
This article was downloaded by: [146.110.152.44] On: 04 January 2023, At: 01:10
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
INFORMS is located in Maryland, USA

Management Science

Publication details, including instructions for authors and subscription information:
http://pubsonline.informs.org

An Axiomatization of the Proportional Rule in Financial
Networks

Péter Csóka,ab P. Jean-Jacques Heringsc

To cite this article:
Péter Csóka,ab P. Jean-Jacques Heringsc (2021) An Axiomatization of the Proportional Rule in Financial Networks. Management
Science 67(5):2799-2812. https://doi.org/10.1287/mnsc.2020.3700

Full terms and conditions of use: https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-
Conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use
or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher
approval, unless otherwise noted. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or
support of claims made of that product, publication, or service.

Copyright © 2020, INFORMS

Please scroll down for article—it is on subsequent pages

With 12,500 members from nearly 90 countries, INFORMS is the largest international association of operations research (O.R.)
and analytics professionals and students. INFORMS provides unique networking and learning opportunities for individual
professionals, and organizations of all types and sizes, to better understand and use O.R. and analytics tools and methods to
transform strategic visions and achieve better outcomes.
For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org

http://pubsonline.informs.org
https://doi.org/10.1287/mnsc.2020.3700
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
http://www.informs.org


MANAGEMENT SCIENCE

http://pubsonline.informs.org/journal/mnsc ISSN 0025-1909 (print), ISSN 1526-5501 (online)

An Axiomatization of the Proportional Rule in Financial Networks
Péter Csóka,a,b P. Jean-Jacques Heringsc

aDepartment of Finance, CorvinusUniversity of Budapest, 1093 Budapest, Hungary; bMomentumGame Theory ResearchGroup, Centre for
Economic and Regional Studies, Hungarian Academy of Sciences Centre of Excellence, 1097 Budapest, Hungary; cDepartment of Economics,
Maastricht University, 6200 MD Maastricht, Netherlands
Contact: peter.csoka@uni-corvinus.hu, https://orcid.org/0000-0003-1703-5835 (PC); P.Herings@maastrichtuniversity.nl,

https://orcid.org/0000-0002-1100-8601 (PJ-JH)

Received: May 17, 2019
Revised: January 13, 2020; April 9, 2020
Accepted: April 29, 2020
Published Online in Articles in Advance:
October 5, 2020

JEL Classification: C71, G10.

https://doi.org/10.1287/mnsc.2020.3700

Copyright: © 2020 INFORMS

Abstract. The most important rule to determine payments in real-life bankruptcy prob-
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of the proportional rule in financial networks. Our main axiom is invariance to mitosis.
The other axioms are claims boundedness, limited liability, priority of creditors, continuity,
and impartiality.
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1. Introduction
The principle of proportionality plays an important
role in bankruptcy law across the globe. The Euro-
pean Commission (EC) Council Regulation on in-
solvency proceedings states that1

Every creditor should be able to keep what he has
received in the course of insolvency proceedings but
should be entitled only to participate in the distribu-
tion of total assets in other proceedings if creditors
with the same standing have obtained the same pro-
portion of their claims.

The principle of proportionality is also important
for American bankruptcy law, according to which
claimants of equal status should receive payments
proportional to the value of their liabilities; see
Kaminski (2000).

Given the prominence of the proportional rule in
practice, it is important to understand its crucial
features by finding an axiomatization. Starting with
the seminal paper of O’Neill (1982), the literature that
takes an axiomatic approach to the bankruptcy problem
assumes there is a single bankrupt agent, while the other
agents have claims on its estate. We refer to this class of
problems as claims problems. The central question is
how this estate should be divided over the claims, and
the axiomatic approach has provided firm underpin-
nings for a number of well-known division rules. See
Thomson (2013) and Thomson (2015) for an overview
of this stream of the literature.

Notable axiomatizations of the proportional rule for
claimsproblems are given byYoung (1988), Angeles de
Frutos (1999), Moreno-Ternero (2006), and Ju et al.
(2007). Themain axioms used by these papers are self-
duality, composition up, composition down, non-
manipulability, and merging- and splitting-proofness.
For related axiomatizations, see Tasnádi (2002) on
probabilistic rationingmethods andMoulin (2016) on
proportional assignment and rationing of goods with
different characteristics.
Recent crisis on financial markets related to the Leh-

man bankruptcy as well as sovereign debt problems of
European countries have spurred an extensive litera-
ture on systemic risk that takes a network perspective to
the bankruptcy problem, starting with the contribution
by Eisenberg and Noe (2001). The literature that is
based on this model, either extending it (Cifuentes
et al. 2005, Shin 2008, Rogers and Veraart 2013,
Schuldenzucker et al. 2020) or using it to relate the
number and magnitude of defaults to the network
topology (Gai and Kapadia 2010, Elliott et al. 2014,
Acemoglu et al. 2015, Glasserman and Young 2015,
Capponi et al. 2016) or measuring systemic risk (Chen
et al. 2013, Demange, 2018), uses the proportional rule
to determine the mutual payments by the agents. For
anoverviewof this streamof the literature,we refer to the
excellent survey by Glasserman and Young (2016).
The aim of this paper is to provide axiomatic

foundations for the use of the proportional rule for
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bankruptcy problems in financial networks defined
by Eisenberg and Noe (2001). A financial network
consists of a set of agents, with each agent being
characterized by its endowments and its liabilities
toward the other agents. A bankruptcy rule deter-
mines the actual payments of agents to each other,
collected in a payment matrix. More technically, a
bankruptcy rule is simply a function that assigns to
each financial network a payment matrix. To clearly
distinguish concepts, we use the terminology bank-
ruptcy rule for financial network problems and di-
vision rule for the simpler context of claims problems
with a single bankrupt agent.

An agent is in fundamental default if it cannot fully
pay its liabilities, even if it receives full payments on
all its claims on the other agents. In a network
setting, a default can also result from contagion,
where an agent defaults only because other agents are
not fully paying their liabilities. Because of these
mutual dependencies, it is not trivial to define the
proportional rule in a financial network. We follow
the seminal contribution by Eisenberg andNoe (2001)
and proceed as follows. First, one determines the asset
value of an agent, the value of its endowments to-
gether with the payments as collected from the other
agents. Under the proportional rule, an agent spends
its asset value in a proportionalway over its liabilities,
up to the value of those liabilities. Subtracting the
payments as made by an agent from its asset value
yields an agent’s equity. Because of the mutual de-
pendencies caused by the network aspect, one has to
solve a system of equations to determine the actual
payments. Under the proportional rule, the agents’
asset values and equities are therefore determined
endogenously in a financial network.

Agents in financial networks may engage in spin-
offs and mergers. When such activities do not gen-
erate added value, they should not influence the
payments made to and received from agents not in-
volved in them. The axiom that requires that the split
of an agent into multiple agents or the merger of a set
of agents should not affect the payment matrix is
called nonmanipulability in the literature. The pro-
portional rule does not satisfy nonmanipulability. As
an example, one expects the merger of a bankrupt
and a solvent agent to affect the payment matrix
generated by the proportional rule, because part of
the assets of the solvent agent that were not seized
before can now be used for making payments related
to claims on the bankrupt agent. The other way
around, if an agent is allowed to create a new entity
that receives all its liabilities, but none of its claims or
endowments, then the agent is clearly going to benefit
because it will end up in paying none of its liabilities.
This kind of manipulation is illegal in reality, because
in winding up or in insolvency proceedings, the

borrower is not allowed to do anything that would
threaten directly or indirectly the payments to its
lenders. We show that nonmanipulability is incom-
patible with any reasonable bankruptcy rule in fi-
nancial networks.
We, therefore,want to restrict spin-offs andmergers in

financial networks to situations that are balanced in the
way endowments and claims are reshuffled. A spin-off
that receives liabilities should receive a corresponding
amount of endowments and claims. The simplest way to
achieve this is to restrict attention to manipulations in-
volving identical agents.2 Agents are identical if they
have the same endowments, claims, and liabilities,
which implies, for instance, that mutual liabilities
between them are equal to zero. The axiom called
invariance tomitosis requires that the split of an agent
intomultiple identical agents or themerger of a group
of agents that are identical should not affect the
payment matrix. This is clearly a very weak axiom.
We show that invariance to mitosis together with

claims boundedness, limited liability, priority of credi-
tors, continuity, and impartiality axiomatize the pro-
portional rule in financial networks. Claims bounded-
ness expresses that no agent pays an amount in excess of
its liabilities. A bankruptcy rule satisfies limited liability
if it leads to a payment matrix, such that none of the
agents ends upwith negative equity. Priority of creditors
is satisfied if the only circumstanceunderwhich an agent
is allowed to default is when its equity is equal to zero.
Continuity implies that small changes in the financial
network imply small changes in the resulting payment
matrix. Impartiality requires that two agents with the
same claim on a third agent should receive the same
payment from it. We show that the axioms are inde-
pendent. Although the very weak requirement of in-
variance to mitosis is sufficient to pin down the pro-
portional rule, the proportional rule can be shown to
satisfy nonmanipulability for a much wider range of
situations. It holdswhenever all agents involved ina split
remain solvent,which corresponds exactly to those cases
that are legally allowed.
The way Eisenberg and Noe (2001) extend the

proportional rule for claims problems to the set-up of
financial networks can be used to extend any division
rule for claims problems to the set-up of financial
networks. The resulting bankruptcy rule for financial
networks consists of computing each agent’s asset
value and then making payments in accordance with
the given division rule for claims problems. Such a
bankruptcy rule is called a division rule-based bank-
ruptcy rule.Groote Schaarsberg et al. (2018) extend the
Aumann–Maschler division rule for claims problems
to a bankruptcy rule for financial networks. Different
from the approach in this paper, they consider the
resulting equity rather than the entire payment ma-
trix. They restrict attention to the class of division-
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rule-based bankruptcy rules and provide an axi-
omatization for the equity resulting from the bank-
ruptcy rule based on the Aumann–Maschler divi-
sion rule.

Not all bankruptcy rules are based on division
rules. For instance, a bankruptcy rule that consists of
pairwise netting all mutual claims first and next ap-
plying the proportional rule to the resulting liabilities
is not in this class, because in this case, payments do
not only depend on the asset value of an agent and its
liabilities, but also on its claims toward other agents.
Our axiomatization of the proportional rule does not
impose any a priori structure on bankruptcy rules.
Absence of pairwise netting, for instance, is therefore a
consequence of our axioms rather than an assumption.

Finally, we would like to mention an emerging
literature on the extension of the bankruptcy litera-
ture to network problems as appearing in operations
research. Bjørndal and Jörnsten (2010) analyze gen-
eralized bankruptcy problems with multiple estates
as flow-sharing problems and define the nucleolus
and the constrained egalitarian solution for such
problems. Moulin and Sethuraman (2013) consider
bipartite rationing problems, where agents can have
claims on a subset of unrelated estates. They consider
whether rules for single resource problems can be
consistently extended to their framework.

2. Financial Networks and the
Proportional Rule

Let N be the set of all potential agents and 1 the
collection of nonempty, finite subsets of N.

A financial network is a triple (N, z,L) with the fol-
lowing interpretation.

The set of agents in the financial network is given by
N ∈ 1. The vector z ∈ RN++ represents the endowments
of the agents, which are strictly positive real numbers.
The endowment of an agent includes all its tangible
and intangible assets, but excludes the claims and
liabilities that the agent has toward the other agents.
The nonnegative liability matrix L ∈ RN×N+ describes
the mutual claims of the agents. Its entry Lij is the
liability of agent i toward agent j or, equivalently, the
claim of agent j on agent i. We make the normalizing
assumption that Lii � 0. In general, it can occur that
agent i has a liability toward agent j and vice versa, so
it may happen that simultaneously Lij > 0 and Lji > 0.

Let Π ∈ RN×N+ denote the nonnegative relative lia-
bility matrix, where for i, j ∈ N,

Πij �
0, if Lij � 0,

Lij∑
k∈N Lik

, otherwise.

{

The set of all matrices in RN×N+ with a zero diagonal is
denoted by }(N). The union over all finite sets of
agents of thesematrices is denoted by} � ∪N∈1}(N).
The partial order ≤ on }(N) is defined in the usual
way: For P,P′ ∈ }(N), it holds that P ≤ P′ if and only if
Pij ≤ P′

ij for all (i, j) ∈ N ×N. For P ∈ }(N) and i ∈ N, let
Pi ∈ RN denote row i of P. For Pi,P′

i ∈ RN ,wewrite Pi <
P′
i if Pij ≤ P′

ij for all j ∈ N, and there is k ∈ N such that
Pik < P′

ik. Column i ∈ N of the matrix P is denoted
by Pi.
The set of all financial networks is denoted by ^.
Consider a financial network (N, z,L) ∈ ^. A pay-

ment matrix P ∈ }(N) describes the mutual payments
to be made by the agents—that is, Pij is the monetary
amount to be paidby agent i ∈ N to agent j ∈ N. Given a
payment matrix P ∈ }(N), the asset value ai(N, z,P) of
agent i ∈ N is given by

ai N, z,P( ) � zi +
∑

j∈N
Pji.

Subtracting the payments as made by an agent from
its asset value yields an agent’s equity. The equity
ei(N, z,P) of an agent i ∈ N is given by

ei N, z,P( ) � ai N, z,P( ) −∑

j∈N
Pij � zi +

∑

j∈N
Pji − Pij
( )

.

It follows immediately from the above expression that
the sum over agents of their equities is the same as the
sum over agents of their initial endowments.
A bankruptcy rule b associates to each financial

network (N, z,L) ∈ ^ a payment matrix P ∈ }(N).
More formally, we have the following definition.

Definition 2.1. A bankruptcy rule is a function b : ^ → }
such that for every (N, z,L) ∈^, it holds that
b(N, z,L) ∈ }(N).
The proportional rule p : ^ → } is the bankruptcy

rule where every agent proportionally spends its
asset value over its liabilities.

Definition 2.2. The proportional rule is the function p :
^ → } such that for every (N, z,L) ∈ ^, it holds that
p(N, z,L) � P, where the matrix P solves the following
system of equations:

Pij � min Πij zi +
∑

k∈N
Pki

( )

, Lij

{ }

, i, j ∈ N. (2.1)

It follows from theorem 2 in Eisenberg andNoe (2001)
that the system of equations (2.1) has a unique so-
lution. Lemma 4 in Eisenberg and Noe (2001) estab-
lishes that the payment matrix generated by the
proportional rule can also be found as the solution to a
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linear programming problem. Let (N, z, L) ∈ ^ be a
financial network, and let the matrix P∗ solve the
following linear programming problem, where 1

denotes a vector of ones in RN :

max
P∈RN×N+ ,λ∈RN+

∑

i∈N

∑

j∈N
Pij,

subject to
Pij � λiLij, i, j ∈ N,

λi ≤ 1, i ∈ N,

z + P	1 − P1 ≥ 0.

(2.2)

Then, it holds that p(N, z,L) � P∗. The first and second
constraint in the linear program (2.2) guarantee that
payments are proportional to the liabilities and that
no agent receives more than its claim. The third
constraint ensures that no agent ends up with neg-
ative equity. The fact that P∗ maximizes the objective
function implies that no agent is allowed to default
when having positive equity. Otherwise, it would
be possible to increase the value of the objective
function by having the defaulting agent make addi-
tional payments.

In Example 2.3, we illustratefinancial networks and
the proportional rule in a numerical example,whereas in
Example 2.4, we explain how themodel has been used
to assess the systemic financial stability of the Aus-
trian banking system.

Example 2.3 (The Proportional Rule in a Numerical
Example). Consider the financial network (N, z,L) ∈
^with three agentsN � {1, 2, 3} and endowments and
liabilities as in the first two blocks of Table 1. More-
over, Table 1 presents the payment matrix P resulting
from the proportional rule p and the induced asset
values and equities.

Notice that agent 2 is in fundamental default, be-
cause its endowment of 19 cannot fully pay its lia-
bilities of 20 and 60 to agents 1 and 3, respectively,
even if agent 2 receives the payment of 10 from
agent 3. However, the default of agent 3 results from
contagion. In the absence of default by agent 2, agent 3
would have an asset value equal to 84, which is more
than sufficient to pay the total value of 50 of all its
liabilities. Under the proportional rule, agent 2 pays
35% and agent 3 pays 90% of its liabilities.

Example 2.4 (An Application to the Austrian Banking
System). Elsinger et al. (2006) use a financial net-
work (N, z,L) to assess the systemic financial stability
of the Austrian banking system. The set N consists of
881 Austrian banks that report monthly to the Aus-
trian Central Bank. The endowment zi of bank i ∈ N is
given by the portfolio holdings of bank i—that is, the
value of its loans, bonds, and stocks minus its liabil-
ities to nonbanks—and is netted by its interbank
positions. For j ∈ N, the number Lij is given by the
exposures of bank i toward bank j—that is, the total
nominal liabilities of bank i against bank j. The values
of z and L are determined for September 2002 on the
basis of the monthly reports to the Austrian Central
Bank and the Austrian Central Bank major loans reg-
ister. Total endowments

∑
i∈N zi of the banks equal 575

billion euros, and total interbank liabilities
∑

i∈N
∑

j∈N Lij
amount to 161 billion euros.

To use themodel for risk analysis, it is extended to a
framework with uncertainty by assuming that future
endowments are determined by the realization of a
random variable z̃. To determine the distribution of z̃,
separate estimates are made of both market risk and
credit risk towhich the banks are exposed,where a 10-
day horizon is taken for market risk and a three-
month horizon for credit risk. Each realization z′ of
z̃, called a scenario in Elsinger et al. (2006), leads to a
financial network (N, z′, L). Scenarios are analyzed
both from a short-run and a long-run perspective. The
short-run perspective assumes that there are no in-
terbank payments following a bank’s default in the
financial network (N, z′, L). The long-run perspective
uses the proportional rule to determine the payment
matrix and to calculate the number of banks subject to
fundamental and contagion default.
As discussed in Example 2.4, the use of the pro-

portional rule implicitly takes a long-run perspective
by assuming that the entire endowments of a defaulting
bank can be used tomake payments to its creditors. This
assumption is less restrictive than it may seem at first
sight, as it follows from the analysis in Csóka and
Herings (2018) that the final payment matrix is not
sensitive to the exact timing of the payments. It is
therefore not needed that the liquidation of a bank-
rupt bank takes place immediately, and the model is
consistent with the case where the unwinding of a
defaulting bank’s assets can take a substantial amount
of time.
Upper (2011) presents a survey of 15 applied studies

that use the Eisenberg and Noe (2001) framework to
assess the frequency and severity of contagion in
interbank markets for a number of countries. This
survey puts particular emphasis on the way the
matrix L can be estimated on the basis of, often lim-
ited, available data.

Table 1. The Endowments, the Liabilities, the Payment
Matrix, the Asset Values, and the Equities Resulting from
the Proportional Rule p in Example 2.3

z L P a(N, z,P) e(N, z,P)
9 0 0 0 0 0 0 52 52
19 20 0 60 7 0 21 28 0
24 40 10 0 36 9 0 45 0

52 52
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3. Basic Axioms
In this section,we define anddiscussfive basic axioms
for bankruptcy rules b : ^ → }.

Axiom 3.1 (Claims Boundedness). For every F ∈ ^, it
holds that b(F) ≤ L.

Axiom 3.2 (Limited Liability). For every F ∈ ^, for every i ∈
N, it holds that ei(N, z, b(F)) ≥ 0.

Axiom 3.3 (Priority of Creditors). For every F ∈ ^, for every
i ∈ N, if bi(F) < Li, then it holds that ei(N, z, b(F)) � 0.

Axiom 3.4 (Continuity). It holds that b is continuous.

Axiom 3.5 (Impartiality). For every F ∈ ^, for every i, j, k ∈
N, if Lij � Lik, then it holds that bij(F) � bik(F).

Claims boundedness expresses that no agent needs
to pay an amount in excess of its liabilities.

A bankruptcy rule satisfies limited liability if it
leads to a paymentmatrix such that none of the agents
ends up with negative equity.

A bankruptcy rule satisfies priority of creditors if
the only circumstanceunderwhichanagent is allowed to
default is when its equity is equal to zero. The axioms of
limited liability and priority of creditors are closely re-
lated to the notions of limited liability and absolute
priority, as introduced in Eisenberg and Noe (2001). In
Eisenberg and Noe (2001), these notions are not for-
mulated as properties of bankruptcy rules, but as re-
quirements on the payment matrix, restricted to the case
where each agent settles its liabilities proportionally.

To define continuity, we endow ^ with the stan-
dard topology, based on the discrete topology for 1
and the Euclidean topology for endowments and li-
abilities. Let (Fn)n∈N � (Nn, zn,Ln)n∈N be a sequence of
financial networks of ^. Notice that this sequence
converges to the financial network F � (N, z, L) of ^ if
and only if there is n′ ∈ N, such that for every n ≥ n′, it
holds that Nn � N, limn→∞ zn � z, and limn→∞ Ln � L.
Continuity is an attractive property of a bankruptcy
rule because it implies that small changes in the fi-
nancial network imply small changes in the resulting
payment matrix.

Impartiality requires that two agents j and k with
the same claim on agent i should receive the same
payment from i. Note that impartiality applies to
payments made by an agent to its creditors, but not to
payments received. Because one of the debtors could
be bankrupt, such an axiom would make little sense.
All bankruptcy rules for financial networks that are
based on the well-known division rules for claims
problems—like the proportional rule, the constrained
equal awards rule, or the Talmud rule, to name a
few—satisfy impartiality. In most real-life bankruptcy

cases, the principle of impartiality is satisfied, which is in
accordance with the EC Council Regulation on insol-
vency proceedings, requiring that creditors with the
samestandingshouldobtain the sameproportionof their
claims, and with American bankruptcy law, requiring
that claimants of equal status should receive payments
proportional to the value of their liabilities. In both legal
systems, the repayment capacityof claimants is not taken
into account.
Notwithstanding the dominance of impartiality in

real-life bankruptcy cases, the principle of impar-
tiality is applied somewhat differently in over-the-
counter derivatives trades; see Duffie and Zhu (2011).
First, claims are revised by doing one round of
pairwise netting. Next, the proportional rule is ap-
plied to the revised claims. The revised claims have
the property that for every pair of agents i, j ∈ N, it
holds that Lij � 0 or Lji � 0. To capture this situation,
we define the pairwise netting proportional rule.

Definition 3.6. The pairwise netting proportional rule pnp :
^ → } is defined by

pnp N,z,L( ) �min L,L	
{ }+p N,z,L−min L,L	

{ }( )
,

N,z,L( ) ∈^.

Under the pairwise netting proportional rule, first,
pairwise mutual payments are made, resulting in
pairwisenettingof the liabilities, and,next, the remaining
liabilities are settled by using the proportional rule. The
pairwise netting proportional rule is an example of a
bankruptcy rule that is not based on a division rule for
claims problems, because in this case, payments do not
only depend on the asset value of an agent and its lia-
bilities, but alsoon its claims towardother agents.Weuse
the pairwise netting proportional rule to show the in-
dependence of our axioms in Appendix B. The following
example shows that the pairwise netting proportional
rule violates impartiality.

Example 3.7 (The Pairwise Netting Proportional Rule Does
Not Satisfy Impartiality). Consider the financial network
(N, z,L) ∈ ^ with three agents N � {1, 2, 3} and en-
dowments and liabilities as in the first two blocks of
Table 2. Moreover, Table 2 presents the pairwise net-
ting amounts min{L,L	}, the payment matrix resulting
from the proportional rule applied to the revised prob-
lem P′ � p(N,z,L−min{L,L	}), the payment matrix P �
pnp(N, z,L), asset values a(P), and equities e(P).
Notice that impartiality is not satisfied by the

pairwise netting proportional rule, because agent 1
makes a payment of 10 units to agent 2 and of eight
units to agent 3, even though both agents hold the
same claim against agent 1.
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4. Invariance to Mitosis and
the Axiomatization

For claims problems, nonmanipulability has been used
by Angeles de Frutos (1999), Moreno-Ternero (2006),
and Ju et al. (2007) to axiomatize the proportional
rule. In that setting, nonmanipulability says that no
group of agents can increase their total awards by
merging their claims and that no single agent can
increase its award by splitting its claim among dummy
agents and itself. This axiomwas introduced as strategy-
proofness by O’Neill (1982) for the class of simple
claims problems, which are claims problems where
no agent has a claim exceeding the estate. Strong
nonmanipulability, introduced as the additivity of
claims property by Curiel et al. (1987) for simple
claims problems, says that if an agent splits its claim
and appears as several different claimants, or a group
of agents merge their claims and appear as a single
claimant, nothing changes for the other agents in-
volved in the problem.

A straightforward way to generalize strong non-
manipulability for claims problems to the setting of
financial networks is to require that the split of an
agent into multiple agents or the merger of a group of
agents should not affect the payment matrix. We will
show in Theorem 5.3 that nonmanipulability defined
in such a way is too demanding in a network setting.
Themain problem is that a bankrupt agent can gain by
allocating liabilities to a spin-off while keeping its
endowments and claims. In real life, this kind of
manipulation is illegal, because in winding up or in
insolvency proceedings, the borrower is not allowed
to do anything that would threaten directly or indi-
rectly the payments to its lenders.

We therefore want to restrict splits and mergers to
situations that are balanced in the sense that a spin-off
that receives liabilities should also receive a corre-
sponding amount of endowments and claims. The
simplest way to achieve this is to restrict attention to
manipulations involving identical agents, having the
same endowments, claims, and liabilities. A split of an

agent into identical agents is very common in real life.
It occurs in case of a divorcewhenmarried in community
of property. It turns out that this veryweak requirement,
called invariance to mitosis, together with the basic ax-
ioms, is sufficient to axiomatize the proportional rule.

Axiom 4.1 (Invariance to Mitosis). For every F � (N, z, L) ∈
^, for every j ∈ N, for every K ⊂ N \N, the payments in the
financial network F′ � (N′, z′,L′) ∈ ^, where

N′ � N ∪ K,

z′k � zj/ |K| + 1( ), k ∈ j
{ } ∪ K,

z′i � zi, i ∈ N \ j
{ }

,

L′ki � Lji/ |K| + 1( ), k ∈ j
{ } ∪ K, i ∈ N \ j

{ }
,

L′ik � Lij/ |K| + 1( ), k ∈ j
{ } ∪ K, i ∈ N \ j

{ }
,

L′k� � 0, k, � ∈ j
{ } ∪ K,

L′hi � Lhi, h, i ∈ N \ j
{ }

,

satisfy

∑

k∈ j{ }∪K
bki F′( ) � bji F( ), i ∈ N \ j

{ }
,

∑

k∈ j{ }∪K
bik F′( ) � bij F( ), i ∈ N \ j

{ }
,

bhi F′( ) � bhi F( ), h, i ∈ N \ j
{ }

.

We have formulated invariance to mitosis as the
requirement that splitting an agent arbitrarily into
multiple, but identical, agents should not affect the
payments made to and received from the agents that
are not involved in the split. Equivalently, we could
have used the formulation that the merger of an ar-
bitrary set of identical agents should not affect the
payments made to and received from the agents that
are not involved in themerger. Under a rule satisfying
invariance to mitosis, the identical agents involved
benefit neither from a split nor from a merger, giv-
ing two weak inequalities from which the first two
equalities related to the payment matrix in Axiom 4.1
can be derived. The feature that also mutual payments

Table 2. The Endowments, the Liabilities, the Pairwise Netting Amounts min{L,L	}, the Payment Matrix of the Revised
Problem P′ � p(N, z, L −min{L, L	}), the Payment Matrix P � pnp(N, z, L), Asset Values a(P), and Equities e(P) in Example 3.7

z L L′ min{L,L	} P′ P a(N, z,P) e(N, z,P)
12 0 12 12 0 6 12 0 6 0 0 4 8 0 10 8 18 0
6 6 0 0 0 0 0 6 0 0 0 0 0 6 0 0 16 10
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14 14

L′ � L −min{L, L	}.
P′ � p(N, z,L −min{L, L	}).

Csóka and Herings: Axiomatization of the Proportional Rule in Financial Networks
2804 Management Science, 2021, vol. 67, no. 5, pp. 2799–2812, © 2020 INFORMS

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

14
6.

11
0.

15
2.

44
] 

on
 0

4 
Ja

nu
ar

y 
20

23
, a

t 0
1:

10
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



between agents not involved in the split or merger do
not change, the last equation in Axiom 4.1, makes this
notion of nonmanipulability particularly robust, be-
cause it rules out the possibility that agents outside
a split or merger would benefit from it and would
be willing to make side payments to induce it. To
sum up, invariance to mitosis requires that the split of
an agent into multiple, but identical, agents or the
merger of a group of agents that are identical should
not affect the payment matrix.

We now turn to our axiomatization of the pro-
portional rule.

Theorem 4.2. The proportional rule p is the unique bank-
ruptcy rule satisfying the axioms of claims boundedness,
limited liability, priority of creditors, continuity, impar-
tiality, and invariance to mitosis.

The proof of Theorem 4.2 can be found in Appendix
A. We show the axioms to be independent in Appen-
dix B.

Although invariance to mitosis applies to cases
where an agent is split in identical agents, the propor-
tional rule is easily verified to satisfy nonmanipulability
in a much wider range of situations. It holds whenever
all agents involved in a split remain solvent, which is not
the case for bankruptcy rules for financial networks
based on well-known division rules for claims problems
like the constrained equal awards rule or the Talmud
rule. For instance, under the constrained equal awards
rule, agents benefit from splitting, even when they all
remain solvent, because this increases the joint payments
they receive from bankrupt agents. One can therefore
conclude that nonmanipulability of the proportional rule
applies exactly to those cases that are legally allowed,
whereas because of Theorem 4.2, all other rules sat-
isfying the basic axioms are manipulable, even when
only splits in identical agents are considered. The
proportional rule is therefore optimal when mini-
mization of manipulation is the main concern. Other
relevant concerns are how different bankruptcy rules
affect the incentives to create profitable enterprises or
influence welfare more generally. Such concerns are
outside the framework that we consider here.

5. Nonmanipulability
In this section, we give a formal result on non-
manipulability being incompatible with the other
basic axioms, even when one does not insist on
continuity and impartiality.

Nonmanipulability requires the arbitrary split of an
agent into multiple agents or the merger of a set of
agents not to affect the payment matrix, formally
defined as follows.

Axiom 5.1 (Nonmanipulability). For every F � (N, z,L) ∈
^, for every j ∈ N, for every K ⊂ N \N, the payments in
every financial network F′ � (N′, z′, L′) ∈ ^ such that

N′ � N ∪ K,
∑

k∈ j{ }∪K
z′k � zj,

z′i � zi, i ∈ N \ j
{ }

,
∑

k∈ j{ }∪K
L′ki � Lji, i ∈ N \ j

{ }
,

∑

k∈ j{ }∪K
L′ik � Lij, i ∈ N \ j

{ }
,

L′hi � Lhi, h, i ∈ N \ j
{ }

,

satisfy
∑

k∈ j{ }∪K
bki F′( ) � bji F( ), i ∈ N \ j

{ }
,

∑

k∈ j{ }∪K
bik F′( ) � bij F( ), i ∈ N \ j

{ }
,

bhi F′( ) � bhi F( ), h, i ∈ N \ j
{ }

.

We argue next that the requirement of non-
manipulability is too strong in financial networks.
First, we show that it is not satisfied by the propor-
tional rule.

Example 5.2 (The Proportional Rule Is Manipulable). We
start from the financial network F � (N, z,L) ∈ ^ of
Example 3.7 and calculate the payment matrix, asset
values, and equities resulting from the proportional
rule p in Table 3.

Consider a split of agent 1 into agents 1 and 4,
resulting in the financial network F′ � (N′, z′,L′) �
(N ∪ {4}, z′, L′). In the split, agent 1 allocates half of its
endowment and all of its liabilities to agent 4, but
none of its claims. The financial network F′ is pre-
sented in Table 4, as well as the payment matrix P′
resulting from the proportional rule p.
Clearly, the proportional rule violates nonmanipulability,

becauseP12 � 9 � 3�P′
12+P′

42 and P13 � 9 � 3�P′
13+P′

43.
Agent 4 has no claims, and its liabilities exceed its

Table 3. The Endowments, Liabilities, Payment Matrix,
Asset Values, and Equities Resulting from the Proportional
Rule p in Example 5.2 for the Financial Network F � (N, z, L)
z L P a(N, z,P) e(N, z,P)
12 0 12 12 0 9 9 18 0
6 6 0 0 6 0 0 15 9
6 0 0 0 0 0 0 15 15
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endowment, so is sure to default on its liabilities. On
the other hand, agent 1 has no liabilities, a positive
endowment, and positive claims, so it will be solvent
for sure. Agent 1, who defaults in financial network F
and has e1(N, z, p(F)) � 0, has split into a solvent
agent 1 and a defaulting agent 4 in financial net-
work F′ with resulting equity e1(N′, z′, p(F′)) � 12 and
e4(N′, z′, p(F′)) � 0. Obviously, if a bankrupt agent is
allowed to allocate all its liabilities to a spin-off and
keeps its endowment and claims to itself, it will end
up with positive equity itself and a bankrupt spin-off.

We can generalize thefindings of Example 5.2 to the
following impossibility result.

Theorem 5.3. There is no bankruptcy rule satisfying claims
boundedness, limited liability, priority of creditors, and
nonmanipulability.

Theproof of Theorem 5.3 canbe found inAppendixA.
The proof considers the financial network of Exam-
ple 5.2 and shows that any bankruptcy rule with the
stated properties requires agent 1 to make no payments
and agent 4 to make a total of six units of payments in
financial network F′. Nonmanipulability can then be
invoked to infer that agent 1 makes a total of six units
of payments in financial network F. Agent 1 therefore
ends up with positive equity in financial network F,
which implies total payments equal to total liabilities
of 24 units, leading to a contradiction.

6. A Bankruptcy Rule That Violates
Invariance to Mitosis

In this section, we present a bankruptcy rule that
satisfies all the axioms, except invariance to mitosis.3

In Appendix B, we present bankruptcy rules that
violate exactly one of the other axioms. This dem-
onstrates the independence of the axioms.

We construct a bankruptcy rule that is identical to
the proportional rule for all financial networkswithN
different from {1, 2, 3}. In case N � {1, 2, 3}, agents 1
and 2 still use the proportional rule to pay their lia-
bilities, but agent 3 will pay agents 1 and 2 according

to a division rule d′ :R+ ×R2+ →R2+, where d′j (A3, (L31,
L32)) is the amount agent 3 pays to agent j ∈ {1, 2} if
agent 3 has an asset value A3 ∈ R+ and liabilities to-
ward agents 1 and 2 equal to (L31,L32) ∈ R2+. The di-
vision rule d′ is defined as follows.
If L31 + L32 < A3, then define d′1(A3, (L31,L32)) � L31

and d′2(A3,(L31,L32)) �L32. If L31 + L32 ≥ A3 and L31 � 0,
then define d′1(A3,(L31,L32)) � 0 and d′2(A3, (L31,L32)) �
A3. If L31 + L32 ≥ A3 and L32 � 0, then define d′2(A3, (L31,
L32)) � 0 and d′1(A3, (L31,L32)) � A3. Finally, in case
L31 + L32 ≥ A3 and (L31,L32) � 0, let d′1(A3, (L31,L32)) ≥
0 and d′2(A3, (L31, L32)) ≥ 0 solve

d′2 A3, L31,L32( )( ) � L32

L
L31
L32
31

( ) d′1 A3, L31,L32( )( )
L31
L32 , (6.1)

A3 � d′1 A3, L31,L32( )( )+d′2 A3, L31,L32( )( ).
(6.2)

Note that Equation (6.1) implies that d′2(A3, (L31, L32))
is strictly increasing as a function of d′1(A3, (L31, L32)),
hence, there exists a unique solution to (6.1) and (6.2).
Forfixed (L31,L32) � 0, it holds that d′1 and d′2 are strictly
increasing inA3. Moreover, if d′1(A3,(L31,L32)) � L31, then
it holds that d′2(A3, (L31,L32)) � L32 by (6.1). We can use
these facts to conclude that d′1(A3, (L31, L32)) ≤ L31 and
d′2(A3, (L31,L32)) ≤ L32. It is easy to verify that the di-
vision rule d′ is continuous.
The division rule d′ is illustrated in Figure 1. Note

that claimant 1 gets higher than proportional pay-
ments if L31 > L32, proportional payments if L31 � L32,
and below proportional payments if L31 < L32.
Let b′ : ^ → } be the bankruptcy rule defined

as follows.
If N � {1, 2, 3}, then b′(N, z,L) � p(N, z, L).

Figure 1. The Division Rule d′ for (L31, L32) � (20, 40),
(L31, L32) � (40, 40), and (L31, L32) � (80, 40) for All Levels of
the Asset Value A3

Table 4. The Endowments, Liabilities, Payment Matrix,
Asset Values, and Equities Resulting from the Proportional
Rule p in Example 5.2 for the Financial Network
F′ � (N′, z′, L′)
z′ L′ P′ a(N′, z′,P′) e(N′, z′,P′)
6 0 0 0 0 0 0 0 0 12 12
6 6 0 0 0 6 0 0 0 9 3
6 0 0 0 0 0 0 0 0 9 9
6 0 12 12 0 0 3 3 0 6 0

Csóka and Herings: Axiomatization of the Proportional Rule in Financial Networks
2806 Management Science, 2021, vol. 67, no. 5, pp. 2799–2812, © 2020 INFORMS

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

14
6.

11
0.

15
2.

44
] 

on
 0

4 
Ja

nu
ar

y 
20

23
, a

t 0
1:

10
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



If N � {1, 2, 3}, then b′(N, z,L) � P, where P solves
the following system of equations:

P1j � min Π
1j

z1 +
∑

k∈N
Pk1

( )

,L1j

{ }

, j ∈ N,

P2j � min Π
2j

z2 +
∑

k∈N
Pk2

( )

,L2j

{ }

, j ∈ N,

P3j � d′j z3 +
∑

k∈N
Pk3, L31,L32( )

( )

, j � 1, 2,

P33 � 0.

The uniqueness of the solution P follows along the
same lines as the proof for the proportional rule as
given in theorem 2 of Eisenberg and Noe (2001). The
bankruptcy rule b′ coincides with the proportional
rule, except when N � {1, 2, 3}. In this case, when
agent 3 is bankrupt, itmakes higher than proportional
payments to agent 1 if L31 > L32, proportional pay-
ments to agent 1 if L31 � L32, and below proportional
payments to agent 1 if L31 < L32. It is easily veri-
fied that b′ satisfies the axioms of claims bounded-
ness, limited liability, priority of creditors, continuity,
and impartiality.

The bankruptcy rule b′ does not satisfy invariance
to mitosis. For instance, let F′ � (N′, z′,L′) be a fi-
nancial network, where N′ � {1, 2, 3, 4}, agents 1, 2,
and 4 are identical, and agent 3 is in fundamental
default with positive liabilities to agents 1, 2, and 4.
Assume that there are no other positive liabilities.
Because agents 1, 2, and 4 are identical, L′31 � L′32 �
L′34, and b′31(F′) � b′32(F′) � b′34(F′) � z3/3.Nowconsider
thefinancial network F � (N, z,L)withN � {1, 2, 3} that
results after amerger between agents 1 and 4. Because
L31 � L′31 + L′34 � 2L′32 � 2L32, the use of the bankruptcy
rule b′ results in above proportional payments by
agent 3 to agent 1 in financial network F, so b′31(F) >
2z3/3, and invariance to mitosis is violated.

7. Conclusion
Many real-life bankruptcy problems are character-
ized by network aspects, meaning that the default of
one agent can potentially snowball and lead to a chain
of contagion defaults of other agents. As a conse-
quence, the estates to be divided are endogenously
determined, which makes the problem quite differ-
ent from the typical case, as studied in the axiomatic
bankruptcy literature. The most important bankruptcy
rule from a practical perspective is the proportional rule.
This makes an axiomatic analysis of the proportional
bankruptcy rule in financial networks imperative.

An important aspect of actual bankruptcy prob-
lems is that entities can create spin-offs or merge.
When such activities do not generate added value,

they should not influence the payments to and from
other entities and the payments between other entities.
Such a property is known as nonmanipulability. An
unrestricted ability to create spin-offs or form mergers
clashes with nonmanipulability. Intuitively, an entity
would have incentives to create a spin-off that contains
all liabilities, while keeping all assets for itself. To avoid
such unbalanced situations, we consider a much less
demanding nonmanipulability property, called invari-
ance to mitosis. In this case, it is required that the split of
an entity into a number of identical ones or mergers of
identical entities does not affect payments.
We show that invariance to mitosis leads to the

proportional rule when complemented by the basic ax-
ioms of claims boundedness, limited liability, priority of
creditors, continuity, and impartiality. We show all ax-
ioms tobe independent. It ispossible todrop the axiomof
continuity when assuming that all liabilities are repre-
sented by rational numbers rather than reals. Although
the veryweak axiom of invariance tomitosis is sufficient
to obtain the proportional rule, the proportional rule is
robust to manipulations for a much wider range of sit-
uations. Whenever all agents involved in a split remain
solvent, which corresponds to standard legal require-
ments, manipulation is not possible under the propor-
tional rule.
We believe that the widespread use of the pro-

portional rule in bankruptcy situations across coun-
tries and over time (see Engle (2012) for a historical
account of the popularity of the proportional rule) is
intimately related to the attractiveness and simplicity
of the axioms characterizing it.
There are many possibilities for further research.

The proportional rule and other bankruptcy rules in
financial networks could be axiomatized by using
different sets of axioms. It is far from straightforward
to extend the results from claims problems to network
problems by generalizing, for instance, no advan-
tageous reallocation (Moulin 1987) or consistency
(Young 1988). No advantageous reallocation would
be attractive because it does not require the variable
population context used in this paper. The problem is
that reallocations can only be expected not to be
advantageous if these reallocations are proportional,
similar to our axiom of invariance to mitosis. But in a
fixed population context, two agents with propor-
tional characteristics may not exist, and the axiom
loses its bite. Consistency requires that, in case one
agent settles its affairs with the other agents and
leaves the financial network, then an application of
the rule to the reduced financial network leads to the
same payments between the agents as before. The
problem is that the reduced financial network may be
outside our domain of financial networks, because
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agents may end up with negative initial endowments
in the reduced financial network.
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Appendix A. Proofs
The proof of Theorem 4.2 has two parts. In part (I), we show
that the proportional rule satisfies claims boundedness,
limited liability, priority of creditors, continuity, impar-
tiality, and invariance to mitosis. In part (II), we prove that
the proportional rule is the only rule satisfying these ax-
ioms. To prove this part, an important step is the insight that
the axioms of impartiality and invariance to mitosis to-
gether imply that payments by agent i to liabilities that are
rational multiples of one another are proportional to these
liabilities. This fact, together with the other axioms, except
the axiom of continuity, is then used to show that the
payment matrix satisfies Equation (2.1) in case all liabilities
are rational numbers. The axiom of continuity is then in-
voked to extend this result to all financial networks.

Proof of Theorem 4.2, Part (I): The Proportional Rule p
Satisfies Claims Boundedness, Limited Liability, Priority of
Creditors, Continuity, Impartiality, and Invariance toMitosis.
Consider the system of Equations (2.1).

Claims boundedness and impartiality follow immediately.
For limited liability, consider any creditor i ∈ N. If, for

every j ∈ N, Lij � 0, then

ei N, z,P( ) � zi +
∑

j∈N
Pji − Pij
( ) � zi +

∑

j∈N
Pji > 0.

Otherwise, we have that
∑

j∈N Πij � 1, so

ei N,z,P( )� zi+
∑

j∈N
Pji−Pij
( )≥ zi+

∑

j∈N
Pji−Πij zi+

∑

k∈N
Pki

( )( )

�0,

where the last equality follows from
∑

j∈N Πij � 1.
Next, we show priority of creditors to hold. Take any

financial network F � (N, z, L) ∈ ^ and any agent i ∈ N such
that pi(F) < Li. Then, we have that, for every j ∈ N,

pij F( ) � Πij zi +
∑

k∈N
Pki

( )

� Πijai N, z, p F( )( )
,

so using
∑

j∈N Πij � 1, we get that
∑

j∈N
pij F( ) � ∑

j∈N
Πijai N, z, p F( )( ) � ai N, z, p F( )( )

,

implying that ei(N, z, p(F)) � 0.
Next,weshowcontinuitytohold.Let(Fn)n∈N � (Nn, zn, Ln)n∈N

be a sequence of financial networks in ^, which converges
to the financial network F � (N, z, L) in ^.We have to show
that the sequence of payment matrices (p(Fn))n∈N converges
to the paymentmatrix p(F). For n ∈ N,we denote the relative
liability matrix of Fn byΠn and the payment matrix p(Fn) by
Pn. The relative liability matrix of F is denoted by Π.

Without loss of generality, we can assume that, for every
n ∈ N, Nn � N. Using the boundedness of the sequence
(Pn)n∈N, we can assume without loss of generality that it
has a limit P ∈ }(N). For every n ∈ N, for every i, j ∈ N, it
holds by definition of p that

Pn
ij � min Πn

ij zni +
∑

k∈N
Pn
ki

( )

, Lnij

{ }

.

If Lij � 0, then

Pij � lim
n→∞Pn

ij ≤ lim
n→∞Lnij � Lij � 0 � min Πij zi +

∑

k∈N
Pki

( )

, Lij

{ }

.

If Lij > 0, then

Pij � lim
n→∞Pn

ij � lim
n→∞min Πn

ij zni +
∑

k∈N
Pn
ki

( )

, Lnij

{ }

� min Πij zi +
∑

k∈N
Pki

( )

, Lij

{ }

.

We have shown that P is a solution to the system of
equations (2.1) corresponding to the financial network F.
Because this solution is unique by theorem 2 of Eisenberg
and Noe (2001), it follows that P � p(F) as desired.

Finally, to show invariance to mitosis holds, take any
financial network F � (N, z, L) ∈ ^, j ∈ N, and K ⊂ N \N.
Consider the financial network F′ � (N′, z′, L′)with relative
liability matrix Π′ that results after the split of agent j into
identical agents in {j} ∪ K.

We show that the payment matrix P′ ∈ }(N′) defined by

P′
ki � pji F( )/ |K| + 1( ), k ∈ j

{ } ∪ K, i ∈ N \ j
{ }

,

P′
ik � pij F( )/ |K| + 1( ), k ∈ j

{ } ∪ K, i ∈ N \ j
{ }

,

P′
k� � 0, k, � ∈ j

{ } ∪ K,

P′
hi � phi F( ), h, i ∈ N \ j

{ }
,

(A.1)

is a solution to the system of equations (2.1) for F′.
We have three cases.
Case A.1. L′ih � 0, i, h ∈ N′.
It follows immediately from the definition of P′ in (A.1)

that P′
ih � 0.
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Case A.2. L′ih > 0, i ∈ N \ {j}, h ∈ N′.
It holds that

ai N′, z′,P′( ) � z′i +
∑

�∈N′
P′
�i � zi +

∑

�∈N
p�i F( ) � ai N, z, p F( )( )

.

For every h ∈ N \ {j}, we have

P′
ih � pih F( ) � min Πihai N, z, p F( )( )

, Lih
{ }

� min Π′
ihai N

′, z′,P′( ), L′ih
{ }

.

For every h ∈ {j} ∪ K, we have

P′
ih � pij F( )/ |K| + 1( ) � min Πijai N, z, p F( )( )

, Lij
{ }

/ |K| + 1( )
�min Πij/ |K| + 1( )ai N, z, p F( )( )

, Lij
{

/ |K| + 1( )}
�min Π′

ihai N
′, z′,P′( ), L′ih

{ }
.

Case A.3. L′kh > 0, k ∈ {j} ∪ K, h ∈ N \ {j}.
It holds that

ak N′, z′,P′( ) � z′k +
∑

�∈N′
P′
�k � zj/ |K| + 1( ) +∑

�∈N
p�j F( )/ |K| + 1( )

� aj N, z, p F( )( )
/ |K| + 1( ).

We have

P′
kh � pjh F( )/ |K| + 1( ) � min Πjhaj N, z, p F( )( )

, Ljh
{ }

/ |K| + 1( )
� min Πjhaj N, z, p F( )( )

/ |K| + 1( ),Ljh
{

/ |K| + 1( )}
� min Π′

khak N
′, z′,P′( ), L′kh

{ }
,

where the last equality follows from

Πjh � Ljh
∑

�∈N Lj�
� Ljh/ |K| + 1( )
∑

�∈N Lj�/ |K| + 1( ) �
L′kh∑

�∈N′ L′k�
� Π′

kh.

□

To show that the axioms of claims boundedness, limited
liability, priority of creditors, continuity, impartiality, and
invariance to mitosis imply the proportional rule, we will
use the following lemma, where one liability of an agent is a
positive rational multiple of another liability.

Lemma A.1. Let F � (N, z, L) ∈ ^ be a financial network, and let
i, j, k ∈ N and q, r ∈ N be such that Lij � (q/r)Lik. Let b be a
bankruptcy rule satisfying impartiality and invariance to mitosis.
Then, we have bij(F) � (q/r)bik(F).

We first consider the case r � 1. Let F′ � (N′, z′, L′) ∈ ^ be
the financial network where agent j is split into q identical
agents j and �1, . . . , �q−1 ∈ N \N, more precisely

N′ � N ∪ �1, . . . , �q−1
{ }

,

z′j � z′�1 � . . . � z′�q−1 � zj/q,

z′h � zh, h ∈ N \ j
{ }

,

L′jh � L′�1h � . . . � L′�q−1h � Ljh/q, h ∈ N \ j
{ }

,

L′hj � L′h�1 � . . . � L′h�q−1 � Lhj/q, h ∈ N \ j
{ }

,

L′hh′ � 0, h, h′ ∈ j, �1, . . . , �q−1
{ }

,

L′hh′ � Lhh′ , h, h′ ∈ N \ j
{ }

.

We have that

bij F( ) � bij F′( ) + bi�1 F′( ) + · · · + bi�q−1 F′( ) � qbik F′( ) � qbik F( ),

where the first equality follows by invariance to mitosis, the
second equality by impartiality, and the third equality again
by invariance to mitosis.

We next consider the general case. Without loss of gen-
erality, we assume q < r. Let F′ � (N′, z′, L′) ∈ ^ be the fi-
nancial network where agent k is split into r identical agents k
and �1, . . . , �r−1 ∈ N \N, more precisely

N′ � N ∪ �1, . . . , �r−1{ },
z′k � z′�1 � . . . � z′�r−1 � zk/r,

z′h � zh, h ∈ N \ k{ },
L′kh � L′�1h � . . . � L′�r−1h � Lkh/r, h ∈ N \ k{ },
L′hk � L′h�1 � . . . � L′h�r−1 � Lhk/r, h ∈ N \ k{ },
L′hh′ � 0, i, j∈ k, �1, . . . , �r−1{ },
L′hh′ � Lhh′ , h, h′ ∈ N \ k{ }.
We have that

bik F( ) � bik F′( ) + bi�1 F′( ) + · · · + bi�r−1 F′( )
� rbik F′( ) � r

qbij F
′( ) � r

qbij F( ),
where the first equality follows by invariance to mitosis, the
second equality from impartiality, the third equality from the
first step in the proof because L′ij � qL′ik, and the fourth
equality again by invariance to mitosis. □

Proof of Theorem 4.2, Part II: If the Bankruptcy Rule b
Satisfies Claims Boundedness, Limited Liability, Priority
of Creditors, Continuity, Impartiality, and Invariance to
Mitosis, then b � p.
Let F � (N, z, L) ∈ ^ be a financial network, and let b be a
bankruptcy rule satisfying claims boundedness, limited
liability, priority of creditors, continuity, impartiality, and
invariance to mitosis. We show that b(P) is a solution to the
system of equations (2.1). We first assume all the liabilities
to be rational numbers.

We consider two main cases.
Case A.4. i, j ∈ N, Lij � 0.
By claims boundedness, we have that bij(F) ≤ 0, and from

b(F) ∈ }(N), we get that bij(F) � 0.
Case A.5. i, j ∈ N, Lij > 0.
We have to show that

bij F( ) � min Πij zi +
∑

k∈N
bki F( ), Lij

({ }

.

Case A.5(a). zi +∑
k∈N bki(F) � ai(N, z, b(F)) ≥ ∑

k∈N Lik.
We have to show that bij(F) � Lij. Suppose, on the con-

trary, that bij(F) � Lij. Then, by claims boundedness, we
have that

bij F( ) < Lij. (A.2)
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By priority of creditors, the assumption of Case A.5(a)
claims boundedness, and (A.2), we get that

0 � ei N, z, b F( )( ) � ai N, z, b F( )( ) −∑
k∈Nbik F( )

>
∑

k∈NLik −
∑

k∈NLik � 0,
(A.3)

a contradiction. Consequently, it holds that bij(F) � Lij.
Case A.5(b). zi +∑

k∈N bki(F) � ai(N, z, b(F)) < ∑
k∈N Lik.

We have to show that

bij F( ) � Πijai N, z, b F( )( ). (A.4)
Because the liabilities are rational numbers, they are all

rational multiples of one another, sowe can use LemmaA.1 to
conclude that there exists a real number ri ≥ 0, such that

bik F( ) � riLik, k ∈ N. (A.5)
Thus, we have to show that

ri � ai N, z, b F( )( )
∑

k∈N Lik
. (A.6)

By limited liability, we have that
∑

k∈N
bik F( ) ≤ ai N, z, b F( )( ). (A.7)

Suppose that
∑

k∈N
bik F( ) < ai N, z, b F( )( ). (A.8)

Then, ei(N, z, b(F)) > 0, and priority of creditors implies
that

∑
k∈N bik(F) � ∑

k∈N Lik, a contradiction to the assumption
of Case A.5(b) and (A.8). Consequently, (A.7) holds with
equality, and, by (A.5), we have that

ai N, z, b F( )( ) � ∑

k∈N
bik F( ) � ∑

k∈N
riLik � ri

∑

k∈N
Lik, (A.9)

implying (A.6).
We have shown that b(F) � p(F)when all liabilities in F are

rational numbers.
We now consider the case where the liabilities in F are real-

valued. Let (Fn)n∈N be a sequence of financial networks, where
all liabilities are rational numbers, converging to F. We
have that

b F( ) � lim
n→∞ b Fn( ) � lim

n→∞ p Fn( ) � p F( ),

where the first equality follows from the axiom of continuity,
the second follows because the liabilities in Fn are all rational
numbers, and the third because p satisfies continuity by
Theorem 4.2. □

Proof of Theorem 5.3. Suppose b is a bankruptcy rule
satisfying claims boundedness, limited liability, priority of
creditors, and non-manipulability. Let F and F′ be the fi-
nancial networks as defined in Example 5.2. We define P �
b(F) and P′ � b(F′).

By claims boundedness, it holds that

P′
1 � 0, 0, 0, 0( ), (A.10)

and

e4 N′, z′,P′( ) � z′4 +
∑

i∈N′
P′
i4 −

∑

i∈N′
P′
4i � 6 − ∑

i∈N′
P′
4i.

If P′
4 � L4, then evidently e4(N′, z′,P′) < 0, which would

violate limited liability. It therefore holds that P′
4 � L4 and by

claims boundedness that P′
4 < L4. Priority of creditors now

implies that
∑

i∈N′ P′
4i � 6. Claims boundedness implies P′

41 � 0.
We now apply non-manipulability to derive that

P12 � P′
12 + P′

42,P13 � P′
13 + P′

43,

so
∑

i∈N
P1i � P11 + P12 + P13 � 0 + P′

12 + P′
42 + P′

13 + P′
43

� ∑

i∈N
P′
1i +

∑

i∈N
P′
4i � 6,

(A.11)

where the last equality comes from (A.10). It follows that

e1 N, z,P( ) � z1 +
∑

i∈N
Pi1 −

∑

i∈N
P1i ≥ 12 + 0 − 6 � 6 > 0,

so priority of creditors and claims boundedness yield P1 �
L1 and

∑

i∈N
P1i �

∑

i∈N
L1i � 24,

a contradiction to (A.11). □

Appendix B. Independence of the Axioms
In this section, we show the independence of the axioms
claims boundedness, limited liability, priority of creditors,
continuity, impartiality, and invariance to mitosis by pro-
viding six examples of bankruptcy rules satisfying all the
axioms except one.

Example B.1 (All Except Claims Boundedness). Consider
the following bankruptcy rule based on the proportional rule,
but pretending that the liabilities are twice the actual liabil-
ities. Let b1 :^→} be defined by setting b1(N,z,L) � p(N,
z,2L) for every (N, z, L) ∈ ^.

Then, b1 obviously does not satisfy claims boundedness.
Recall that the proportional rule p satisfies limited lia-

bility, priority of creditors, continuity, and impartiality by
Theorem 4.2. It follows almost immediately that b1 satisfies
those properties. Because merging identical agents and
then doubling the liability matrix leads to the same liability
matrix as doubling the liability matrix first and then
merging identical agents, invariance to mitosis for b1 fol-
lows from invariance to mitosis for p.

Example B.2 (All Except Limited Liability). Consider the
bankruptcy rule where all liabilities are paid. Let b2 : ^ → }
be defined by setting b2(N, z, L) � L for every (N, z, L) ∈ ^.

Then, b2 clearly does not satisfy limited liability. More-
over, b2 obviously satisfies claims boundedness, priority of
creditors, continuity, impartiality, and invariance to mitosis.

Example B.3 (All Except Priority of Creditors). Consider the
bankruptcy rule where nothing is paid. Let b3 : ^ → } be
defined by setting b3(N, z,L) � 0N×N for every (N, z,L) ∈ ^.
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Then, b3 clearly does not satisfy priority of creditors.
Moreover, b3 obviously satisfies claims boundedness,
limited liability, continuity, impartiality, and invariance
to mitosis.

Example B.4 (All Except Impartiality). Consider the pairwise
netting proportional rule pnp. We have shown in Example 3.7
that it does not satisfy impartiality.

Claims boundedness and continuity is obviously satis-
fied by pnp.

To check that pnp satisfies limited liability, consider a
financial network F� (N,z,L) ∈^ and any agent i ∈ N. Then,

ei N, z, pnp F( )( )

� zi +
∑

j∈N
pnpji F( ) −∑

j∈N
pnpij F( )

� zi +
∑

j∈N
min Lji, Lij

{ } +∑

j∈N
pji N, z, L −min L, L	

{ }( )

−∑

j∈N
min Lij, Lji

{ } −∑

j∈N
pij N, z, L −min L, L	

{ }( )

� ei N, z, p N, z, L −min L, L	
{ }( )( ) ≥ 0,

(B.1)
because the proportional rule p satisfies limited liability.
Thus, pnp satisfies limited liability.

To verify that pnp satisfies priority of creditors, consider a
financial network F � (N, z, L) ∈ ^ and any agent i ∈ N such
that pnpi(F) < Li, implying that

pi N, z, L −min L, L	
{ }( )

< Li −min Li, L	
( )

i

{ }
. (B.2)

Because p satisfies priority of creditors, (B.2) implies that

ei N, z, p n, z, L −min L, L	
{ }( )( ) � 0.

Using the same argument as in (B.1), it follows that
ei(N, z, pnp(F)) � 0, thus pnp satisfies priority of creditors.

To verify that pnp satisfies invariance to mitosis, we
define the bankruptcy rules b4 : ^ → } and b5 : ^ → } by
setting, for F � (N, z, L) ∈ ^, b4(F) � min{L, L	} and b5(F) �
p(N, z, L −min{L, L	}). It holds that pnp(F) � b4(F) + b5(F).
We show that both b4(F) and b5(F) satisfy invariance to
mitosis, from which it follows that pnp satisfies invariance
to mitosis.

It follows from the definition that b4 satisfies invariance to
mitosis, because merging identical agents will not change
what they pay or receive in total by pairwise netting, and the
liabilities within pairs of the other agents are not affected.

To show that b5 satisfies invariance to mitosis, observe
that merging identical agents first and executing pairwise
netting next leads to the same liability matrix as pairwise
netting first and merging identical agents next. Because p
satisfies invariance to mitosis, it follows that b5 satisfies
invariance to mitosis.

Example B.5 (All Except Continuity). Let dirr be the division
rule for claims problems that gives priority to claims that
belong to R \Q over claims that belong to Q and makes
proportional payments within each of the two priority
classes. So first all claimants with an irrational claim are paid
in a proportional way. If after honoring their claims in full,
there is still some estate left, then we turn to the claimants

with rational claims and pay them in a proportional way. Let
b6 : ^ → } be the bankruptcy rule defined as b6(N, z, L) � P,
where P is the greatest solution to the following system
of equations:

Pij � dirrj ai N, z,P( ), Li( ), i, j ∈ N.

The fact that a greatest solution exists follows from an
extension of arguments in Eisenberg and Noe (2001) and
Csóka and Herings (2018) that are based on an application
of Tarski’s fixed point theorem. The bankruptcy rule b6

obviously satisfies claims boundedness, limited liability,
priority of creditors, and impartiality.

The division rule dirr is not continuous in the vector of
claims. For instance, consider the case where one entry of a
given vector of claims is a positive rational number and
another entry is a positive irrational number. For a sequence
of claims vectorswith only rational entries that converges to
the given vector of claims, it is only at the limit that the
irrational claim gets priority. It now follows easily that the
bankruptcy rule b6 does not satisfy continuity.

Invariance to mitosis for b6 is satisfied, because merging
identical agents does not affect the priority classes of the
claims and liabilities of the merged agent. Technically, the
multiplication of a rational number by a natural number
results in a rational number, and the multiplication of an
irrational number by a natural number results in an irra-
tional number. To verify that b6 satisfies invariance to mi-
tosis then follows the reasoning as for p.

Example B.6 (All Except Invariance to Mitosis). Consider the
bankruptcy rule b′ defined in Section 6, where we showed
that b′ does not satisfy invariance tomitosis. It is easy to check
that b′ satisfies claims boundedness, limited liability, priority
of creditors, continuity, and impartiality.

Endnotes
1Council Regulation (EC) No. 1346/2000 of May 29, 2000 on insol-
vency proceedings: http://eur-lex.europa.eu/legal-content/EN/TXT/
HTML/?uri=CELEX:02000R1346-20140709&qid=1471509284560.
2The idea to restrict manipulations to identical agents has also
appeared in the literature on claims problems when axiomatizing the
class of priority division rules; see the axiom of restricted additivity in
Flores-Szwagrzak et al. (2019).
3We thank an anonymous reviewer for insisting to give this example a
more prominent place in the discussion.
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