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Abstract
We propose a new predictor–corrector interior-point algorithm for solving Cartesian
symmetric cone horizontal linear complementarity problems, which is not based on a
usual barrier function. We generalize the predictor–corrector algorithm introduced in
Darvay et al. (SIAM J Optim 30:2628–2658, 2020) to horizontal linear complemen-
tarity problems on a Cartesian product of symmetric cones.We apply the algebraically
equivalent transformation technique proposed byDarvay (AdvModel Optim 5:51–92,
2003), and we use the difference of the identity and the square root function to deter-
mine the new search directions. In each iteration, the proposed algorithm performs one
predictor and one corrector step. We prove that the predictor–corrector interior-point
algorithm has the same complexity bound as the best known interior-point methods
for solving these types of problems. Furthermore, we provide a condition related to
the proximity and update parameters for which the introduced predictor-corrector
algorithm is well defined.
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1 Introduction

Interior-point algorithms (IPAs) are efficient tools for solving optimization problems,
since Karmarkar [26] published his IPA. The most important results on IPAs for
solving linear programming (LP) problems are summarized in themonographs written
by Roos, Terlaky and Vial [43], Wright [49] and Ye [50]. IPAs for solving linear
complementarity problems (LCPs) have been also introduced, see [12, 13, 21–24, 27,
28]. In general, LCPs belong to the class of NP-complete problems [8]. However,
Kojima et al. [28] proved that if the problem’s matrix possesses the P∗(κ)-property,
then IPAs for LCPs have polynomial iteration complexity in the size of the problem and
in the special parameter, called the handicap of the matrix. IPAs have been extended
to more general problems such as symmetric cone optimization (SCO) problems.
Faraut and Korányi [18] summarized the most important results related to the theory
of Jordan algebras and symmetric cones. Güler [20] noticed that the family of self-
scaled cones, introduced by Nesterov and Todd [34, 35], is identical to the set of self-
dual and homogeneous, i.e. symmetric cones. IPAs have been introduced to Cartesian
symmetric cone linear complementarity problems, as well [30, 31].

The Cartesian symmetric cone horizontal linear complementarity problem
(SCHLCP) has been recently introduced by Asadi et al. [4]. Note that LP, LCP, SCO,
second-order cone programming, semidefinite optimization and convex quadratic opti-
mization problems can be solved by using SCHLCP possessing the P∗(κ)-property.
Several IPAs have been proposed for solving Cartesian SCHLCPs. Mohammadi et
al. [33] presented an infeasible IPA taking full Nesterov–Todd steps for solving this
kind of problems. Later on, Asadi et al. [3] proposed an IPA for solving Cartesian
SCHLCP based on the search directions introduced in [9]. In 2020, Asadi et al. [2]
introduced a new IPA for solving Cartesian SCHLCP based on a positive-asymptotic
barrier function. Moreover, in [5] a predictor–corrector (PC) IPA for P∗(κ)-SCHLCP
was presented. Asadi et al. [6] also defined a feasible IPA for P∗(κ)-SCHLCP using
a wide neighbourhood of the central path.

There are several approaches for determining search directions that lead to different
IPAs. Peng et al. [37] used self-regular barriers to introduce large-update IPAs for LP.
Lesaja andRoos [29] provided a unified analysis of kernel-based IPAs for P∗(κ)-LCPs.
Vieira [47] used different IPAs for SCO problems that determine the search directions
using kernel functions. In 1997, Tunçel and Todd [46] presented for the first time a
reparametrization of the central path system. Later on, Karimi et al. [25] analysed
entropy-based search directions for LP in a wide neighbourhood of the central path. In
2003, Darvay presented a new technique for finding search directions for LP problems
[9], namely the algebraically equivalent transformation (AET) of the system defining
the central path. The most widely used function in the AET technique is the identity
map. Darvay [9] applied the function ϕ(t) = √

t in the AET method in order to
define IPA for LP. Kheirfam and Haghighi [27] proposed IPA for P∗(κ)-LCPs which

is based on a search direction generated by considering the function ϕ(t) =
√
t

2(1+√
t)
in

the AET. In 2016, Darvay et al. [14] used the function ϕ(t) = t −√
t for the first time

in the complexity analysis of an IPA. Later on, this IPA was generalized to SCO [15].
It should be mentioned that if we use the function ϕ(t) = t−√

t in the AET approach,
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then the corresponding kernel function is a positive-asymptotic kernel function.Hence,
this search direction cannot be expressed by using usual kernel function approach. An
infeasible version of the proposed IPA was also introduced in [42]. Darvay et al. [12]
considered the function ϕ(t) = t − √

t in the AET method in order to define primal-
dual IPA for solving P∗(κ)-LCPs. In [40], different IPAs for LP, SCO and sufficient
LCPs using the AET technique have been presented.

In this paper, we generalize the PC IPA proposed in [13] to Cartesian P∗(κ)-
SCHLCPs. We also provide a general framework for determining search directions in
case of PC IPAs for Cartesian P∗(κ)-SCHLCPs, which is an extension of the approach
given in [41].We present the analysis of the introduced PC IPA, and we give some new
technical lemmas that are necessary in the analysis. Furthermore, we prove that the
PC IPA has the same complexity bound as the best known interior-point algorithms
for solving these types of problems.

In general, the analysis of IPAs is carried out only for fixed values of the proximity
and update parameters. There are only a few results, where the well-definedness of
the algorithms is proven under some given conditions related to the parameters. In
this paper, we give a condition related to the proximity and update parameters for
which the introduced PC IPA is well defined. In this way, a whole set of parameters
is determined for which the polynomial complexity of the algorithm is guaranteed.
Note that in [43] the authors gave conditions for the update parameters for which the
proposed PC IPA for LP is well defined. Moreover, Darvay [10, 11] considered PC
IPAs using the function ϕ(t) = √

t in the AET technique and gave conditions for the
proximity and update parameters for which the PC IPAs are well defined. It should
be mentioned that in this paper we provide the first result related to IPAs using the
function ϕ(t) = t − √

t in the AET technique, which is well defined for a set of
parameters instead of a given value for the proximity and update parameters.

The paper is organized as follows. In the next section, we present the Cartesian
P∗(κ)-SCHLCP. In Sect. 3, we present the generalization of the AET technique for
determining search directions on Cartesian P∗(κ)-SCHLCP. Subsection 3.1 is devoted
to give a general framework for defining search directions in case of PC IPAs for
Cartesian P∗(κ)-SCHLCP. In Sect. 4, the new PC IPA for Cartesian P∗(κ)-SCHLCP
is introduced, which is based on a new search direction by using the function ϕ(t) =
t−√

t in theAET technique. Section 5 contains the complexity analysis of the proposed
PC IPA. In Sect. 6, some concluding remarks are enumerated. In the “Appendix”, we
present some well-known results related to the theory of Euclidean Jordan algebras
and symmetric cones.

2 Cartesian P∗(�)-Symmetric Cone Horizontal Linear
Complementarity Problem

For a more detailed description of the theory of Euclidean Jordan algebras and sym-
metric cones, see “Appendix”. Let V := V1 ×V2 × · · ·×Vm be the Cartesian product
space with its cone of squares K := K1 × K2 × · · · × Km , where each space Vi is a
Euclidean Jordan algebra and eachKi is the corresponding cone of squares of Vi . For
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any x = (
x (1), x (2), . . . , x (m)

)T ∈ V and s = (
s(1), s(2), . . . , s(m)

)T ∈ V let

x ◦ s =
(
x (1) ◦ s(1), x (2) ◦ s(2), . . . , x (m) ◦ s(m)

)T
, 〈x, s〉 =

m∑

i=1

〈x (i), s(i)〉.

Besides this, for any z = (
z(1), z(2), . . . , z(m)

)T ∈ V , where z(i) ∈ Vi , the trace, the
determinant and the minimal and maximal eigenvalues of the element z are defined as
follows:

tr(z) =
m∑

i=1

tr(z(i)), det(z) =
m∏

i=1

det(z(i)),

λmin(z) = min
1≤i≤m

{λmin(z
(i))}, λmax(z) = max

1≤i≤m
{λmax(z

(i))}.

The Frobenius norm of x is defined as ‖x‖F =
(∑m

i=1

∥∥x (i)
∥∥2
F

)1/2
. Furthermore,

consider the Lyapunov transformation and the quadratic representation of x :

L(x) = diag
(
L(x (1)), L(x (2)), . . . , L(x (m))

)
,

P(x) = diag
(
P(x (1)), P(x (2)), . . . , P(x (m))

)
.

In the Cartesian SCHLCP, we should find a vector pair (x, s) ∈ V × V such that

Qx + Rs = q, 〈x, s〉 = 0, x 
K 0, s 
K 0, (SCHLCP)

where Q, R : V → V are linear operators, q ∈ V and K is the symmetric cone
of squares of the Cartesian product space V . Consider the constant κ ≥ 0. The pair
(Q, R) has the P∗(κ) property if for all (x, s) ∈ V × V

Qx + Rs = 0 implies (1 + 4κ)
∑

i∈I+
〈x (i), s(i)〉 +

∑

i∈I−
〈x (i), s(i)〉 ≥ 0,

where I+ = {i : 〈x (i), s(i)〉 > 0} and I− = {i : 〈x (i), s(i)〉 < 0}.
We suppose that the interior-point condition (IPC) holds, which means that there

exists (x0, s0) so that

Qx0 + Rs0 = q,

x0 
K 0, s0 
K 0.
(I PC)

For a detailed study on the initialization of the problem using self-dual embedding
for conic convex programming and particular cases, see [16, 17, 32, 38, 39].
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The system defining the central path is given as

Qx + Rs = q, x 
K 0,

x ◦ s = μe, s 
K 0,
(1)

where μ > 0. The subclass of Monteiro–Zhang family of search directions is charac-
terized by

C(x, s) =
{
u|u is invertible and L(P(u)x)L(P(u)−1s) = L(P(u)−1s)L(P(u)x)

}
.

Lemma 2.1 (Lemma 28 in [44]) Let u ∈ intK. Then,

x ◦ s = μe ⇔ P(u)x ◦ P(u)−1s = μe.

Considering u ∈ C(x, s), Q̃ = QP(u)−1, R̃ = RP(u) and using Lemma 2.1, we can
rewrite system (1) in the following way:

Q̃P(u)x + R̃P(u)−1s = q, P(u)x 
K 0,

P(u)x ◦ P(u)−1s = μe, P(u)−1s 
K 0.
(2)

If the IPC holds, then system (2) has unique solution for each μ > 0, see [4] and [31].

3 Search Directions for IPAs for Cartesian P∗(�)-Symmetric Cone
Horizontal Linear Complementarity Problems

We present the generalization of the AET technique to P∗(κ)-SCHLCP (cf. [2, 41]).
Let us consider the vector-valued function ϕ, which is induced by the real-valued
univariate function ϕ : (ξ2,+∞) → R, where 0 ≤ ξ < 1 and ϕ′(t) > 0, for all

t > ξ2. We assume that we have λmin

(
x◦s
μ

)
> ξ2. In this way, system (2) can be

written as follows:

Q̃P(u)x + R̃P(u)−1s = q, P(u)x 
K 0,

ϕ

(
P(u)x ◦ P(u)−1s

μ

)
= ϕ(e), P(u)−1s 
K 0.

We define the search directions by using the technique considered in [41, 48]. For
the strictly feasible x ∈ intK and s ∈ intK we want to find the search directions
(Δx,Δs) so that

Q̃P(u)Δx + R̃P(u)−1Δs = 0, P(u)x 
K 0,

P(u)x ◦ P(u)−1Δs + P(u)−1s ◦ P(u)Δx = aϕ, P(u)−1s 
K 0,
(3)
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where

aϕ = μ

(
ϕ′

(
P(u)x ◦ P(u)−1s

μ

))−1

◦
(

ϕ(e) − ϕ

(
P(u)x ◦ P(u)−1s

μ

))
.

In [40] an overview of different functions ϕ used in the literature in the AET
technique is presented.

Throughout the paper, we use the NT-scaling scheme. Let u = w− 1
2 , where w is

called the NT-scaling point of x and s and is defined as follows:

w = P(x)
1
2

(
P(x)

1
2 s

)− 1
2 = P(s)−

1
2

(
P(s)

1
2 x

) 1
2
. (4)

Let us introduce the following notations:

v := P(w)− 1
2 x√

μ
= P(w)

1
2 s√

μ
, dx := P(w)− 1

2 Δx√
μ

, ds := P(w)
1
2 Δs√
μ

. (5)

From (5) we obtain the scaled system:

√
μQP(w)

1
2 dx + √

μRP(w)−
1
2 ds = 0,

dx + ds = pv,
(6)

where
pv = v−1 ◦ (ϕ′(v ◦ v))−1 ◦ (ϕ(e) − ϕ(v ◦ v)).

In order to be able to define IPAs, we should define a proximity measure to the
central path. For this, let

δ(v) = δ(x, s, μ) := ‖pv‖F
2

.

Furthermore, we define the τ -neighbourhood of a fixed point on the central path:

N (τ, μ) := {(x, s) ∈ V × V : Qx + Rs = q, x 
K 0, s 
K 0 : δ(x, s, μ) ≤ τ },

where τ is a threshold parameter and μ > 0 is fixed.
As it was mentioned in Sect. 1, the search directions can be determined by using

another approach based on kernel functions, see [7, 37]. Achache [1] and Pan et al.
[36] showed that one can associate the corresponding kernel functions to several func-
tions ϕ used in the AET technique. In [40], the author also presented the relationship
between the approach based on kernel functions and the AET technique. However,
it is interesting that if we apply the function ϕ(t) = t − √

t in the AET, we cannot
obtain a corresponding kernel function in the usual sense, because it is not defined on a
neighbourhood of the origin, see [15]. Darvay and Rigó [15] introduced the notion of
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the positive-asymptotic kernel function. In this sense, the kernel function associated to
the function ϕ(t) = t − √

t used in this paper is positive-asymptotic kernel function:

ψ̄ :
(
1

2
,∞

)
→ [0,∞), ψ̄(t) = t2

2
− t

2
− 1

4
log(2t − 1).

For details, see [2, 15, 40]. In the following subsection, we generalize a method for
determining the scaled predictor and corrector systems in case of the PC IPAs that are
given in [41].

3.1 Determining Search Directions in Case of Predictor–Corrector Interior-Point
Algorithms

We generalize the method introduced by Darvay et al. [13] and presented in [41] to
determine the search directions in case of PC IPAs. In general, the PC IPAs perform a
predictor and several corrector steps in a main iteration. The predictor step is a greedy
one which aims to find the optimal solution of the problem as soon as possible. Hence,
a certain amount of retirement from the central path is obtained after a predictor step.
In the corrector step, the goal is to return in the τ -neighbourhood of the central path.

First, we deal with the corrector step, which is a full-NT step. Hence, the scaled
corrector system coincides with (6). We should decompose aϕ given in system (3) in
order to obtain the predictor system as follows:

aϕ = f (x, s, μ) + g(x, s), (7)

where f and g are vector-valued functions and f (x, s, 0) = 0. We set μ = 0 in this
decomposition. In this way, we get

Q̃P(u)Δx + R̃P(u)−1Δs = 0, P(u)x 
K 0,

P(u)x ◦ P(u)−1Δs + P(u)−1s ◦ P(u)Δx = g(x, s), P(u)−1s 
K 0.

Using u = w− 1
2 , the scaled predictor system is the following:

√
μQP(w)

1
2 dx + √

μRP(w)−
1
2 ds = 0,

dx + ds = (μv)−1 ◦ g(x, s).
(8)

Using this system, the predictor search directions can be easily obtained. In the follow-
ing subsection, we introduce the new PC IPAs for solving Cartesian P∗(κ)-SCHLCPs.
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4 New Predictor–Corrector Interior-Point Algorithm

We deal with the case, when ϕ(t) = t − √
t . Similar to [13], the decomposition of aϕ

given in (7) will be

aϕ = (
√

μ x ◦ s) ◦
(
2(x ◦ s)

1
2 − √

μe
)−1 − x ◦ s. (9)

By setting μ = 0 in (9) and from (5) we get

g(x, s) = −x ◦ s = −μ v2. (10)

in our case. Furthermore,

pv = 2(v − v2) ◦ (2v − e)−1. (11)

In the corrector step, we take a full-NT step. Hence, the scaled corrector system
coincides with system (6) with pv given in (11):

√
μQP(w)

1
2 dcx + √

μRP(w)−
1
2 dcs = 0,

dcx + dcs = 2(v − v2) ◦ (2v − e)−1.
(12)

We can calculate the corrector search directions Δcx and Δcs from

Δcx = √
μP(w)

1
2 dcx , Δcs = √

μP(w)−
1
2 dcs . (13)

Let xc = x+Δcx and sc = s+Δcs be the point after a corrector step. In the predictor
step, we define the following notations:

vc = P(wc)− 1
2 xc√

μ
= P(wc)

1
2 sc√

μ
,

wherewc is the NT-scaling point of xc and sc. Using (8) and (10), the scaled predictor
system in this case is

√
μQP(wc)

1
2 d p

x + √
μRP(wc)−

1
2 d p

s = 0,

d p
x + d p

s = −vc.
(14)

We obtain the predictor search directions Δpx and Δps from

Δpx = √
μP(wc)

1
2 d p

x , Δps = √
μP(wc)−

1
2 d p

s . (15)

The point after a predictor step is x p = xc + θΔpx, and s p = sc + θΔps, μp =
(1 − θ)μ, where θ ∈ (0, 1) is the update parameter. The proximity measure in this
case is
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δ(v) := δ(x, s, μ) = ‖pv‖F
2

=
∥∥∥(v − v2) ◦ (2v − e)−1

∥∥∥
F

. (16)

Our PC IPA algorithm starts with (x0, s0) ∈ N (τ, μ). The algorithm performs
corrector and predictor steps. The PC IPA is given in Algorithm 4.1.

Algorithm 4.1 : PC IPA for Cartesian SCHLCP using ϕ(t) = t − √
t in the AET

Let ε > 0 be the accuracy parameter, 0 < θ < 1 the update parameter and
0 < τ < 1 the proximity parameter. Assume that for (x0, s0) the (IPC) holds such

that δ(x0, s0, μ0) ≤ τ and λmin

(
x0◦s0
μ0

)
> 1

4 .

begin
k := 0;
while 〈xk, sk〉 > ε do begin

(corrector step)
compute w using (4);
compute (Δcxk,Δcsk) from system (12) using (13);
let (xc)k := xk + Δcxk and (sc)k := sk + Δcsk;
(predictor step)
compute wc as the NT-scaling point of xc and sc;
compute (Δpxk,Δpsk) from system (14) using (15);
let (x p)k := (xc)k + θΔpxk and (s p)k := (sc)k + θΔpsk;
(update of the parameters and the iterates)
(μp)k = (1 − θ)μk;
xk+1 := (x p)k , sk+1 := (s p)k , μk+1 := (μp)k ;
k := k + 1;

end
end.

5 Analysis of the Predictor–Corrector Interior-Point Algorithm

5.1 The Corrector Step

The corrector step is a full-NT step, hence the following lemmas can be easily obtained
by using the results published in [2]. Consider

qv = dcx − dcs , (17)
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hence

dcx = pv + qv

2
, dcs = pv − qv

2
, dcx ◦ dcs = p2v − q2v

4
. (18)

Lemma 5.1 gives an upper bound for ‖qv‖F in terms of ‖pv‖F .
Lemma 5.1 (Lemma 5.1 in [2]) We have ‖qv‖F ≤ √

1 + 4κ ‖pv‖F .
Let x, s ∈ int K, μ > 0 and w be the scaling point of x and s. We have

xc := x + Δx = √
μP(w)1/2(v + dcx ),

sc := s + Δs = √
μP(w)−1/2(v + dcs ).

(19)

It should be mentioned that xc and sc belong to int K if and only if v + dcx and v + dcs
belong to int K, because P(w)1/2 and its inverse, P(w)−1/2, are automorphisms of
int K, cf. Proposition A.1 (ii) from “Appendix”. The next lemma proves the strict
feasibility of the full-NT step. It should be mentioned that throughout the paper we
use the proximity measure given in (16).

Lemma 5.2 (Lemma 5.3 in [2]) Let δ := δ(x, s, μ) < 1√
1+4κ

. Then, λmin(v) > 1
2 and

the full-NT step is strictly feasible, that is, xc 
K 0 and sc 
K 0.

Lemma 5.3 gives an upper bound for the proximity measure after a full-NT step.

Lemma 5.3 (Lemma 5.6 in [2]) Let δ = δ(x, s, μ) < 1
2
√
1+4κ

and λmin(v) > 1
2 . Then,

λmin(v
c) > 1

2 and

δ(xc, sc, μ) ≤
√
1 − (1 + 4κ)δ2

2(1 − (1 + 4κ)δ2) + √
1 − (1 + 4κ)δ2 − 1

(3 + 4κ)δ2.

Furthermore,

δ(xc, sc, μ) <
3 − √

3

2
(3 + 4κ)δ2.

Lemma 5.4 provides an upper bound for the duality gap 〈x, s〉 after a full-NT step.

Lemma 5.4 (cf. Lemma 5.8 in [2]) Let xc and sc be obtained after a full-NT step.
Then,

〈xc, sc〉 ≤ μ(r + 2δ2).

Furthermore, if δ < 1
2(1+4κ)

, then

〈xc, sc〉 <
3

2
μr .

In the following subsection, we present some technical lemmas.
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5.2 Technical Lemmas

First, consider the following two results thatwill be used in the next part of the analysis.

Lemma 5.5 Let f̄ : (d̄,+∞) −→ (0,+∞) be a function, where d̄ > 0 and f̄ (t) > ξ ,
for t > d̄ where ξ > 0. Assume that v ∈ V and λmin(v) > d̄ . Then,

∥∥ f̄ (v) ◦ (e − v)
∥∥
F ≥ ξ ‖e − v‖F .

Proof Using Theorem A.1 given in “Appendix”, we assume that v = ∑r
i=1 λi (v)ci .

Moreover, f̄ (v) = ∑r
i=1 f̄ (λi (v))ci . Then,

∥
∥ f̄ (v) ◦ (e − v)

∥
∥
F =

√√
√√

r∑

i=1

(
f̄ (λi (v))

)2
λ2i (e − v) ≥ ξ ‖e − v‖F .

��
Lemma 5.6 (cf. Lemma 7.4 of [15]) Let f̃ : (d,+∞) −→ (0,+∞) be a decreasing
function, where d > 0. Furthermore, suppose that v ∈ V , λmin(v) > d and η > 0.
Then,

∥∥
∥ f̃ (v) ◦

(
η2e − v2

)∥∥
∥
F

≤ f̃ (λmin(v))

∥∥
∥η2e − v2

∥∥
∥
F

.

In the following part, we consider some inequalities from [2] that will be used later
in the analysis. Using the first equation of (6), we get

Q
(
P(w)1/2dx

)
+ R

(
P(w)−1/2ds

)
= 0.

The definition of the P∗(κ) property results in

〈
P(w)1/2dx , P(w)−1/2ds

〉
≥−4κ

∑

i∈I+

〈
P

(
w(i)

)1/2
d(i)
x , P

(
w(i)

)−1/2
d(i)
s

〉
, (20)

where I+ =
{
i :

〈
d(i)
x , d(i)

s

〉
> 0

}
. Using that each P

(
w(i)

)1/2
, 1 ≤ i ≤ m, is self-

adjoint, we get

〈
P

(
w(i)

)1/2
d(i)
x , P

(
w(i)

)−1/2
d(i)
s

〉
=

〈
d(i)
x , d(i)

s

〉
.

Substituting the last equation into (20) and using the fact that P(w
1
2 ) is self-adjoint,

we obtain

〈dx , ds〉 ≥ −4κ
∑

i∈I+

〈
d(i)
x , d(i)

s

〉
. (21)
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Furthermore, one has

∑

i∈I+

〈
d(i)
x , d(i)

s

〉
≤ 1

4

∑

i∈I+

∥∥∥d(i)
x + d(i)

s

∥∥∥
2

F
≤ 1

4
‖dx + ds‖2F = ‖pv‖2F

4
, (22)

and therefore 〈dx , ds〉 ≥ −κ ‖pv‖2F . Thus,

‖qv‖2F = ‖dx − ds‖2F = ‖dx + ds‖2F − 4 〈dx , ds〉
≤ ‖pv‖2F + 4κ ‖pv‖2F = (1 + 4κ) ‖pv‖2F . (23)

Note that (23) leads to the result given in Lemma 5.1. Now, we prove a lemma which
is a generalization of Lemma 5.3 given in [13] to Cartesian SCHLCP. We assume that
(Q, R) possesses the P∗(κ)-property.

Lemma 5.7 The following inequality holds:

‖d p
x ◦ d p

s ‖F ≤ r(1 + 2κ)(1 + 2δc)2

2
,

where δc = δ(xc, sc, μ) = ∥
∥(vc − (vc) 2) ◦ (2vc − e)−1

∥
∥
F .

Proof Using (22) and the second equation of the scaled predictor system (14) we have

∑

i∈I+

〈
d p
x

(i)
, d p

s
(i)

〉
≤ 1

4

∥∥d p
x + d p

s
∥∥2
F = ‖vc‖2F

4
, (24)

From (21) and (24) we obtain

‖vc‖2F = ‖d p
x + d p

s ‖2F = ‖d p
x ‖2F + ‖d p

s ‖2F + 2〈d p
x , d p

s 〉
≥ ‖d p

x ‖2F + ‖d p
s ‖2F − 8κ

∑

i∈I+
〈d p

x
(i)

, d p
s

(i)〉 ≥ ‖d p
x ‖2F + ‖d p

s ‖2F − 2κ‖vc‖2F .

Hence, ‖d p
x ‖2F + ‖d p

s ‖2F ≤ (1 + 2κ)‖vc‖2F . We give an upper bound for ‖vc‖F
depending on δc and r . For this, consider σ c = ‖e − vc‖F .

Then,

‖vc‖F ≤ ‖vc − e‖F + ‖e‖F = σ c + √
r ≤ √

r(σ c + 1). (25)

Consider f̄ (t) = t
2t−1 > 1

2 . Then, using Lemma 5.5 with ξ = 1
2 and d̄ = 1

2 we have

δc =
∥∥∥(vc − (

vc
) 2) ◦ (2vc − e)−1

∥∥∥
F

=
∥∥∥vc ◦ (2vc − e)−1 ◦ (e − vc)

∥∥∥
F

≥ 1

2
‖e − vc‖F = σ c

2
, (26)

hence σ c ≤ 2δc.
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From (25) and (26) we get

‖vc‖ ≤ √
r(1 + 2δc).

In this way, we have

‖d p
x ◦ d p

s ‖F ≤ ‖d p
x ‖F‖d p

s ‖F ≤ 1

2

(
‖d p

x ‖2F + ‖d p
s ‖2F

)

≤ 1

2
(1 + 2κ)

∥∥vc
∥∥2
F ≤ r(1 + 2κ)(1 + 2δc)2

2
,

which proves the lemma. ��

5.3 The Predictor Step

The first lemma of this subsection is a generalization of Lemma 5.5 given in [13] to
Cartesian SCHLCP. It provides a sufficient condition for the strict feasibility of the
predictor step.

Lemma 5.8 Let xc 
K 0 and sc 
K 0, μ > 0 such that δc := δ(xc, sc, μ) < 1
2 .

Furthermore, let 0 < θ < 1. Let x p = xc + θΔpx, s p = sc + θΔps be the iterates
after a predictor step. Then, x p 
K 0 and s p 
K 0 if ū(δc, θ, r) > 0, where

ū(δc, θ, r) := (1 − 2δc)2 − r(1 + 2κ)θ2(1 + 2δc)2

2(1 − θ)
.

Proof Let α ∈ [0, 1] and x p(α) = xc + αθΔpx and s p(α) = sc + αθΔps. Hence,

x p(α) = √
μP(wc)

1
2 (vc + αθd p

x ), s p(α) = √
μP(wc)−

1
2 (vc + αθd p

s ). (27)

From (27) and using that P(wc)
1
2 and P(wc)− 1

2 are automorphisms of int K we
obtain that x p(α) ∈ int K and s p(α) ∈ int K if and only if vc + αθd p

x ∈ int K and
vc+αθd p

s ∈ int K. Let v p
x (α) = vc+αθd p

x and v
p
s (α) := vc+αθd p

s , for 0 ≤ α ≤ 1.
From the second equation of system (14) we obtain

v
p
x (α) ◦ v

p
s (α) = (vc + αθd p

x ) ◦ (vc + αθd p
s )

=
((

vc
)2 + αθvc ◦ (d p

x + d p
s ) + α2 θ2 d p

x ◦ d p
s

)

=
(
(1 − αθ)

(
vc

)2 + α2 θ2 d p
x ◦ d p

s

)
. (28)

Using (28) and Lemma A.1 from “Appendix” we get

λmin

(
v
p
x (α) ◦ v

p
s (α)

(1 − αθ)

)
= λmin

(
(
vc

)2 + α2 θ2

(1 − αθ)
d p
x ◦ d p

s

)

≥ λmin
(
vc

)2 − α2θ2

1 − αθ
‖d p

x ◦ d p
s ‖F . (29)
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Using λi (e − vc) ≤ ‖e − vc‖F , ∀ i = 1, . . . , r , we have

1 − σ c ≤ λi (v
c) ≤ 1 + σ c, ∀ i = 1, . . . , r . (30)

From (26), (30) and δc < 1
2 we have

λmin
(
vc

)2 ≥ (1 − σ c)2 ≥ (1 − 2δc)2. (31)

Note that f (α) = α2θ2

1−αθ
is strictly increasing for 0 ≤ α ≤ 1 and each fixed 0 < θ < 1.

Using this, (29), (31) and Lemma 5.7 we get

λmin

(
v
p
x (α) ◦ v

p
s (α)

(1 − αθ)

)
≥ (1 − 2δc)2 − r(1 + 2κ)θ2(1 + 2δc)2

2(1 − θ)

= ū(δc, θ, r) > 0. (32)

This means that x p(α) ◦ s p(α) 
K 0, for 0 ≤ α ≤ 1. Hence, x p(α) and s p(α) do not
change sign on 0 ≤ α ≤ 1. From x p(0) = xc 
K 0 and s p(0) = sc 
K 0, we deduce
that x p(1) = x p 
K 0 and s p(1) = s p 
K 0, which yields the result. ��
Consider the following notation

v p = P(w p)− 1
2 x p

√
μp

= P(w p)
1
2 s p√

μp
,

whereμp = (1−θ)μ andw p is the NT-scaling point of x p and s p. Substituting α = 1
in (28) and (32) we get

(
v p)2 = (

vc
)2 + θ2

1 − θ
(d p

x ◦ d p
s ), (33)

λmin
(
v p)2 ≥ ū(δc, θ, r) > 0. (34)

The next lemma investigates the effect of a predictor step and the update of μ on
the proximity measure. This is the generalization of Lemma 5.6 proposed in [13] to
Cartesian SCHLCP.

Lemma 5.9 Consider δc := δ(xc, sc, μ) < 1
2 , δ := δ(x, s, μ), λmin(v) > 1

2 , μp =
(1 − θ)μ, where 0 < θ < 1, ū(δc, θ, r) > 1

4 and let x p and s p be the iterates after a
predictor step. Then, we have

δ p := δ(x p, s p, μp) ≤
√
ū(δc, θ, r)

(
(3 + 4κ)δ2 + (1 − 2δc)2 − ū(δc, θ, r)

)

2ū(δc, θ, r) + √
ū(δc, θ, r) − 1

,

and λmin(v
p) > 1

2 .

123



Journal of Optimization Theory and Applications

Proof From ū(δc, θ, r) > 1
4 > 0, using Lemma 5.8 we obtain that x p 
K 0 and

s p 
K 0. This means that the predictor step is strictly feasible. Furthermore, from
(34) we get

λmin
(
v p) ≥ √

ū(δc, θ, r) >
1

2
,

hence the first part of the lemma is proved. Moreover,

δ p =
∥
∥∥(v p − (

v p)2) ◦ (2v p − e)−1
∥
∥∥
F

=
∥∥∥v p ◦

(
e − (v p)2

)
◦ (

(2v p − e) ◦ (e + v p)
)−1

∥∥∥
F

. (35)

Consider f̃ : ( 1
2 ,∞

) → R, f̃ (t) = t
(2t−1)(1+t) , which is decreasing with respect to t .

Using this, (33), (34) and (35) and Lemma 5.6 we get

δ p =
∥∥∥v p ◦ (

e − (v p)2
) ◦ (

(2v p − e) ◦ (e + v p)
)−1

∥∥∥
F

≤ λmin (v p)

(2λmin (v p) − 1) (1 + λmin (v p))

∥∥∥e − (
v p)2

∥∥∥
F

≤
√
ū(δc, θ, r)

(
2
√
ū(δc, θ, r) − 1

) (
1 + √

ū(δc, θ, r)
)

∥∥∥∥e − (
vc

)2 − θ2

1 − θ
(d p

x ◦ d p
s )

∥∥∥∥
F

(36)

≤
√
ū(δc, θ, r)

(
2
√
ū(δc, θ, r) − 1

) (
1 + √

ū(δc, θ, r)
)

(∥∥∥e − (
vc

)2∥∥∥
F

+ θ2

1 − θ

∥∥d p
x ◦ d p

s
∥∥
F

)
.

Using the definition of vc, (5), (17) and (18) we have

∥∥∥e − (
vc

)2∥∥∥
F

= ‖(v + dcx )(v + dcs ) − e‖F
= ‖v2 + v ◦ (

dcx + dcs
) − e + dcx ◦ dcs ‖F

≤ ‖v2 + v ◦ pv − e‖F +
∥∥
∥∥
p2v − q2v

4

∥∥
∥∥
F

. (37)

Besides this, using λmin(v) > 1
2 , v

2 ◦ (2v − e)−1 
K 0, we have

0 �K v2 + v ◦ pv − e = v2 + 2v2 ◦ (e − v) ◦ (2v − e)−1 − e

= (v − e)2 ◦ (2v − e)−1

�K ((v − e)2 ◦ v2) ◦ (2v − e)−2 = p2v
4

. (38)
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Using (37), (38) and Lemma 5.1 we obtain

∥
∥∥e − (

vc
)2∥∥∥

F
≤ ‖v2 + v ◦ pv − e‖F +

∥
∥∥∥
p2v − q2v

4

∥
∥∥∥
F

≤ ‖pv‖2F
4

+ ‖pv‖2F
4

+ ‖qv‖2F
4

≤ (3 + 4κ)δ2. (39)

From (36), (39) and Lemma 5.7 we obtain the second statement of the lemma. ��
The next lemma gives an upper bound for the complementarity gap after an iteration
of the algorithm.

Lemma 5.10 Let xc 
K 0, sc 
K 0 and μ > 0 such that δc := δ(xc, sc, μ) < 1
2 and

0 < θ < 1. If δ < 1
2(1+4κ)

and x p and s p are the iterates obtained after the predictor
step of the algorithm, then

〈x p, s p〉 ≤
(
1 − θ + θ2

2

)
〈xc, sc〉 ≤

(
1 − θ

2

)
〈xc, sc〉 <

3rμp

2(1 − θ)
.

Proof Using the definition of v p and (33) we have

〈x p, s p〉 = μp〈e, (v p)2〉 = μ〈e, (1 − θ)
(
vc

)2 + θ2d p
x ◦ d p

s 〉
= (1 − θ)〈xc, sc〉 + μθ2〈d p

x , d p
s 〉. (40)

From the second equation of (14) we obtain

〈d p
x , d p

s 〉 = 〈xc, sc〉
2μ

− ‖d p
x ‖2F + ‖d p

s ‖2F
2

≤ 〈xc, sc〉
2μ

. (41)

Moreover, using (40) and (41) we get

〈x p, s p〉 ≤
(
1 − θ + θ2

2

)
〈xc, sc〉.

Note that if 0 < θ < 1, then we have

1 − θ + θ2

2
< 1 − θ

2
. (42)

From (42), μp = (1 − θ)μ and Lemma 5.4 we deduce

〈x p, s p〉 ≤
(
1 − θ + θ2

2

)
〈xc, sc〉 <

(
1 − θ

2

)
〈xc, sc〉 <

3rμp

2(1 − θ)
,

which yields the result. ��
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5.4 Complexity Bound

Firstly, consider the following notation:

Ψ (τ) =
(
1 − 2

3τ
)2 − 1

2
(
1 + 2

3τ
)2 . (43)

In the following lemma, we give a condition related to the proximity and update
parameters τ and θ for which the PC IPA is well defined. This result is one of the
novelties of the paper.

Lemma 5.11 Let τ = 1
c̄(3+4κ)

, where c̄ ≥ 2 and 0 < θ ≤ 2
ḡ(3+4κ)

√
r
, where ḡ ≥ 2. If

i. c̄ ≤ 1
2 ḡ,

ii. r(1+2κ)θ2

2(1−θ)
< Ψ (τ),

then the PC IPA proposed in Algorithm 4.1 is well defined.

Proof Let (x, s) be the iterate at the start of an iteration with x 
K 0 and s 
K 0 such

that λmin

(
x◦s
μ

)
> 1

4 and δ(x, s, μ) ≤ τ . It should be mentioned that τ = 1
c̄(3+4κ)

<

1
2
√
1+4κ

, where c̄ ≥ 2. After a corrector step, applying Lemma 5.3 we have

δc := δ(xc, sc, μ) <
3 − √

3

2
(3 + 4κ)δ2.

The right-hand side of the above inequality is monotonically increasing with respect
to δ, which implies

δc ≤ 3 − √
3

2
(3 + 4κ)τ 2 =: ω(τ). (44)

Substituting τ = 1
c̄(3+4κ)

in (44), using that 3−√
3

2 < 2
3 , κ ≥ 0 and c̄ ≥ 2 we obtain

ω(τ) = (3 − √
3)τ

2c̄
<

2τ

3c̄
≤ 1

3
τ. (45)

Using r(1+2κ)θ2

2(1−θ)
< Ψ (τ) and (45) we obtain

1

4
<

1

2
<

(
1 − 2

3
τ

)2

− r(1 + 2κ)θ2

2(1 − θ)

(
1 + 2

3
τ

)2

< (1 − 2ω(τ))2 − r(1 + 2κ)θ2(1 + 2ω(τ))2

2(1 − θ)

≤ (1 − 2δc)2 − r(1 + 2κ)θ2(1 + 2δc)2

2(1 − θ)
= ū(δc, θ, r), (46)
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hence condition ū(δc, θ, r) > 1
4 from Lemma 5.9 is satisfied. Furthermore, using

τ = 1
c̄(3+4κ)

, c̄ ≥ 2 and (45) we have δc ≤ ω(τ) < 1
18 < 1

2 . Following a predictor
step and a μ-update, by Lemma 5.9 we have

δ p ≤
√
ū(δc, θ, r)

(
(3 + 4κ)δ2 + (1 − 2δc)2 − ū(δc, θ, r)

)

2ū(δc, θ, r) + √
ū(δc, θ, r) − 1

, (47)

where δ := δ(x, s, μ). It can be verified that ū(δc, θ, r) is decreasing with respect to
δc. In this way, we obtain ū(δc, θ, r) ≥ ū(ω(τ), θ, r). We have seen in Lemma 5.9
that the function f̃ is decreasing with respect to t , therefore

f̃ (
√
ū(δc, θ, r)) ≤ f̃ (

√
ū(ω(τ), θ, r)). (48)

From (46) we have
√
ū(ω(τ), θ, r) >

√
2
2 , hence using (48)

f̃ (
√
ū(δc, θ, r)) < f̃

(√
2

2

)

= 1. (49)

Using that δ ≤ τ , δc ≤ ω(τ) and

(1 − 2δc)2 − ū(δc, θ, r) = r(1 + 2κ) θ2 (1 + 2δc)2

2(1 − θ)
, (50)

which is increasing with respect to δc, we obtain

√
ū(δc, θ, r)

(
(3 + 4κ)δ2 + (1 − 2δc)2 − ū(δc, θ, r)

)

2ū(δc, θ, r) + √
ū(δc, θ, r) − 1

≤
√
ū(ω(τ), θ, r)

(
(3 + 4κ)τ 2 + (1 − 2ω(τ))2 − ū(ω(τ), θ, r)

)

2ū(ω(τ), θ, r) + √
ū(ω(τ), θ, r) − 1

.

From τ = 1
c̄(3+4κ)

and δ ≤ τ we have

(3 + 4κ)δ2 ≤ (3 + 4κ)τ 2 = 1

c̄2(3 + 4κ)
= 1

c̄
τ. (51)

Moreover, we use θ ≤ 2
ḡ(3+4κ)

√
r
and κ ≥ 0, hence we obtain

1

1 − θ
≤ 3ḡ

3ḡ − 2
. (52)

We also consider

θ ≤ 2

ḡ(3 + 4κ)
√
r

≤ 1

ḡ(1 + 2κ)
√
r
. (53)

123



Journal of Optimization Theory and Applications

Using (52) and (53) we get

r(1 + 2κ) θ2

2(1 − θ)
≤ r(1 + 2κ)

2
· 3ḡ

3ḡ − 2
· 2

ḡ(3 + 4κ)
√
r

· 1

ḡ(1 + 2κ)
√
r

= 3

ḡ(3ḡ − 2)
· 1

3 + 4κ
= 3c̄

ḡ(3ḡ − 2)
τ. (54)

Using (45) and 3 + 4κ ≥ 3 we obtain

ω(τ) <
2

3c̄2(3 + 4κ)
≤ 2

9c̄2
. (55)

Furthermore, from (50), (54) and (55) we have

(1 − 2ω(τ))2 − ū(ω(τ), θ, r) = r(1 + 2κ) θ2 (1 + 2ω(τ))2

2(1 − θ)

≤ 3c̄

ḡ(3ḡ − 2)

(
1 + 4

9c̄2

)2

τ. (56)

Conditions c̄ ≥ 2, ḡ ≥ 2 and c̄ ≤ 1
2 ḡ yield

3c̄

ḡ(3ḡ − 2)

(
1 + 4

9c̄2

)2

= 3
c̄

ḡ

1

3ḡ − 2

(
1 + 4

9c̄2

)2

≤ 3 · 1
2

· 1
4

· 100
81

= 25

54
<

1

2
. (57)

From (51), (56) and (57), using c̄ ≥ 2 we get

(3 + 4κ)τ 2 + (1 − 2ω(τ))2 − ū(ω(τ), θ, r) ≤
(
1

c̄
+ 3c̄

ḡ(3ḡ − 2)

(
1 + 4

9c̄2

)2
)

τ

<

(
1

2
+ 1

2

)
τ = τ. (58)

Using (47), (49) and (58) we have
δ p < τ,

hence the PC IPA is well defined. ��
The following lemma gives a sufficient condition for satisfying Condition ii. from
Lemma 5.11.

Lemma 5.12 Let τ = 1
c̄(3+4κ)

, where c̄ ≥ 2 and 0 < θ ≤ 2
ḡ(3+4κ)

√
r
, where ḡ ≥ 2.

Consider Ψ given in (43). If
1

ḡ2
< Ψ

(
1

3c̄

)
, (59)

then condition ii. of Lemma 5.11 is satisfied.
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Proof Using 0 < θ ≤ 2
ḡ(3+4κ)

√
r
and ḡ ≥ 2 we have θ ≤ 1

2 . From this we obtain

1

2(1 − θ)
≤ 1. (60)

Furthermore, using (53) and κ ≥ 0 we get

r(1 + 2κ)θ2 ≤ r(1 + 2κ)
1

ḡ2(1 + 2κ)2r
= 1

ḡ2(1 + 2κ)
≤ 1

ḡ2
. (61)

Besides this, from τ = 1
c̄(3+4κ)

and κ ≥ 0 we obtain

τ ≤ 1

3c̄
. (62)

It should be mentioned that the function Ψ (τ) is strictly decreasing with respect to τ ,
hence using (62) we obtain

Ψ (τ) ≥ Ψ

(
1

3c̄

)
. (63)

In this way, using (59), (60), (61) and (63) we obtain

r(1 + 2κ)θ2

2(1 − θ)
≤ 1

ḡ2
< Ψ

(
1

3c̄

)
≤ Ψ (τ),

which yields the result. ��
Lemma 5.13 Let τ = 1

c̄(3+4κ)
, where c̄ ≥ 2 and 0 < θ ≤ 2

ḡ(3+4κ)
√
r
, where ḡ ≥ 2. If

Condition i. from Lemma 5.11 is satisfied, then Condition ii. from Lemma 5.11 also
holds.

Proof Consider the following function

m(c̄) = 1

2c̄

√√√√
(
1− 2

9c̄

)2− 1
2

(
1+ 2

9c̄

)2

,

which is decreasing with respect to c̄. Thus, for c̄ ≥ 2 we have

m(c̄) ≤ m(2) < 1. (64)

Using (64) and Condition i. of Lemma 5.11 we obtain that

ḡ ≥ 2c̄ >
1

√√√√
(
1− 2

9c̄

)2− 1
2

(
1+ 2

9c̄

)2

= 1
√

Ψ
( 1
3c̄

) .
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Hence, if Condition i. of Lemma 5.11 holds, then (59) is satisfied. Using Lemma
5.12, we obtain that Condition ii. from Lemma 5.11 also holds. ��
Corollary 5.1 Let τ = 1

c̄(3+4κ)
, where c̄ ≥ 2 and 0 < θ ≤ 2

ḡ(3+4κ)
√
r
. If ḡ ≥ 2c̄, then

the PC IPA proposed in Algorithm 4.1 is well defined.

Lemma 5.14 Let τ = 1
c̄(3+4κ)

, where c̄ ≥ 2 and 0 < θ ≤ 2
ḡ(3+4κ)

√
r
, where ḡ ≥ 2c̄.

Moreover, let x0 and s0 be strictly feasible, μ0 = 〈x0,s0〉
r and δ(x0, s0, μ0) ≤ τ . Let

xk and sk be the iterates obtained after k iterations. Then, 〈xk, sk〉 ≤ ε for

k ≥ 1 +
⌈
1

θ
log

3〈x0, s0〉
2ε

⌉
.

Proof Using Lemma 5.10 we have

〈xk, sk〉 <
3rμk

2(1 − θ)
= 3r(1 − θ)k−1μ0

2
= 3(1 − θ)k−1〈x0, s0〉

2
.

Hence, if

3(1 − θ)k−1〈x0, s0〉
2

≤ ε,

then the inequality 〈xk, sk〉 ≤ ε holds. We take logarithms, thus

(k − 1) log(1 − θ) + log
3〈x0, s0〉

2
≤ log ε. (65)

From log(1 + θ) ≤ θ , θ ≥ −1, we deduce that (65) is satisfied if

−θ(k − 1) + log
3〈x0, s0〉

2
≤ log ε,

hence the lemma is proved. ��
Theorem 5.1 Let τ = 1

c̄(3+4κ)
, where c̄ ≥ 2 and 0 < θ ≤ 2

ḡ(3+4κ)
√
r
, where ḡ ≥ 2c̄.

Then, the PC IPA proposed in Algorithm 4.1 is well defined and it performs at most

O
(

(3 + 4κ)
√
r log

3rμ0

2ε

)

iterations. The output is a pair (x, s) satisfying 〈x, s〉 ≤ ε.

Proof The result follows from Corollary 5.1 and Lemma 5.14.
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Corollary 5.2 Consider 0 < τ ≤ 1
6+8κ and 0 < θ ≤ 1√

r
τ . Then, the PC IPA proposed

in Algorithm 4.1 is well defined and it performs at most

O
(

(3 + 4κ)
√
r log

3rμ0

2ε

)

iterations.

Proof If τ ≤ 1
6+8κ , then we can find c̄ ≥ 2 such that

τ = 1

c̄(3 + 4κ)
. (66)

Using θ ≤ 1√
r
τ and τ ≤ 1

6+8κ we have

θ ≤ 1√
r
τ ≤ 1

(6 + 8κ)
√
r
.

Hence, we can find ḡ ≥ 4 such that

θ = 2

ḡ(3 + 4κ)
√
r
. (67)

Moreover, from (66), (67) and θ ≤ 1√
r
τ we have

θ = 2

ḡ(3 + 4κ)
√
r

= 2c̄

ḡ
√
r
τ ≤ 1√

r
τ,

hence ḡ ≥ 2c̄ holds. All conditions from Lemma 5.11 are satisfied, hence from
Corollary 5.1 and Lemma 5.14 we obtain the desired result. ��
In the following section, we present concluding remarks.

6 Conclusions

In this paper, we extended the PC IPA proposed in [13] to P∗(κ)-SCHLCP. For the
determination of the search directions, we used the function ϕ(t) = t − √

t in the
AET technique proposed by Darvay [9]. We showed that the introduced PC IPA has
the same complexity bound as the best known interior-point algorithms for solving
these types of problems. We also proved that the proposed PC IPA has the iteration
bound that matches the best known iteration bound for this type of PC IPAs given
in the literature. We also provided a condition related to the proximity and update
parameters for which the PC IPA is well defined. As further research, it would be
interesting to give a more general framework which could deal with problems where
we do not assume the P∗(κ)-property of the pair (Q, R). This approach could lead to
analyse problems similar to general LCPs studied in [23, 24].
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A Appendix

We present some results related to the theory of Euclidean Jordan algebras and sym-
metric cones [18, 19, 45, 47]. Let V be an n-dimensional vector space over R with the
bilinear map ◦ : (x, y) → x ◦ y ∈ V . Then, we say that (V, ◦) is a Jordan algebra if for
all x, y ∈ V , we have x ◦ y = y ◦ x and x ◦ (x2 ◦ y) = x2 ◦ (x ◦ y), where x2 = x ◦ x .
We say that e ∈ V is the identity element of V if and only if e ◦ x = x ◦ e = x , for all
x ∈ V . We call the element x invertible if there exists a unique element x̄ , such that
x ◦ x̄ = e and x̄ is a polynomial in x . The inverse of x is denoted by x−1. Note that V
with an identity element is called Euclidean Jordan algebra if there exists a symmetric
positive definite quadratic form Q̄ on V , which satisfies Q̄(x ◦ y, z) = Q̄(x, y ◦ z).
For any x ∈ V , we define the Lyapunov transformation L(x) as L(x)y := x ◦ y, for all
y ∈ V . The quadratic representation P(x) of x is given as P(x) := 2L(x)2 − L(x2),
where L(x)2 = L(x)L(x). The degree of an element x is the smallest integer r such
that the set {e, x, . . . , xr } is linearly dependent. This is denoted by deg(x). The rank
of V , is the largest deg(x) for all x ∈ V and we denote it by rank (V). A subset
{c1, c2, · · · , cr } of V is called a Jordan frame if it is a complete system of orthogonal
primitive idempotents.

Theorem A.1 (Theorem III.1.2 of [18]) Suppose rank (V) = r . Then, for any x in
V there exists a Jordan frame c1, · · · , cr and real numbers λ1, · · · , λr such that
x = ∑r

i=1 λi ci .

Note that the numbers λi are named eigenvalues. Let tr(x) = ∑r
i=1 λi and det(x) =∏r

i=1 λi . Consider the vector-valued function using the function ϕ, which is a real-
valued univariate function defined on the interval (ξ2,+∞) and differentiable on
the interval (ξ2,+∞) such that ϕ′(t) > 0,∀t > ξ2. Let x = ∑r

i=1 λi (x)ci , where
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{c1, . . . , cr } is the corresponding Jordan frame. We define the vector-valued function
ϕ in the following way:

ϕ(x) := ϕ(λ1(x))c1 + . . . + ϕ(λr (x))cr .

For any Euclidean Jordan algebra V , consider the corresponding cone of squares
K(V) := {x2 : x ∈ V}. This cone is symmetric, i.e., it is self-dual and homogeneous,
see [18]. We use the following notations:

x 
K 0 ⇔ x ∈ K and x 
K 0 ⇔ x ∈ intK,

and

x 
K s ⇔ x − s 
K 0 and x 
K s ⇔ x − s 
K 0.

The inner product is defined as 〈x, y〉 = tr(x◦y). The induced norm is the Frobenius
norm:

‖x‖F = 〈x, x〉1/2 =
√
tr(x2) =

√√√√
r∑

i=1

λ2i (x). (68)

The following lemmas are used in the complexity analysis of the IPA.

Proposition A.1 The following statements hold:

(i) x ∈ V is invertible if and only if P(x) is invertible, in which case P(x)−1 =
P(x−1).

(ii) If x ∈ V is invertible, then P(x)K = K and P(x)int K = int K.
(iii) If x ∈ K, then P(x)1/2 = P(x1/2).
(iv) If x ∈ V , then x ∈ K (x ∈ int K) if and only if λi (x) ≥ 0 (λi (x) > 0), for all

i = 1, . . . , r .

Lemma A.1 (Lemma 14 of [44]) If x, s ∈ V , then

λmin(x + s) ≥ λmin(x) + λmin(s) ≥ λmin(x) − ‖s‖F .
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