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1 Introduction
We investigate a homogeneous good duopoly model introduced by Shubik
(1955) in which the firms set both their prices and quantities simultaneously.
For this game Shubik (1955) already found that it may not have an equilib-
rium in pure strategies. The existence of a mixed-strategy equilibrium was
established by Maskin (1986) who called this game the production-in-advance
game in which production takes place before sales are realized. In contrast,
in the case of production to order, production takes place after prices are
known.

From one point of view it is the most natural case that the firms have
the freedom to set their own prices and quantities though not necessarily
simultaneously. Markets of perishable goods are usually mentioned as exam-
ples of advance production in a market. Spot markets in general can also
be regarded as production-in-advance markets. Phillips et al. (2001) empha-
sized that there are also goods that can be traded both in a production-in-
advance and in a production-to-order environment. For example, coal and
electricity are sold in both types of environments. Based on Italian indus-
try data Casaburi and Minerva (2011) investigated the endogenous mode of
production, that is whether firms choose to produce to order or in advance.
They observed that production in advance occurs more frequently in ho-
mogenous industries than in differentiated ones, while production to order is
more prevalent as product differentiation increases. In an experimental set-
ting production in advance under the assumption of a non-atomistic buyer
side has been investigated by Davis (1999), Muren (2000), and Orland and
Selten (2016).

In an earlier work Tasnádi (2004) demonstrated for the case of identical
capacities and constant unit costs that in equilibrium production-in-advance
profits are equal to production-to-order profits, while prices are higher in the
former case. Montez and Schutz (2021) considered quantity as an unobserv-
able inventory, hence though in their context the quantity decision precedes
the price decision their game is equivalent to the production-in-advance game.
Somogyi and Vergote (2020) introduced capacity uncertainty into the model
in order to explain the empirical observation that large firms set lower prices.
Among others Hirata and Matsumura (2010) analyzed the standard Bertrand
price-setting game without capacity constraints.

Turning to the results on the mixed-strategy equilibrium in closed form of
the production-in-advance game, Levitan and Shubik (1978) computed the
mixed-strategy equilibrium for the case of production in advance under linear
demand and unlimited capacities. In the same framework Gertner (1986)
determined the mixed-strategy equilibrium under more general conditions.
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Montez and Schutz (2021) resolved limitations and corrected flaws of previous
works. They calculated the mixed-strategy equilibrium of the production-
in-advance game for the case of large capacities in their work on unsold
inventories.

Recently, Tasnádi (2020) calculated a symmetric mixed-strategy equilib-
rium for a large range of intermediate capacities. In this paper we address
the missing region of intermediate capacities on which the mixed-strategy
equilibrium is far more complex and has to be determined successively in a
finite number of steps.

From a broader perspective in basic models of duopoly price and quan-
tity are the most frequently employed strategic variables. Friedman (1988)
discussed their roles and the effect of possible orderings of these two vari-
ables. Kreps and Scheinkman (1983) gave a game-theoretic foundation to
the Cournot game through a two-stage capacity-then-price-setting game. We
would like to emphasize that in the last section of their paper they also con-
sidered a third separate quantity-setting stage, which can be considered as
a capacity-setting stage followed by a production-to-order game. To relate
our model to theirs we take capacities as exogenously given, while we merge
their second and third stages into a simultaneous-move price-quantity game,
which results in the same game as described in the first paragraph.

The remainder of the paper is organized as follows: Section 2 presents the
framework, Section 3 determines a symmetric mixed-strategy equilibrium for
the missing case, and Section 4 concludes.

2 Preliminaries
This section contains the necessary assumptions, notations, and the required
available results in the literature.

Assumption 1. The demand curve D : R+ → R+ is strictly decreasing
on [0, b], identically zero on [b,∞), continuous at b and twice continuously
differentiable on (0, b). Furthermore, the revenue function pD(p) is strictly
concave on [0, b].

Let a = D (0) and P be the inverse demand function.
We consider the duopoly model in which both firms set their prices and

quantities simultaneously.

Assumption 2. Firms 1 and 2 have identical positive unit costs c ∈ (0, b)
up to the same positive capacity constraint k. Each of them sets its price
p1, p2 ∈ [0, b] and production quantity q1, q2 ∈ [0, k].
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When referring to firms with A and B, our convention is that A,B ∈
{1, 2} and A 6= B.

Assumption 3. Incorporating the efficient rationing rule,1 the demand faced
by firm A is given by

∆A (p1, q1, p2, q2) =


D (pA) if pA < pB,
qA

qA+qB
D (pA) if pA = pB,

(D (pA)− qB)+ if pA > pB,

where, as usual, f+(x) stands for max{f(x), 0} for an arbitrary function f :
R→ R. The interpretation of Assumption 3 is as follows: the low-price firm
faces the entire demand, in case of ties firms split the demand in proportion
to the firms’ quantity decisions2 and the high-price firm faces the demand
minus the quantity produced by the low-price firm. Then the firms’ profits
are given by

πA ((p1, q1) , (p2, q2)) = pA min {∆A (p1, q1, p2, q2) , qA} − cqA

for both A ∈ {1, 2}.
From Dasgupta and Maskin (1986, Theorem 6∗) it follows that the sym-

metric production-in-advance game possesses a symmetric equilibrium in
mixed strategies. In the following, a mixed strategy µA is a probability mea-
sure defined on the σ-algebra of Borel measurable sets on [0, b]× [0, k], which
can be restricted without loss of generality to S = [c, b] × [0, k]. In equilib-
rium, each firm optimally chooses µA conditional on µB, A 6= B. Such an
equilibrium is denoted by (µ∗1, µ

∗
2). A mixed-strategy equilibrium (µ∗1, µ

∗
2) can

be calculated by the following two conditions:

π1 ((p1, q1) , µ
∗
2) ≤ π∗1, π2 (µ∗1, (p2, q2)) ≤ π∗2 (1)

holds true for all (p1, q1) , (p2, q2) ∈ S,3 and

π1 ((p∗1, q
∗
1) , µ∗2) = π∗1, π2 (µ∗1, (p

∗
2, q
∗
2)) = π∗2 (2)

holds true µ∗1-almost everywhere and µ∗2-almost everywhere, where π∗1, π
∗
2

stand for the equilibrium profits corresponding to (µ∗1, µ
∗
2).

1For more details in which markets the efficient rationing rule can be applied or the
description of the other frequently applied so-called proportional rationing rule we refer
to Vives (1998) and Wolfstetter (2001).

2Our analysis remains valid for a large class of tie-breaking rules satisfying that a firm’s
demand is strictly increasing in its own quantity.

3For notational convenience we do not introduce a separate notation for the expected
profits that have to be determined in (1) and (2). If a mixed-strategy appears in the
argument of the profit function πA, we mean expected profits.
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We define market-clearing price p∗ by

p∗ =

{
D−1 (2k) if D (0) > 2k
0 if D (0) ≤ 2k.

The function πr (p) = (p− c) (D (p)− k) equals a firm’s residual profit when-
ever its opponent sells k and D (p) ≥ k. Let p = arg maxp∈[c,b] π

r (p) and
π = πr (p). Assumptions 1 and 2 assure that p∗ and p are well defined. Fur-
thermore, let p the price at which a firm is indifferent between selling its
entire capacity and maximizing profits on the residual demand curve, i.e.
p = c+ π/k.

For the case of small capacities, i.e. p∗ ≥ p, the game has a unique equi-
librium in pure strategies in which the firms produce at their capacity limits
and set the market-clearing price (e.g. Tasnádi, 2004, Proposition 2). The
mixed-strategy equilibrium for the case of large capacities, i.e. D(c) ≤ k, has
been determined recently by Montez and Schutz (2021) in which the firms
charge prices above their common unit costs. Recently, we have determined
a symmetric mixed-strategy equilibrium on a subregion of intermediate ca-
pacities (i.e. p > max {p∗, c}).

Before recalling our recent proposition, we need to introduce sev-
eral further notations. Let F (p) = µ∗

([
p, p
]
× [0, k]

)
denote the cu-

mulative distribution of equilibrium prices. We shall denote by p̂ =
inf {p ∈ [c, b] | µ ((p, b]× [0, k]) = 0} the highest possible price set by a firm
when playing an arbitrary strategy µ.

In the symmetric mixed-strategy equilibrium at prices p ∈ [c, p) ⊂ [c, b]
firms set at most one quantity s(p) ∈ [0, k] by Tasnádi (2004, Proposition 7).
At least in that price region the associated quantity is proven to be unique
and equals k. Furthermore, for any p ∈ [p, p̂] ⊂ [c, b] there is a symmet-
ric mixed-strategy equilibrium in which the firms set at most one quantity
s(p) ∈ [0, k] at price p by Tasnádi (2020, Proposition 2). Note that prices and
quantities are chosen simultaneously by the firms, but nevertheless the cho-
sen price-quantity pairs lie on a curve. Therefore, a symmetric mixed-strategy
equilibrium can be given by the triple (p̂, s, F ).

Proposition 1 (Tasnádi, 2020, Proposition 2). Let Assumptions 1-3 hold.
If p > max {p∗, c}, then a symmetric mixed-strategy equilibrium (µ∗, µ∗) of
the production-in-advance game is given by the following equilibrium price
distribution

F (p) =


0 if 0 ≤ p < p,
(p−c)k−π
p(2k−D(p))

if p ≤ p < p,

1− c
p

if p ≤ p < p̂, and
1 if p̂ ≤ p ≤ b

(3)
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and by the ‘supply’ function s(p) given by s(p) = k for all p ∈
[
p, p
)

and
determined by

s(p) = D′(p)

(
p2

c
− p
)

+D(p) +
π

c
(4)

for all p ∈ [p, p̂] if
p̂ ≤ P (k), (5)

where p̂ is the unique solution of s(r) = D(r)/2.

To illustrate the region of intermediate capacities covered by Proposition 1
we consider the demand curve D(p) = 1−p. Hence, without loss of generality
we can restrict ourselves to c, k ∈ [0, 1]. Figure 1 shows the four different cases
we can have. The triangle labelled ‘Large’ depicts the case of large capacities
(c ≥ 1−k), the triangle labelled ‘Small’ (c ≤ 1−3k) depicts the case of small
capacities, the shaded area labelled ‘Int1’ in the middle (s(1 − k) ≤ k/2)
depicts the case of intermediate capacities covered by Proposition 1, and the
white area labelled ‘Int2’ depicts the region of intermediate capacities for
which this paper determines an equilibrium in mixed strategies.

Figure 1: Four different cases

3 Mixed-strategy equilibrium
In this section we calculate a symmetric mixed-strategy equilibrium for the
missing range of intermediate capacities on which s(p) is only piecewise
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strictly decreasing. Though the number of pieces on which s(p) is defined
by different expressions is finite the number of pieces cannot be bounded
from above as we are getting closer and closer to the large-capacity region.

Nevertheless, the price distribution F specified in Proposition 1 remains
still the equilibrium price distribution in the upper range of intermediate
capacities. Furthermore, the expression on the right-hand side of (4) still
specifies s(p) on the interval [p, P (k)] since in this case in the proof of Propo-
sition 1 D(p) − s(r) is non-negative for any p ∈ [p, P (k)] and any r ∈ [p, p].
Since s will be defined piecewise on a finite set of disjoint and consecutive
intervals, we shall denote by s1 the expression on the right-hand side of (4).
Since we determine s iteratively and at the same time the respective intervals
with the boundary points (i.e. prices) too for notational convenience we let
p0 = p, p1 = P (k) and s0(p) = k for any p ∈

[
p, p̂
]
, which can be regarded

as a kind of initialization.4
When extending function s to prices above p one needs to integrate

D(p) − s1(r) only above prices r on which the integrand is non-negative.
To determine the lowest price from which the integration of D(p) − s1(r)
should start for a given p we define t1(p) = s−11 (D(p)) = r. The strategy for
constructing the mixed-strategy equilibrium is to determine the next piece of
s denoted by s2. Then we arrive either to a solution delivering an r∗ satisfying
s2(r

∗) = D(r∗)/2 and r∗ ≤ p2 = P (s2(p1)) or we define t2(p) = s−12 (D(p)) = r
and continue with determining the next piece of s denoted by s3. We re-
peat the whole process until we obtain an r∗ satisfying sn(r∗) = D(r∗)/2
and r∗ ≤ pn = P (sn(pn−1)), where n stands for the required number of
steps. We shall denote by ri the value of r∗ obtained at the ith step, that is
si(ri) = D(ri)/2.

The next proposition contains the results of the described procedure and
the proof of their correctness.

Proposition 2. Let Assumptions 1-3 hold. If p > max {p∗, c} and P (k) =
p1 < r1, then there exists an n ∈ {1, . . .} such that a symmetric mixed-
strategy equilibrium (µ∗, µ∗) of the production-in-advance game is given by
the equilibrium price distribution (3) and by the ‘supply’ function s(p) given
by s(p) = s0(p) = k for all p ∈

[
p, p
]
, given by (4) for all p ∈ (p, p1], and

given by

si+1(p) = D′(p)

 p2

ti(p)
− p+

i−1∑
j=l(p)

(
p2

tj(p)
− p2

pj

)+D(p) +
π

c
(6)

4From here on the subscripts of p stand for indexing the steps of the iterative process
and not for the labeling of firms, which we highlight by using i and j as indexes instead
of A and B.
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for all p ∈ (pi,min{pi+1, r
∗}] and all i ∈ {1, . . . , n}5 if

p1 < r1, . . . , pn < rn, rn+1 ≤ pn+1, (7)

where ri is the unique solution of si(ri) = D(ri)/2, ti(p) = s−1i (D(p)), pi =
P (si(pi−1)) for all i ∈ {1, . . . , n + 1}, and l(p) ∈ {1, . . . , i} is increasing in
p. Then p̂ = rn+1. Furthermore, the numerical sequences (si(pi−1))

n+1
i=1 and

(si(pi))
n
i=1 are strictly decreasing, si(pi) ≤ si+1(pi) and the functions si(p)

are strictly decreasing in p on [pi−1,min{pi, r∗}] for all i ∈ {1, 2, . . . , n+ 1}.

Before giving a proof of Proposition 2 we illustrate the supply functions
given by (6) and shed light on why the equilibrium supply function is dis-
continuous and has kinks. We depict a possible supply function in Figure
2. We would like to emphasize that there is definitely a discontinuity at p1,
otherwise, we have either a discontinuity or kink at pi, where the former case
occurs if l(pi) is different for si and si+1 in equation (6) and otherwise the
latter case occurs. A concrete numerical example for the case of linear de-
mand will be provided after the proof of Proposition 2. First, observe that

q

p
-

6
H
HHH

HHH
HHH

HHH
HHH

HHH
HHH

HHHH

D(p)

XXXXXXXXXXXXXXXXXXXXXXXXXX
1
2D(p)

k
s0

s1

p0 p1

s2

p2

s3

p3

s4

p4 p5p

Figure 2: Supply function

if a firm sets price p ∈ (p0, p1) and its opponent sets a price r ∈
[
p, p
)
(i.e.

it is the high-price firm), it can always sell a positive amount, and therefore
D(p) − s(r) is positive. However, if p ∈ (p1, p2) and r ∈

[
p, p0

)
, its residual

demand equals zero, while D(p)−s(r) becomes negative. Second, let us move
a bit further to the right and pick a price p ∈ (p3, p4) as indicated with a
green p in Figure 2. If the firm’s opponent sets a price such that s3(r) < D(p)
and p ≤ p3, then the firm faces a positive residual demand, but this is also

5As usually, if l(p) > i− 1 the sum equals zero since there is no summand.
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true if the firm’s opponent sets a price such that s2(r) < D(p) and p ≤ p2.
Therefore, in this case we have i(p) = 2. A kink in s arises at a price satisfying
s3(p3) = D(p).

Now we turn to the proof of Proposition 2.

Proof. Proposition 1 can be considered as the initialization step of our recur-
sive procedure, i.e. the statement of our proposition holds for n = 1. Then
we assume that we have already obtained the sequence of prices p1, . . . , pi,
the sequence of supply functions s1, . . . , si, and the sequence of functions
t1, . . . , ti in the way as stated in the proposition recursively.

Since s and F are known for all p ∈
[
p, pi

)
in what follows we consider

only prices such that p ≥ pi.6 When determining the next piece of s, we shall
denote by r∗i+1 ∈ [pi, b] the price at which si+1(r

∗
i+1) = D(r∗i+1)/2 and assume

that such a price exists uniquely.7
Given that we are looking for a symmetric equilibrium we denote the rival

firm 2’s strategy simply by µ (and thus omitting its subscript). Then firm
1’s profit equals

π1 ((p, q), µ) = pq (1− F (p)) + p

∫ p

pi

min
{

(D(p)− si+1(r))
+, q
}
dF (r)

+
i∑

j=l(p)

p

∫ pj

tj(p)

min {D(p)− sj(r), q} dF (r)− cq (8)

for any p ∈ (pi, pi+1] and any q ∈ [0, D(p)], where we have already taken into
account that D(p) < si+1(p) = q does not make sense since then the firms
produce a superfluous amount for sure and l(p) ≥ 1 is the smallest index for
which D(p) > sl(p)(pl(p)). Note that l(p) ≥ 1 since for any p ∈ (pi, pi+1] we
have D(p) < D(p0) = k. (8) simplifies to

π1 ((p, q), µ) = pq (1− F (p)) + p

∫ p

pi

min {D(p)− si+1(r), q} dF (r)

+
i∑

j=l(p)

p

∫ pj

tj(p)

min {D(p)− sj(r), q} dF (r)− cq, (9)

6We would like to emphasize that in line with the statement of Proposition 2 we are
not showing the uniqueness of the symmetric mixed-strategy equilibrium. Nevertheless,
we have to deal with the successive construction of the supply function of the symmet-
ric mixed-strategy equilibrium. However, we do not derive the cumulative distribution
function F given in Proposition 2, we just verify its correctness.

7We will verify in the proof that the si+1 given by (6) is continuous and strictly de-
creasing on p ∈ [pi, pi+1] and that r∗i+1 is uniquely determined by the properties of D and
si+1.
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where we could drop the non-negativity operation in the first integral of (8)
because we will speak only about the next piece of a solution if p ≤ pi+1 and
p ≤ r∗i+1. In addition, if i = n, then (7) will hold.

Since the equilibrium price distribution is given by F (p) = 1 − c/p on
(p, p̂) (9) takes the following form

π1 ((p, q), µ) = pq
c

p
+ p

∫ p

pi

min {D(p)− si+1(r), q} dF (r)

+
i∑

j=l(p)

p

∫ pj

tj(p)

min {D(p)− sj(r), q} dF (r)− cq

= p

∫ p

pi

min {D(p)− si+1(r), q} dF (r)

+
i∑

j=l(p)

p

∫ pj

tj(p)

min {D(p)− sj(r), q} dF (r) (10)

from which we can see that (10) is strictly increasing in
q on

[
0,maxj=l(p),l(p)+1,...,i+1D(p)− sj(p)

]
and constant on[

maxj=l(p),l(p)+1,...,i+1D(p)− sj(p), D(p)
]

since F (p) = 1 − c/p, and
therefore it follows that we can derive si+1 on the respective interval by
solving π1 ((p, q), µ) =

π = p

∫ p

pi

(D(p)− si+1(r))
c

r2
dr

+
i∑

j=l(p)

p

∫ pj

tj(p)

(D(p)− sj(r))
c

r2
dr

= pD(p)

 c

ti(p)
− c

p
+

i−1∑
j=l(p)

(
c

tj(p)
− c

pj

)
−p

i∑
j=l(p)

(Sj(pj)− Sj(tj(p)))− p
∫ p

pi

si+1(r)
c

r2
dr, (11)

where
Sj(p) =

∫ p

pj−1

sj(r)
c

r2
dr (12)
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for any p ∈ [pj−1, pj). By simple rearrangements we get (13)

Si+1(p) = D(p)

 c

ti(p)
− c

p
+

i−1∑
j=l(p)

(
c

tj(p)
− c

pj

)
−

i∑
j=l(p)

(Sj(pj)− Sj(tj(p)))−
π

p
(13)

from which by differentiation we obtain

S ′i+1(p) = D′(p)

 c

ti(p)
− c

p
+

i−1∑
j=l(p)

(
c

tj(p)
− c

pj

)
+D(p)

−ct′i(p)
t2i (p)

+
c

p2
+

i−1∑
j=l(p)

−
ct′j(p)

t2j(p)


+

i∑
j=l(p)

(
sj(tj(p))

c

t2j(p)
t′j(p)

)
+
π

p2

= D′(p)

 c

ti(p)
− c

p
+

i−1∑
j=l(p)

(
c

tj(p)
− c

pj

)
+D(p)

−ct′i(p)
t2i (p)

+
c

p2
+

i−1∑
j=l(p)

−
ct′j(p)

t2j(p)


+

i∑
j=l(p)

D(p)
c

t2j(p)
t′j(p) +

π

p2

= D′(p)

 c

ti(p)
− c

p
+

i−1∑
j=l(p)

(
c

tj(p)
− c

pj

)
+D(p)

c

p2
+
π

p2
, (14)

where the fact that l(p) is an increasing step function of p implies that Si+1

in not differentiable at at most i points. Since F does not have an atom at
these points the value of s can be set arbitrarily there. Rearranging (14), we
get

si+1(p) = D′(p)

 p2

ti(p)
− p+

i−1∑
j=l(p)

(
p2

tj(p)
− p2

pj

)+D(p) +
π

c
(15)
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It can be verified that s′i+1(p) < D′(p) holds for prices higher than pi.
The process of constructing the next piece of s has to be repeated if

pi+1 < r∗i+1. After a finite number of steps, we have to arrive at an n such
that r∗n+1 ≤ pn+1 since equilibrium profits are positive. Clearly, both Sn+1

and sn+1 can be extended through equations (13) and (15) for prices higher
than r∗n+1, respectively, where for p ≥ r∗n+1 equation (11) takes the following
form

π = p

∫ p

pn

sn+1(r)
c

r2
dr

+
n∑

j=l(p)

p

∫ pj

tj(p)

(D(p)− sj(r))
c

r2
dr

= pD(p)

1− c

r∗
+

n−1∑
j=l(p)

(
c

tj(p)
− c

pj

)
−p

n∑
j=l(p)

(Sj(pj)− Sj(tj(p)))− p
∫ p

pi

sn+1(r)
c

r2
dr, (16)

since sn+1(p) < D(p)− sn+1(p) for any p > r∗n+1.
For any p ≥ r∗n+1 let

Q(p) =

∫ p

r∗n+1

sn+1(r)
c

r2
dr. (17)

Then we have
Q(r∗n+1) = 0 and Q′(p) = sn+1(p)

c

p2
(18)

for any p ∈
[
r∗n+1, r

′), where r′ is uniquely defined by the implicit equation
s(r′) = D(r′)− k. Clearly, setting prices above r′ does no make sense, since
playing these pure strategies against mixed-strategy µs,F will result in less
profits than pure-strategy (p,D(p)− k). From (16) we get

Q(p) = D(p)

1− c

r∗n+1

+
n−1∑
j=l(p)

(
c

tj(p)
− c

pj

)
−

n∑
j=l(p)

(Sj(pj)− Sj(tj(p)))−
π

p
(19)

for any p ∈
[
r∗n+1, r

′,
)
from which by differentiation we obtain Q′ and finally

by simple rearrangements sn+1(p). With a slight abuse of notation we will still
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denote the obtained function by sn+1(p) on p ∈
(
r∗n+1, r

′) though, as it will
turn out, the firms will not produce at prices above r∗n+1. These extensions
will be helpful for us in the price interval [r∗n+1, r

′].
Now we will verify that having an atom at price r∗n+1 of mass c/r∗n+1 =

1−F (r∗n+1) completes a symmetric mixed-strategy equilibrium. Assume that
firm 2 plays the same mixed strategy. Then we already know that for any p ∈[
p, r∗n+1

)
producing an amount of q = s(p) results in π profit. Furthermore,

for any p ∈
[
p, r∗n+1

)
and any quantity [D(p)− s(p), k] profits equal π, while

they are strictly less for quantities less than D(p)− s(p) by (10).
We claim that in the derived symmetric mixed-strategy equilibrium firms

produce at price r∗n+1 an amount of s(r∗n+1) = D(r∗n+1)/2. Suppose that they
would produce more than D(r∗n+1)/2. Then there will be superfluous pro-
duction at price r∗n+1, and therefore by the continuity of profits for prices
below r∗n+1 profits at price r∗n+1 would be less than at prices r∗n+1 − ε if ε
is sufficiently small. Suppose that they would produce an amount of q∗ less
than D(r∗n+1)/2. Then π1 ((p, q), µs,F )) is continuous at (r∗n+1, q

∗), and there-
fore π1

(
(r∗n+1, q

∗), µs,F )
)
< π; a contradiction. Thus, we must have indeed

s(r∗n+1) = D(r∗n+1)/2. By the left continuity at price r∗n+1 it follows that
π1
(
(r∗n+1, D(r∗n+1)/2), µs,F )

)
= π.

To verify that the triple (p̂, s, F ) specified in the previous paragraphs
specifies a strategy of a symmetric mixed-equilibrium it remains to be shown
that prices above r∗n+1 combined with any quantity q ∈ [0, k] result in less
profits than π.

The profit function of firm 1 in response to firm 2 playing the mixed
strategy associated with (p̂, s, F ) for prices p ≥ r∗n+1 equals

π1 ((p, q), µs,F ) = pmin

{
D(p)−

D(r∗n+1)

2
, q

}
c

r∗n+1

+p

∫ r∗n+1

pn

(D(p)− sn+1(r))
c

r2
dr

+
n∑

j=l(p)

p

∫ pj

tj(p)

(D(p)− sj(r))
c

r2
dr − cq, (20)

from which we get

∂π1
∂q

((p, q), µ) =

{
−c if D(p)− D(r∗n+1)

2
< q,

p c
r∗n+1
− c if D(p)− D(r∗n+1)

2
> q ≥ D(p)− s(p)

(21)

for any p > p̂ = r∗n+1. Since pc/r∗n+1 − c > 0 we get that quantity q =

D(p)− D(r∗n+1)

2
results in the highest profit in (20) for any price p > p̂ = r∗n+1.

13



Hence, we define the profit function of firm 1 at the best quantities for
prices p ≥ r∗n+1 by

π∗(p) = p

(
D(p)−

D(r∗n+1)

2

)
c

r∗n+1

+p

∫ r∗n+1

pn

(D(p)− sn+1(r))
c

r2
dr

+
n∑

j=l(p)

p

∫ pj

tj(p)

(D(p)− sj(r))
c

r2
dr

−c
(
D(p)−

D(r∗n+1)

2

)
(22)

It can be verified that π∗(p) is strictly concave, and it would be straightfor-
ward to check that the derivative π∗(p) is non-positive at r∗n+1, which unfor-
tunately does not result in a manageable inequality. Therefore, we consider
the equality in (16) defining s and let us denote by

πs(p) = p

∫ p

r∗n+1

s(r)
c

r2
dr + p

∫ r∗n+1

pn

(D(p)− sn+1(r))
c

r2
dr

+
n∑

j=l(p)

p

∫ pj

tj(p)

(D(p)− sj(r))
c

r2
dr = π (23)

for prices p ∈
[
r∗n+1, r

′]. Clearly, dπs(p)/dp = 0 for any p ∈
[
r∗n+1, r

′] by the
definition of s, which we will utilize by considering ∆(p) = π∗(p)− πs(p) =

= p

(
D(p)−

D(r∗n+1)

2

)
c

r∗n+1

− c
(
D(p)−

D(r∗n+1)

2

)
− p

∫ p

r∗n+1

s(r)
c

r2
dr

=

(
D(p)−

D(r∗n+1)

2

)(
p

c

r∗n+1

− c
)
− p

∫ p

r∗n+1

s(r)
c

r2
dr. (24)

Then

∆′(p) = D′(p)

(
p

c

r∗n+1

− c
)

+

(
D(p)−

D(r∗n+1)

2

)
c

r∗n+1

−∫ p

r∗n+1

s(r)
c

r2
dr − ps(p) c

p2
. (25)

By substituting r∗n+1 for p in (25) and taking s(r∗n+1) = D(r∗n+1)/2 into
consideration we get ∆′(r∗n+1) = 0, which implies dπ∗(p)/dp = 0, which
completes the proof.
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Now we consider a numerical example and provide its numerical solution
based on Proposition 2.

Example 1. Let D(p) = 1− p, c = 0.38 and k = 0.46.

It can be verified that the cost and capacity pair given in Example 1 is very
close to the Int1 region, but within the Int2 region shown in Figure 1. Since
the derivation of the cumulative distribution function is straightforward we
only present the supply function s(p) in Figure 3, which is drawn in green and
has four pieces s0, s1, s2 and s3. We can see that the termination condition
is satisfied at r∗ = r3 since there s3 crosses D(p)/2 left to p3. r∗ determines
also the position of the atom of the cumulative distribution function F of
the symmetric mixed-strategy equilibrium prices. We can see that at p2 the

Figure 3: Four different cases

supply curve s(p) just has a kink and no discontinuity.
It is worthwhile to note that in the case of linear demand there is no

symmetric mixed-strategy equilibrium just requiring two steps. Though s1,
s2 and s3 look linear in Figure 3 they are highly nonlinear. To determine
s3, we need to find the appropriate root of a polynomial of degree 4. Thus,
considering an example requiring an additional step seems to be intractable
since the degree of the polynomial to be solved could be only approximated
numerically and we would even need to determe t3, which is an inverse func-
tion of s3. For the same reasons we did not draw an extended version of
Figure 1 containing the area on which in case of linear demand we would
have an equilibrium in three steps.
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4 Concluding remarks
In this paper we have derived analytically a symmetric mixed-strategy equi-
librium of the production-in-advance game for the missing part of intermedi-
ate capacities. Though the cumulative distribution function of prices remains
simple the construction of the supply function required a recursive procedure,
which resulted in only a piecewise continuous supply function with kinks,
where kinks emerge in case of l(p) ≤ i in (6).

From an economic point of view the discontinuities in s imply that certain
unsold amounts are more likely than others. This may have implications on
optimal store sizes or disposal units, but requires a richer model and further
analysis.

It is straightforward to see that the closer we are coming to the large
capacity region the lowest price in the support of the equilibrium price dis-
tribution tends to c, the equilibrium profits tend to zero, r∗ to b and the price
distribution tends the Montez and Schutz (2021) equilibrium price distribu-
tion in distribution. Furthermore, it can be verified that s(p) approximates
D(p), and therefore the solution approaches to the solution obtained by Mon-
tez and Schutz (2021) for the case of large capacities.
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