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1. Introduction

The main object of our investigations is a free function F : D(E) �→ B(E) with 
self-adjoint domain and range satisfying

F ((IA ⊗W ∗)X(IA ⊗W )) ≥ W ∗F (X)W (1)

for each isometry W : E �→ K for Hilbert spaces E, K and X ∈ D(K) such that also 
W ∗XW ∈ D(E) ⊆ A ⊗B(E), where IA denotes the identity map of a Banach space A. 
In particular if (D(E)) is matrix convex, then W ∗XW ∈ D(E) always when X ∈ D(K), 
however this is not required in this paper. It is known by [24], that (1) characterizes 
operator concave free functions satisfying

F ((1 − λ)X + λY ) ≥ (1 − λ)F (X) + λF (Y ) (2)

for λ ∈ [0, 1], X, Y ∈ D(E) on a matrix convex domain (D(E)), so one might think of an 
F above in (1) as a partially defined operator concave function. A conceptually similar 
problem in the particular case of power means of positive numbers is treated successfully 
in [19] and then in [18] by lifting the real function into a fully non-commutative one as a 
unique solution of characterizing nonlinear operator equations. The other paper known 
to the author that does not assume matrix convexity of the domain is the foundational 
material [1], in which local monotonicity is characterized for a real multivariable func-
tion by construction of analytic extensions to upper complex poly-halfplanes. However 
[1] does not succeed in lifting up the real function into a full non-commutative free func-
tion on an enclosing matrix convex domain, nor can it show that it preserves the partial 
order. In this paper this problem of non-commutative lifts is eliminated by transform-
ing the problem in section 2 into a more suitable form handled in Theorem 3.11 for a 
real multivariable function that preserves the partial order between commuting tuples 
of matrices. Theorem 3.11 constructs full non-commutative analytic lifts of these real 
multivariable functions to matrix convex hulls of the original domain. This is based on 
the more general Corollary 3.7 characterizing functions satisfying (1).

Usually matrix convexity of the domain (D(E)) is essential for the machinery of 
various further existing results characterizing operator monotone or operator concave (2)
functions, like [11,17,21,24] and [26] when A = Ck for a positive integer k, and in [8,25,27]
when A is an operator system. Excluding [24], the other existing results in the field are 
restricted to the case when dim(E) < ∞ and F is continuous with respect to finitely 
open topologies used to study holomorphic functions in general, see the monograph [15]. 
This essentially renders investigations in [8,25,27] in the norm topology restricted to 
matrix convex matricial domains of Mn(A) 	 Mn(C) ⊗ A for an operator space A. In 
this paper A can be any Banach space and E can be infinite dimensional over the same 
ground field. Actually all results of section 3 can also be worked out in exactly the same 
way for a locally convex vector space A as remarked there. However we will not need 
that here, for our applications in the last section, the Banach space case suffices.
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The above mentioned restrictions of the state of the art of free function theory be-
come apparent if we consider the recent developments in the theory of operator means of 
probability measures of positive operators in [13,14,20,23]. There, one studies functions 
F : P∞(P (E)) �→ P (E) on the cone of probability measures P∞(P (E)) over the pos-
itive invertible operators P (E), which preserve the stochastic order [14] of probability 
measures. We show that one can lift such a function F into an operator monotone 
free function F̂ : L∞([0, 1], λ)+ ⊗ P (E) �→ P (E) of P (E)-valued random variables 
satisfying (1). Then we apply our results to this setting, to analytically continue an 
operator mean in several variables to the probability measure setting, thus obtaining 
F̂ : L∞([0, 1], λ)+ ⊗ P (E) �→ P (E). This provides a realization for a class of operator 
means whose study was initiated in [23] and put into a more general framework of opera-
tor means of probability measures in [13]. The main results in this topic are in section 4, 
specifically Theorem 4.7, Corollary 4.8 and Definition 4.2.

The results of the paper are self-contained in the sense, that we essentially use only 
standard operator theoretic results available for example in [30] to study free functions. 
Detailed structure theory of free functions like the monograph [15] is not required. In 
section 4 we also make use of the theory of the stochastic order of probability measures 
and some related results which are from probability theory.

In the following, we explicitly introduce the basic definitions of the objects to be 
studied in this paper. All vector spaces are over the ground fields R or C. Let A be a 
vector space and let IA : A �→ A denote the identity map.

Definition 1.1 (Free set and matrix convex set). A collection (D(E)) of sets of operators 
D(E) ⊆ A ⊗ B(E) for each Hilbert space E over the ground field R or C is a called a 
free set whenever for all Hilbert spaces E, K we have the following:

1) (IA ⊗ U∗)D(E)(IA ⊗ U) ⊆ D(K) for all unitary U : K �→ E.
2) D(E) ⊕D(K) ⊆ D(E ⊕K).

If additionally (2) holds for any linear isometry U : K �→ E, then (D(E)) is a matrix 
convex set.

Sometimes the collection (D(E)) will be restricted to the case dim(E) < ∞. In that 
case, for all other involved Hilbert spaces K we assume dim(K) < ∞ as well.

We remark that if a given free set (D(E)) is matrix convex, then according to [12]
each D(E) is convex in the usual sense.

Definition 1.2 (Free function). Let L be a fixed Hilbert space. A collection of functions 
F : D(E) �→ B(L ⊗ E) indexed by E for a free set D(E) ⊆ A ⊗ B(E) defined for all 
Hilbert spaces E, K is called a free function whenever for all A ∈ D(E) and B ∈ D(K), 
we have
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1) unitary invariance, that is

F ((IA ⊗ U∗)A(IA ⊗ U)) = (IL ⊗ U∗)F (A)(IL ⊗ U)

holds for all unitaries U : E �→ K;
2) direct sum invariance, that is

F (A⊕B) = F (A) ⊕ F (B).

In the paper we assume that L = C, since given a free function F : D(E) �→ B(L ⊗E), 
one can study its slices l(F ) : D(E) �→ B(E) instead, where l ∈ B(L)∗+ is a state of B(L), 
since l(F ) is then also a free function in the same class as F itself regarding operator 
concavity or monotonicity, so essentially the same techniques apply to them.

2. Lifted hypographs are matrix convex

We use P (E) to denote the cone of invertible positive and S(E) ⊃ P (E) the self-
adjoint bounded linear operators over the Hilbert space E, so that P (C) denotes the 
positive reals. For k-tuples of self-adjoint operators X, Y ∈ B(E)k we define X ≤ Y by 
requiring Xi ≤ Yi for each i ∈ {1, . . . , k}.

Definition 2.1 (cf. [1]). A real function f : P (C)k �→ P (C) is said to be globally oper-
ator monotone, if for any X ≤ Y ∈ CP (E)k, dim(E) < +∞ we have f(X) ≤ f(Y ), 
where CP (E)k denotes the set of pairwise commuting k-tuples of invertible positive 
bounded linear operators on E, and f(X) := U∗f(Λ)U where X = U∗ΛU denotes 
the joint spectral decomposition of the pairwise commuting tuple X and f(Λ) :=⊕k

i=1 f({Λ1}ii, . . . , {Λk}ii).

The following result for k = 1 appeared in [9] relating operator monotonicity with 
concavity and inequalities with isometric conjugations.

Proposition 2.1. Let f : P (C)k �→ P (C) be a globally operator monotone function. Then 
for any isometry W : E �→ K between finite dimensional Hilbert spaces E, K and any 
X ∈ CP (K)k such that W ∗XW ∈ CP (E)k we have

W ∗f(X)W ≤ f(W ∗XW ). (3)

In particular f is concave and continuous as a real function.

Proof. Let

U :=
[

W (I −WW ∗)1/2
(I −W ∗W )1/2 −W ∗

]
=

[
W (I −WW ∗)1/2
0 −W ∗

]
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denote a unitary dilation of the isometry W , i.e. U∗U = UU∗ = I on E⊕K. Now choose 
arbitrary A ∈ CP (E)k and let

C := (I −WW ∗)1/2X(I −WW ∗)1/2 + WAW ∗.

Then we have

U∗

[
X 0
0 A

]
U =

[
W ∗XW W ∗X(I −WW ∗)1/2

(I −WW ∗)1/2XW C

]
.

Set D := −W ∗X(I −WW ∗)1/2 and notice that for any given ε > 0[
W ∗XW + εI 0

0 2zI

]
− U∗

[
X 0
0 A

]
U ≥

[
εI D

D∗ zI

]

if zI ≥ C = (I −WW ∗)1/2X(I −WW ∗)1/2 + WAW ∗ for z ∈ P (C)k. The last k-tuple 
of block matrices above is positive semi-definite if ziI ≥ 1

εDiD
∗
i for all 1 ≤ i ≤ k. So, for 

sufficiently large positive k-tuple z we have

U∗

[
X 0
0 A

]
U ≤

[
W ∗XW + εI 0

0 2zI

]
.

For such z > 0, by the global operator monotonicity of f we get

f

(
U∗

[
X 0
0 A

]
U

)
≤

[
f(W ∗XW + εI) 0

0 f(2z)I

]
.

We also have that

f

(
U∗

[
X 0
0 A

]
U

)
= U∗

[
f(X) 0

0 f(A)

]
U

=

⎡
⎢⎣ W ∗f(X)W W ∗f(X)(I −WW ∗)1/2

(I −WW ∗)1/2f(X)W (I −WW ∗)1/2f(X)(I −WW ∗)1/2+
+Wf(A)W ∗

⎤
⎥⎦ ,

hence we obtain that

W ∗f(X)W ≤ f(W ∗XW + εI). (4)

Now since f is monotone, f(X + εI) for ε > 0 forms a decreasing net bounded from 
below by f(X), thus the right limit

f+(X) := inf f(X + εI) = lim f(X + εI)

ε>0 ε→0+
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exists for all X ∈ CP (K)k and f+ is a multivariable real function. Hence for any ε > 0, 

using (4) with W = [λ1/2I, (1 − λ)1/2I] where λ ∈ [0, 1] and X =
[
a 0
0 b

]
with a, b ∈

CP (C)k, we obtain

λf+(a) + (1 − λ)f+(b) ≤ λf(a + εI) + (1 − λ)f(b + εI) ≤ f(λa + (1 − λ)b + 2εI).

Taking the limit ε → 0+ we obtain that

λf+(a) + (1 − λ)f+(b) ≤ f+(λa + (1 − λ)b),

i.e. the real function f+ is concave, thus continuous. Also

f(X) ≤ f+(X) ≤ f(X + εI)

for all ε > 0. Since f is monotone increasing, we have

f+(X − εI) ≤ f(X) ≤ f+(X),

and since f+ is continuous we get that f = f+ by taking the limit ε → 0+. Hence we 
can also take the limit ε → 0+ in (4) proving (3). �
Corollary 2.2. Under the assumptions of Proposition 2.1, (3) remains true with contrac-
tions W : E �→ K, that is ‖W‖ ≤ 1.

Proof. If ‖W‖ ≤ 1, then (I−W ∗W )1/2 is not necessarily 0. However the block operator 
matrix U is still unitary and we can choose A = 0 in the proof with f(0) := 0 since 
f |P(C)k > 0, and the same block operator matrix argumentation goes through, leading 
to (3). �
Definition 2.2 (Matrix convex hull). Given a disjoint union of sets (C(E)) for each Hilbert 
space dim(E) < +∞, its matrix convex hull, denoted as (comatC(E)) for each Hilbert 
space dim(E) < +∞, is defined as the smallest matrix convex set containing (C(E)). 
By Proposition 2.6 in [12], it is known that if (C(E)) is closed under direct sums, then

comatC(E) := {V ∗XV : X ∈ C(K),dim(K) < +∞, V : E �→ K an isometry}.

Notice that in general convex combinations are themselves matrix convex combina-

tions, since (1 − λ)A + λB = V ∗(A ⊕ B)V , where V =
[

(1 − λ)
λ

]
is an isometry for 

λ ∈ [0, 1]. Provided the above definition of the matrix convex hull, the following result 
is almost immediate.
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)

Lemma 2.3. We have comatCPk(E) = Pk(E) for each dim(E) < ∞.

Proof. Let A ∈ Pk(E) with dim(E) = n, so that Ai ≥ εIE for a small enough ε > 0. In 
spectral decomposition form, we also have

A =
(

n∑
i=1

a1
iu

1
iu

1∗
i , . . . ,

n∑
i=1

aki u
k
i u

k∗
i

)

where ui
l are eigenvectors and ail are the corresponding eigenvalues of Ai. By looking at 

the above form, it is clear that each Ai is written as a finite convex combination of rank 
one matrices of the form cuu∗+dIE where c, d ∈ P (C) and u ∈ E, ‖u‖ = 1. We can write 
cuu∗ = (e1 ⊗u∗)∗ce1e

∗
1(e1 ⊗u∗), an isometric inclusion of ce1e

∗
1 ∈ P (C), so by extending 

e1⊗u∗ into a unitary U , we get that cuu∗+dIE = U∗((c +d) ⊕(⊕n
j=2d))U , itself a matrix 

convex combination. Thus it follows that A is actually a finite convex combination of 
elements where only one coordinate of the k-tuple is not necessarily equal to zIE for some 
z ∈ P (C), and such elements are also finite matrix convex combinations of elements of 
Pk(C). �

Now consider the hypograph

hypo(f) := (hypo(f)(K)) := ({(Y,X) ∈ S(K) ×CP (K)k : Y ≤ f(X)})

of a real function f : P (C)k �→ P (C) for dim(K) < +∞. We should think about the real 
function f and its hypo(f) as a partially defined free function and its partially defined 
hypograph.

The next result is an extension of Proposition 2.1 and provides a characterization of 
monotonicity.

Theorem 2.4. Let f : P (C)k �→ P (C) be a real function. Then f is globally operator 
monotone if and only if for each (Y, X) ∈ comat(hypo(f))(E) with dim(E) < +∞ and 
X ∈ CP (E)k we have that Y ≤ f(X).

Proof. Suppose first that f is globally operator monotone. Let (Y, X) ∈ comat(hypo(f)(E)
with dim(E) < +∞ and X ∈ CP (E)k. Then by the definition of the matrix con-
vex hull there exists an isometry W : E �→ K between the finite dimensional Hilbert 
spaces E, K and a (y, x) ∈ S(K) × CP (K)k with y ≤ f(x) such that Y = W ∗yW and 
X = W ∗xW . Then it follows that Y ≤ W ∗f(x)W , so by Proposition 2.1 we get that 
W ∗f(x)W ≤ f(W ∗xW ) = f(X).

To see the converse implication, consider the function

hv(X) := sup{v∗Y v : (Y,X) ∈ comat(hypo(f))(E)}
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for v ∈ E and X ∈ P (E)k. Since comat(hypo(f)) is matrix convex, we have that 
comat(hypo(f))(E) is a convex set, it follows that hv is a bounded from below con-
cave, thus by Proposition 3.5.4 in [22], norm-continuous real valued function. Moreover 
by the assumption if X ∈ CP (E)k then for each (Y, X) ∈ comat(hypo(f))(E) we have 
that Y ≤ f(X), thus we must have hv(X) = v∗f(X)v. It is also clear by the definition of 
comat(hypo(f))(E) that hv ≥ 0 on its domain which is the whole P (E)k by Lemma 2.3. 
Now assume that A, B ∈ CP (E)k and A < B. Let t ∈ (0, 1). Then we have that

tB = tA + (1 − t)
[

t

1 − t
(B −A)

]

where t
1−t (B −A) ∈ P (E)k. Thus the concavity and positivity of hv yields

hv(tB) ≥ thv(A) + (1 − t)hv

(
t

1 − t
(B −A)

)
≥ thv(A),

so letting t → 1− in the above implies hv(B) ≥ hv(A). Then again using the continuity 
of hv we obtain hv(B) ≥ hv(A) as well, when we have B ≥ A. From this, since v ∈ E

was arbitrary, we obtain f(B) ≥ f(A) as desired. �
3. Free analytic lifts through models

Let A denote a Banach space in this section. All tensor products in the subsequent 
sections are understood to be projective, see chapter IV.2. in [30] for more information, 
however this particular choice of cross-norm does not make an essential difference in 
the calculations. For a vector space V the map IV is understood to be the identity 
homomorphism. The first result characterizes concavity through isometric conjugations. 
Such maps are also called Jensen-type maps if they satisfy a similar reversed inequality 
[10]. The characterizing inequality (5) will play a key role in this section.

Proposition 3.1. Let (D(E)) with D(E) ⊆ A ⊗B(E) denote a self-adjoint matrix convex 
set and let F : D(E) �→ B(E) be a free function. Then F is operator concave if and only 
if for each isometry W : E �→ K and X ∈ D(K) we have

F ((IA ⊗W ∗)X(IA ⊗W )) ≥ W ∗F (X)W. (5)

Proof. (⇒) : Let

U :=
[

W (I −WW ∗)1/2
(I −W ∗W )1/2 −W ∗

]
=

[
W (I −WW ∗)1/2
0 −W ∗

]

denote the unitary dilation of the isometry W , i.e. U∗U = UU∗ = I on E ⊕ K. Now 
choose arbitrary A ∈ D(E) and let
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C := (IA ⊗ (I −WW ∗)1/2)X(IA ⊗ (I −WW ∗)1/2) + (IA ⊗W )A(IA ⊗W ∗).

Then we have

(IA ⊗ U∗)
[
X 0
0 A

]
(IA ⊗ U)

=
[

(IA ⊗W ∗)X(IA ⊗W ) (IA ⊗W ∗)X(IA ⊗ (I −WW ∗)1/2)
(IA ⊗ (I −WW ∗)1/2)X(IA ⊗W ) C

]
.

Also notice that

1
2(IA ⊗ U∗)

[
X 0
0 A

]
(IA ⊗ U) + 1

2

[
I 0
0 −I

]
(IA ⊗ U∗)

[
X 0
0 A

]

× (IA ⊗ U)
[
I 0
0 −I

]
=

[
(IA ⊗W ∗)X(IA ⊗W ) 0

0 C

]
.

Then we have

[
F ((IA ⊗W ∗)X(IA ⊗W )) 0

0 F (C)

]

= F

([
(IA ⊗W ∗)X(IA ⊗W ) 0

0 C

])

= F

(
1
2(IA ⊗ U∗)

[
X 0
0 A

]
(IA ⊗ U)

+1
2

[
I 0
0 −I

]
(IA ⊗ U∗)

[
X 0
0 A

]
(IA ⊗ U)

[
I 0
0 −I

])

≥ 1
2F

(
(IA ⊗ U∗)

[
X 0
0 A

]
(IA ⊗ U)

)

+ 1
2F

([
I 0
0 −I

]
(IA ⊗ U∗)

[
X 0
0 A

]
(IA ⊗ U)

[
I 0
0 −I

])

= 1
2(IA ⊗ U∗)

[
F (X) 0

0 F (A)

]
(IA ⊗ U)

+ 1
2

[
I 0
0 −I

]
(IA ⊗ U∗)

[
F (X) 0

0 F (A)

]
(IA ⊗ U)

[
I 0
0 −I

]
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=

⎡
⎢⎢⎢⎣

(IA ⊗W ∗)F (X)(IA ⊗W ) 0

0
(IA ⊗ (I −WW ∗)1/2)F (X)
×(IA ⊗ (I −WW ∗)1/2)

+(IA ⊗W )F (A)(IA ⊗W ∗)

⎤
⎥⎥⎥⎦ .

Thus (5) follows.

(⇐) : For t ∈ [0, 1] let W =
[

(1 − t)1/2IE
t1/2IE

]
so that W ∗W = IE , an isometry. Let 

X, Y ∈ D(E). Then by (5) we have

F ((1 − t)X + tY ) = F

(
(IA ⊗W ∗)

[
X 0
0 Y

]
(IA ⊗W )

)

≥ (IA ⊗W ∗)F
([

X 0
0 Y

])
(IA ⊗W )

= (IA ⊗W ∗)
[
F (X) 0

0 F (Y )

]
(IA ⊗W )

= (1 − t)F (X) + tF (Y ). �
Corollary 3.2. Under the assumptions of Proposition 3.1 if also 0 ∈ D(C) and F (0) ≥ 0, 
then the equivalence in Proposition 3.1 remains true with contractions W : E �→ K in 
(5), that is ‖W‖ ≤ 1.

Proof. Only the (⇒) implication in Proposition 3.1 requires further consideration, since 
if ‖W‖ ≤ 1 only, then (I −W ∗W )1/2 is not necessarily 0. However the block operator 
matrix U is still unitary and since 0 ∈ D(C), we can choose A = 0 in the proof of (⇒)
and the same block operator matrix argumentation goes through leading to (5). �

The following was proved and used by a number of authors before. For its proof we 
refer to [7,24]. We use the notation B(E)∗ for the Banach dual space of B(E) and B+

1 (E)∗
denotes its state space.

Lemma 3.3 (Lemma 3.6. [24]). Suppose F is a convex set of weak-∗ continuous affine 
linear mappings f : B+

1 (E)∗ �→ R. If for each f ∈ F there exists a T ∈ B+
1 (E)∗ such that 

f(T ) ≥ 0, then there exists a T ∈ B+
1 (E)∗ such that f(T ) ≥ 0 for every f ∈ F .

Particular variants of the next lemma appeared in [7,24]. We provide its proof for 
completeness.

Lemma 3.4. Let D = (D(E)) be a matrix convex set, where D(E) ⊆ A ⊗ B(E) and 
0 ∈ D(C). Let a linear functional Λ : A ⊗B(N) �→ R be given for a fixed N . If Λ(X) ≤ 1
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for each X ∈ D(N), then there exists a T ∈ B+
1 (N)∗ such that for each Hilbert space E, 

and each Y ∈ D(E) and each contraction V : N �→ E we have

Λ((IA ⊗ V ∗)Y (IA ⊗ V )) ≤ T (V ∗V ).

Proof. For a Hilbert space K, a point Y ∈ D(K) and a V : N �→ K contraction, define 
fY,V : B+

1 (N)∗ �→ R by

fY,V (T ) := T (V ∗V ) − Λ((IA ⊗ V ∗)Y (IA ⊗ V )).

We claim that the collection F := {fY,V : Y, V } is a convex set. Let λi ≥ 0 for 1 ≤ i ≤ n

for a fixed integer n and let 
∑n

i=1 λi = 1. Also let (Yi, Vi) be given where Yi ∈ D(Ki) for 
a Hilbert space Ki and Vi : N �→ Ki be a contraction for each 1 ≤ i ≤ n. Let Z := ⊕n

i=1Yi

and let F denote the column operator matrix with entries 
√
λiVi. Then Z ∈ D(⊕Ki)

and

F ∗F =
n∑

i=1
λiV

∗
i Vi ≤

n∑
i=1

λiI = I.

By definition

n∑
i=1

λi(IA ⊗ V ∗
i )Yi(IA ⊗ Vi) = (IA ⊗ F ∗)Z(IA ⊗ F )

and

n∑
i=1

λiT (V ∗
i Vi) = T (F ∗F )

for T ∈ B+
1 (N)∗. Hence

n∑
i=1

λifYi,Vi
(T ) = fZ,F (T ).

If V has operator norm 1, by Proposition II.6.3.3. in [4] we can choose a norming state 
γ ∈ B+

1 (N)∗ so that

1 = ‖V ‖2 = γ(V ∗V ).

Then for T = γ it follows that

fY,V (T ) = T (V ∗V ) − Λ((IA ⊗ V ∗)Y (IA ⊗ V )) = 1 − Λ((IA ⊗ V ∗)Y (IA ⊗ V )).
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Since (IA ⊗ V ∗)Y (IA ⊗ V ) ∈ D(N), the right hand side above is nonnegative. If the 
operator V does not have norm one, we can rescale it to have norm 1 and follow the 
same argument to show that fY,V (T ) ≥ 0. So, for each fY,V there exists a T ∈ B+

1 (N)∗
such that fY,V (T ) ≥ 0, moreover each fY,V is weak-∗ continuous. Thus, by Lemma 3.3
there exists a T ∈ B+

1 (N)∗ such that fY,V (T ) ≥ 0 for every Y and V . �
Similarly to the finite dimensional case of Definition 2.2, given a disjoint union of sets 

(C(E) ⊆ A ⊗B(E)) for each Hilbert space E closed under direct sums, its matrix convex 
hull is given as

comatC(E) :=
⋃

K a Hilbert space
{V ∗XV : X ∈ C(K), V : E �→ K an isometry}.

If 0 ∈ C(C) then we also have

comatC(E) =
⋃

K a Hilbert space
{V ∗XV : X ∈ C(K), V : E �→ K, ‖V ‖ ≤ 1}.

Given a collection of sets (D(E) ⊆ A ⊗B(E)) closed under direct sums and a collection 
of functions F : D(E) �→ B(E) preserving direct sums, we consider its hypograph

hypo(F ) := (hypo(F )(E)) := ({(Y,X) ∈ B(E) ×D(E) : Y ≤ f(X)}).

Proposition 3.5. Let a collection of self-adjoint sets (D(E) ⊆ A ⊗ B(E)) closed under 
direct sums and a collection of functions F : D(E) �→ B(E) preserving direct sums be 
given. Then for each isometry W : E �→ K and X ∈ D(K) such that (IA ⊗W ∗)X(IA ⊗
W ) ∈ D(E) we have that

F ((IA ⊗W ∗)X(IA ⊗W )) ≥ W ∗F (X)W, (6)

if and only if for each (Y, X) ∈ comat(hypo(F ))(E) with X ∈ D(E) we have that Y ≤
F (X).

Moreover if 0 ∈ D(C) and F (0) ≥ 0 then the statement holds with contractions 
W : E �→ K in (6).

Proof. A straightforward argumentation similar to the proof of Theorem 2.4 based on 
the expression of the matrix convex hull. �
Remark 3.1. For unitary W we have that W−1 is also an isometry, thus using (6) twice, 
we can see that in this special case (6) holds with equality. In [10] it was shown that if a 
map satisfies (6) for all contractions W and convexity (thus called a map of Jensen-type, 
see Definition 1.1. [10]), then it preserves direct sums since the proof of Lemma 3.1. (i) 
in [10] goes through. Their proof carries over to our case with minor modifications if 



M. Pálfia / Advances in Mathematics 408 (2022) 108583 13
the domain (D(E)) is matrix convex, thus in this case the direct sum invariance of F in 
Proposition 3.5 can be dropped.

The following result provides a representation for partially defined operator concave 
functions. A similar representation formula for locally operator monotone functions ap-
peared in [1] and was used to obtain realizations for those functions. A special case is 
proved in [24].

Proposition 3.6. Let (D(E)) � 0 and F be as in Proposition 3.5 with F |D > 0. Assume 
that comat(D)(E) has nonempty interior for each E. Let N be a Hilbert space. Then 
for each interior point A ∈ D(N) and each unit vector v ∈ N there exists a completely 
bounded affine linear map LF,A,v : (B(E), A ⊗ B(E)) �→ B(N)∗ ⊗ B(E) given as

LF,A,v(Y,X) := T (F,A, v) ⊗ IE − vv∗ ⊗ Y + ΛF,A,v(X),

where 0 ≤ T (F, A, v) ∈ B(N)∗ and ΛF,A,v : A �→ B(N)∗ is a self-adjoint completely 
bounded linear map, such that

(a) T (F, A, v)(IN ) = v∗F (A)v − ΛF,A,v(A) and there exists ε > 0 such that (1 + ε)A ∈
comat(D)(N) and −ΛF,A,v(A) ≤ v∗F (A)v−v∗F ((1+ε)A)v

ε ;
(b) For all (Y, X) ∈ hypo(F ) we have LF,A,v(Y, X) ≥ 0;
(c) γ∗LF,A,v(F (A), A)γ = 0 where γ = IN ;
(d) For every X in the interior of comat(D)(E) there exists an ε > 0 such that 

〈V, LF,A,v(0, X)V 〉 ≥ εT (F, A, v)(V ∗V ) for all V ∈ B(N,E)T (F,A,v), where
B(N,E)T (F,A,v) is the completion of B(N, E)/{V ∈ B(N, E) : T (F, A, v)(V ∗V ) = 0}.

Proof. Define the real valued function hv : comat(D)(N) �→ R as hv(X) := sup{v∗Y v :
(Y, X) ∈ comat(hypo(F )(N))}. Since comat(hypo(F )) is matrix convex, we have that 
comat(hypo(F ))(E) is a convex set, also F |D ≥ 0, so it follows that hv is a bounded from 
below concave function on the real Banach-space of the self-adjoint part of A ⊗B(N), thus 
norm-continuous by Proposition 3.5.4 in [22]. Moreover by Proposition 3.5 if X ∈ D(N)
then for each (Y, X) ∈ comat(hypo(F ))(N) we have that Y ≤ F (X), thus we must have 
hv(X) = v∗F (X)v for all X ∈ D(N).

It follows from the supporting hyperplane version of the Hahn-Banach theorem, more 
precisely Theorems 7.12 and 7.16 [2], that the norm-continuous convex function g(X) :=
−hv(X) has a subgradient at each interior point of its domain, thus at A. That is, there 
exists a self-adjoint continuous linear functional λ ∈ (A ⊗ B(N))∗ such that

hv(X) − hv(A) ≤ λ(X −A) (7)

for X ∈ comat(D)(N) and for X = A we have equality. Now let (Y, X) ∈
comat(hypo(F ))(N). Then it follows from (7) and the definition of hv that
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v∗Y v − λ(X) ≤ hv(A) − λ(A). (8)

Notice that by assumption we have 0 ∈ D(C) and F > 0, thus 0 ∈ comat(hypo(F ))(E)
for any Hilbert space E and hv(A) − λ(A) > 0. Thus the linear functional Λ(Y, X) :=

1
hv(A)−λ(A) (v∗Y v − λ(X)) satisfies Λ(Y, X) ≤ 1 for (Y, X) ∈ comat(hypo(F ))(N), also 
comat(hypo(F )) is a matrix convex set. Thus by Lemma 3.4 there exists a 0 ≤ T ∈
B+

1 (N)∗ such that T (IN ) = 1 and for any contraction V : N �→ E we have

0 ≤ (hv(A) − λ(A))T (V ∗V ) − v∗V ∗Y V v + λ((IA ⊗ V ∗)X(IA ⊗ V )) (9)

for any (Y, X) ∈ hypo(F )(E), moreover by (7) choosing V = IN and Y = F (A), X = A

we get

0 = (hv(A) − λ(A))T (IN ) − v∗F (A)v + λ((IA ⊗ IN )A(IA ⊗ IN )). (10)

Now define

T (F,A, v) := (hv(A) − λ(A))T.

Next, by assumption comat(D)(E) contains an open neighborhood of 0 in A ⊗B(E), thus 
there exists a ρ̂ > 0 such that B(0, ρ̂) ⊆ comat(D)(E). Thus by (9) and norm continuity 
we have that

0 ≤ T (F,A, v)(V ∗V ) + λ((IA ⊗ V ∗)X(IA ⊗ V ))

for X ∈ B(0, ρ̂) where B(0, ρ̂) denotes the norm closure of B(0, ρ̂). Moreover X ∈ B(0, ρ̂)
if and only if −X ∈ B(0, ρ̂), so we also have

0 ≤ T (F,A, v)(V ∗V ) − λ((IA ⊗ V ∗)X(IA ⊗ V )).

Then from the above it follows that

−T (F,A, v)(V ∗V ) ≤ λ((IA ⊗ V ∗)X(IA ⊗ V )) ≤ T (F,A, v)(V ∗V ) (11)

for X ∈ B(0, ρ̂). This together with Theorem IV.2.3. [30] ensure that the transpose map 
ΛF,A,v : A �→ B(N)∗ of λ ∈ (A ⊗ B(N))∗ is completely bounded and self-adjoint since λ
is a self-adjoint linear functional.

Consider the Hilbert space B(N,E)T (F,A,v) that we obtain by completing the quotient 
space B(N, E)/{V ∈ B(N, E) : T (F, A, v)(V ∗V ) = 0} equipped with the positive definite 
Hermitian form

〈W,V 〉T (F,A,v) := T (F,A, v)(W ∗V ) (12)
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for W, V ∈ B(N, E). Then the right hand side of (9) determines a quadratic form in 
V ∈ B(N, E), which gives rise to the densely defined symmetric linear operator

〈W,LF,A,v(Y,X)V 〉T (F,A,v) := T (F,A, v)(W ∗V ) − v∗W ∗Y V v

+ λ((IA ⊗W ∗)X(IA ⊗ V ))

for V, W ∈ B(N, E), Y ∈ B(E) and X ∈ A ⊗ B(E). Then (b) and (c) of the assertion 
follows from (9) and (10) respectively and they also yield the first equality in (a).

Furthermore inequality (11) ensures that LF,A,v is a completely bounded affine linear 
map that admits the continuous linear extension LF,A,v(Y, X) which then is a bounded 
self-adjoint operator acting on B(N,E)T (F,A,v).

To see the remaining parts of (a), first we realize that by assumption A is in the interior 
of comat(D)(N), thus there exists an ε > 0 such that X := (1 + ε)A is in comat(D)(N)
as well. Then choosing Y = F ((1 + ε)A), X = (1 + ε)A, from (7) we calculate

0 ≤ hv((1 + ε)A) ≤ hv(A) − λ(A) + (1 + ε)λ(A)

εhv(A) − ελ(A) ≤ (1 + ε)hv(A) − hv((1 + ε)A)

hv(A) − λ(A) ≤ hv(A) + hv(A) − hv((1 + ε)A)
ε

,

thus the last inequality in (a) follows, since

T (F,A, v)(IN ) = hv(A) − λ(A).

Now to see (d), by assumption V ∈ B(N,E)T (F,A,v) and X is in the interior of 
comat(D)(E), thus there exists an ε > 0 such that B(X, ε) ⊆ comat(D)(E). Then there 
exists an r > 1, such that rX ∈ B(X, ε). Let c := λ((IA ⊗ V ∗)X(IA ⊗ V )). Then by (9)
we have that

0 ≤ 〈V, (LF,A,v(0, rX)V 〉 = T (F,A, v)(V ∗V ) + rc,

thus

0 <

(
1 − 1

r

)
T (F,A, v)(V ∗V )

≤ T (F,A, v)(V ∗V ) + c

= T (F,A, v)(V ∗V ) + λ((IA ⊗ V ∗)X(IA ⊗ V ))

= 〈V, LF,A,v(0, X)V 〉

(13)

proving (d). �
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Remark 3.2. In order to allow locally convex vector spaces A in Proposition 3.6, one 
needs to establish the continuity of hv. This can be done using Proposition 4.4. in [6]
which generalizes Proposition 3.5.4 in [22] to locally convex vector spaces under the same 
assumptions.

Let (D(E)) � 0 be as in Proposition 3.5. Then for a Hilbert space E and a dense set 
E0 ⊆ {x ∈ E : ‖x‖ = 1} define the auxiliary vector space

HE,0 :=
⊕

(X,v)∈(D(E),E0)

E

and its completion HE with respect to the usual inherited direct sum inner product. We 
denote by I(X,v) ∈ B(HE , E) the isometry that equals to IE − vv∗ on the (X, v) slot and 
0 elsewhere.

The following is one of the main tools in this section leading to a representation 
formula for partially defined concave free functions below.

Corollary 3.7. Let (D(E)) � 0 and F be as in Proposition 3.5 with F |D > 0. Fix a 
Hilbert space E and an η > 0. Assume that comat(D)(E) has nonempty interior for 
E. Then there exists a vector e ∈ HE with ‖e‖ = 1, a completely bounded affine map 
LF : A ⊗ B(E) �→ B(HE)∗ ⊗ B(E) given as

LF (X) := TF ⊗ IE + ΛF (X),

where 0 ≤ TF ∈ B(HE)∗ and ΛF : A �→ B(HE)∗ is a self-adjoint completely bounded 
linear map that is completely absolutely continuous with respect to TF , such that

(a) For all X ∈ comat(D)(E) we have LF (X) ≥ 0;
(b) For all (1 + η)X ∈ D(E) in the interior of comat(D)(E) and v ∈ E we have

〈
W,LF (X)(I(X,v) + ve∗)

〉
TF

= e∗W ∗F (X)v (14)

for all W ∈ B(HE , E)TF
with the notation of (12), and there exists an ε > 0 such 

that 〈W,LF (X)W 〉TF
≥ εTF (W ∗W ).

Proof. Rewriting (14), it essentially becomes

T (W ∗(I(X,v) + ve∗)) + λ((I ⊗W ∗)X(I ⊗ (I(X,v) + ve∗))) = e∗W ∗F (X)v (15)

for 0 ≤ T ∈ B(HE)∗, λ ∈ (A ⊗ B(HE))∗ and an e ∈ HE . If we equip B(HE)∗, (A ⊗
B(HE))∗ with their respective weak-∗ topologies, then the set of all uniformly norm 
bounded (T, λ) that satisfies (15) for all v, W, X and a fixed e ∈ HE is closed in the 
product topology. The free function F preserves direct sums, so for any finite set of 
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points {(X1, v1), . . . , (Xn, vn)} with vi ∈ E0 and (1 + η)Xi ∈ D(E) in the interior of 
comat(D)(E), by applying Proposition 3.6 with e = ⊕n

i=1vi to the single point data set 
(⊕n

i=1Xi, ⊕n
i=1vi) it follows that the set of all such (T, λ) is also nonempty. Moreover 

by (a) in Proposition 3.6 we can assume that the norms of such (T, λ) are uniformly 
bounded since (1 + η)X is also in the interior of comat(D)(E). After a change of basis in 
HE we conclude that we can also choose e ∈ HE arbitrarily in (15). These norm bounded 
closed sets of (T, λ) are compact it their respective weak-∗ topologies by Banach-Alaoglu, 
thus their product is also compact. Furthermore these closed compact sets of (T, λ) form 
a collection indexed by (X, v) and thus can be partially ordered by inclusion within 
open sets of (X, v) and then this collection has the finite intersection property. Thus, 
for a fixed e ∈ HE , by compactness there exists a (TF , λF ) for which (15) holds for all 
(1 + η)X ∈ D(E) in the interior of comat(D)(E), v ∈ E and W ∈ B(HE , E)TF

. Then LF

is determined by the transpose of λF , and the positivity condition 〈W,LF (X)W 〉TF
≥

εTF (W ∗W ) follows from (13). Thus (a) and (b) are proved. �
Theorem 3.8 (Theorem 3 cf. [3]). Let Z be a positive semi-definite linear operator on a 

Hilbert space and S a subspace. Let the matrix of Z be partitioned as Z =
[
Z11 Z12
Z21 Z22

]
with Z11 : S �→ S, Z21 : S �→ S⊥. Then ran(Z21) ⊂ ran(Z22)1/2 and there exists a 
bounded linear operator C : S �→ S⊥ such that Z21 = (Z22)1/2C and

Z =
[
Z11 − C∗C 0

0 0

]
+
[

C∗ 0
(Z22)1/2 0

][
C (Z22)1/2
0 0

]
.

The bounded positive semi-definite operator SS(Z) = Z11 − C∗C is called the shorted 
operator or Schur complement of Z. It satisfies SS(Z) ≤ Z and it is maximal among all 
self-adjoint operators X : S �→ S such that X ≤ Z.

The next two theorems below are the main results of this section providing analytic 
representation formulas for partially defined operator concave functions. The precursors 
of these are given in [1] and [11].

Theorem 3.9. Let (D(E)) � 0 and F be as in Proposition 3.5 with F |D > 0. Fix a 
Hilbert space E. Assume that comat(D)(E) has nonempty interior for E. Then for each 
X ∈ D(E) in the interior of comat(D)(E) we have

F (X) = (e⊗ IE)Se∗⊗E(LF (X))(e∗ ⊗ IE) (16)

where LF and e are as in Corollary 3.7 for an arbitrary, but sufficiently small fixed 
η > 0. Moreover the right hand side of (16) is well defined for each interior point X ∈
comat(D)(E).
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Proof. By (b) in Corollary 3.7 the self-adjoint completely bounded linear map LF (X) =
TF ⊗ IE + ΛF (X) is strictly positive definite for all X in the interior of comat(D)(E)
and is completely absolutely continuous with respect to 0 ≤ TF ∈ B(HE)∗. Thus by 
Theorem 3.8 its Schur complement pivoting on the subspace e∗ ⊗ E of B(HE , E)TF

exists. By the strict positivity of LF (X), the Z22 block of LF (X) in Theorem 3.8 has 
closed range and is invertible. So, in (14) block Gaussian elimination applies and thus

F (X)v = (e⊗ IE)Se∗⊗E(LF (X))(e∗ ⊗ v)

for each v ∈ E and (1 + η)X ∈ D(E) in the interior of comat(D)(E). Taylor’s power 
series formula ensures the uniqueness of analytic continuations to the whole interior of 
comat(D)(E) thus the assertion holds for η = 0 as well. This implies (16). �

The converse of the above also holds:

Theorem 3.10. Let H a Hilbert space and e ∈ H with ‖e‖ = 1 be fixed. Let a completely 
bounded affine map L : A ⊗ B(E) �→ B(H)∗ ⊗ B(E) be given as

L(X) := T ⊗ IE + Λ(X),

where 0 ≤ T ∈ B(H)∗ and Λ : A �→ B(H)∗ is a self-adjoint completely bounded linear 
map that is completely absolutely continuous with respect to T . Then the function

F (X) = (e⊗ IE)Se∗⊗E(L(X))(e∗ ⊗ IE) (17)

is well defined and analytic for each X ∈ {Y ∈ A ⊗B(E) : L(�(Y )) > 0} and satisfies the 
assumptions of Proposition 3.5 with D(E) := {Y ∈ A ⊗B(E) : L(Y ) ≥ 0}, in particular 
(6) holds.

Proof. By the strict positivity assumption L(�(X)) > 0 the inverse in the Schur com-
plement in (17) is well defined and bounded, thus analytic as a free function in the sense 
of all various kinds of analyticities in [15]. By Theorem 3.8 the Schur complement of the 
positive affine map L(X) is the maximal in the positive definite order on the subspace 
e ⊗ E among those which are dominated by L(X) on the subspace e ⊗ E over its ma-
trix convex domain (D(E)). From this maximality property concavity of F (X) readily 
follows. Thus by Proposition 3.1 F (X) satisfies (6). �

Now as a combination of Theorem 3.9 and Theorem 2.4 we obtain the following result 
establishing the analytic lifts for globally monotone functions on P (C)k. Then from this, 
further considerations prove the same for any other rectangular domain in Rk. We use 
the notations Π(E) := {X ∈ B(E) : �(X) > 0} and Π(E) := {X ∈ B(E) : �(X) ≥ 0}, 
also Π(E)∗ := {X ∈ B(E) : �(X) < 0} and Π(E)∗ := {X ∈ B(E) : �(X) ≤ 0}.
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Theorem 3.11. Let f : P (C)k �→ P (C) be a real function. Then the following are equiva-
lent:

(a) f is globally operator monotone;
(b) f has a free analytic extension f : P (E)k �→ P (E) that is operator monotone;
(c) There exists a Hilbert space K, a vector e ∈ K, 0 ≤ Bi ∈ B(K), 0 ≤ i ≤ k with 

B0 ≥
∑k

i=1 Bi such that for all X ∈ CP (E)k we have

f(X) = (e⊗ IE)Se∗⊗E(Lf (X))(e∗ ⊗ IE) (18)

where

Lf (X) := B0 ⊗ IE +
k∑

i=1
Bi ⊗ (Xi − IE), (19)

(d) f has a free analytic continuation to Π(E)k and to (Π(E)∗)k across P (E)k, mapping 
Π(E)k to Π(E) and (Π(E)∗)k to Π(E)∗.

Proof. First we prove that (a) implies (c). By Theorem 3.9 the representation formula 
follows for the translated function g(x) := f(x +1) with domain (−1, ∞)k whose matrix 
convex hull is D(E) := {X ∈ B(E) : X = X∗, Xi ≥ −IE}k which contains an open 
neighborhood of 0 for the operator system A = Ck. Since the domain contains arbitrarily 
large positive operators and by (a) of Corollary 3.7 we have Lf (X) ≥ 0, it follows that 
Λf (X) is completely positive, thus of the form as in (19) with Bi ≥ 0 and B0 ≥

∑k
i=1 Bi

as well, since Lf (tI) ≥ 0 for all t > 0. In a similar way we show that (b) implies (c).
Next we claim that (c) implies (a). Indeed, Lf (X) is order preserving and the maxi-

mality characterization of the Schur complement in Theorem 3.8 ensures that the right 
hand side of (18) is an operator monotone function. In a similar way we also prove that 
(c) implies (b).

That (c) implies (d) essentially follows from Bi ≥ 0 so that the Schur complement in 
(18), if it exists, has strictly positive imaginary part if �(Xi) > 0, see Proposition 5.1. 
[24]. Now the strict positivity of �(Lf (X)) for arbitrary �(X) ∈ Π(E)k and E implies 
the strict lower boundedness, thus the existence of the inverse operator in the formula of 
the Schur complement, thus the Schur complement itself as an analytic function on Πk.

Lastly, that (d) implies (b) can be found in the main theorem of [24]. �
At this point, much like as in [24], one can use Möbius transformations to transform 

the domain P (C)k into any open rectangle in Rk to prove that global monotonicity 
implies free analytic continuation for the function to the whole matrix convex hull of its 
domain, thus arriving at its operator monotone non-commutative lift.

Remark 3.3. In the above corollaries we assumed A = Ck, however one can work out 
similar results in the same way for any operator system A.
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4. Representation of operator means of probability measures

Let P(P (E)) denote the set of fully supported Borel probability measures on 
the complete metric space (P (E), d∞) where E is a Hilbert space and d∞(A, B) =
‖ log(A−1/2BA−1/2)‖ denotes the Thompson metric [13,23]. Let P∞(P (E)) ⊂ P(P (E))
denote the subset of probability measures with bounded support. For a μ ∈ P(P (E))
the support supp(μ) is a separable closed subset of P (E) and it has full measure 
μ(supp(μ)) = 1. Also note that the relative operator norm topology on P (E) agrees 
with the metric topology of d∞, for this and further references see [23].

Proposition 4.1. The collection of sets (P∞(P (E))) indexed by E is a self-adjoint ma-
trix convex set. In particular P∞(P (E)) embeds into L∞([0, 1], λ)+ ⊗ P (E), the strictly 
positive cone of the projective tensor product L∞([0, 1], λ) ⊗ B(E).

Proof. Let μ ∈ P∞(P (E)). Then supp(μ) is separable and closed, thus μ is concentrated 
on the complete Polish space (supp(μ), d∞). Thus by the Skorokhod representation The-
orem 8.5.4. in [5], there exists a Borel map ξμ : [0, 1] �→ supp(μ) ⊆ P (E) such that 
μ = (ξμ)∗λ. Since supp(μ) is a bounded subset of P (E), we have that ess sup ‖ξμ‖ < ∞. 
Thus ξμ ∈ L∞([0, 1], λ, P (E)) ⊆ L∞([0, 1], λ, B(E)) where

L∞([0, 1], λ,B(E)) = {f : [0, 1] �→ B(E), f is strongly measurable,

ess sup(f) < ∞}.

Next, we claim that L∞([0, 1], λ, B(E)) 	 L∞([0, 1], λ) ⊗B(E) as von Neumann algebras, 
where the latter is the projective tensor product. This follows from the same argument 
leading to Proposition 12.5. in [28] showing that C(X) ⊗A 	 C(X, A) for any C∗-cross 
norm with the isomorphism φ :

∑n
i=1 fi⊗ai −→

∑n
i=1 fi(t)ai for fi ∈ C(X) and ai ∈ A, 

where A is a C∗-algebra and X is a compact Hausdorff space. Now it is straightforward 
to see that the Borel map constructed above ξμ is a strictly positive element of the 
positive cone of L∞([0, 1], λ) ⊗ B(E) which is L∞([0, 1], λ)+ ⊗ P (E) by Lemma 2.2. in 
[29], where L∞([0, 1], λ)+ = {f ≥ 0 : f ∈ L∞([0, 1], λ)}.

Now the positive cone (L∞([0, 1], λ)+⊗P (E)) is closed under direct sums and isometric 
conjugations, thus (L∞([0, 1], λ)+ ⊗P (E)) is an (open) matrix convex set. Moreover for 
any ξ ∈ L∞([0, 1], λ)+ ⊗ P (E) the pushforward (ξ)∗λ ∈ P∞(P (E)), so (P∞(P (E))) is 
matrix convex as well. �
Remark 4.1. Notice that L∞([0, 1], λ) is an injective von Neumann algebra, or in other 
words L∞([0, 1], λ) is nuclear as a C∗-algebra. Nuclearity ensures that all C∗-cross norms 
on (L∞([0, 1], λ)+ ⊗ P (E)) are equivalent. So in particular the projective and injective 
C∗-cross norms are the same. For more details see for example Chapter IV in [30].
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Remark 4.2. In Proposition 4.1 the embedding of (P∞(P (E))) into the cone L∞([0, 1],
λ)+⊗P (E) does not appear to be injective. Elements of L∞([0, 1], λ)+⊗P (E) can be clas-
sified into equivalence classes by almost sure identification with elements of (P∞(P (E))).

A set U ⊆ P (E) is upper if X ≤ Y ∈ P (E) and X ∈ U imply that Y ∈ U .

Definition 4.1 (Stochastic order, cf. [14]). For μ, ν ∈ P(P (E)) the stochastic partial order 
μ ≤ ν is defined by requiring μ(U) ≤ ν(U) for all closed upper sets U ⊆ P (E).

The following result is essentially due to Strassen for Polish spaces with a closed 
partial order. It can be found in a suitable form as Theorem 1 in [16].

Theorem 4.2. Let μ, ν ∈ P∞(P (E)). Then the following are equivalent:

(i) μ ≤ ν;
(ii) there exists ξμ : [0, 1] �→ supp(μ) and ξν : [0, 1] �→ supp(ν) such that μ = (ξμ)∗λ and 

ν = (ξν)∗λ with ξμ(t) ≤ ξν(t) almost surely for all t ∈ [0, 1].

One might wonder for μ ∈ P∞(P (E)), ν ∈ P∞(P (K)) what is the correct way to 
define μ ⊕ ν? In [13] the authors define it as the pushforward (g)∗(μ × ν) of the direct 
sum g(A, B) := A ⊕B, and they show that their operator means preserve this direct sum. 
However in free function theory if we have n-tuples of operators X := (X1, . . . , Xn) ∈
B(E)n and Y := (Y1, . . . , Yn) ∈ B(K)n, their direct sum is element-wise, that is X⊕Y =
(X1⊕Y1, . . . , Xn⊕Yn). Free functions, including as well all operator means [24], preserve 
this direct sum. Notice that if we regard X, Y as discrete probability measures, that is 
X =

∑n
i=1

1
nδXi

, Y =
∑n

i=1
1
nδYi

, then both definitions of X ⊕ Y are measures in 
P(B(E ⊕ K)) with marginals μ and ν, where the σ-algebra is induced by the norm. 
Also operator means are permutation invariant, that is the ordering of coordinates in 
(X1, . . . , Xn) does not matter [13,24]. This and Remark 4.2 seem to suggest that we 
should allow some non-uniqueness when considering direct sums of measures. This leads 
to the following.

Definition 4.2 (Direct sums of probability measures). For μ ∈ P∞(P (E)), ν ∈ P∞(P (K)), 
let Γ(μ, ν) ⊆ P∞(P (E ⊕ K)) denote the set of couplings of μ, ν, that is γ ∈ Γ(μ, ν) if 
γ(A ×P (K)) = μ(A) and γ(P (E) ×B) = ν(B), in other words, elements of Γ(μ, ν) have 
marginals μ, ν. Then μ ⊕ ν is defined to be the set Γ(μ, ν). Thus in general, the direct 
sum of probability measures is no longer uniquely determined.

Notice that Γ(μ, ν) is nonempty, since the product measure μ × ν ∈ Γ(μ, ν). Also for 
any γ ∈ Γ(μ, ν) we have that supp(γ) ⊆ supp(μ) × supp(ν). We may regard operator 
means of finitely supported measures as a sequence of functions satisfying the following.
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Definition 4.3 (Operator mean of discrete probability measures). For each 0 < n ∈ N and 
Hilbert space E let Fn : P (E)n �→ P (E) be an operator monotone free function. Then 
we say that the sequence of functions Fn is an operator mean if it satisfies the following

1) For a permutation σ ∈ Sn, Fn(X1, . . . , Xn) = Fn(Xσ(1), . . . , Xσ(n));
2) For 0 < k ∈ N, Fnk(X1, . . . , X1︸ ︷︷ ︸

k times

, . . . , Xn, . . . , Xn︸ ︷︷ ︸
k times

) = Fn(X1, . . . , Xn).

In order to simplify notation, the subscript n will often be omitted, simply writing 
F = Fn for an operator mean.

Notice that given an operator mean F = Fn, it is automatically defined for discrete 
probability measures with rational weights by grouping together the repeated variables 
and applying 1), 2). It is known that operator concavity for a free function F : P (E)n �→
P (E) is equivalent to operator monotonicity which in turn is equivalent to (6) by an 
argument similar to the one in Proposition 2.1, for more details see [24].

Proposition 4.3. An operator mean Fn : P (E)n �→ P (E) preserves direct sums of discrete 
probability measures with rational weights in the sense of Definition 4.2.

Proof. Without loss of generality, let μ =
∑n

i=1
1
nδXi

, ν =
∑k

i=1
1
k δYi

be given. Then 
any μ ⊕ ν is supported on the set supp(μ) × supp(ν) = {Xi ⊕ Yj : i ∈ {1, . . . , n}, j ∈
{1, . . . , k}}. Then using the direct sum invariance of F and grouping elements by 2), we 
obtain that F (μ ⊕ ν) = F (μ) ⊕ F (ν). �

In order to study operator means of general probability measures, instead of consider-
ing the restrictive set of functions F : P∞(P (E)) �→ P (E) we consider first free functions 
of random variables, that is F : (L1([0, 1], λ)+ ⊗ P (E)) �→ P (E). Let S([0, 1], λ) denote 
the set of simple functions on [0, 1]. Then S([0, 1], λ) is norm-dense in Lp([0, 1], λ) for 
1 ≤ p ≤ +∞ and the same is true for S([0, 1], λ)+ ⊗ P (E) in Lp([0, 1], λ)+ ⊗ P (E).

Theorem 4.4. Assume that F : S([0, 1], λ)+⊗P (E) �→ P (E) is free function that satisfies 
(6). Then for each 1 ≤ p ≤ +∞ there exists a unique F̂p : Lp([0, 1], λ)+ ⊗P (E) �→ P (E)
extending F .

Proof. In essence F can be regarded as a sequence of free functions indexed by 0 < n ∈ N

for each Hilbert space E, that is Fn : P (E)n �→ P (E) satisfying the assumptions of 
Proposition 3.5. Then we can apply Corollary 3.7 so we have (14) for each Fn. Each Fn

is thus norm-continuous by Theorem 3.10, so F : S([0, 1], λ)+⊗P (E) �→ P (E) is relative 
norm-continuous with respect to the norm topology of Lp([0, 1], λ)+ ⊗ P (E). Then, it 
admits a unique norm-continuous extension F̂p : Lp([0, 1], λ)+ ⊗ P (E) �→ P (E), since 
S([0, 1], λ)+ ⊗ P (E) is norm dense in Lp([0, 1], λ)+ ⊗ P (E). �
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Proposition 4.5. Let F : (S([0, 1], λ)+ ⊗ P (E)) �→ P (E) be an operator monotone free 
function. Then F satisfies (6).

Proof. The same argument as in the proof of Theorem 2.4 applies for f := F :
(S([0, 1], λ)+ ⊗ P (E)) �→ P (E) where S([0, 1], λ)+ ⊗ P (E) is substituted for both 
P (C)k and CP (E)k, so we get that for each (Y, X) ∈ comat(hypo(f))(E) we have that 
Y ≤ f(X). Note that in Theorem 2.4 dim(E) < +∞ is assumed, but actually does 
not affect its proof. The claim that for each (Y, X) ∈ comat(hypo(f))(E) we have that 
Y ≤ f(X) combined with the implication ‘⇐’ of Proposition 3.5 proves that F satisfies 
(6). A similar argument to this can also be found in [24]. �

By the density of S([0, 1], λ)+ in L1([0, 1], λ)+ we immediately obtain:

Corollary 4.6. Let F : (L1([0, 1], λ)+ ⊗ P (E)) �→ P (E) be an operator monotone free 
function. Then F satisfies (6).

Theorem 4.7. Assume that the sequence of functions Fn : P (E)n �→ P (E) for 0 < n ∈ N

is an operator mean of discrete probability measures. Then it uniquely extends into a 
stochastic order preserving function F̂ : P∞(P (E)) �→ P (E).

Proof. Pairs of probability measures admit Skorokhod representations that are order 
preserving by Theorem 4.2. Then through the Skorokhod representation we obtain a lift 
F̂ : S([0, 1], λ)+ ⊗ P (E) �→ P (E) representing the sequence of functions Fn : P (E)n �→
P (E), such that F̂ is operator monotone. Then by Proposition 4.5 F̂ satisfies (6), so ex-
istence and uniqueness of the extension F̂ : L∞([0, 1], λ)+ ⊗ P (E) �→ P (E) follows from 
Theorem 4.4. Then Corollary 3.7 applies to the translated function G(X) := F̂ (X + I)
where I(t) := IE for all t ∈ [0, 1]. By (a) of Corollary 3.7 we have LG(X) ≥ 0 for any 
(X + I) ∈ L∞([0, 1], λ)+ ⊗ P (E), so it follows that 0 ≤ λ in (15), thus LG(X) is order 
preserving. By the maximal characterization of the Schur complement in Theorem 3.8
it follows that it is also order preserving. Thus F̂ is also order preserving, i.e. oper-
ator monotone. Then its restriction F̂ : P∞(P (E)) �→ P (E) preserves the stochastic 
order. �
Corollary 4.8. Let F : P∞(P (E)) �→ P (E) be a stochastic order preserving free function. 
Then there exists an operator monotone free function F̂ : L∞([0, 1], λ)+ ⊗P (E) �→ P (E)
that represents F and F̂ (X+I) is of the form (15) where 0 ≤ λ ∈ (L∞([0, 1], λ) ⊗B(HE))∗
and I(t) := IE for all t ∈ [0, 1]. In particular F̂ (X + I) is given by (16).

Proof. Through the Skorokhod representation Theorem 4.2 we obtain the lift F̂ :
L∞([0, 1], λ)+ ⊗ P (E) �→ P (E) which by Corollary 4.6 satisfies (6). Then Corollary 3.7
applies to the translated function G(X) := F̂ (X+I). By (a) of Corollary 3.7 LG(X) ≥ 0
for any (X + I) ∈ L∞([0, 1], λ)+⊗P (E), it follows that 0 ≤ λ in (15) and (16) holds. �
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