted val-
ues, therefore minimizing this sum returns the closest non-
decreasing function. The monotony is insured by constraint (2).

In the current work isotonic regression is used as a refine-
ment of the predicted values. As the last layer of the CNN struc-
ture (Fig. 4) is a single perceptron with a sigmoid activation
function, the output is a probability estimation of the failure
event. Assuming that the probability of the failure of the same
tool cannot drop overtime, it is possible to perform isotonic re-
gression on the series of these predicted probabilities in order
to eliminate error terms of the prediction.

5. Evaluation and discussion

In this section six classical binary classification models are
compared through different approaches to the proposed mix-
ture of the Deeplnsight technique and isotonic regression. The
classical models are logistic regression, k-neighbors, decision
tree, random forest, XGBoost and LigtGBM [3, 11, 16]. The
data manipulation process is the same for all cases therefore all
models have the same normalized input. A test set is separated
before the learning process, all the ML models are trained on
the same dataset and tested on a different but common dataset.
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The comparison of several models is not a strictly defined
process, however it is quite common to start by checking ba-
sic metrics such as the precision, recall, balanced accuracy and
Fl-score [9]. Due to confidentiality reasons, the concrete val-
ues cannot be shown, however Fig. 5 shows the relationship of
those metrics of the compared models. All the groups are scaled
by the maximum value in the metric group. This way the mod-
els can be compared as the model with the best performance
will have the highest relative value (which is 1), and all the oth-
ers will show lower relative metrics proportional to the original
difference between the metric scores.
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Fig. 5. Relative precision, recall, balanced accuracy and F1 score of the com-
pared models.

In real life use cases the absolute winner rarely exists and
the current situation shows the same. The proposed method
(Deeplnsight X IsotonicRegression) performs among the firsts
except for in case of recall. While the LightGBM model has the
best precision value, it has quite poor performance concerning
the other metrics. In situations like this it is one option to bring
in more evaluation metrics into the analysis, then note the ranks
of the models for the chosen metrics [18]. The rank is simply
the index of the model in the decreasingly sorted vector of the
metric values (Fig. 6). The row means of the rank matrix re-
turns the average rank of each model which is shown in Fig. 7.
This ordering of the models includes the information of several
evaluation metrics all of which have different meanings, there-
fore combining these allows us to retrieve a better picture of the
overall performance of each model.

One of the accuracy metrics, namely the F1 score, is already
a combination of two other metrics: it is the harmonic mean of
recall and precision. Its more generic version is the Fg score
which values its two components differently. 8 is an arbitrary
positive real number meaning that recall is 8 times as important
as precision. Fig. 8 shows the relative Fz scores of the compared
models for different 8 values. Again the real values are scaled
by the maximum of all Fg scores.

Since the comparison of multiple ML models is not carved
in stone, an other nontraditional method is proposed now. Take
the false negative (FN) and the false positive (FP) counts from
the confusion matrix of the models. Scale down these counts by
the minimum of FNs and FPs respectively, and let us call the
new values relative false negatives (RFNs) and relative false
positives (RFPs). By doing so the scaling difference between
FNs and FPs disappears. RFN and RFP technically denotes the
multiplier between the given model’s FN and FP and the best
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Fig. 6. Rank matrix

Ranks of the compared models concerning different metric scores: accuracy,
positive predictive value (precision), true positive rate (recall), false positive
rate, negative predictive value, balanced accuracy and Fl-score. Lower rank
(greener shade) signifies higher value therefore better performance.

6 514 543

Fig. 7. Average ranks of the compared models based on the results of the rank
matrix (Fig. 6).
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Fig. 8. Relative F-scores for all B € {0.5, 1,2} of the compared models.

possible FN and FP counts. Fig. 9 plots the RFN - RFP pairs of
the compared models.

In an ideal world there would be one best model with REN =
RFP = 1 i.e. one model would minimize both the FNs and FPs.
However real world scenarios are not so straightforward, so an
intuitive idea is to sort the models based on their Euclidean dis-
tance from the ideal (1, 1) point. This distance tells how far is
the given model from both the best FN and FP counts.

Based on the discussion in this section and the results shown
in the referred figures, it is safe to conclude that the proposed
method in section 4 outperforms the other ML models in the
comparison. However the absolute best model does not exists as
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Fig. 10. Euclidean distance from the hypothetical (1, 1) point on the RFN-RFP
map (Fig. 9).

(based on the selected metrics’ outcomes) some models precede
others from one point of view but drops behind from another.

6. Conclusion and future work

The paper suggested a method to transfer well-proven ML
techniques to the in-line quality check of vulcanized tyres. The
method is generic as far as the processing of data coming from
cyclic manufacturing are concerned. Albeit the results for in-
direct tool monitoring are promising, their routine industrial
application requires future work in two directions: (1) false
negative predictions should further be decreased, and (2) the
method has to be embedded into a manufacturing big data
ecosystem [4], where the generation and secure storage of data,
date processing like analytics and visualisation in particular,
systematic update and management of the results, as well as
their inclusion into the standard quality control workflow are
seamlessly integrated. All this requires an intensive collabora-
tion of the industrial and academic partners. We will also evalu-
ate other, more complex CNN structures and even complement
them with transfer learning, too. An alternative research path is
to formalize a method for ML model comparison in ambiguous
situations.
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