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a b s t r a c t 

After the closure of the schools in Hungary from March 2020 due to the pandemic, many students were 

left at home with no or not enough parental help for studying, and in the meantime some people had 

more free time and willingness to help others in need during the lockdown. In this paper we describe 

the optimisation aspects of a joint NGO project for allocating voluntary mentors to students using a web- 

based coordination mechanism. The goal of the project has been to form optimal pairs and study groups 

by taking into account the preferences and the constraints of the participants. In this paper, we present 

the optimisation concept and the integer programming techniques used for solving the allocation prob- 

lems. Furthermore, we conducted computational simulations on real and generated data to evaluate the 

performance of this dynamic matching scheme under different parameter settings. 
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. Introduction 

In Hungary, after the lockdown due to the spreading of the 

OVID-19 virus, the government announced the closure of all 

chools on 13 March 2020 (Friday evening) effective from 16 

arch, and they requested all schools (both primary and sec- 

ndary schools with students of ages between 6 and 18) to start 

nline/distance education immediately. There was no central rec- 

mmendation about the technology and methodology to be used, 

o this was decided mainly by the board of each school selecting 

rom a wide range of online platforms (e.g. Google Classroom, MS 

eams, etc.) or just sending the weekly assignments by mail. 

A large number of students had difficulties to adapt to the dis- 

ance education, partly because of missing equipment or internet 

onnection, but also because the parents were not able to help 

hem at home, due to lacking the knowledge in special subjects or 

ust because of being at work (e.g., including those parents work- 

ng intensively in health care). At the same time, many people, 

specially the elderly had to stay at home with spare time. Fur- 

hermore, in Hungary there is also a programme for secondary 
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chool students for voluntary work which they can get credit for 

that counts extra points at the centralised university admission), 

nd very few possibilities remained for such services under the 

trict social distancing rules imposed. Therefore, there was need 

or mentoring, and also a significant amount of potential mentors, 

ld and young alike. 

A project was proposed in early April and then of- 

cially started with the opening of a web-application 

 onkentesmentoralas.hu ) in early May in the coopera- 

ion of three parties. On behalf of the Institute of Economics of 

ERS, the Mechanism Design and the Education Economics re- 

earch groups offered help in designing a mechanism for allocating 

tudents to mentors. The Hungarian Reformed Church Aid is a 

umanitarian organisation which had a link to a governmental 

ction group devoted to coordinate the voluntary help. The third 

arty in the project was #school, a private company providing 

n online teaching platform that went into operation with 100k 

egistered users soon after the online education started. The latter 

wo parties had had a related collaboration in the past, where 

hey organised the mentoring of seriously disadvantaged children. 

The design approach was rather complex, taking into account 

he preferences of both sides, and also allowing the formation of 

tudy groups, besides the mentor-student pairs. The basic require- 

ent of creating a pair is to have a subject (e.g., Maths at year 

) that is both requested by a student and offered by a mentor. 
under the CC BY-NC-ND license 
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he students can request several subjects listing them according to 

heir preferences and whether they are willing to study in groups 

r only in pairs. The mentors can specify their preferences over the 

ubjects they offer to teach, whether they are willing to supervise 

roups (or only individuals), and they can also set preferences over 

ome characteristics of the students, such as age, performance level 

n that subject measured by grades, and social status (i.e. whether 

he mentor prefers to teach seriously disadvantaged students). 

In the optimisation we carefully considered several potential 

oals and implemented a combination of them, such as maximis- 

ng the number of students matched, the overall volume of teach- 

ng hours, the preferences of both the students and mentors, and 

he coherence of the study groups. After setting up the model we 

onducted matching runs once a week from early May until the 

nd of the academic year, that is mid-June in Hungary. 

The first period of this application was very short, and we had 

n unexpectedly high number of volunteer mentors, but also an 

nexpectedly low number of registered students. Therefore the 

llocation problem was rather straightforward. Nevertheless, we 

sed the data from this early period to generate instances that are 

ealistic, and we present the simulations conducted on that data. 

The pandemic situation became critical again in Hungary by Oc- 

ober due to the second wave of infections, so on 6th of November 

020 all the secondary schools and universities were closed again, 

nd thus we opened our allocation service again to link volunteer- 

ng mentors with students. 

The pandemic situation has been similar around the world, and 

specially critical since April in the USA. An early report on the 

merican schools’ responses to COVID-19 can be found in Harris 

t al. (2020) . 

In this paper we describe the optimisation aspects of our afore- 

entioned joint NGO project of allocating voluntary mentors to 

tudents together with computational simulations on realistic in- 

tances. We believe that this paper provides an interesting case 

tudy with an advanced OR solution that could be used every- 

here in the world to help allocating the volunteers to people in 

eed in an efficient and fair way. 

.1. Related literature 

Matching problems under preferences in two-sided matching 

arkets have been widely studied in mathematics, computer sci- 

nce and economics, see e.g. a recent book on the algorithmic as- 

ects of this topic by Manlove (2013) . Beside the theoretical stud- 

es, practical applications have been designed and implemented in 

any areas, see a recent survey on this ( Biró, 2017 ). 

When both sides to be matched have preferences, then the con- 

ept of stable matchings was proposed in the seminal paper of 

ale & Shapley (1962) and has been used since in many appli- 

ations, such as resident allocation, college admission and school 

hoice. However, there can be some special features that can make 

he stable matching problem computationally hard to solve. In this 

ase one robust approach is (mixed) integer linear programming, 

hat has been used recently for the hospital–resident problem with 

ouples ( Biró et al., 2014 ), ties ( Delorme et al., 2019; Kwanashie 

 Manlove, 2014 ) and multiple objectives ( Shimada et al., 2020 ), 

ollege admissions with lower and common quotas ( Ágoston et al., 

016 ), and stable project allocation under distributional constraints 

 Ágoston et al., 2018 ). In this paper we also use MILP technique for

olving the underlying optimisation problem. 

There are also many application, where preferences of one or 

oth sides do matter, but the solution is not necessarily stable or 

air but optimal rather in some sense. Examples are the allocation 

f papers to reviewers ( Garg et al., 2010 ), course allocation ( Budish

t al., 2017 ), or arranged marriages ( Cao et al., 2010 ). Scheduling
2 
roblems are also closely related, see a paper linking the two lines 

f research ( Biró & McDermid, 2014 ). 

Allocating mentors to students can be of dynamic nature so the 

iterature on online matching is also related. Natural applications 

or online matching with preferences are deceased organ alloca- 

ion ( Agarwal et al., 2021; Mattei et al., 2018 ), allocation in social 

ousing ( Bloch et al., 2020; Leshno, 2019 ), electric vehicle charging 

 Gerding et al., 2019 ), or lending decisions ( So et al., 2016 ). 

There are also applications, which are dynamic in nature, but 

nstead of online matching protocols, batch allocations are also 

sed. An important example is refugee allocation, where prefer- 

nces of one or both sides may be taken into account, together 

ith some objective goals of maximising the likelihood of success- 

ul settlement of the refugee families, see Andersson et al. (2018) ; 

ansak et al. (2018) ; Trapp et al. (2018) . Similar approaches are 

sed in the allocation of foodbanks ( Prendergast, 2016 ). 

An important example for an application where optimisation 

s used for the allocation are the kidney exchange programmes 

KEPs), where kidney patients with incompatible donors may ex- 

hange their willing donor among themselves. Seminal work on IP 

odels for KEP’s is presented in Abraham et al. (2007) and Roth 

t al. (2007) , a recent survey is Ashlagi & Roth (2020) , and the Eu-

opean optimisation practices are summarised in Biró et al. (2021) . 

t is interesting to note that online matching is used in the US, 

artly because of the competition in between multiple national 

rogrammes ( Agarwal et al., 2019 ). However, in Europe the na- 

ional programmes use batch allocations, by conducting the match- 

ng runs in 3–4 months regular intervals ( Biró et al., 2019 ). 

Finally, we note, that even though many of the features of our 

pplication are present in other matching applications listed above 

nd there are also recent examples of the usage of MILP tech- 

iques in the field of matching under preferences, but we are not 

ware of any similar application, where mentors are allocated to 

tudents via optimisation techniques. Furthermore, we believe that 

ur model is rather complex, which includes many novel features, 

specially the combination of pairs and groups in the solution. This 

atter feature causes computational challenges as demonstrated by 

ur simulation results. The use of preferences from both sides 

ithout requiring the classical stability constraint is also unique in 

his application. The flexible timing of the matching runs is also in- 

eresting, since in most of the above mentioned applications either 

ne single match run is done (e.g, in school choice and university 

dmission) or the allocation is completely online (e.g., allocation 

f deceased organs). Therefore, the possibility of conducting batch 

atching runs is also an important special feature that we study 

n detail in this paper. 

.2. Our contributions 

We describe the allocation mechanism that we designed with 

ur partners and implemented in the application. The design is 

omplex, it takes into account the preferences of both sides, and 

lso several objective factors. The main novelty and challenge in 

ur solution concept is that besides mentor-student pairs we also 

eek to form study groups, that makes the underlying optimisation 

roblem more elaborate. 

Our main theoretical contribution is an IP formulation that 

ccommodates all the complex constraints and objectives of our 

odel. 

These results are complemented by computational experiments, 

here the generation of the instances is based on the real data 

hat we collected in the first period of the application. In the sim- 

lation we analyse the effect of some optimisation policy decisions 

ith regard to various performance measures. We also test the ef- 

ects of having shorter or longer matching periods, and the possi- 

ility of giving priority based on the waiting time. The results of 
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erences. 

1 One can consider to set these variables to be continuous in the interval [0,3]. 

However, because of the study groups, we might get fractional values in an optimal 

solution, which is not allowed in practice. 
he simulation have been used to refine the design and optimisa- 

ion policy of the application. 

. Preliminaries 

First we give a general description of the model, then specify 

he variables and the input data for the preferences, priorities and 

urther objective factors. 

.1. General description 

We have a set of students A = { a 1 , a 2 , . . . , a k } , mentors B =
 b 1 , b 2 , . . . , b l } , and subjects S = { s 1 , s 2 , . . . , s m 

} , the latter being

pecified with the year as well (e.g., year 10 - Chemistry). We 

ould like to form pairs (each consisting of one student and one 

entor) and groups (each consisting of a set of students and one 

entor) so that the online mentoring is conducted with these 

airs and groups in weekly periods. For every pair and group 

ormed we also specify the subjects that they are going to study 

nd the amount of time that they are supposed to spend with each 

ubject during a week. 

As the input of the problem the students give the list of sub- 

ects that they need mentoring for in a preference order, specify- 

ng also the amount of time they wish to spend with a mentor 

er week (integer number between 1 and 3) for each subject. So 

 student may ask 2 hours of mentoring in Maths and 1 hour in

hysics with higher preference for the former. The students may 

ndicate why they need mentoring (e.g., being a child of a single 

other who works in a hospital as a nurse), and about their ob- 

ective circumstances with regard to their social background, such 

s the number of children/parent in the household, etc., that af- 

ect the priorities. Furthermore, they also provide information on 

he class they attend and whether they have ongoing online edu- 

ation for a particular subject, whether they are weak, medium or 

ood students (by giving their final grade in the last semester), and 

hether they are willing to accept mentoring in groups or only 

n pairs. Finally, we ask what equipment they have at home (PC, 

ablet, smartphone). 

Regarding the mentors, we ask in which subjects they are will- 

ng to mentor students (including the years), and whether they 

ave preferences over the subjects, and some characteristic of the 

tudents, such as their age, how strong the students are in the sub- 

ect, and their social status (some mentors can be especially keen 

o teach socially disadvantaged or poor-performing students, some 

ight not be so). We ask the total number of hours that they wish

o spend with mentoring per week and whether they are willing 

o do mentoring in groups. 

The organisers of this project decided that some of the above 

entioned priorities will only apply for such mentors who express 

heir agreement. For instance, every mentor can tell whether she 

ishes to teach seriously disadvantaged students, and if they say 

o then no priority is given for those students when considering to 

llocate them to this mentor. However, if the mentor states, how- 

ver, that she would be happy to teach seriously disadvantaged 

tudents then high weight is assigned. If the mentor is ignorant 

bout this aspect, then a small weight is assigned for this prior- 

ty factor. The same applies for the criterion whether the student 

s weak with low grades from the last semester. If a mentor ex- 

resses that she does not want to teach weak students then no 

riority is given for these pairs, but if she wishes to teach weak 

tudents then extra weight is given. Thus we take the preferences 

f the mentors into account for some of these controversial prior- 

ties, but for some others, e.g., number of children/parents in the 

amily, we always give an extra priority. In this way the resulting 

airs and groups are more likely to be mutually satisfying. 
3 
.2. Notations: basic elements of the solution 

The basic building block of the optimisation model is the set of 

ossible paired mentoring activities E, where each activity e con- 

ists of a triple e = (a i , b j , s k ) . Activity e is possible if student a i 
equested subject s k and mentor b j also offered s k . 

Let S(a i ) and S(b j ) denote the set of requested subjects by stu- 

ent a i and offered subjects by mentor b j , respectively. Further- 

ore, student a i requested q (a i , s k ) hours per week in subject s k 
nd mentor b j offered Q(b j ) hours per week in total. We write that 

a i , s k ) ∈ e if there is b j ∈ B such that e = (a i , b j , s k ) , and similarly,

e write that (b j , s k ) ∈ e if there is a i ∈ A such that e = (a i , b j , s k ) . 

In the description of a solution, let x e denote the amount of 

ours scheduled for activity e in a pair. Furthermore, let y e be a 

inary variable denoting whether activity e is performed in a pair, 

.e. y e = 1 ⇐⇒ x e > 0 . In our practical application we restrict x e ∈
 0 , 1 , 2 , 3 } , hence this is an integer variable in our MILP model. 1 

et P denote the set of pairs formed, i.e., P = { e ∈ E : y e = 1 } . 
Besides pairs, we also allow the formation of groups, whose fi- 

al set in the solution will be denoted by G . Each group g ∈ G con-

ists of a triple g = (A 

g , b j , s k ) , where A 

g ⊂ A is the subset of stu-

ents assigned to group g with mentor b j and subject s k . In the ap-

lication we restricted the amount of time for mentoring in each 

perating group to either 2 or 3 per week. 

In our model and application, for simplicity, we assume that ev- 

ry mentor can have at most five groups to supervise in a subject. 

hus, for every mentor b j who is willing to teach groups in sub- 

ect s k , we create five potential groups g k, 1 
j 

, g k, 2 
j 

, . . . , g k, 5 
j 

with capac-

ty c k 
j 

each. We introduce a binary variable y k,t 
j 

to denote whether 

he potential group g k,t 
j 

is realised, in which case there are at least 

wo and at most c k 
j 

students assigned. Let x k,t 
j 

denote the number 

f hours allocated for the weekly operation, where x k,t 
j 

∈ { 0 , 2 , 3 }
since if a mentoring group is operating then either 2 or 3 hours 

an be scheduled per week). Note that y k,t 
j 

and x k,t 
j 

are the vari- 

bles of our mixed integer programming formulation. 

For every activity e = (a i , b j , s k ) , we define a binary indicator

ariable y t e denoting whether this mentoring activity is performed 

n potential group g k,t 
j 

. Therefore, the set of students involved in 

his group will be A 

g = { a i ∈ A : e = (a i , b j , s k ) , y 
t 
e = 1 } . The follow-

ng formula summarises the feasibility condition for realising po- 

ential group g k,t 
j 

for every t ∈ { 1 , . . . , 5 } . 
 

k,t 
j 

= 1 ⇐⇒ 2 ≤
∑ 

e :(b j ,s k ) ∈ e 
y t e ≤ c k j 

For example, a potential group g k, 1 
j 

for mentor b j can be on 7- 

ear Maths ( s k ) for at most 5 students ( c k 
j 
= 5 ). If this group is re-

lised ( y k, 1 
j 

= 1 ), a mentoring group g = (A 

g , b j , s k ) will be formed

here 2 ≤ | A 

g | ≤ 5 with x k, 1 
j 

hours per week, where x k, 1 
j 

∈ { 2 , 3 } . 
Regarding the personal mentoring hours in a group, as students 

n a group may have different requests, we estimate the actual 

entoring hours by variable x t e , where we assume that x t e ≤ q k,t 
j 

nd x t e ≤ q (a i , s k ) , where e = (a i , b j , s k ) . 

.3. Preferences, priorities and further objective factors 

Here we describe the input more formally listing the informa- 

ion provided by the users with regard to their attributes and pref- 
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.4. Students’ attributes and preferences 

For every student a i , we collect the following attributes and 

references: 

• year i ∈ { 1 , 2 , . . . 12 } : which year of study she attends. 
• class i : exact class she attends in the school (text). 
• PA i : preference list consisting of the subjects she requested 

mentoring (e.g., Maths, Physics, History). Let rank i (s k ) denote 

the rank of s k in PA i for s k ∈ S(a i ) . 
• RA i : number of requested hours for each requested subject in 

the order of preferences. Note that in our LP model q (a i , s k ) de-

notes this constant for each subject s k ∈ S(a i ) . 
• grades i : her grades from the last semester in the subjects re- 

quested, let gr(a i , s k ) denote the grade of a i in subject s k , that 

is a value between 1 and 5 in Hungary (5 for Best and 1 for

Fail). 
• group i ∈ { 0 , 1 } : the value is 1 if a i is willing to accept mentoring

in groups. 
• equipment i ∈ { 0 , 1 } : the value is 0 if she has a smartphone or

tablet and the value is 1 is she (also) has a laptop. 
• help i ∈ { 0 , 1 , 2 } : self-reported neediness, whether a i has help at

home (0 = yes, 1 = limited, 2 = no) 

When forming the groups, the similarities between the students 

an be important, therefore for those students willing to get men- 

oring in groups we define the following values for each pair of 

tudents a i and a i ′ . 

• sc i,i ′ : the value is 1 if they attend the very same class and 0

otherwise. 
• dr k 

i,i ′ = | q (a i , s k ) − q (a i ′ , s k ) | : the difference between the re-

quested amount of time in subject s k . 
• dg k 

i,i ′ = | gr(a i , s k ) − gr(a i ′ , s k ) | : the difference between their last

year’s grades in subject s k . 
• de i,i ′ = | equipment i − equipment i ′ | : this value is 0 if they have

the same equipment and 1 if they have different ones. 

Furthermore, for those students wishing to get priority, we also 

sk question about her social background and circumstances, based 

n which we assigned the following scores to student a i . 

• SD i ∈ { 0 , 1 , 2 , 3 } : a measure showing how socially disadvan-

taged the student is (3 being the maximum value). 
• NH i : an index for not enough help at home with a value be-

tween 0.5 and 2.5 showing the number of children in the 

household per parent. Thus its value is a half-integer between 

0.5 and 2.5. 
• W S i ∈ { 0 , 1 , 2 , 3 } : showing how weak the student is based on

her grades and repeated years. 
• CY i ∈ { 0 , 1 , 2 } : how critical the year is for the student, i.e, for

last year of studies = 2 , and for the penultimate year = 1 . 

.5. Mentors’ preferences 

Here we describe what preferences the mentors are allowed to 

ive on the subjects and students. 

• P M j : preference list of b j on the subjects she offers for mentor-

ing (e.g., Maths, Physics, History). Let rank j (s k ) denote the rank 

of s k in P M j for s k ∈ S(b j ) . Note that this may be set differently

for the three different age-categories, years 1–4, 5–8, 9–12. 
• Y M j ∈ { 0 , 1 , 2 } : most preferred age of the student for b j 

(0 = Year 1–4, 1 = Year 5–8, 2 = Year 9–12). 
• DM j ∈ { 0 , 1 , 3 } : whether b j is willing to mentor socially dis-

advantaged students (0 = rather not, 1 = does not matter, 3 = 

would be very keen). 
e

4 
• GP M j : grade-preference, = N if no preference is given, = W 

for weak, = M for medium, and = S for strong students. From 

this information, we create the following constants: P M j = 0 if 

GP M j = N and P M j = 1 if GP M j 	 = N; SM j = 0 if GP M J ∈ { M, S} ,
SM j = 1 if GP M J = N and SM j = 3 if GP M J = W ; finally W M j = 0

if GP M J = N, W M j = 1 . 5 if GP M J = W , W M j = 3 if GP M J = M,

and W M j = 4 . 5 if GP M J = S. Here, P M j is an indicator whether

b j has grade-preferences; SM j shows how willing b j is to men- 

tor a weak student; finally, W M j is the best average grade of 

the student according to b j ’s preference. 

. Optimisation with MILP technique 

In this section we show how we can formulate our problem as 

 mixed integer linear program. 

First we describe the basic constraints for the feasibility of a 

olution. We summarise the feasibility requirements as follows. 

Feasibility constraints: 

1. Use only mutually acceptable paired mentoring activities in the 

solution (i.e., the subject should be requested by the student 

and offered by the assigned mentor). 

2. Only those mentors can have groups and only those students 

can be assigned to groups who expressed their willingness to 

teach or study in groups, respectively. 

3. Have at least two and at most a limited number ( c k 
j 
) of students

in each group. 

4. Weekly capacities of the mentors must not be exceeded. 

5. The mentoring hours of a pair in a subject should not exceed 

the amount requested by the student, and never be more than 

3. The mentoring hours per week for an active group is either 

2 or 3. 

6. Every student can be mentored by at most one mentor in each 

subject that she requested. 

The first two conditions are automatically satisfied, since we 

nly work with mentoring activities where the subjects are mu- 

ually acceptable by both parties (i.e., requested by students and 

ffered by mentors). Similarly, we only create potential groups for 

hose mentors who are willing to teach in groups and we only 

ave variables y t e and x t e for those students who are willing to 

tudy in a group. 

Regarding the pairs, the connection between x e and y e can be 

stablished with the following formula (1) . 

 e ≤ x e ≤ 3 · y e for every e ∈ E (1) 

A similar formula (2) is added for each potential group, but 

ith the minimum number of hours being 2. 

 · y k,t 
j 

≤ x k,t 
j 

≤ 3 · y k,t 
j 

for every b j ∈ B, s k ∈ S(b j ) , t ∈ { 1 , . . . , 5 } 
(2) 

For the realisation of potential groups, we set the following 

onditions (3) . 

 · y k,t 
j 

≤
∑ 

e :(b j ,s k ) ∈ e 
y t e ≤ c k j · y k,t 

j 
for every b j 

∈ B, s k ∈ S(b j ) , t ∈ { 1 , . . . , 5 } (3) 

Every activity can be performed either in a pair or in a group, 

escribed in constraints (4) below: 

 e + 

∑ 

t 

y t e ≤ 1 for every e ∈ E (4) 

The above constraint (4) is also enforced by the more general 

equirement (5) that every student can have at most one mentor 

n each subject: ∑ 

 :(a i ,s k ) ∈ e 

(
y e + 

∑ 

t 

y t e 

)
≤ 1 for every s k ∈ S(a i ) , a i ∈ A (5) 
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For later use in the objective function, we introduce some new 

inary variables βk 
i 

∈ { 0 , 1 } indicating whether student a i is in-

olved in mentoring activity in subject s k and γi ∈ { 0 , 1 } indicating

hether student a i is involved in any mentoring activity. We link 

hese variables with the basic variables as follows: 

k 
i = 

∑ 

e :(a i ,s k ) ∈ e 

(
y e + 

∑ 

t 

y t e 

)
for every s k ∈ S(a i ) , a i ∈ A, 

nd let 

i ≤
∑ 

s k ∈ S(a i ) 

βk 
i ≤ M · γi for every a i ∈ A, 

here M is a large enough number, e.g., the number of subjects 

ny student can possibly request mentoring (5 in our case). Note 

hat the above binary restrictions of βk 
i 

make constraints (5) sat- 

sfied automatically, thus we can leave out these constraints from 

he model, as well as constraints (4) . 

The weekly capacity of the mentors should not be exceeded, as 

xpressed with the following constraints (6) . 

∑ 

 k ∈ S(b j ) 

( ∑ 

e :(b j ,s k ) ∈ e 
x e + 

∑ 

t∈{ 1 , ... , 5 } 
x k,t 

j 

) 

≤ Q(b j ) for every b j ∈ B (6) 

The mentoring hours of a pair in a subject should not exceed 

he requested amount by the student, that can be enforced with 

onstraints (7) below. 

 e ≤ q (a i , s k ) for every e ∈ E, (a i , s k ) ∈ e (7)

When computing the volume of a solution, for groups we as- 

ume that the actual mentoring hours for a student ( x t e ) is bounded

rom above by her original request in this subject, and by the num- 

er of mentoring hours of the group. This can be formalised with 

he following two sets of constraints (8) and (8) . 

 

t 
e ≤ q (a i , s k ) for every e ∈ E, (a i , s k ) ∈ e, t ∈ { 1 , . . . , 5 } (8)

 

t 
e ≤ x k,t 

j 
for every e ∈ E, e = (a i , b j , s k ) , t ∈ { 1 , . . . , 5 } (9)

Now, we turn to the objectives. Below we list all the possible 

bjectives considered by the decision makers. 2 . We explain the ra- 

ional behind the criteria and we formulate the corresponding lin- 

ar terms for the objective function of our MILP model. The relative 

eights of these terms in the final objective function were set by 

he organisers of this application. (Note that the relative weights 

um up to 100, so they can be interpreted as percentages showing 

he importance of the objective criteria.) 

As the most important parameter, let w 

g denote the discount 

or a mentoring activity being realised in a group, as opposed to 

 pair. In our default setting, we use w 

g = 0 . 7 , which means that

ach mentoring hour in a group counts 0.7 hour in a pair. This 

arameter highly affects the share of groups in the final solution, 

s we will also demonstrate later in the simulations. 

1. Number of students allocated. Allocating mentors to as many 

students as possible. 

Rational pros: We would like to involve as many students as 

possible in the mentoring. 

Rational cons: If this objective is dominating then we would 

have many mentoring activities with 1 hour only that can be 

inefficient for both students and mentors. 

Relative importance in the application: 0 (i.e., this criterion was 

decided not to be considered as objective, only monitored) 
2 We note that additionally one might wish to consider the genders of the 

entor-student pairs, or whether they live in the same city, geographic area, or 

aybe if they attend the same school in the case of student mentors. 

5 
Linear term: With the use of variables γi , we can simply express 

this objective as follows. ∑ 

a i ∈ A 
γi 

2. Number of pairs and groups created. Maximising the number 

of pairs and groups realised with different weights for pairs and 

groups. 

Rational pros: We would like to create as many pairs and groups 

as possible, to create the links between the parties. 

Rational cons: If this objective is dominating then we would 

have many mentoring activities with 1 hour only for pairs and 

2 hours for groups that can be inefficient for both students and 

mentors. 

Relative importance in the application: 0 (i.e., this criterion was 

decided not to be considered as objective, only monitored) 

Linear term: Similar to the formula for βi , we express this ob- 

jective as follows. 

∑ 

e ∈ E 

(
y e + 

∑ 

t 

w 

g · y t e 

)

3. Volume. Maximising the number of mentoring hours realised 

with different weights for pairs and groups. 

Rational pros: The number of mentoring hours is the most im- 

portant measure. 

Rational cons: The solution might be unbalanced, some students 

may get many hours while some others may get none. 

Relative importance in the application: 50 

Linear term: Similarly to the previous formula we now use the 

hours rather than the indicator variables which can be consid- 

ered the volume of the solution. 

∑ 

e ∈ E 

(
x e + 

∑ 

t 

w 

g · x t e 

)

As the volume will be the main objective in our optimisation, 

we will set the relative weights for each mentoring activity 

accordingly. Let w e denote the final weight of activity e in a 

pair and w 

g 
e denote the final weight of an activity in a group. 

We suppose that w 

g 
e = w e · w 

g = w e · 0 . 7 in our case. The final

weight w e will be a sum of weights with respect to different 

objectives. The first objective is the volume, that we weighted 

50 for all activities, so let w 

w 

e = 50 for every activity e . 

4. Preferences. Satisfying the preferences of the students with re- 

gard to the subjects, and the preferences of the mentors on the 

subjects and on the age of students. 

Rationale: The higher the need of the student for a subject is 

the more important is for her to get help, and the preference 

of the mentor also is to be taken into account for the subject 

and so is the age of the student supervised. 

Relative importance in the application: 10 

Linear term: Each activity e = (a i , b j , s k ) will get an additional

weight according to the preferences of the students and men- 

tors that we denote by w 

p 
e . Let w 

p 
e = (6 − rank i (s k )) + (6 −

rank j (s k )) + 3 ∗ agepre f 
j 

i 
, where each of the first two terms 

gives a value between 1 to 5, depending on how preferable this 

subject is for the student/mentor, and the last term gives 3 if 

the age of the student is preferred by the mentor (among years 

1–4, 5–8, or 9–13). 

5. Group cohesion. When forming groups, we shall preferably 

have students from the same class, with the same type of 

equipment, have their former grades as close as possible, and 

have the number of scheduled hours to be close to what the 

assigned students requested in that subject. 

Rationale: Two students from the very same class are pre- 

ferred to be put into the same mentoring group, as they receive 
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the same distance education from their home school. Forming 

groups for students with similar strength can improve the ef- 

ficiency of mentoring. Finally, the requested hours by the stu- 

dents in a group should be close to the scheduled hours. Re- 

garding the equipment, if a student in a group has a laptop and 

another only a tablet or smartphone then the possible interac- 

tions can be limited between them and the mentor (we con- 

sider tablets and smartphones to be equally useful). 

Relative importance in the application: 15 

Linear term: For any two students a i and a i ′ who are both 

willing to accept mentoring let us introduce a binary variable 

z 
p 

i,i ′ for every potential group p = (b j , s k , t) , where both a i and

a i ′ could belong to, i.e., if there exist e = (a i , b j , s k ) and e ′ =
(a i ′ , b j , s k ) The indicator variable z 

p 

i,i ′ = 1 if both a i and a i ′ are

assigned to p in the solution. This can be achieved with the 

following new constraints. 

z p 
i,i ′ ≥ y t e + y t e ′ − 1 for every p = (b j , s k , t) , e = (a i , b j , s k ) , 

e ′ = (a i ′ , b j , s k ) (10) 

z p 
i,i ′ ≤ y t e for every p = (b j , s k , t) , e = (a i , b j , s k ) (11)

z p 
i,i ′ ≤ y t e ′ for every p = (b j , s k , t) , e 

′ = (a i ′ , b j , s k ) (12)

Furthermore let z k 
i,i ′ = 

∑ 

p: s k ∈ p z 
p 

i,i ′ , where z k 
i,i ′ is the indicator 

variable showing whether a i and a i ′ are in the same group for 

subject s k . 

The accumulated weight of the group coherence criteria is 

GC(z) = 

∑ 

a i ,a i ′ ∈ A 

∑ 

s k ∈ S 
(10 · sc i,i ′ − 2 · de i,i ′ − dg k i,i ′ − dr k i,i ′ ) · z k i,i ′ 

6. Students’ priorities. Giving priority to certain students in need 

(depending on the preferences of the mentors for some criteria, 

such as social status and student past performance). 

Rationale: Social welfare can improve if the students in need 

get mentored. However, the criteria of being socially disadvan- 

taged or being a weak student can be controversial for some 

mentors, so we allow them to express their willingness to get 

paired with such students. 

Relative importance in the application: 20 

Implementation with weights: 

The combined social priority weight of e = (a i , b j , s k ) , denoted

by w 

s 
e , is as follows: 

w 

s 
e = 3 · SD i · DM j + W S i · SM j + (1 . 5 − | gr(a i , s k ) − W M j | ) · P M

+ 2 · CY i + (NH i + help i ) 

7. Multiple subjects for a pair. When the same mentor-student 

pair is involved in paired mentoring activities in multiple sub- 

jects then this assignment is preferable to the case where this 

does not happen. 

Rationale: It should be avoided that too many different mentors 

supervise the same student. 

Relative importance in the application: 5 

Linear term: We introduce a new binary variable m 

j 
i 

to denote 

whether a i is mentored by b j in any subject in a pair with the 

following constraints. 

m 

j 
i 
≤

∑ 

e :(a i ,b j ) ∈ e 
y e ≤ 5 · m 

j 
i 

(13) 

We shall minimise the number of mentoring pairs with a 

weight w 

m , that is let 

MP (y ) = w 

m 

∑ 

i, j 

m 

j 
i 

m 
where we set w = 5 in our application. 

6 
.1. Final objective function 

For w e = w 

w 

e + w 

p 
e + w 

s 
e (and w 

g 
e = w e · w 

g ) , the final objective

unction is: 
 

e ∈ E 
w e · x e + 

∑ 

t 

w 

g 
e · x t e + GC(z) − MP (y ) (14) 

To summarise, the main objective is to maximise the volume 

f the mentoring activities while considering the preferences and 

he social priorities of the students, improving group cohesion, and 

ecreasing the number of mentors per students. 

. Simulations: Data generation 

During the first operating time of the allocation scheme (1 May 

o 15 June 2020), the number of students who registered on the 

ebpage was 14, while the number of mentors was 56. Because of 

he low number of students’ registration, we could not judge the 

rue potential of the model and application. Therefore we decided 

o conduct computational experiments on a mix of real and gener- 

ted data. 

Because of the low amount of observations, the main goal of 

ur simulation was to test our MILP model, rather than to give ac- 

urate prediction based on real data. We still tried, however, to use 

he data available to make the generated data as realistic as possi- 

le. 

We computed the correlations amongst the mentor variables. 

aving found only weak correlations, we generated the parame- 

ers by rolling a biased die independently for each parameter and 

bservation (student and mentor). We used the available data to 

stimate these biases. In this section, we describe the way we gen- 

rated each parameter. 

.1. Students 

• School-ratio: 14 students registered from 9 different schools. 

Therefore in the simulator, we considered the student-school 

ratio to be at most 67%. So when we considered 100 students, 

we generated 67 schools, and for each student, we selected a 

school from the whole set of schools with replacement. 
• Number of subjects: The average number of subjects requested 

per student was 2, with 4 as maximum. We used the following 

distribution for the amount of subjects: (1: 50%; 2: 30%; 3: 10%; 

4: 10%). 
• Time ( q (a i ; s k ) ): The average time required by the students for

mentoring per week in a subject was around 2 hours with a 

minimum of 1 and maximum of 4. We used the distribution 

(1: 33%; 2: 33%; 3: 25%; 4: 9%). 
• Grades: For the distribution of grades, we got almost every pos- 

sibility from the data, except grade 1, which means Failed in 

Hungary. In the simulation, we generated all types of grades 

uniformly with the addition of 0, where 0 means no response 

(which was 25% of the real cases). 
• Group: 9 out of 14 students selected the possibility of getting 

mentoring in groups. Hence we set 2 
3 for the probability of a 

student accepting group-mentoring. 
• Help: For the three possible values we received 5-5-4 re- 

sponses, respectively. Therefore, we decided to generate these 

values randomly with equal probability. 
• Equipment: All of the participants chose 0. We left this param- 

eter out from the simulation because it is not crucial for the 

optimisation model. 
• Year: Most of the registered students were from years 4–8 

(92%), only one student was in year 11. Since the programme 

started at the end of the spring semester and after the matric- 

ulation exam, we assumed that the secondary school students 
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Table 1 

Families by number of children, 

( http://www.ksh.hu/thm/2/indi2 _ 1 _ 4. 

html?lang=hu ) . 

Number of children probability 

1 69.2% 

2 23.9% 

3 5.2% 

4 or more 1.7% 
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were underrepresented in the application. Therefore we gener- 

ated the students’ years uniformly from years 4 to 12. 
• Prior1 ( SD i ): 13 students out of 14 chose option 0, and the last

remaining student chose option 1. Therefore we generated a 

higher ratio of underprivileged students by using the (0: 65%; 

1: 20%; 2: 10%; 3: 5%) distribution. 
• Prior2 ( NH i ): In the generator, we used the result of a 2016

census of the Hungarian Central Statistical Office ( http://www. 

ksh.hu/thm/2/indi2 _ 1 _ 4.html?lang=hu ) to generate the data. 

According to this census the percentage of single-parent fami- 

lies is 18 . 3% . For the number of children, we generated the data

according to Table 1 (for 4 or more we considered simply 4). 

Therefore, for each student, we generated the number of par- 

ents and the number of siblings independently, according to the 

above statistics. 
• Prior3 ( W S i ): In the real data, 64% of the students had 0 points,

28% had 2 and only one student had 3 points (no student got 

1 point for this variable). We approximated the values of this 

parameter with the Poisson distribution, where we set the ex- 

pected value equal to the mean of the real data (0.786). 
• Prior4 ( CY i ): This point depends directly on the year of the stu- 

dent, so it is computed accordingly. 
• Matriculation: This depends on the year of the student. There- 

fore we only considered this variable when the student was 

from year 11 or 12. Most students officially take the matricu- 

lation exam in year 12 in Hungary, however, there is an option 

to advance some exams before the year of matriculation. Hence 

we randomised this value for the students from year 11, by as- 

suming that 40% of them do not want to prepare for the matric- 

ulation exams (so they got the ”N”-letter, meaning no matricu- 

lation), 40% going for the basis exam and 20% of them choosing 

the advanced exam. 

.2. Mentors 

When we generated the characteristics of the mentors, we used 

he distributions taken from the real data. Since 56 mentors regis- 

ered into the programme, we have not made as many assumptions 

s in the case of the students. 

• Group: 54% of the mentors agreed to the possibility of mentor- 

ing in groups. 
• Time ( Q(b j ) ): For the time capacity of the mentors, first we

generated ranges with a distribution, and then we chose uni- 

formly the exact value from the range selected. The time-range 

of a mentor was 1–3 hours with 40% probability, 4–6 hours 

with 40% probability, and 7–10 hours with 20% probability. 
• Social ( DM j ): We used the (0: 50%; 1: 40%; 3: 10%) distribution, 

in line with the real data. 
• Weak ( GP M j ): Here 85% of the mentors chose option N , there-

fore we also used 85% for generating option N and 5% for each 

the other three options. 
• Student-Age ( Y M j ): We used the (0: 5%; 1: 20%; 2: 15%; N: 60%
(no preference given)) distribution, based on the real data. t

7 
.3. Subjects 

Overall, there were 15 different subjects offered for selection. 

e generated the distribution of the requested subjects according 

o the distribution of the subjects offered by the mentors. The as- 

umption behind this is that the demand and the supply of the 

ubjects shall be balanced in the long run. However, we also added 

 random noise to modify the distribution for every instance. 

Not all of the subjects are available for each year. Therefore the 

istributions are normalised for each year with regard to the sub- 

ects available. A student can request mentoring in multiple sub- 

ects. According to the data, the maximum number of subjects re- 

uested was 4 with an average of 2. As we already described, we 

sed the ( 1 = 50 %, 2 = 30 %, 3 = 10 %, 4 = 10 %) distribution to gen-

rate the number of subjects requested by each student, and then 

ith the consideration of the student’s year, we picked the sub- 

ects randomly with a distribution that is close to the distribution 

f the subjects offered by the mentors. 

The mentors can belong to multiple classes. In the data, the av- 

rage number of subjects per mentor was 2.9. However, the max- 

mum number of the subjects was 9 for some mentors. Therefore 

ome extreme values have increased the average a lot. We gener- 

ted the number of subjects of each mentor with respect to their 

otal time offered. If the mentor’s total time was less than 4 hours 

hen we generated 1–3 subjects uniformly. If the total time was 

ess than or equal to 6, then we generated 1–4 subjects uniformly. 

inally, in the case of time at least 7, we generated 1–5 subjects. 

henever we allocated a subject to a mentor, we assumed that 

he mentor is willing to teach students of all age in this subject. 

.4. Comparison of generated and real data 

To compare the simulated data to the real data, we generated 

0 0 0 instances with the same amount of mentors (56) and stu- 

ents (14) as in the real data. Then we checked whether the values 

f the real data are within the interquartile range of the values of 

he generated data. 

Regarding the evaluation measures, only the Social -points were 

ot inside this range with any type of objective value. This is rea- 

onable since in the real data, we have not received enough val- 

es (see, for example, Prior 1 and 2). Therefore we adjusted the 

istributions. Hence the generated data produced, on the average, 

igher results than in reality. 

Also, when we considered the group-weight of 1 in the ob- 

ective function, several other measures were also outside the in- 

erquartile range. The reason behind this instability is the few 

umbers of students in the real data. 

. Simulations: single run 

In this section first we describe how we simplified the evalua- 

ion measures by clustering them based on one-shot simulations, 

nd then we also present the performance analyses with regard to 

ome basic parameters. 

We used an AMD Ryzen 5 2600 Six-Core CPU 3,40 gigahertz 

omputer with 16 GB DDR4 RAM for calculations. We ran the pro- 

ram in Python 3.7.6. and used the Gurobi 8.1.0 solver for the op- 

imisation. 

.1. Generation of instances 

For the basic setting we generated 100 large instances with 80 

tudents and 40 mentors in each, and we conducted a single match 

un for each of them. This setup differs from the real data, since 

he student/mentor ratio is much higher in the generated data. Our 

http://www.ksh.hu/thm/2/indi2_1_4.html?lang=hu
http://www.ksh.hu/thm/2/indi2_1_4.html?lang=hu
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Fig. 1. The dendrogram of the measures. The measures are described in Section 3 . Number_of_students : Objective 1 Number_of_Pairs_and_Groups : Objective 2; 

Volume : Objective 3; Preference : Objective 4; Group_connection : Objective 5; Social : Objective 6; Mentor_pairs : Objective 7; Solo_time/Group_time : 
Evaluation measure 1; Solo_number/Group_number : Evaluation measure 2; Mentor_capacity : Evaluation measure 3. 
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im was to analyse the effect of using different objective functions 

hen the programme has an ideal student/mentor ratio. 

Then we adjusted the main parameters to create alternative so- 

utions, as follows. 

.1.1. Alternative parameters 
• we modify w 

g from 0.7 to 0.5, 0.6, 0.8, 0.9, 1 
• for w 

g = 0 . 7 we modified the preference based weights from 

the default setting w 

p 
e = (6 − rank i (s k )) + (6 − rank j (s k )) + 3 ∗

agepre f 
j 

i 

to b) w 

p 
e = (6 − rank i (s k )) 

2 + (6 − rank j (s k )) + 3 ∗ agepre f 
j 

i 
, 

and to c) w 

p 
e = (6 − rank i (s k )) 

2 + (6 − rank j (s k )) 
2 + 3 ∗ agepre f 

j 
i 

Thus we generated five times 100 instances by varying w 

g and 

nother two times 100 instances by changing the preference based 

eights. So altogether we considered 800 instances. The solver al- 

ays returned an optimal solution. The run time for solving the 

ILP model for these instances was relatively short, the aver- 

ge run time was 167 seconds with a maximum of 3 hours and 

2 minutes. 

.2. Clustering the evaluation measures 

Besides the seven objectives given in Section 3 , we considered 

he following five performance measures in the evaluation of solu- 

ions. 

.2.1. Additional evaluation measures 

8. number of pairs 

9. number of groups 

0. number of paired mentoring hours 

1. number of group mentoring hours 

2. total capacity of the mentors used 

e analysed how the above described five evaluation measures be- 

ave together with the seven different objective functions, that we 

resented earlier. For the evaluation of the different objective func- 

ions, we decided to reduce the dimension of the twelve measures. 

o, we calculated the similarities between the various measures 

ith hierarchical clustering. All of the results were considered in 

he estimation. Fig. 1 shows the dendrogram of the measures. 
8 
We decided to reduce the dimension of the 12 measures to 6 

as the red rectangles show in Fig. 1 ). We chose the six dimen-

ions, because according to Principal component analysis, with 6 

omponent 96% of the total information can be saved. Additional 

omponent only increased the saved information by less than 2%. 

According to hierarchical clustering, we evaluated the 

umber_students , Preference and Social measures 

ndependently from the other measures. 

From the Mentor_capacity , Solo_time , Mentor_pairs 
nd Solo_number measures with using the Factor analysis 

ethod, we created a factor variable. We covered 84% of the total 

nformation in this factor. We named this factor as solo-factor be- 

ause it is related to the measures of the non-group classes. For ev- 

ry measure a higher value increases the accumulated factor score. 

nterestingly the number of Mentor-student pairs (Objective 7) be- 

aves similarly to the solo-class time and number. 

We created another factor for the measures of 

roup_connection , Group_time , and the Group_number . 
e named this factor as Group-factor . We could cover 73% of the 

otal information inside one factor. Higher Group_connection 
alue decreases the Group-factor’s score, while for the other two 

easures higher value will increase it. 

Finally, from the Number_of_Pairs_and_Groups and 

olume we created the so-called Quantity-factor . For all of these 

easures higher values increase the factor’s score. We could cover 

1% information within this factor. 

.3. Analyses of one-shot simulations 

Fig. 2 presents the distributions of the three factors as well as 

he Number of students, Social and Preference scores of the differ- 

nt objective functions. 

On the graphs of the Solo-factor and Group-factor, the influ- 

nce of group-weight ( w 

g = W G ) is clearly visible. As the group-

eight increases, the Solo-score decreases and the Group-score in- 

reases. The two quadratic-preference models had very similar re- 

ults in these cases compared to the original WG_0.7 model, al- 

hough there was a small decrease in the group-score. 

The Quantity factor’s score increases with the group-weight. 

ote that this is not surprising, since in both corresponding ob- 

ectives (Number of pairs and groups, Volume) w 

g is explicitly in- 
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Fig. 2. The distribution of the 3 factors and the Number of students, Preference and the Social measures. 
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Fig. 3. Increasing the willingness of the mentors to teach groups. 
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luded in the formula. However, the simulation result shows, how- 

ver, that this objective is not affected by the quadratic prefer- 

nces. 

Group-weight also increases a bit the number of matched stu- 

ents. However, the best solution for this measure is when the 

reference of the students was considered quadratically. 

Naturally the Preference measure is very high for the two 

uadratic preference cases, since the objective functions are explic- 

tly influenced in those cases. It seems, however, that the group- 

eight parameter did not have any effect on this measure. 

Social points appear to be very stable, the group-weight does 

ot have much effect on the social aspect of the programme. The 

uadratic preference cases, however, have a slightly worse result 

or this measure. 

.4. Sensitivity analysis of computational time 

The complexity of solving the MILP comes from the possibility 

f study groups, since if only paired mentoring is allowed then the 

roblem is reduced to the well-known assignment problem ( Kuhn, 

955 ) that is solvable in polynomial time. 

To investigate how the possibility of group mentoring changes 

he computational time, first we generated instances with differ- 

nt supply for group mentoring, by varying the ratio of the men- 

ors willing to teach in groups. We considered 50 mentors and 100 

tudents in each instance. First we generated ten instances with 

ero willingness of the mentors to teach groups, then in the fol- 

owing ten instances, we increased this percentage by five percent, 

nd continued up to 100 percent. 

Fig. 3 shows the average computational times of the models 

hen changing the ratio of mentors willing to teach groups. The 
9 
ale colour shows the range between the minimum and maximum 

omputation times. 

It is noticeable that when most of the mentors would be willing 

o teach groups, then the running time is significantly longer than 

hen none or few of the mentors would. When the ratio was less 

han 50% , the computational time remained low, and almost the 

ame, but over 60% percent we see a significant increase. 

The student-mentor ratio can also affect the running time of 

he model. If there are more mentors than students, then it is gen- 

rally easier to create pairs. If the number of students is much 

igher than the number of mentors, then the optimal solution will 

e more oriented towards group education. In the second test we 

enerated instances with exactly 100 participants, and changed the 

atio of students and mentors from 5:95 up to 95:5. Fig. 4 presents 

he running times of the solutions. On the left side, the results for 



P. Biró and M. Gyetvai European Journal of Operational Research xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: EOR [m5G; August 14, 2022;4:56 ] 

Fig. 4. Total of 100 participants, where axis x shows the number of students. 

Fig. 5. Increasing the group weight, with 100 students and 50 mentors. 
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 students and 95 mentors are shown, and on the right side the 

nstances have 95 students and 5 mentors. 

As the ratio of students increases, the computational time also 

ncreases, since more groups can be created when there are fewer 

entors and more students. 

Finally, in the third test, we considered how the group-weight 

 

g in the objective function affects the running time of the so- 

ution. Similarly to the previous case, we generated the instances 

ith a fixed number of 100 students and 50 mentors. Then we cal- 

ulated the optimal solutions with different group-weights in the 

ange 0 to 1 for ten generated instances for each value. 

As Fig. 5 depicts, the group-weight also influences the com- 

utational time. When the group weight was small, namely less 

han 0.25, then the running time was significantly smaller than for 

igher weights. Interestingly, the solution with weight 1 was not 

he slowest in general, but rather when the weight was slightly 

ess than 1. 

. Simulations: Dynamic allocation 

We investigated also how the frequency of the matching runs 

ffects the results in a dynamic setting. We considered the first 

00 days of the programme, by generating a registration date for 

ach student and mentor. We assumed that both the students and 

entors joined the application random uniformly distributed in 

he period considered. We also generated a leaving day for each 

pplicant as follows. Presumably, if a student does not get any 

entor within a reasonable time in this programme, then he or 

he may well seek mentors using other channels. We assumed that 

he stay of the students in this programme is normally distributed 

ith expected value 14 (days) and standard deviation 2 (but they 

emain at least seven days). The mentors may also leave a pro- 

ramme if they do not get any student soon enough after regis- 

ration, however, we assumed that they are be more patient than 

he students. In particular, they leave the programme 3 weeks af- 

er registration on the average (with a minimum of two weeks). 
10 
gain we used normal distribution with setting two days for the 

tandard deviation. 

We also extended the stay of those students and mentors, who 

ot matched. For any student, who was in a solution of a matching 

un, we added seven more days to their leaving time. We extended 

he staying time of the matched mentors by 14 days. Fig. 6 shows 

he flow of a matching run. 

First, we set up the pool of students and mentors of a matching 

un. A pool of students consists of those students who have already 

egistered into the programme, but have not left it yet and have 

emand for some subjects. The pool of the mentors are those who 

ave time for teaching, and already registered but have not left the 

ool yet. 

Then we calculate the optimal matching according to the pol- 

cy setting and we remove the satisfied subject from the list of 

he demanded subjects of each selected student. For the allocated 

entors, we decrease their total time offered for teaching with the 

llocated time. 

Then we increase the remaining time of stay of the allocated 

tudents and mentors, with 7 and 14 days, respectively. 

We considered four different frequencies for the matching-runs: 

, 2, 7 and 14 days. We evaluated 100 generated instances accord- 

ng to these four frequencies. In the optimisation model, we con- 

idered the Final objective function (14) with the default group- 

eight w 

g = 0 . 7 . 

Since we had no access to the registration dates and duration 

f stays of the students and mentors, we generated two differ- 

nt set of instances with regard to the frequency of the arrivals. 

e considered instances where 1 and 4 were the average num- 

er of students joining the programme per day. Therefore, for an 

nstance of type 1, we generated 300 students, and for an in- 

tance of type 4, we generated 1200 students for the period of 

00 days. The students register into the programme uniformly 

t random, hence 1 and 4 students register daily on average, 

espectively. 

In each case, we assumed that the mentors arrive half as fre- 

uently as the students. Hence in instances of type 1, one mentor 

rrives in every two days, in instance of type 4, two mentors are 

xpected to join the programme every day on the average. 

Fig. 7 presents the solo-groups formed in different examples. 

In both cases, more frequent runs resulted in more solo classes. 

etween the 1 and 2 daily runs, the difference is not large, how- 

ver as the matching runs become less frequent, the difference 

s visible. Fig. 8 presents the results of the number of groups 

ormed. 

In both cases, less frequent runs resulted in more groups. 

herefore independently from the sizes of the matching problems, 

ore frequent runs were better with respect to paired-mentoring, 

nd less frequent runs were better for forming more groups. 

How about the quality of the solutions of each frequency? 

n the previous figures, we focused on the number of pairs and 

roups. For the quality of matchings, first we considered the So- 

ial aspect of the programme. Fig. 9 presents the sum of the Social 

oints in each type of matching runs. 

The Social score did not depend on the frequency of the match- 

ng runs that much when in average one student registers per day. 

 small decrease is noticeable as runs become less frequent in this 

ase. 

However, when the average number of daily student registra- 

ion is 4, then the trend changes. The reason behind the change of 

rend is the higher number of groups. 

Fig. 10 presents the volumes of optimal solutions. With fewer 

tudents, forming a group is more complicated. Hence more fre- 

uent runs have better social points, because of the solo-groups. 

ith a larger pool, more groups can be formed, therefore we see 

n increase in the Volume, as well as in the Social score. 
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Fig. 6. Flow of a matching run. 

Fig. 7. The formed solo-groups. 

Fig. 8. The formed groups. 

Fig. 9. The sum of social scores in each example. 

Fig. 10. Volume. 
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.1. Consideration of the waiting-time 

As in other dynamic allocation systems of bounded length of 

uration of stays (e.g., organ allocation) one may try to improve 

he solutions with a prioritisation based of waiting times . 
11 
In the following part we investigate how the results change 

f we prioritise those students and mentors, who registered ear- 

ier to the programme. It may decrease the social-scores and the 

reference-scores of the matchings, but there may be less early 

uits from the programme and also less unmatched participants. 
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Fig. 11. The Solo and Group results with 0,1,2,10 weight on the waiting time. 

Fig. 12. The Volume and Number of students results with 0,1,2,10 weight on the waiting time. 

Fig. 13. The Preference and Social results with 0,1,2,10 weight on the waiting time. 
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Therefore we modified the weight of the activities, to w e = 

 

w 

e + w 

p 
e + w 

s 
e + w 

t 
e , where 

 

t 
e = W T 

(
(t r − t 0 i ) + (t r − t 0 j ) 

)
(a i , b j ) ∈ e (15)

Here t r denotes the day of the matching run, t 0 
i 

is the registra- 

ion date of student a i and t 0 
j 

is the registration date of mentor b j .

e also use a weight for the days passed, that we denote by W T . 

To test how the prioritisation by waiting time changes the so- 

utions, we considered a 300 days period again with an average of 

hree students registering into the programme in every day. We set 

,1,2 and 10 for the weight of the waiting time priority regarding 

ll the match-frequencies that we investigated earlier. 

Fig. 11 presents the Solo-groups’ and groups’ distributions of 

he results. 

With the increase in the weight of the waiting time priority, the 

umber of pairs increased, but the number of groups decreased. 

e can observe a similar trend for each match-frequency, hence 

iving priority for the waiting time is good for forming more pairs. 

Overall, we can notice a small decrease in the Volume, as 

ig. 12 presents. For WT = 1 and 2 this reduction is negligible, but 

or WT = 10 it is significant. Thus giving priority by the waiting 

ime, we lose more mentoring time with the decreased number of 

roups than what we gain with more pairs. 
12 
The same figure depicts the change in the number of students 

s well. In every run-frequency, a higher WT resulted in a decrease 

n the number of students allocated. 

Fig. 13 presents the Preference and Social scores. In both cases, 

igher WT resulted in a relapse. It is connected to the decrease 

n Volume since fewer mentoring hours in general means worse 

reference and Social scores. 

Hence the prioritisation by the waiting time increase only the 

umber of pairs and decrease many other aspects of the pro- 

ramme. The setback in these values is caused by the multiple de- 

ands and offers. For exam ple, a student may request two differ- 

nt subjects. If there is a match for her first subject then she re- 

ains in the programme with her second remaining subject with 

n extended duration of stay, and so in a later run she may well 

eceive a mentor for her second subject as well due to her in- 

reased priority instead of allocating a newly registered student 

or her first subject. In fact, the newly registered student can even 

ave higher Social score, or other scores can also be better for her, 

ut the high waiting time priority for the aforementioned student 

verrules these scores. Thus the newly registered student may not 

ven get a mentor, whilst the earlier matched student will get mul- 

iple mentors. Therefore there is a setback in both match quality 

nd also in quantity to a certain extend. 

To reduce the setback, caused by the multiple demands and of- 

ers by the members, we also investigated how the solution will 
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Fig. 14. The results with weights 0,1,2,10 for the waiting time regarding the first preferred subjects only. 
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hange, if we only consider the extra priority on the waiting time 

or the first preferred subjects of the students. Fig. 14 presents the 

esults of these models, with the same setups as earlier. 

In the pairs and groups, the effect was similar to the earlier in- 

estigated case. The weight on the waiting time of the first subject 

lso increased the number of pairs and decreased the number of 

roups. However, the change is noticeably smaller. Therefore the 

olume appears to be more stable, but still has a slight reduction 

s the WT increases. However, the trend in the number of students 

hanged. In this case, a higher weight on the waiting time of the 

rst subject increased the number of students matched. Because 

ach student has one subject with this weight, those students who 

ave not been selected yet has a higher chance to get matched 

han before. 

Regarding the preferences, we can notice a small increase when 

he runs occur every day or every two days. The score decreases, 

owever, when the runs happen less frequently. The reason be- 

ind the change in the trend may be due to the reduction in the 

umber of groups. In general, more frequent runs resulted in more 

airs and fewer number of groups. The weights for the waiting 

ime also increased the number of pairs and reduced the possibil- 

ty to form a group. More pairs with higher preferences increased 

he preference score, but having fewer groups decreased it. 

The Social score decreased for every run frequency as we in- 

reased the WT. However, the effect is much smaller compared to 

he case when every subject was weighted. 

. Conclusion 

In this paper we have described the optimisation aspect of a 

oint NGO project for allocating voluntary mentors to students. By 
13 
aking the participants’ preferences into account we aimed at cre- 

ting desirable pairs and study groups by using integer program- 

ing techniques for solving the dynamic allocation problem in the 

eal application and also for generated data. We believe that the 

essons learned can be useful for other countries and for similar 

pplications. 

For future work we are planning to investigate the possibili- 

ies of improving the MILP model and applying other techniques, 

.g. pre-processing, reducing the running time of the solution and 

aking the optimisation approach feasible for larger applications. 
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